Direct Link Networks - Error Detection and Correction

Reading: Peterson and Davie, Chapter 2

Error Detection

- Encoding translates symbols to signals
- Framing demarcates units of transfer
- Error detection validates correctness of each frame

Error Detection

- Adds redundant information that checks for errors
- And potentially fix them
- If not, discard packet and resend
- Occurs at many levels
- Demodulation of signals into symbols (analog)
- Bit error detection/correction (digital)—our main focus
- Within network adapter (CRC check)
- Within IP layer (IP checksum)
- Within some applications

Error Detection

- Analog Errors
- Example of signal distortion
- Hamming distance
- Parity and voting
- Hamming codes
- Error bits or error bursts?
- Digital error detection
- Two-dimensional parity
- Checksums
- Cyclic Redundancy Check (CRC)

Analog Errors

- Consider RS-232 encoding of character 'Q'
- Assume idle wire (-15V) before and after signal

RS-232 Encoding of 'Q'

Encoding isn't perfect

Example with bandwidth = baud rate

Encoding isn't perfect

Example with bandwidth = baud rate/2

Symbols

$\left.\begin{array}{c}+15 \\ 0 \\ \frac{0}{0} \\ \frac{0}{0} 0 \\ -15\end{array}\right] ?$ (erasure)

possible binary voltage encoding possible QAM symbol symbol neighborhoods and erasure neighborhoods in green; all region other space results in erasure

Digital error detection and correction

- Input: decoded symbols
- Some correct
- Some incorrect
- Some erased

Output:

- Correct blocks (or codewords, or frames, or packets)
- Erased blocks

Error Detection Probabilities

- Definitions

- P_{b} : Probability of single bit error (BER)
- P_{1} : Probability that a frame arrives with no bit errors
- P_{2} : While using error detection, the probability that a frame arrives with one or more undetected errors
- P_{3} : While using error detection, the probability that a frame arrives with one or more detected bit errors but no undetected bit errors

Error Detection Probabilities

Single bit error

No bit errors

$$
P_{1}=\left(1-P_{b}^{*}\right)^{F}
$$

Undetected errors

$$
P_{2}=1-P_{1}
$$

Detected errors

$$
P_{3}=0
$$

- F = Number of bits per frame

Error Detection Process

- Transmitter
- For a given frame, an error-detecting code (check bits) is calculated from data bits
- Check bits are appended to data bits
- Receiver
- Separates incoming frame into data bits and check bits
- Calculates check bits from received data bits
- Compares calculated check bits against received check bits
- Detected error occurs if mismatch

Parity

- Parity bit appended to a block of data
- Even parity
- Added bit ensures an even number of 1s
- Odd parity
- Added bit ensures an odd number of 1 s
- Example
- 7-bit character
- Even parity
- Odd parity

1110001
11100010
11100011

Parity: Detecting Bit Flips

- 1-bit error detection with parity
- Add an extra bit to a code to ensure an even (odd) number of 1 s
- Every code word has an even (odd) number of 1 s

Voting: Correcting Bit Flips

- 1-bit error correction with voting
- Every codeword is transmitted n times
- Codeword is 3 bits long

[Voting: 2-bit Erasure Correction

- Every code word is copied 3 times

2-erasure planes in green remaining bit not ambiguous
cannot correct 1-error and 1-erasure

Hamming Distance

The Hamming distance between two code words is the minimum number of bit flips to move from one to the other

- Example:
- 00101 and 00010
- Hamming distance of 3

Minimum Hamming Distance

- The minimum Hamming distance of a code is the minimum distance over all pairs of codewords
- Minimum Hamming Distance for parity
- 2
- Minimum Hamming Distance for voting
- 3

Coverage

- N-bit error detection
- No code word changed into another code word
- Requires Hamming distance of $\mathrm{N}+1$
- N-bit error correction
- N -bit neighborhood: all codewords within N bit flips
- No overlap between N-bit neighborhoods
- Requires hamming distance of $2 \mathrm{~N}+1$

Hamming Codes

- Linear error-correcting code
- Named after Richard Hamming
- Simple, commonly used in RAM (e.g., ECC-RAM)
- Can detect up to 2-bit errors
- Can correct up to 1-bit errors

Hamming Codes

- Construction
- number bits from 1 upward
- powers of 2 are check bits
- all others are data bits
- Check bit j : XOR of all k for which (j AND k) $=j$
- Example:
- 4 bits of data, 3 check bits

Hamming Codes

- Construction
- number bits from 1 upward
- powers of 2 are check bits
- all others are data bits
- Check bit j : XOR of all k for which (j AND k) $=j$
- Example:
- 4 bits of data, 3 check bits

Hamming Codes

- Construction
- number bits from 1 upward
- powers of 2 are check bits
- all others are data bits
- Check bit j : XOR of all k for which (j AND k) $=j$
- Example:
- 4 bits of data, 3 check bits

[Hamming Codes

What are we trying to handle?

- Worst case errors
- We solved this for 1 bit error
- Can generalize, but will get expensive for more bit errors
- Probability of error per bit
- Flip each bit with some probability, independently of others
- Burst model
- Probability of back-to-back bit errors
- Error probability dependent on adjacent bits
- Value of errors may have structure
- Why assume bursts?
- Appropriate for some media (e.g., radio)
- Faster signaling rate enhances such phenomena

Digital Error Detection Techniques

- Two-dimensional parity
- Detects up to 3-bit errors
- Good for burst errors
- IP checksum
- Simple addition
- Simple in software
- Used as backup to CRC
- Cyclic Redundancy Check (CRC)
- Powerful mathematics
- Tricky in software, simple in hardware
- Used in network adapter

Two-Dimensional Parity

- Use 1-dimensional parity

Parity
Bits

- Add one bit to a 7-bit code to ensure an even/odd number of 1 s
- Add 2nd dimension
- Add an extra byte to frame
- Bits are set to ensure even/odd number of 1 s in that position across all bytes in frame
- Comments
- Catches all 1-, 2- and 3-bit and most 4-bit errors

Two-Dimensional Parity

What happens if...

Can detect exactly which bit flipped Can also correct it!

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

What about 2-bit errors?

Can detect the two-bit error
Can' t detect a problem here

What about 2-bit errors?

Could be the dotted pair or the dashed pair. Can' t correct 2-bit error.

What about 3-bit errors?

Can detect the three-bit error

But youcan't correct eg if dashedbits got flipped instead ofthe doted ones)	0	1 (可) 0			0 S-1			101	$\begin{array}{r} 0 \\ 0 \end{array}$	
	0	1	1	0	1	1	1			
	0	1	1	0	1	1	1	1		
	0	1	1	0	0	1	0	0		
	0									

What about 4-bit errors?

Are there any 4-bit errors this scheme *can* detect?

0	1	0	0	0	1	1	1	0
0	1	1	0	1	1	1	1	0
0	1	1	0	1	1	1	1	0
0	1	1	0	0	1	0	0	1
0	0	1	0	0	0	1	1	1

What about 4-bit errors?

Can you think of a 4-bit error this scheme can't detect?

2	1	8	0	0	1	1	1
0	1	1	0	1	1	1	1
2	1	$\mathbf{1}^{0}$	0	1	1	1	1
0	1	1	0	0	1	0	0

$\mathbf{0}$
$\mathbf{0}$
$\mathbf{0}$
$\mathbf{1}$

$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Internet Checksum

- Idea
- Add up all the words
- Transmit the sum
- Use 1's complement addition on 16bit codewords
- Example
- Codewords: -5 -3
- 1's complement binary: 1010

1100

- 1's complement sum 1000
- Comments
- Small number of redundant bits
- Easy to implement
- Not very robust
- Eliminated in IPv6

IP Checksum

```
u_short cksum(u_short *buf, int count) {
    register u_long sum = 0;
    while (count--) {
        sum += *buf++;
        if (sum & OxFFFFOOOO) {
        /* carry occurred, so wrap around */
                sum &= OxFFFF;
                sum++;
        }
    }
    return ~(sum & OxFFFF);
```

\}

What could cause this check to fail?

Main Goal: Check the Data!

n data bits

Main Goal: Check the Data!

n data bits

- In any code, what fraction of codewords are valid?
- $1 / 2^{k}$
- Ideal (random) hash function:
- Any change in input produces an output that's essentially random
- So any error would be detected with probability $1-2^{-k}$
- Checksum: not close to ideal CRC: better

Simplified CRC-like protocol using regular integers

- Basic idea
- Both endpoints agree in advance on divisor value $C=3$
- Sender wants to send message $M=10$
- Sender computes X such that C divides $10 M+X$
- Sender sends codeword $W=10 M+X$
- Receiver receives W^{\prime} and checks whether C divides W'
- If so, then probably no error
- If not, then error

Simplified CRC-like protocol using regular integers

- Intuition
- If C is large, it's unlikely that bits are flipped exactly to land on another multiple of C.
- CRC is vaguely like this, but uses polynomials instead of numbers

Cyclic Redundancy Check (CRU)

- Given
- Message $M=10011010$
- Represented as Polynomial $M(x)$

$$
\begin{aligned}
& =1 * x^{7}+0 * x^{6}+0 * x^{5}+1 * x^{4}+1 * x^{3}+0 * x^{2}+1 * x+0 \\
& =x^{7}+x^{4}+x^{3}+x
\end{aligned}
$$

- Select a divisor polynomial $C(x)$ with degree k
- Example with $k=3$:
- $C(x)=x^{3}+x^{2}+1$
- Represented as 1101
- Transmit a polynomial $P(x)$ that is evenly divisible by $C(x)$
- $P(x)=M(x) * x^{k}+k$ check bits

How can we determine these k bits?

Properties of Polynomial Arithmetic

- Coefficients are modulo 2

$$
\begin{aligned}
& \left(x^{3}+x\right)+\left(x^{2}+x+1\right)=\ldots \\
& \ldots x^{3}+x^{2}+1 \\
& \left(x^{3}+x\right)-\left(x^{2}+x+1\right)=\ldots \\
& \ldots x^{3}+x^{2}+1 \text { also! }
\end{aligned}
$$

- Addition and subtraction are both xor!
- Need to compute R such that $C(x)$ divides $P(x)=$ $M(x) \cdot x^{\kappa}+R(x)$
- So $R(x)=$ remainder of $M(x) \cdot x^{k} / C(x)$
- Will find this with polynomial long division

Polynomial arithmetic

- Divisor
- Any polynomial $B(x)$ can be divided by a polynomial $C(x)$ if $B(x)$ is of the same or higher degree than $C(x)$
- Remainder
- The remainder obtained when $B(x)$ is divided by $C(x)$ is obtained by subtracting $C(x)$ from $B(x)$
- Subtraction
- To subtract $C(x)$ from $B(x)$, simply perform an XOR on each pair of matching coefficients
- For example: $\left(x^{3}+1\right) /\left(x^{3}+x^{2}+1\right)=$ \square

CRC - Sender

- Given

$$
\begin{array}{lll}
\circ & M(x)=10011010 & = \\
x^{7}+x^{4}+x^{3}+x \\
\circ & C(x)=1101 & = \\
x^{3}+x^{2}+1
\end{array}
$$

- Steps
- $\quad T(x)=M(x) * x^{k}$ (add zeros to increase deg. of $M(x)$ by $\left.k\right)$
- Find remainder, $R(x)$, from $T(x) / C(x)$
- $P(x)=T(x)-R(x) \Rightarrow M(x)$ followed by $R(x)$
- Example
- $T(x)=10011010000$
- $R(x)=101$
- $P(x)=10011010101$

CRC - Receiver

- Receive Polynomial $P(x)+E(x)$
- $E(x)$ represents errors
- $E(x)=0$, implies no errors

Divide $(P(x)+E(x))$ by $C(x)$

- If result $=0$, either
- No errors $(E(x)=0$, and $P(x)$ is evenly divisible by $C(x)$)
- $\quad(P(x)+E(x))$ is exactly divisible by $C(x)$, error will not be detected
- If result = 1, errors.

CRC - Example Encoding

CRC - Example Decoding No Errors

$C(x)=$	$x^{3}+x^{2}+1$	$=1101$	Generator
$P(x)=$	$x^{10}+x^{7}+x^{6}+x^{4}+x^{2}+1$	$=10011010101$	Received Message

CRC - Example Decoding with Errors

$C(x)=$	$x^{3}+x^{2}+1$	$=1101$	Generator
$P(x)=$	$x^{10}+x^{7}+x^{5}+x^{4}+x^{2}+1$	$=10010110101$	Received Message

Result:
CRC test failed

CRC Error Detection

- Properties
- Characterize error as $E(x)$
- Error detected unless $C(x)$ divides $E(x)$
- (i.e., $E(x)$ is a multiple of $C(x)$)

Example of Polynomial Multiplication

- Multiply
- 1101 by 10110
- $x^{3}+x^{2}+1$ by $x^{4}+x^{2}+x$

On Polynomial Arithmetic

- The use of polynomial arithmetic is a fancy way to think about addition with no carries. It also helps in the determination of a good choice of $\mathrm{C}(\mathrm{x})$
- A non-zero vector is not detected if and only if the error polynomial $E(x)$ is a multiple of $C(x)$
- Implication
- Suppose $C(x)$ has the property that $C(1)=0$ (i.e. $(x+1)$ is a factor of $C(x)$)
- If $E(x)$ corresponds to an undetected error pattern, then it must be that $\mathrm{E}(1)=0$
- Therefore, any error pattern with an odd number of error bits is detected

CRC Error Detection

- What errors can we detect?

。All single-bit errors, if x^{k} and x^{0} have non-zero coefficients All double-bit errors, if $\mathrm{C}(x)$ has at least three terms

- All odd bit errors, if $C(x)$ contains the factor $(x+1)$
- Any bursts of length $<k$, if $C(x)$ includes a constant term
- Most bursts of length $\geq k$

Common Polynomials for $\mathrm{C}(\mathrm{x})$

CRC	C (x)
CRC-8	$x^{8}+x^{2}+x^{1}+1$
CRC-10	$x^{10}+x^{9}+x^{5}+x^{4}+x^{1}+1$
CRC-12	$x^{12}+x^{11}+x^{3}+x^{2}+x^{1}+1$
CRC-16	$x^{16}+x^{15}+x^{2}+1$
CRC-CCITT	$x^{16}+x^{12}+x^{5}+1$
CRC-32	$x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^{8}+x^{7}+x^{5}+$ $x^{4}+x^{2}+x^{1}+1$

-Error Detection vs. Error Correction

- Detection
- Pro: Overhead only on messages with errors
- Con: Cost in bandwidth and latency for retransmissions
- Correction
- Pro: Quick recovery
- Con: Overhead on all messages
- What should we use?
- Correction if retransmission is too expensive
- Correction if probability of errors is high
- Detection when retransmission is easy and probability of errors is low

