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Evolution of Internet Structure

n Internet c. 1990
¡ Tree structure, centered around one backbone
¡ National Science Foundation (NSF) funded
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An Old Internet ISP Map
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A New Internet Map
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Another Internet Map
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Evolution of Internet Structure

n Today
¡ Multiple backbone service providers
¡ Arbitrary graph structure
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Problems of Scale

n Main problems
¡ Inefficient address allocation
¡ Too many networks for routing
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Host (24 bits)

IPv4 Address Model

n Properties
¡ 32-bit address

¡ Hierarchical
n Network, subnet, host hierarchy

¡ Maps to logically unique network adaptor
n Exceptions: service request splitting for large web servers

n Three Class Model

0 Network (7 bits)

Network (14 bits)

1 1 0

1 0

Network (21 bits)

Host (16 bits)

Host (8 bits)

Class A:

Class B:

Class C:
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IPv4 Address Model

Class Network ID Host ID # of 
Addresses

# of 
Networks

A 0 + 7 bit 24 bit 224-2 126

B 10 + 14 bit 16 bit 65,536 - 2 214

C 110 + 21 bit 8 bit 256 - 2 221

D 1110 + Multicast 
Address

IP Multicast

E Future Use



Basic Datagram Forwarding
with IP

n Hosts and routers maintain forwarding tables
¡ List of <prefix, next hop> pairs

n IP = 69.2.1.2 = 01000101 00000010 00000001 00000010

n 24-bit prefix = 69.2.1.0/24 
= 01000101 00000010 00000001 ********

¡ Often contains a default route

n Pass unknown destination to provider ISP

¡ Simple and static on hosts, edge routers

n Complex and dynamic on core routers
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Basic Datagram Forwarding
with IP

n Packet forwarding
¡ Compare network portion of address with 

<network/host, next hop> pairs in table
n Send directly to host on same network
n Send to indirectly (via router on same network) to host 

on different network
¡ Use ARP to get hardware address of host/router
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IPv4 Address Model

n IP addresses
¡ Host in class A network

n 56.0.78.100 www.usps.gov
¡ Host in class B network

n 128.174.252.1 www.cs.uiuc.edu
¡ Host in class C network

n 198.182.196.56 www.linux.org

n Questions
¡ What networks should be allocated to a company with 

1000 machines?
¡ What about a company with 100 machines?
¡ What about a company with 2 machines that plans to grow 

rapidly?

http://www.usps.gov/
http://www.cs.uiuc.edu/
http://www.linux.org/
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Problems of Scale

n Pressure mostly on class B networks
¡ Most companies plan to grow beyond 255 machines
¡ Renumbering is time consuming and can interrupt service
¡ Approximately 16,000 class B networks available

n Class B networks aren�t very efficient
¡ Few organizations have O(10,000) machines
¡ More likely use O(1,000) of the 65,000 addresses

n Scaling problems with alternatives
¡ Multiple class C networks

n Routing tables don�t scale
¡ Protocols do not scale beyond O(10,000) networks



Spring 2018 © CS 438 Staff, University of Illinois 14

IP Address Hierarchy 
Evolution

n Began with class based system
¡ Subnetting within an organization

n Network can be broken into smaller networks

n Recognized only within the organization

n Implemented by packet switching

n Smaller networks called subnets

0 Network (7 bits) Host (24 bits)

Network (14 bits)1 0 Host (16 bits)

1 1 0 Network (21 bits) Host (8 bits)

Class A:

Class B:

Class C:
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Subnetting

n Simple IP
¡ All hosts on the same network must have the same 

network number
n Assumptions

¡ Subnets are close together
n Look like one network to distant routers

n Idea
¡ Take a single IP network number
¡ Allocate the IP addresses to several physical networks 

(subnets)
n Subnetting

¡ All hosts on the same network must have the same subnet
number
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Subnetting

n Enables a domain to further partition 
address space into smaller networks
¡ Subdivide host id into subnet ID + host ID
¡ Subnet mask

n Only routers in the domain interpret 
subnet mask
¡ Other routers treat IP address as normal 

class A, B or C address
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Subnet Example

n Consider 
¡ A domain with a class B address
¡ 135.104.*

n Without subnetting
¡ Every router in the domain needs to know how 

to route to every host
n However

¡ the domain itself is likely organized as a 
hierarchy of physical networks
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Subnet Example

n Solution
¡ Partition the 65,536 address in the class B 

network 
n 256 subnets each with 256 addresses
n Subnet mask: 255.255.255.0

¡ If 135.104.5.{1,2,3} are all on the same physical 
network reachable from router 135.105.4.1
n There only needs to be one routing entry for 

135.104.5.* pointing to 135.105.4.1 as next hop
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Subnetting

Network (14 bits)1 0 Host (16 bits)
Class B:

n Atypical example
¡ Non-contiguous 6-bit subnet number

Network (14 bits)1 0
Class B:

n Normal IP

Network (14 bits)1 0 Host (8 bits)
Class B:

Subnet (8 bits)

n Typical subnetting example
¡ Use first byte of host as subnet number
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Subnetting

n The subnet mask specifies the bits of 
network and subnet addresses

n Routing table entries carry both 
addresses and subnet masks

Network (14 bits)1 0 Host (16 bits)
Class B:

Class B:
Network (14 bits)1 0 Host (8 bits)Subnet (8 bits)

Subnet Mask:
1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 00 0 0 0



Spring 2018 © CS 438 Staff, University of Illinois 21

Subnet Mask 255.255.255.128
1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 0 0 0 01 1 1 1 1 1 1 1 1 0 0 0

Host 1: 128.174.142.200
1 1 1 01 0 0 0 0 0 0 0 1 0 1 0 1 0 0 01 0 0 0 1 1 1 0 1 1 0 0

Subnetting – Host 1

H1

H2H3

R1

R2

Subnet Mask: 255.255.255.128
Subnet Number: 128.174.142.128

128.174.142.200

128.174.141.3

128.174.142.27

Subnet # 128.174.142.128
1 1 1 01 0 0 0 0 0 0 0 1 0 1 0 0 0 0 01 0 0 0 1 1 1 0 1 0 0 0
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Subnet # 128.174.141.0
1 1 1 01 0 0 0 0 0 0 0 1 0 1 0 0 0 0 01 0 0 0 1 1 0 1 0 0 0 0

Subnet Mask 255.255.255.0
1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 0 0 0 01 1 1 1 1 1 1 1 0 0 0 0

Host 3: 128.174.141.3
1 1 1 01 0 0 0 0 0 0 0 1 0 1 0 0 0 1 11 0 0 0 1 1 0 1 0 0 0 0

Subnetting – Host 3

H1

H2H3

R1

R2

Subnet Mask: 255.255.255.0
Subnet Number: 128.174.141.0

128.174.142.200

128.174.141.3

128.174.142.27
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Subnetting - Example

H1

H2H3

R1

R2

Subnet Mask: 255.255.255.128

Subnet Number: 128.174.142.128

Subnet Mask: 255.255.255.0

Subnet Number: 128.174.141.0

Subnet Mask: 255.255.255.128

Subnet Number: 128.174.142.0128.174.142.200

128.174.141.3

128.174.142.27
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Subnetting

n At H1:
n Compute (H3 AND H1�s subnet 

mask)
¡ 128.174.141.3 AND 255.255.255.128
¡ = 128.174.141.0 (¹ 128.174.142.128)

H1

H2H3

R1

R2

Subnet Mask: 255.255.255.128
Subnet Number: 128.174.142.128

Subnet Mask: 255.255.255.0
Subnet Number: 128.174.141.0

Subnet Mask: 255.255.255.128
Subnet Number: 128.174.142.0128.174.142.200

128.174.141.3

128.174.142.27

Send from H1 to H3

n If result == H1�s 
subnet number
¡ H3 and H1 are 

on the same 
subnet 

n else 
¡ route through 

appropriate 
router
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Routing with Subnetting

n Example Table from R2
¡ Next hop

n 128.174.142.196
n 128.174.142.95
n 128.174.141.137
n 128.174.145.18
n 131.126.244.15

Subnet # Subnet Mask Next Hop

128.174.141.0 255.255.255.0 Interface 0

128.174.142.0 255.255.255.128 Interface 1

128.174.142.128 255.255.255.128 R1

128.174.0.0 255.255.0.0 R3

Default 0.0.0.0 R3

141 = 1000 1101
142 = 1000 1110

196 = 1100 0100

128 = 1000 0000

145 = 1001 0001

196 = 1100 0100
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Routing with Subnetting

n Example Table from R2
¡ Next hop

n 128.174.142.196 to R1
n 128.174.142.95
n 128.174.141.137
n 128.174.145.18
n 131.126.244.15

Subnet # Subnet Mask Next Hop

128.174.141.0 255.255.255.0 Interface 0

128.174.142.0 255.255.255.128 Interface 1

128.174.142.128 255.255.255.128 R1

128.174.0.0 255.255.0.0 R3

Default 0.0.0.0 R3

141 = 1000 1101
142 = 1000 1110

196 = 1100 0100

128 = 1000 0000

145 = 1001 0001

196 = 1100 0100
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Routing with Subnetting

n Example Table from R2
¡ Next hop

n 128.174.142.196
n 128.174.142.95
n 128.174.141.137
n 128.174.145.18
n 131.126.244.15

Subnet # Subnet Mask Next Hop

128.174.141.0 255.255.255.0 Interface 0

128.174.142.0 255.255.255.128 Interface 1

128.174.142.128 255.255.255.128 R1

128.174.0.0 255.255.0.0 R3

Default 0.0.0.0 R3

141 = 1000 1101
142 = 1000 1110

196 = 1100 0100

128 = 1000 0000

145 = 1001 0001

95 = 0101 1111
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Routing with Subnetting

n Example Table from R2
¡ Next hop

n 128.174.142.196
n 128.174.142.95 to Interface 1
n 128.174.141.137
n 128.174.145.18
n 131.126.244.15

Subnet # Subnet Mask Next Hop

128.174.141.0 255.255.255.0 Interface 0

128.174.142.0 255.255.255.128 Interface 1

128.174.142.128 255.255.255.128 R1

128.174.0.0 255.255.0.0 R3

Default 0.0.0.0 R3

141 = 1000 1101
142 = 1000 1110

196 = 1100 0100

128 = 1000 0000

145 = 1001 0001

95 = 0101 1111
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Routing with Subnetting

n Example Table from R2
¡ Next hop

n 128.174.142.196
n 128.174.142.95
n 128.174.141.137
n 128.174.145.18
n 131.126.244.15

Subnet # Subnet Mask Next Hop

128.174.141.0 255.255.255.0 Interface 0

128.174.142.0 255.255.255.128 Interface 1

128.174.142.128 255.255.255.128 R1

128.174.0.0 255.255.0.0 R3

Default 0.0.0.0 R3

141 = 1000 1101
142 = 1000 1110

196 = 1100 0100

128 = 1000 0000

145 = 1001 0001

137 = 1000 1001
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Routing with Subnetting

n Example Table from R2
¡ Next hop

n 128.174.142.196
n 128.174.142.95
n 128.174.141.137 to Interface 0
n 128.174.145.18
n 131.126.244.15

Subnet # Subnet Mask Next Hop

128.174.141.0 255.255.255.0 Interface 0

128.174.142.0 255.255.255.128 Interface 1

128.174.142.128 255.255.255.128 R1

128.174.0.0 255.255.0.0 R3

Default 0.0.0.0 R3

141 = 1000 1101
142 = 1000 1110

196 = 1100 0100

128 = 1000 0000

145 = 1001 0001

137 = 1000 1001
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Routing with Subnetting

n Example Table from R2
¡ Next hop

n 128.174.142.196
n 128.174.142.95
n 128.174.141.137
n 128.174.145.18
n 131.126.244.15

Subnet # Subnet Mask Next Hop

128.174.141.0 255.255.255.0 Interface 0

128.174.142.0 255.255.255.128 Interface 1

128.174.142.128 255.255.255.128 R1

128.174.0.0 255.255.0.0 R3

Default 0.0.0.0 R3

141 = 1000 1101
142 = 1000 1110

196 = 1100 0100

128 = 1000 0000

145 = 1001 0001

18 = 0001 0010
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Routing with Subnetting

n Example Table from R2
¡ Next hop

n 128.174.142.196
n 128.174.142.95
n 128.174.141.137
n 128.174.145.18 to R3
n 131.126.244.15

Subnet # Subnet Mask Next Hop

128.174.141.0 255.255.255.0 Interface 0

128.174.142.0 255.255.255.128 Interface 1

128.174.142.128 255.255.255.128 R1

128.174.0.0 255.255.0.0 R3

Default 0.0.0.0 R3

141 = 1000 1101
142 = 1000 1110

196 = 1100 0100

128 = 1000 0000

145 = 1001 0001

18 = 0001 0010
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Routing with Subnetting

n Example Table from R2
¡ Next hop

n 128.174.142.196
n 128.174.142.95
n 128.174.141.137
n 128.174.145.18
n 131.126.244.15

Subnet # Subnet Mask Next Hop

128.174.141.0 255.255.255.0 Interface 0

128.174.142.0 255.255.255.128 Interface 1

128.174.142.128 255.255.255.128 R1

128.174.0.0 255.255.0.0 R3

Default 0.0.0.0 R3

141 = 1000 1101
142 = 1000 1110

196 = 1100 0100

128 = 1000 0000

145 = 1001 0001

15 = 0000 1111
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Routing with Subnetting

n Example Table from R2
¡ Next hop

n 128.174.142.196
n 128.174.142.95
n 128.174.141.137
n 128.174.145.18
n 131.126.244.15 to R3

Subnet # Subnet Mask Next Hop

128.174.141.0 255.255.255.0 Interface 0

128.174.142.0 255.255.255.128 Interface 1

128.174.142.128 255.255.255.128 R1

128.174.0.0 255.255.0.0 R3

Default 0.0.0.0 R3

141 = 1000 1101
142 = 1000 1110

196 = 1100 0100

128 = 1000 0000

145 = 1001 0001

15 = 0000 1111
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Routing with Subnetting

n Example Table from R2
¡ Next hop

n 128.174.142.196 to R1
n 128.174.142.95 to Interface 1
n 128.174.141.137 to Interface 0
n 128.174.145.18 to R3
n 131.126.244.15 to R3

Subnet # Subnet Mask Next Hop

128.174.141.0 255.255.255.0 Interface 0

128.174.142.0 255.255.255.128 Interface 1

128.174.142.128 255.255.255.128 R1

128.174.0.0 255.255.0.0 R3

Default 0.0.0.0 R3
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Subnetting

n Notes
¡ Non-contiguous subnets are difficult to 

administer
¡ Multiple subnets on one physical network

n Must be routed through router

n Pros
¡ Helps address consumption
¡ Helps reduce routing table size
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The Crisis

n Fixed 32-bit address space for IPv4
n Network allocation based on Classic A, 

B, C Model
n Central allocation authority

¡ Randomly assigning addresses
n Problems

¡ Router table explosion
¡ Address space exhaustion
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Classless Interdomain Routing 
(CIDR)

n CIDR/Supernetting
¡ Problem with subnetting

n Allows hierarchy within organizations
n Does not reduce class B address space pressure

¡ Solution
n Aggregate routes in routing tables
n Eliminate class notation
n Generalize subnet notion
n Allow only contiguous subnet masks
n Specify network by <network #, # of bits in subnet mask>
n Equivalent to <network #, # of hosts>
n Blocks of class C networks can now be treated as one 

network
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CIDR

n Route aggregation

¡ Use contiguous blocks of Class C addresses

n Example: 

¡ 192.4.16 – 192.4.31

¡ 20 bit subnet mask

n Block size must be a power of 2

¡ Network number may be any length

192.4.31.0

0 1 0 01 1 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 1 1 1 1 1 0 0 0 0

192.4.16.0

0 1 0 01 1 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 1 0 0 0 0 0 0 0 0

Subnet Mask 

255.255.240.0 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 0 0 0 01 1 1 1 0 0 00 00 0 0
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CIDR

n CIDR is similar to subnetting
¡ Trend is for increasing amounts of overlap in 

routing table entries
¡ Example: 128.174.142.200

n Matches second, third and fourth lines
n Route to entry with longest match

Subnet # / length Next Hop

128.174.141.0 / 24 Interface 0

128.174.142.192 / 27 Interface 1

128.174.142.128 / 25 R1

128.174.0.0 / 16 R3

Default R3
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CIDR

Resulting Subnet Number: 128.174.142.0 (¹ 128.174.141.0)
1 1 1 01 0 0 0 0 0 0 0 1 0 1 0 0 0 0 01 0 0 0 1 1 1 0 0 0 0 0

Resulting Subnet Number: 128.174.142.192 (= 128.174.142.192)
1 1 1 01 0 0 0 0 0 0 0 1 0 1 0 0 0 0 01 0 0 0 1 1 1 0 1 1 0 0

Subnet Mask  length = 24 (255.255.255.0)
1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 0 01 1 1 1 1 1 1 1 0 000 00

Subnet: 128.174.141.0
1 1 1 01 0 0 0 0 0 0 0 1 0 1 0 0 0 0 01 0 0 0 1 1 0 1 0 0 0 0

Host: 128.174.142.200
1 1 1 01 0 0 0 0 0 0 0 1 0 1 0 1 0 0 01 0 0 0 1 1 1 0 1 1 0 0

Subnet Mask  length = 27 (255.255.255.224)
1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 0 0 0 01 1 1 1 1 1 1 1 01 1 1

Subnet: 128.174.142.192
1 1 1 01 0 0 0 0 0 0 0 1 0 1 0 0 0 0 01 0 0 0 1 1 1 0 1 1 0 0

Host: 128.174.142.200
1 1 1 01 0 0 0 0 0 0 0 1 0 1 0 1 0 0 01 0 0 0 1 1 1 0 1 1 0 0
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CIDR

Resulting Subnet Number: 128.174.142.128 (= 128.174.142.128)
1 1 1 01 0 0 0 0 0 0 0 1 0 1 0 0 0 0 01 0 0 0 1 1 1 0 1 0 0 0

Resulting Subnet Number: 128.174.0.0 (= 128.174.0.0)
1 1 1 01 0 0 0 0 0 0 0 1 0 1 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0

Subnet Mask length = 25 255.255.255.192
1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 0 0 0 01 1 1 1 1 1 1 1 0 0 01

Subnet: 128.174.142.128
1 1 1 01 0 0 0 0 0 0 0 1 0 1 0 0 0 0 01 0 0 0 1 1 1 0 1 0 0 0

Host: 128.174.142.200
1 1 1 01 0 0 0 0 0 0 0 1 0 1 0 1 0 0 01 0 0 0 1 1 1 0 1 1 0 0

Host: 128.174.142.200
1 1 1 01 0 0 0 0 0 0 0 1 0 1 0 1 0 0 01 0 0 0 1 1 1 0 1 1 0 0

Subnet: 128.174.0.0
1 1 1 01 0 0 0 0 0 0 0 1 0 1 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0

Subnet Mask  length = 16 255.255.0.0
1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 0 0 0 000 0 0 000 0 0 000
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CIDR

n Subnetting
¡ Share one address (network number) 

across multiple physical networks
n Supernetting

¡ Aggregate multiple addresses (network 
numbers) for one physical network
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CIDR

n Allows hierarchical development
¡ Assign a block of addresses to a regional 

provider
n Ex: 128.0.0.0/9 to BARRNET

¡ Regional provider subdivides address and 
hands out block to sub-regional providers
n Ex: 128.132.0.0/16 to Berkeley

¡ Sub-regional providers can divide further for 
smaller organizations
n Ex: 128.132.32.0/1 to Berkeley Computer Science 

Department
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Pros and Cons

n Provides a fast easy solution

n Was not intended to be permanent

n Multihomed sites cannot benefit from 
aggregation

n Not backward compatible
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IPv6

n History
¡ Next generation IP (AKA IPng)
¡ Intended to extend address space and routing 

limitations of IPv4
n Requires header change
n Attempted to include everything new in one change

¡ IETF moderated
n Based on Simple Internet Protocol Plus (SIPP)
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IPv6

n Wish list
¡ 128-bit addresses
¡ Multicast traffic
¡ Mobility
¡ Real-time traffic/quality of service guarantees
¡ Authentication and security
¡ Autoconfiguration for local IP addresses
¡ End-to-end fragmentation
¡ Protocol extensions

n Smooth transition!
n Note

¡ Many of these functionalities have been retrofit into IPv4
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IPv6 Addresses

n 128-bit
¡ 3.4 x 1038 addresses (as compared to 4 x 109

n Classless addressing/routing (similar to CIDR)
n Address notation

¡ String of eight 16-bit hex values separated by colons
n 5CFA:0002:0000:0000:CF07:1234:5678:FFCD

¡ Set of contiguous 0�s can be elided
n 5CFA:0002::0000:CF07:1234:5678:FFCD

n Address assignment
¡ Provider-based
¡ geographic

010 Region ID Provider ID Subscriber ID Subnet Host
3 m n o p 125-m-n-o-p



Spring 2018 © CS 438 Staff, University of Illinois 50

IPv4 Packet Format

n 20 Byte minimum
n Mandatory fields are not always used

¡ e.g. fragmentation
n Options are an unordered list of (name, value) pairs

TTL

source address

destination address

options (variable)

version length 

offsetident 

0 8 16 31

hdr len TOS

flags

checksumprotocol

pad (variable)
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IPv6 Packet Format

n 40 Byte minimum
n Mandatory fields (almost) always used
n Strict order on options reduces processing time

¡ No need to parse irrelevant options

options (variable number, usually fixed length)

version flow label 

hop limitpayload length 

0 8 16 31

priority

next header

source address  4 words 

destination address  4 words 
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IPv6 Packet Format

n Version

¡ 6

n Priority and Flow Label

¡ Support service guarantees

¡ Allow �fair� bandwidth allocation

n Payload Length

¡ Header not included

n Next Header

¡ Combines options and protocol

¡ Linked list of options

¡ Ends with higher-level protocol header (e.g. TCP)

n Hop Limit

¡ TTL renamed to match usage
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IPv6 Extension Headers

n Must appear in order
¡ Hop-by-hop options

n Miscellaneous information for routers
¡ Routing

n Full/partial route to follow
¡ Fragmentation

n IP fragmentation info
¡ Authentication

n Sender identification
¡ Encrypted security payload

n Information about contents
¡ Destination options

n Information for destination



Spring 2018 © CS 438 Staff, University of Illinois 55

IPv6 Extension Headers

n Hop-by-Hop extension
¡ Length is in bytes beyond mandatory 8

next header type

value

0 8 16 31
length

next header 194

Payload length in bytes

0 8 16 31
0 0

n Jumbogram option (packet longer than 
65,535 bytes)
¡ Payload length in main header set to 0
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IPv6 Extension Headers

n Routing extension
¡ Up to 24 �anycast� addresses target AS�s/providers
¡ Next address tracks current target
¡ Strict routing requires direct link
¡ Loose routing allows intermediate nodes

next header # of addresses

strict/loose routing bitmap

0 8 16 31
0 next address

1 – 24 addresses
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IPv6 Extension Headers

n Fragmentation extension
¡ Similar to IPv4 fragmentation

n 13-bit offset
n Last fragment mark (M)

¡ Larger fragment identification field

next header offset

ident

0 8 16 31
reserved reserved M
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IPv6 Extension Headers

n Authentication extension
¡ Designed to be very flexible
¡ Includes

n Security parameters index (SPI)
n Authentication data

n Encryption Extension
¡ Called encapsulating security payload (ESP)
¡ Includes an SPI
¡ All headers and data after ESP are encrypted
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IPv6 Design Controversies

n Address length
¡ 8 byte

n Might run out in a few decades
n Less header overhead

¡ 16 byte
n More overhead
n Good for foreseeable future

¡ 20 byte
n Even more overhead
n Compatible with OSI

¡ Variable length



Spring 2018 © CS 438 Staff, University of Illinois 60

IPv6 Design Controversies

n Hop limit
¡ 65,535

n 32 hop paths are common now
n In a decade, we may see much longer paths

¡ 255
n Objective is to limit lost packet lifetime
n Good network design makes long paths unlikely

¡ Source to backbone
¡ Across backbone
¡ Backbone to destination
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IPv6 Design Controversies

n Greater than 64KB data
¡ Good for supercomputer/high bandwidth 

applications
¡ Too much overhead to fragment large data 

packets
n 64 KB data

¡ More compatible with low-bandwidth lines
¡ 1 MB packet ties up a 1.5MBps line for more 

than 5 seconds
¡ Inconveniences interactive users
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IPv6 Design Controversies

n Keep checksum
¡ Removing checksum from IP is 

analogous to removing brakes from a car
n Light and faster
n Unprepared for the unexpected

n Remove checksum
¡ Typically duplicated in data link and 

transport layers
¡ Very expensive in IPv4
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IPv6 Design Controversies

n Mobile hosts
¡ Direct or indirect connectivity

n Reconnect directly using canonical address
n Use home and foreign agents to forward traffic

¡ Mobility introduces asymmetry
n Base station signal is strong, heard by mobile units
n Mobile unit signal is weak and susceptible to 

interference, may not be heard by base station
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IPv6 Design Controversies

n Security
¡ Where?

n Network layer
¡ A standard service

n Application layer
¡ No viable standard
¡ Application susceptible to errors in network 

implementation
¡ Expensive to turn on and off

¡ How?
n Political import/export issues
n Cryptographic strength issues
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Network Address Translation 
(NAT)

n Kludge (but useful)
n Sits between your network and the 

Internet
n Translates local network layer 

addresses to global IP addresses
n Has a pool of global IP addresses 

(less than number of hosts on your 
network)
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NAT Illustration

Internet
Private
network

NAT

Pool of global IP addresses

Operation: S wants to talk to D:
•Create S-SN mapping
•Replace S with SN for outgoing packets
•Replace SN with S for incoming packets

D S data
D SN data

D
S
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What if we only have few (or 
just one) IP address?

n Use NAPT (Network Address Port 
Translator)

n NAPT translates:
¡ <Paddr1, portA> to <Gaddr, portB>
¡ potentially thousands of simultaneous 

connections with one global IP address 
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Problems with NAT

n Hides the internal network structure
¡ some consider this an advantage

n Multiple NAT hops must ensure 
consistent mappings

n Some protocols carry addresses
¡ e.g., FTP carries addresses in text
¡ what is the problem?

n Encryption



NAT: Network Address 
Translation

n Approach
¡ Assign one router a global IP address
¡ Assign internal hosts local IP addresses

n Change IP Headers
¡ IP addresses (and possibly port numbers) of IP datagrams 

are replaced at the boundary of a private network
¡ Enables hosts on private networks to communicate with 

hosts on the Internet
¡ Run on routers that connect private networks to the public 

Internet
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NAT: Network Address 
Translation

n Outgoing packet 
¡ Source IP address (private IP) replaced by 

global IP address maintained by NAT router
n Incoming packet

¡ Destination IP address (global IP of NAT 
router) replaced by appropriate private IP 
address
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What address do the remote 
hosts respond to?

NAT router caches translation 
table: 
(source IP address, port #)  è
(NAT IP address, new port #)



NAT: Network Address 
Translation

n Benefits: local network uses just one (or a few) IP 
address as far as outside word is concerned
¡ No need to be allocated range of addresses from ISP

n Just one IP address is used for all devices
¡ Can change addresses of devices in local network without 

notifying outside world
¡ Can change ISP without changing addresses of devices in 

local network
¡ Devices inside local net not explicitly addressable, visible 

by outside world (a security plus)
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NAT: Network Address 
Translation

10.0.0.1

10.0.0.2

10.0.0.3

S: 10.0.0.1, 3345
D: 128.119.40.186, 80

1

10.0.0.4

138.76.29.7

1: host 10.0.0.1 
sends datagram to 
128.119.40, 80

NAT translation table
WAN side addr        LAN side addr
138.76.29.7, 5001   10.0.0.1, 3345
……                                         ……

S: 128.119.40.186, 80 
D: 10.0.0.1, 3345 4

S: 138.76.29.7, 5001
D: 128.119.40.186, 802

2: NAT router
changes datagram
source addr from
10.0.0.1, 3345 to
138.76.29.7, 5001,
updates table

S: 128.119.40.186, 80 
D: 138.76.29.7, 5001 3

3: Reply arrives
dest. address:
138.76.29.7, 5001

4: NAT router
changes datagram
dest addr from
138.76.29.7, 5001 to 10.0.0.1, 3345Spring 2018 72© CS 438 Staff, University of Illinois



NAT: Network Address 
Translation

n Address Pooling
¡ Corporate network has many hosts 
¡ Only a small number of public IP addresses

n NAT solution
¡ Manage corporate network with a private address space
¡ NAT, at boundary between corporate network and public 

Internet, manages a pool of public IP addresses 
¡ When a host from corporate network sends an IP 

datagram to a host in public Internet, NAT picks a public 
IP address from the address pool, and binds this address 
to the private address of the host
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NAT: Network Address 
Translation

n Load balancing
¡ Balance the load on a set of identical servers, which are 

accessible from a single IP address 

n NAT solution
¡ Servers are assigned private addresses 
¡ NAT acts as a proxy for requests to the server from the 

public network
¡ NAT changes the destination IP address of arriving 

packets to one of the private addresses for a server
¡ Balances load on the servers by assigning addresses in a 

round-robin fashion
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NAT: Consequences

n 16-bit port-number field
¡ 60,000 simultaneous connections with a single LAN-side 

address!
n End-to-end connectivity

¡ NAT destroys universal end-to-end reachability of hosts on 
the Internet

¡ A host in the public Internet often cannot initiate 
communication to a host in a private network

¡ The problem is worse, when two hosts that are in different 
private networks need to communicate with each other
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NAT: Consequences

n Performance
¡ Modifying the IP header by changing the IP address 

requires that NAT boxes recalculate the IP header 
checksum

¡ Modifying port number requires that NAT boxes 
recalculate TCP checksum

n Fragmentation
¡ Datagrams fragmented before NAT device must not be 

assigned different IP addresses or different port numbers
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NAT: Consequences

n IP address in application data
¡ Applications often carry IP addresses in the payload of the 

application data 
¡ No longer work across a private-public network boundary
¡ Hack: Some NAT devices inspect the payload of widely 

used application layer protocols and, if an IP address is 
detected in the application-layer header or the application 
payload, translate the address according to the address 
translation table
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