Performance Analysis

Metrics, Analysis, and
Examples
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Performance Metrics and
Analysis

Metrics

o Traditional and extensions

o Sources of delay

o  Optimizing communication systems
o Measuring systems

Basic queueing theory
o Distributions and processes
o Single, memoryless queues
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Performance Metrics

Traditional metrics
o End-to-end latency/RTT

Measures time delay
Across all layers of network

Often abbreviated to “latency” (even for
RTT)

o Bandwidth/throughput

Measures data sent per unit time
Across all layers of network
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Performance Metrics

Sources of delay

o Latency: three main components
DMA from sending/to receiving host memory
Propagation delay in network
Queueing delay in routers

o QOverhead: also three main components
Data copy between buffers (e.g., into kernel memory)
Protocol (TCP, IP, etc.) processing
PIO to write description of frame

o Note that overhead has fixed and per-byte costs
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Performance Metrics

Optimizing communication systems
o Optimize the common case

Spring 2018

Send/receive usually more important than connection
setup/teardown

o TCP header changes little between segments
o Often only a few connections at end hosts

Minimize context switches
Minimize copying of data
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Performance Metrics

Optimizing communication systems

o General rule of thumb

Most (80-90%) messages are short

Most data (80-90%) travel in long messages
o Focus on bottlenecks

Reduce overhead to improve short message
performance

Reduce number of copies to improve long message
performance

o Thus, CPU speed is often more important than
network speed
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Performance Metrics

Optimizing communication systems

o Maximize network utilization
Use large packets when possible
Fill delay-bandwidth pipe

o Avoid timeouts
Set timers conservatively
Use “smarter” receiver (e.g., with selective ACK’ s)

o Avoid congestion rather than recovering from it
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Performance Metrics

Measuring communication systems

o Latency
Measure RTT for O-byte (or 1-byte) messages
Also report variability

o Bandwidth

Measure RTT for range of long messages
Divide by number of bytes sent
Report as graph or as value in asymptotic limit

o Overhead
Time multiple N-byte message send operations
Be careful of flow control and aggregation
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Modeling and Analysis

Problem

o The inputs to a system (i.e., number of packets and their arrival
times) and the exact resource requirements of these packets
cannot be predetermined in advance exactly

But, we can probabilistically characterize these quantities

o On average, 100 packets arrive per second

o On average, packets are 500KB

So, given a probabilistic characterization of these quantities

o  Can we draw some intelligent conclusions about the
performance of the system
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Delay

= Link delay consists of four components

O

Spring 2018

Processing delay

= From when the packet is correctly received to when it
IS put on the queue

Queueing delay

= From when the packet is put on the queue to when it is
ready to transmit

Transmission delay

» From when the first bit is transmitted to when the last
bit is transmitted

Propagation delay

= From when the last bit is transmitted to when the last
bit is received
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Delay Models

Consider a data link using stop-and-wait ARQ
o What is the throughput?

o Given
MSS = packet payload size
C = raw link data rate
RTT = round trip time (for one bit)
p = probability a packet is successful

Packets
@ Acknowledgements O
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Delay Models

Calculate the maximum throughput for stop-and-
wait
o Max throughput = packetlength/(RTT + (packetlength/C))

o Could also multiply by (payload/packetlength) and
p = probability of correct reception

But what about the delay incurred?
o There may be multiple bursty data sources

Packets
:- Acknowledgements Q
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Basic Queueing Theory

Elementary notions

O

Spring 2018

Things arrive at a queue according to some
probability distribution

Things leave a queue according to a second
probability distribution

Averaged over time
Things arriving and things leaving must be equal
Or the queue length will grow without bound

Convenient to express probability distributions
as average rates

© CS 438 Staff - University of lllinois 13




Little’ s Law

Goal

o Estimate relevant values

Average number of customers in the system

o  The number of customers either waiting in queue or receiving
service

Average delay per customer

O The time a customer spends waiting plus the service time
o In terms of known values

Customer arrival rate

O  The number of customers entering the system per unit time

Customer service rate

O  The number of customers the system serves per unit time
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Little’ s Law

For any box with something steady

flowing through it

Allows us to express
. the natural idea that

v

Mean amount in box
(average numberof ___, N=AT

things in the box) /

Mean arrival to the system
(rate at which things enter
the box)
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crowded systems
(large N) are
associated with long
customer delays

Mean time spent in box
(average time spent by a
thing in the box)
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Little’ s Law

| - N = /IT\ | |
Mean amount in box T Mean time spent in box
Mean arrival
Example
o  Suppose you arrive at a busy restaurant in a major city
o  Some people are waiting in line, while other are already seated (i.e.,
being served)
o  You want to estimate how long you will have to wait to be seated if you

join the end of the line

Do you apply Little’ s Law? If so

O

O
O
O
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What is the box?
What is N?
What is 17?
What is T?
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Little’ s Law

| - N = /1T\ | |
Mean amount in box T Mean time spent in box
Mean arrival

Box
o Include the people seated (i.e., being served)
o Include the people waiting in line (i.e., in the queue)

Let N = the number of people seated (say 150 seated + 50 in line)
Let T = mean amount of time a person waits and then eats (say 90
min)

Conclusion

o Arrivals (and departures) = 200/90 = 2.22 persons per minute
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Little’ s Law

:- STS-12 Link ,
622 Mbps

= Suppose data streams are multiplexed at an output
link with speed 622 Mbps

= Question
o 1f 200 50 B packets are queued on average, what is the
average time in the system?
= Answer
o T =N/A
o T=200*50*8/622M
o T=0.128 ms
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Little’ s Law

Variables

o N(t) = number of customers in the system at
time t

o A(t) = number of customers who arrived in the
interval [0,1]

o T, =time spent in the system by the /" customer
o /= average arrival rate over the interval [0,{]
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Proof of Little’ s Law

Number of Arrivals/
Number of Departures

>

System is initially empty

N(0)

Arrivals: A(s) ~

s / A=(t)

n
»

Area(l) _ A(t) . Area(t)

3 - A t A

Number in system: N(s) } \ :
— Departures: D(s) .
t Time
But th |S |S N —_ ﬂ t o N(t) = number of customers
. . t t t o A(t) = number of customers who arrived in the
o  With time averaging over [0,1] interval [0,(]
. L. o T; = time spent in the system by the it
Let f tend to infinity: N = At customer |
o J; = average arrival rate over the interval [0,t]
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Memoryless Distributions/
Poisson Arrivals

Goal for easy analysis

o Want processes (arrival, departure) to be independent of
time

o i.e., likelihood of arrival should depend neither on earlier
nor on later arrivals

In terms of probability distribution in time (defined
for t > 0),

f(t) = £(t+A t)
jm f(t") dt’
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Memoryless Distributions/
[Poisson Arrivals

solution is: f(t) — Je M

what is 1? Iy 9y
*it’ s the rate of _[ f(t) tdt = (te ] +I dt
events

1 — At

*note that the ( 7 }
average time
until the next 1
event is ~7
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[Plan

Review exponential and Poisson
probability distributions

Discuss Poisson point processes and
the M/M/1 queue model
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[Exponential Distribution

A random variable X has an exponential
distribution with parameter A if it has a
probability density function

o Ax)=Ae* forx>0

Note: E[X] = 1/4

P[X >c] = e**

e
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[Exponential Distribution

Suppose a waiting time Xis
exponentially distributed with
parameter 1 = 2/sec

o Mean wait time is 72 sec
What is

o P[X>2]?

o P[X>6]?

o P[X>6 | X>4]?
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Exponential Distribution

Remember: 1 =2

P[X>2]

o =e2=0.183
P[X>6]

o =eb=6.14x 106
P[X>6|X>4]

o = P[X>6,X>4)/P[X>4]
o = PX>6)/P[X>4]

o) — e-6/1/e-4/1

O — e-2/1

o =0.183

Note: this demonstrates the memoryless property of
exponential distributions
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Poisson Distribution

= The random variable X has a Poisson distribution with mean
A, if for non-negative integers /.
o P[X=i]=(Ae)i
= Facts
o EX]=1
o If there are many independent events,
m  The k" of which has probability p, (which is small) and

m A =the sum of the p, is moderate

= Then the number of events that occur has approximately the
Poisson distribution with mean A

j?ﬂwmmﬁ P——
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[Poisson Distribution

Example
o Consider a CSMA/CD like scenario

o There are 20 stations, each of which
transmits in a slot with probability 0.03.
What is the probability that exactly one
transmits?
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Poisson Distribution

There are 20 stations, each of which
transmits in a slot with probability
= Exactanswer 0.03. What is the probability that
o 20*(0.03)*(1-0.03)"°=0.3364 exactly one transmits?

= Poisson approximation
o Use P[X =i] = (Xe)/i!
o Withi=1and 21=20*(0.03)=0.6
o  Approximate answer = iet = 0.3393
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Poisson Point Process

Definition
o A Poisson point process with parameter 4

A point process with interpoint times that are independent
and exponentially distributed with parameter A.

Mean interarrival time = 1/4, with
< exponential distribution

| S—
o—
o—

A 4
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Poisson Point Process

Equivalently

o The number of points in disjoint intervals are independent
and the number of points in an interval of length t has a
Poisson distribution with mean At

. [ 11 I [ S I N I [ 11

A\ J AN /)
Y Y Y

Shown are three disjoint intervals. For a Poisson point process, the
number of points in each interval has a Poisson distribution.
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Poisson Point Process

Exercise

o Given a Poisson point process with rate 4 = 0.4,
what is the probability of NO arrivals in an
interval of length 57?

Mean = 1/4 b=a+5

| 1| II_’I I<_l./ 1] lllgl/_lll

Length 5 interval

Try to answer two ways, using two equivalent descriptions of a
Poisson process
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Poisson Point Process

X = time from a until next point

X
| 11 | 11 I . [ T | 11
I\ /
g

Given a Poisson point process N = number of points in

with rate 1 = 0.4, what is the interval

probability of NO arrivals in an _ _

interval of length 57 (Poisson with mean 54)

Solution 1: P[X > 5] = "5 = 0.1353

Solution 2: P[N = 0] = e*=0.1353
(remember: P[N =i] = (51)" * (e%) /!, for i = 0)
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Simple Queueing Systems

Classify by
o “arrival pattern/service pattern/number of
servers”

Interarrival time probability density function
The service time probability density function
The number of servers
The queueing system
The amount of buffer space in the queues

o Assumptions
Infinite number of customers
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Simple Queueing Systems

Terminology

o M = Markov (exponential probability density)
o D = deterministic (all have same value)

o G = general (arbitrary probability density)
Example

o M/D/4

Markov arrival process
Deterministic service times
4 servers

Spring 2018 © CS 438 Staff - University of lllinois 35




M/M/1 System

= Goal
o Describe how the queue evolves over time as customers arrive
and depart

=  An M/M/1 system with arrival rate 4 and departure rate x has
o Poisson arrival process, rate 1
o  Exponentially distributed service times, parameter u
o  One server

N(t) = number in
system (system =
queue + server) o— - . .

A 4
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[I\/I/M/ 1 System

If the arrival rate A is greater then the
departure rate u

o N(t) drifts up at rate 1 - i
N(t)

Time
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M/M/1 System

On the other hand,

o if 4 < u, expect an equilibrium distribution.

The state of the queue is completely described by
the number of customers in the queue

o Due to the memoryless property of exponential
distributions, N is described by a single state transition
diagram

o N is a Markov process, meaning past and future are
Independent given present

® ©
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M/M/1 System

N Is a discrete random variable

o p, = probability that there are k customers
In the queue

o Equivalently,
p, = probability that queue is in state k

States of the queue

® ©
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M/M/1 System

Goal

o  Find the steady state (long run) probabilities of the queue being in state J,
i=0,1,2,3, ...

Transitions occur only when

o A customer finishes service

o A customer arrives

Birth-death process

o  Transition from state / to state i+7 on arrival

o  Transition from state / to state /-7 on departure
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M/M/1: Transition rates

If the queue is in state / with probability p;

o Then equivalently , the queue is in state / a fraction of p; of
the time

The number of transitions/second out of state / onto
state /+17 is given by

o (fraction of time queue is in state /) * (arrival rate)

o p;*A

The number of transitions/second out of state / onto
state /-7 is given by

o (fraction of time queue is in state /) * (departure rate)

o pitHu
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M/M/1: Steady State

Claim

o  For the steady state to exist, # of transitions/sec from state / to state i+171
must equal # of transitions/sec from state i+7 to state j

Result
o  Net flow across boundary between states must be zero
Basic idea (not a real proof)

o  Otherwise, in the long run, the net flow of the system would always drift
to the higher state with probability 1

Flow up_——,
@ wow A
H H
—— Flow down
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M/M/1 System

Given that we must balance flow across all
boundaries,

O  Ap; = up;,foralli >0

Balance Equations
APy = 1P+ = P = (A by
APy = 1P = Py = (M) pq = Py = (A)? py
APy = 1P = p3 = (V) p; = p3 = (V) po

AP = WPy = Py = (M) P = Pir = (V)™ pg
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M/M/1 System

Problem

o To solve the balance equations, we need one more equation:
2i=0”Pi =1

Thus

o P = (M p (1)

o 2_ “p; =1 (2)

Plugging 1 into 2, we get

O 2ig"Po * (M) =

Result (for A < pn)

o po =1/ (2 (V) =...=1-Vu
O P = (M) (1- My
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M/M/1 System

So What?

o We now know the probability that there are 0, 1, 2, 3, ...
customers in the queue (p;)

Define N,,,
= average # of customers in queue
= expected value of the # of customers in the queue

vg

= 2:':?// possible # of cust I*P [i customer. S]
= 2j="1 TP = 2i=0™ (1 - M) * (V) ™
= (M1 - V)

O
O
Na
O
O
O
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M/M/1 System

Define Q,,,

o = average # of customers in waiting area of the
queue

Qavg

o = 2 all possible # of cust in waiting area I*P [i customers in
waiting areaj

= 2i-o” 1 * P[i+1 customers in queue]

=20 (1- M) * (M) *i

= (V1 - V) - Y

=N_,,-Au

avg

O O O O
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M/M/1 System - Utilization

Utilization

The fraction of time the server is busy
= P[server is busy]

= 1 — P[serveris NOT busy]

= 1 — P[zero customers in queue]

O O O O O O O

Since utilization cannot be greater then 1,
o Utilization = min(1.0, A/u)
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M/M/1 System - Utilization

Utilization example

o Packets arrive for transmission at an average
(Poisson) rate of 0.1 packets/sec

o Each packet requires 2 seconds to transmit on
average (exponentially distributed)

o Whatare N, Q. ,and p?

avg, “Xavg
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M/M/1 System - Utilization

Utilization example

o Packets arrive for transmission at an average
(Poisson) rate of 0.1 packets/sec

o Each packet requires 2 seconds to transmit on
average (exponentially distributed)

O Noyg = (W1 - M) =0.1°2/(1-0.1"2) = 0.25
0 Quug=Noyg - Vu=025-0.17"2=0.05
o p=Au=0.2
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M/M/1 System - Utilization

Intuitively, as the number of packets arriving per
second (1) increases, the number of packets in the
gueue should increase

©C =N W H» O ON ®

o 0.1 0.2 0.3 0.4 0.5 0.6
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M/M/1 System - Utilization

Normalized Traffic Parameter (p)
o Note that N,,, and Q,,, only depend on the ratio &/u

o Define p
= (avg arrival rate * avg service time)
=A*1/u=u
o Intuitively, if we scale both arrival rate and service time by a
constant factor, N, , and Q,,, should remain the same
o Note

If 2> u(i.e. /u> 1), then more packets are arriving per
second than can be serviced

Thus, N,,, and Q,,, are unbounded when p > 17!
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[I\/I/M/1 System — Time Delays

Given {p,, p4, p», ...}, We can derive
N,,, and Qavg

We may also want to know the
following

o T,,=average time from when a packet

arrives until it completes transmission

o W, = average time from when a packet

arrives until it starts transmission
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[M/M/1 System — Time Delays ]

— N avg 41
— Qavg —>‘

— Wag 4 — T —
T

-~ avg _—




[I\/I/M/1 System — Little’ s Law

Now we can use Little’ s Law to relate

N,,q,and Q,,to T,,,and W,
O Navg - /1Tavg avg vg/ﬂ'
O Qavg = X’Wavg = Wavg = Qavg/l

o Alsonote: W,,, + 1/u=T,,
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[I\/I/M/ 1 System

Packets arrive with the following parameters
o A = 2 packets per second
o 1/u = Ya sec per packets
op=0.5
Utilization = p=A/u=2/4=0.5
N = 0/(1-p) =0.5/1-0.5 = 1 packet
0 = Ty =Ny /A =72=0.5sec
Qg = Nayg-p=1-0.5=0.5
0= Wy = Q14 =0.5/2=0.25sec
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M/M/1 System - Summary

b ——lllll——Cw——

1. Draw state diagram

2. Write down balance equations
flow “up” = flow “down”
3. Solve balance equations using
2i=0”P; = 1for {py, p1, Po, .-}
4. Compute N,,, and Q,,, from {p;}
5. Compute T, and W, using Little’ s Theorem

avg avg
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M/M/1 System - Example

——lllill——C>—— 100Kbps

Packets arrive ant an output link according to a
Poisson process

o The mean total data rate is 80Kbps (including headers)
o The mean packet length is 1500

o The link speed is 100Kbps
Questions

o What assumptions can we make to fit this situation to the
M/M/1 model?

o Under these assumptions, what is the mean time needed
for queueing and transmission of a packet?
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M/M/1 System - Example

Answer Part 1:
o “Customers”
Packets
o “Server”
The transmitter
o Service times
The transmission times

o Packets sizes
Variable lengths, with a exponential distribution

Packet lengths are independent of each other and
independent of arrival time
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M/M/1 System - Example

Remember
o The mean total data rate is 80Kbps

o The mean packet length is 1500
o The link speed is 100Kbps

Answer Part 2: Find 4, z and T

o Need to convert from bit rates to packet rates
A = 80Kbps/12Kb = 6.66 packets/sec
1 =100 Kbps/12Kb = 8.33 packets/sec

o S0, T = mean time for queueing and transmission
T'=1/(u-4)=1/1.67 = 0.6 sec
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M/M/1 System - Example

Also

o The mean transmission time is
1/ = 0.12 sec,

o So the mean time spent in queue is
W=T-1/u=0.6-0.12 = 0.48sec

o The mean number of packets is
N = o/(1-p) =0.8/(1- 0.8) =4 packets
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M/M/1 System in Practice

The assumptions we made are often not realistic
We still get the correct qualitative behavior

Simple formulas for predictive delay are useful for

provisioning resources in a network and setting
controls

Real traffic seems to have bursty behavior on
multiple time scales

o This is not true for Poisson processes
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