

Routing

Network Routing

Constructing and maintaining forwarding information in hosts or routers

Routing

Goals

- Capture the notion of "best" routes
- Propagate changes effectively
- Require limited information exchange
- Conceptually
 - A network can be represented as a graph where each host/router is a node and each physical connection is a link

Routing: Ideal Approach

- Maintain information about each link
- Calculate fastest path between each directed pair

For each direction, maintain:

- Bandwidth
- Latency
- •Queueing delay

Routing: Ideal Approach

Problems

- Unbounded amount of information
- Queueing delay can change rapidly
- Graph connectivity can change rapidly

Solution

- Dynamic
 - Periodically recalculate routes
- Distributed
 - No single point of failure
 - Reduced computation per node
- Abstract Metric
 - "Distance" may combine many factors
 - Use heuristics

Routing Overview

- Algorithms
 - Static shortest path algorithms
 - Bellman-Ford
 - Based on local iterations
 - Dijkstra's algorithm
 - Build tree from source
 - Distributed, dynamic routing algorithms
 - Distance vector routing
 - Distributed Bellman-Ford
 - Link state routing
 - Implement Dijkstra's algorithm at each node

Bellman-Ford Algorithm

- Concept
 - Static centralized algorithm
- Given
 - Directed graph with edge costs and destination node
- Finds
 - Least cost path from each node to destination
- Multiple nodes
 - To find shortest paths for multiple destination nodes, run entire Bellman-Ford algorithm once per destination

Bellman-Ford Algorithm

- Based on repetition of iterations
 - For every node A and every neighbor B of A
 - Is the cost of the path (A → B → → → destination) smaller than the currently known cost from A to destination?
 - If YES
 - Make B the successor node for A
 - Update cost from A to destination
 - Can run iterations synchronously or all at once

Bellman-Ford Algorithm

Distance Vector Routing

- Distributed dynamic version of Bellman-Ford
- Each node maintains a table of
 - <destination, distance, successor>
- Information acquisition
 - Assume nodes initially know cost to immediate neighbor
 - Nodes send <destination, distance > vectors to all immediate neighbors
 - Periodically seconds, minutes
 - Whenever vector changes triggered update

Distance Vector Routing

- When a route changes
 - Local failure detection
 - Control message not acknowledged
 - Timeout on periodic route update
 - Current route disappears
 - Newly advertised route is shorter than previous route
- Used in
 - Original ARPANET (until 1979)
 - Early Internet: Routing Information Protocol (RIP)
 - Early versions of DECnet and Novell IPX

-Distance vector: update propagation

Example - Initial Distances

Info of	Distance to node					
Info at node	A	В	С	D	E	_
Α	0	7	~	~	1	
В	7	0	1	~	8	
C	~	1	0	2	~	
D	~	~	2	0	2	
E	1	8	~	2	0	

Distance to node

E Receives D's Routes

E Updates Cost to C

Info at	Distance to node					
node	A	В	С	D	Ε	
Α	0	7	~	~	1	
В	7	0	1	~	8	
С	~	1	0	2	~	
D	~	~	2	0	2	
E	1	8	4	2	0	

A Receives B's Routes

A Updates Cost to C

A Receives E's Routes

A Updates Cost to C and D

Info at	Distance to node					
node	A	В	С	D	E	
Α	0	7	5	3	1	
В	7	0	1	~	8	
С	~	1	0	2	~	
D	~	~	2	0	2	
E	1	8	4	2	0	

Distance to node

Final Distances

Info at	Distance to node					
node	Α	В	С	D	Е	
Α	0	6	5	3	1	
В	6	0	1	3	5	
C	5	1	0	2	4	
D	3	3	2	0	2	
E	1	5	4	2	0	

Final Distances After Link Failure

Info at	Distance to node					
node	Α	В	С	D	Е	_
A	0	7	8	10	1	
В	7	0	1	3	8	
С	8	1	0	2	9	
D	10	3	2	0	11	
E	1	8	9	11	0	

Distance to node

View From a Node

E's routing table

	Next hop					
dest	Α	В	D			
Α	1	14	5			
В	7	8	5			
С	6	9	4			
D	4	11	2			

What happens after a failure?

Distance Vector Routing

- Problem
 - Node X notices that its link to Y is broken
 - Other nodes believe that the route through X is still good
 - Mutual deception!

-How Are These Loops Caused?

- Observation 1:
 - B's metric increases
- Observation 2:
 - C picks B as next hop to A
 - But, the implicit path from C to A includes itself!

Solution 1: Holddowns

- If metric increases, delay propagating information
 - in our example, B delays advertising route
 - C eventually thinks B's route is gone, picks its own route
 - B then selects C as next hop
- Adversely affects convergence

Heuristics for breaking loops

- Set infinity to 16
 - Small limit allows fast completion of "counting to infinity"
 - Limits the size of the network
- Split horizon
 - Avoid counting to infinity by solving "mutual deception" problem
- Split horizon with poisoned reverse
 - "Poison" the routes sent to you by your neighbors
- Sequence numbers on delay estimates

- Avoid counting to infinity by solving "mutual deception" problem
- Distance Vector with split horizon:
 - when sending an update to node X, do not include destinations that you would route through X
 - If X thinks route is not through you, no effect
 - If X thinks route is through you, X will timeout route

Split Horizon and Poisoned Reverse

- Distance Vector with Split Horizon and Poisoned Reverse:
 - When sending update to node X, include destinations that you would route through X with distance set to infinity
 - Don't need to wait for X to timeout
- Problem:
 - still doesn't fix loops of 3+ hops!

- Split Horizon (with or without poisoned reverse)
 may still allow some routing loops and counting to
 infinity
 - guarantees no 2-node loops
 - can still be fooled by 3-node (or larger) loops
- Consider link failure from C to D

- Initial routing table entries for route to D:
 - A 2 via C
 - B 2 via C
 - **C** 1
- C notices link failure and changes to infinity
- Now C sends updates to A and B:
 - o to **A**: infinity
 - o to **B**: infinity

- Suppose update to B is lost
- New tables:
 - A unreachable
 - B 2 via C
 - **C** unreachable

- Suppose update to B is lost
- New tables:
 - A unreachable
 - B 2 via C
 - **C** unreachable
- Now B sends its periodic routing update:
 - o to **C**: infinity (poisoned reverse)
 - o to **A**: 2

- New tables for route to D:
 - A 3 via B
 - **B** 2 via **C**
 - **C** unreachable
- Finally A sends its periodic routing update:
 - o to **B**: infinity (poisoned reverse)
 - o to **C**: 3

- New tables for route to D:
 - **A** 3 via **B**
 - **B** 2 via **C**
 - **C** 4 via **A**
- A, B and C will still continue to count to infinity

-Avoiding the Counting to Infinity Problem

- Select loop-free paths
- One way of doing this:
 - Each route advertisement carries entire path instead of just distance
 - If router sees itself in path, reject route
 - ⇒ called Path-Vector routing
- BGP does it this way
- Space proportional to diameter

Loop Freedom at Every Instant

- Have we now avoided all loops?
 - No! Transient loops are still possible
 - Why? Implicit path information may be stale
- Many approaches to fix this
 - Maintain backup paths in case you get stuck
 - Use multiple paths
 - Source routing
 - Keep packets flowing or queued during convergence
 - ...and much more current research

Distance Vector in Practice

RIP and RIP2

uses split-horizon/poison reverse

BGP/IDRP

- propagates entire path
- path also used for affecting policies

AODV

- "on-demand" protocol for wireless networks
- Only maintain distance vectors along paths to destinations that you need to reach

Routing So Far ...

- Problem
 - Information propagates slowly
 - One period per hop for new routes
 - Count to infinity to detect lost routes

Dijkstra's Algorithm

Given

 Directed graph with edge weights (distances)

Calculate

 Shortest paths from one node to all others

Dijkstra's Algorithm

- Greedily grow set C of confirmed least cost paths
- Initially C = {source}
- Loop N-1 times
 - Determine the node M outside C that is closest to the source
 - Add M to C and update costs for each node P outside C
 - Is the path (source $\rightarrow \rightarrow ... \rightarrow M \rightarrow P$) better than the previously known path for (source $\rightarrow P$)?
 - If YES
 - Update cost to reach P

Dijkstra's Algorithm

Link State Routing

- Strategy
 - Send all nodes information about directly connected links
 - Status of links is flooded in link state packets (LSPs)
- Each LSP carries
 - ID of node that created the LSP
 - Vector of <neighbor, cost of link to neighbor> pairs for the node that created the LSP
 - Sequence number
 - Time-to-live (TTL)
- Each node maintains a list of (ideally all) LSP's and runs Dijkstra's algorithm on the list

Link state: route computation

Link-state: packet forwarding

Link-state: packet forwarding

Link State Routing

- LSP must be delivered to all nodes
- Information acquisition via reliable flooding
 - Create local LSP periodically with increasing sequence number
 - Send local LSP to all immediate neighbors
 - Forward new LSP out on all other links
- What does "new" mean?
 - New sequence number
 - TTL accounts for wrapped sequence numbers
 - Decrement TTL for stored nodes

Basic Steps

- Each node assumed to know state of links to its neighbors
- Step 1: Each node broadcasts its state to all other nodes
- Step 2: Each node locally computes shortest paths to all other nodes from global state

Reliable Flooding

- When i receives LSP from j:
 - If LSP is the most recent LSP from j that i has seen so far
 - i saves it in database and forwards a copy on all links except link LSP was received on
 - Otherwise, discard LSP

- At each router, perform a forward search algorithm
 - Variation of Dijkstra's
 - Variants to improve performance
 - e.g., incremental Dijkstra's
- Router maintains two lists
 - Tentative
 - Confirmed
- Each list contains triplets
 - <destination, cost, nexthop>

Step	Confirmed	Tentative
1.		
2.		
3.		
4.		

Step	Confirmed	Tentative
5		
6		
7		

Step	Confirmed	Tentative
1.	(D,0,-)	
2.	(D,0,-)	(B,11,B) (C,2,C)
3.	(D,0,-) (C,2,C)	(B,11,B)
4.	(D,0,-) (C,2,C)	(B,5,C) (A,12,C)

Step	Confirmed	Tentative
5	(D,0,-)	(A,12,C)
	(C,2,C)	
	(B,5,C)	
6	(D,0,-)	(A,10,C)
	(C,2,C)	
	(B,5,C)	
7	(D,0,-)	
	(C,2,C)	
	(B,5,C)	
	(A,10,C)	

Link State Characteristics

- With consistent LSDBs, all nodes compute consistent loop-free paths
- Limited by Dijkstra computation overhead, space requirements

Can still have transient loops

Link State Characteristics

How could this cause loops?

Packet from C->A may loop around BDC

Source Routing

- Variant of link state routing
 - Like link state, distribute network topology and compute shortest paths at source
 - ...but only at source, not every hop!

Pros

 Stabilizes quickly, does not generate much traffic, responds to topology changes or node failures

Cons

 Amount of information stored at each node is large

Link State Routing in the Wild

- Intermediate System-Intermediate System (IS-IS)
 - Designed for DECnet
 - Adopted by ISO for connectionless network layer protocol (CNLP)
 - Used in NSFNET backbone
 - Used in some digital cellular systems

ARPANET

Bad heuristics brought down the network in 1981

Internet

- Open shortest path first (OSPF)
- Defined in RFC 5340
- Used in some ISPs

OSPF

- Authentication of routing messages
 - Encrypted communication between routers
- Additional hierarchy
 - Domains are split into areas
 - Routers only need to know how to reach every node in a domain
 - Routers need to know how to get to the right area
 - Load balancing
 - Allows traffic to be distributed over multiple routes

OSPF - Hierarchical routing

OSPF - Hierarchical routing

Tradeoffs of hierarchical routing

- Advantages: scalability
 - Reduce size of link-state database
 - Isolate rest of network from changes/faults
- Disadvantages
 - Complexity
 - Extra configuration effort
 - Requires tight coupling with address assignment
 - Inefficiency
 - One link change may affect multiple path costs
 - Summarization hides shorter paths

LS vs. DV

- DV
 - Send everything you know to your neighbors
- LS
 - Send info about your neighbors to everyone
- Message size
 - Small with LS
 - Potentially large with DV
- Message exchange
 - LS: O(nE)
 - DV: only to neighbors

LS vs. DV

- Convergence speed
 - LS: fast
 - DV: fast with triggered updates
- Space requirements
 - LS maintains entire topology
 - DV maintains only neighbor state

LS vs. DV: Robustness

- LS can broadcast incorrect/corrupted LSP
 - localized problem
- DV can advertise incorrect paths to all destinations
 - incorrect calculation can spread to entire network
- Soft-state vs. Hard-state approaches
 - Should we periodically refresh? Or rely on routers to locally maintain their state correctly?

LS vs. DV

LS

- Nodes must compute consistent routes independently
- Must protect against LSDB corruption
- DV
 - Routes are computed relative to other nodes
- Bottom line
 - No clear winner, but we see more frequent use of LS in the Internet

LS vs. DV

- LS typically used within ISPs because
 - Faster convergence (usually)
 - Simpler troubleshooting
- DV typically used between ISPs because
 - Can support more flexible policies
 - Can avoid exporting routes
 - Can hide private regions of topology

Traffic engineering with routing protocols

Load balancing

- Some hosts/networks/paths are more popular than others
- Need to shift traffic to avoid overrunning capacity
- Avoiding oscillations
 - What if metrics are a function of offered load?
 - Causes dependencies across paths

Importance of Cost Metric

- Choice of link cost defines traffic load
 - Low cost = high probability link belongs to SPT
 - Will attract traffic, which increases cost
- Main problem: convergence
 - Avoid oscillations
 - Achieve good network utilization

Metrics

- Capture a general notion of distance
- A heuristic combination of
 - Distance
 - Bandwidth
 - Average traffic
 - Queue length
 - Measured delay

Metric Choices

- Static metrics (e.g., hop count)
 - Good only if links are homogeneous
 - Definitely not the case in the Internet
- Static metrics do not take into account
 - Link delay
 - Link capacity
 - Link load (hard to measure)
- But, can improve stability

Original ARPANET (1969)

- Distance vector routing
 - Routing tables exchanged every 2/3 seconds
- Use queue length as distance
 - Number of packets waiting to use a link
 - Instantaneous queue length as delay estimator

Original ARPANET Algorithm

Light load

 Delay dominated by the constant part (transmission and propagation delay)

Medium load

- Queuing delay no longer negligible
- Moderate traffic shifts to avoid congestion

Heavy load

- Very high metrics on congested links
- Busy links look bad to all of the routers
- All routers avoid the busy links
- Routers may send packets on longer paths

Original ARPANET

- Uniform 56 Kbps lines
 - Bandwidth equal on every line
 - Latency relatively unimportant
- Problems
 - Uniform bandwidth became an invalid assumption
 - Latency comparable to 1 KB transmission delay on 1.544 Mbps link

New ARPANET(1979)

- Switch to link-state routing
- Routing updates only contain link cost information
- Link metric is measured delay
- Max time between updates = 50 sec

New ARPANET(1979)

- Averaging of link metric over time
 - Old: Instantaneous delay fluctuates a lot
 - New: Averaging reduces the fluctuations
- Link-state protocol instead of DV
 - Old: DV led to loops
 - New: Flood metrics and let each router compute shortest paths
- Reduce frequency of updates
 - Old: Sending updates on each change is too much
 - New: Send updates if change passes a threshold

Problem #2: Load balancing

- Conventional static metrics:
 - Proportional to physical distance
 - Inversely proportional to link capacity
- Conventional dynamic metrics:
 - Tune weights based on the offered traffic
 - Network-wide optimization of link-weights
 - Directly minimizes metrics like maximum link utilization

Metrics: New Arpanet

- Captured delay, bandwidth and latency
- Queue delay
 - Timestamp packet arrival time (AT)
 - Also timestamp packet departure time (DT)
 - Only calculate when ACK received
 - Average DT- AT over packets and time
- Used fixed (per-link) measurements
 - Transmission time (bandwidth)
 - Latency
- Add three terms to find "distance" metric

Metrics: New ARPANET

- Assumption
 - Measured delay = expected delay
- Worked well under light load
 - Static factors dominated cost
- Oscillated under heavy load
 - Heavily loaded link advertises high proce
 - All traffic moves off
 - Then link advertises light load
 - All traffic returns
 - Repeat cycle

Specific problems

- Range is too wide
 - 9.6 Kbps highly loaded link can appear 127 times costlier than 56 Kbps lightly loaded link.
 - Can make a 127-hop path look better than 1hop.
- No limit in reported delay variation
- All nodes calculate routes simultaneously
 - Triggered by link update

Example

Example

After everyone re-calculates routes:

.. Oscillations!

Consequences

- Low network utilization (50% in example)
- Congestion can spread elsewhere
- Routes could oscillate between short and long paths
- Large swings lead to frequent route updates
 - More messages
 - Frequent SPF re-calculation

Some Considerations

- Delay as absolute measure of path length
- Greedy approach to route selection
 - Each node chooses shortest path without regards for how it affects others
- Instead, routing should provide good path to average node
 - Some nodes get longer routes

Metrics: Revised ARPANET

- Measure link utilization
- Feed measurement through function to restrict dynamic range
- Specific function chosen carefully based on bandwidth and latency
- Aspects of class of functions
 - Cost is constant at low to moderate utilization
 - Link cost is no more than 3 times idle link coast
 - Maximum cost (over all links) is no more than 7 times minumum cost (over all links)

Reality of the Modern Internet

- Hierarchical routing used
 - Between different Autonomous Systems (e.g., a provider network), a standard protocol
 - Within each AS
 - Up to AS administrator
 - Usually a variant of link-state or distance-vector
- What metrics are really used?
 - Nothing involving load
 - Just too unstable

Application to AT&T's backbone network

- Performance of the optimized weights
 - Search finds a good (approximate) solution within a few minutes
 - Much better than link capacity or physical distance
- How AT&T changes the link weights
 - Maintenance from Midnight to 6am ET
 - Predict effects of removing links from network
 - Reoptimize links to avoid congestion
 - Configure new weights before disabling equipment (costing-out)

