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TCP Usage Model

n Connection setup
¡ 3-way handshake

n Data transport
¡ Sender writes data
¡ TCP

n Breaks data into segments
n Sends each segment over IP
n Retransmits, reorders and removes duplicates as necessary

¡ Receiver reads some data

n Teardown
¡ 4 step exchange
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TCP Connection 
Establishment

n 3-Way Handshake
¡ Sequence Numbers

n J,K

¡ Message Types
n Synchronize (SYN)
n Acknowledge (ACK)

¡ Passive Open
n Server listens for 

connection from client

¡ Active Open
n Client initiates connection 

to server

Synchronize (SYN) J

SYN K, 

acknowledge (ACK) J+1

ACK K+1

Client Server

Time flows down

listen



Purpose of the handshake

n Why use a handshake before sending / processing 
data?

n Suppose we don’t wait for the handshake
¡ send data (e.g., HTTP request) along with SYN
¡ deliver to application
¡ send some results (e.g., index.html) along with SYN ACK

n What could go wrong?
¡ Hint: remember packets can be delayed, dropped, 

duplicated, …
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Purpose of the handshake

n Why use a handshake 
before sending / 
processing data?

n Duplicated packet 
causes data to be sent 
to application twice

n Why does handshake 
fix this?
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request

results

Client Server

results

timeout request
- 1st Connection closed -



Purpose of the handshake

n If server receives 
request a second time, 
it responds with SYN 
ACK a second time

n But sender will not 
subsequently respond 
with ACK (�what is this 
garbage I just 
received??�)
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timeout

request

results

Client Server

results

timeout request
- 1st Connection closed -



Another purpose of the 
handshake

n No handshake == security hole
¡ Attacker sends request
¡ …but spoofs source address, using address of a victim (C)
¡ Server happily sends massive amounts of data to victim
¡ Attacker repeats for 10,000 web servers
¡ Massive denial of service attack, almost free and 

anonymous for the attacker!
n Used in the largest distributed denial of service 

(DDoS) attacks in 2008, 2009, and 2010
¡ Use services that lack handshake (e.g., DNS over UDP)
¡ Amplification factor 1:76 in 2008!
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Another purpose of the 
handshake

n Handshake lets server verify source address is real

Spring 2018 © CS 438 Staff, University of Illinois 8

SYN
SYN ACK

Doesn�t match a 
connection initiated by C: 
ignore (or reply with reset)
No ACK received after 
timeout: drop connection 
without sending data

Q: does this prevent 
reflection attack?

A: No, but at least it 
prevents amplification



Handshaking

n Internet was not designed for accountability
¡ Hard to tell where a packet came from
¡ ISPs filter suspicious packets: sometimes easy, 

sometimes hard, and sometimes not done
n And the Internet is not secure until everyone filters

n More generally, Internet was not designed for 
security
¡ Vulnerabilities in most of the core protocols
¡ Even with handshake, early designs are vulnerable

n Had predictable Initial Sequence Number (why�s that bad?)
n Because security was not initial goal of the handshake
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TCP Data Transport

n Data broken into segments
¡ Limited by maximum segment size (MSS)
¡ Defaults to 352 bytes
¡ Negotiable during connection setup
¡ Typically set to 

n MTU of directly connected network – size of TCP and IP 
headers

n Three events cause a segment to be sent
¡ ³ MSS bytes of data ready to be sent
¡ Explicit PUSH operation by application
¡ Periodic timeout
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TCP Byte Stream

Application 
process

Application 
process

TCP TCP

TCP Segment TCP Segment TCP Segment…

Write 
bytes

Read 
bytes

Send buffer Recv buffer



TCP Connection Termination

n Two generals problem
¡ Enemy camped in valley
¡ Two generals� hills separated by enemy
¡ Communication by unreliable messengers
¡ Generals need to agree whether to attack or retreat
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Two generals problem

n Can messages over an unreliable network be used 
to guarantee two entities do something 
simultaneously?
¡ No, even if all messages get through

n No way to be sure last message gets through!
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11 am ok?

So, 11 it is?
Yes, 11 works

Yeah, but what it you

don�t get this ack?
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TCP Connection Termination

n Message Types
¡ Finished (FIN)
¡ Acknowledge (ACK)

n Active Close
¡ Sends no more data

n Passive close
¡ Accepts no more data

Finished (FIN) J

ACK J+1

ACK K+1

Client Server

Time flows down

FIN K
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TCP Segment Header Format

Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number
ACK Sequence Number

Header Length Advertised Window0 Flags

Options



TCP Segment Header Format

n 16-bit source and destination ports
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Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number
ACK Sequence Number

Header Length Advertised Window0 Flags

Options



TCP Segment Header Format
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Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number
ACK Sequence Number

Header Length Advertised Window0 Flags

Options

n 32-bit send and ACK sequence 
numbers



ACKing and Sequence 
Numbers

n Sender sends packet 
¡ Data starts with sequence number X
¡ Packet contains B bytes

n X, X+1, X+2, ….X+B-1
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byte X byte X+B - 1

B bytes



ACKing and Sequence 
Numbers

n Upon receipt of packet, receiver sends an ACK
¡ If all data prior to X already received:

n ACK acknowledges X+B (because that is next expected 
byte)
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byte X+B

B bytes



ACKing and Sequence 
Numbers

n Upon receipt of packet, receiver sends an ACK
¡ If highest byte already received is some smaller 

value Y
n ACK acknowledges Y+1
n Even if this has been ACKed before
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byte Y + 1

B bytes

byte Y
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TCP Segment Header Format

Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number
ACK Sequence Number

Header Length Advertised Window0 Flags

Options

n 4-bit header length in 4-byte words
¡ Minimum 5 bytes
¡ Offset to first data byte
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TCP Segment Header Format

Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number
ACK Sequence Number

Header Length Advertised Window0 Flags

Options

n Reserved
¡ Must be 0
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TCP Segment Header Format

Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number
ACK Sequence Number

Header Length Advertised Window0 Flags

Options

n 6 1-bit flags
URG: Contains urgent data

ACK: Valid ACK seq. number

PSH: Do not delay data delivery

RST: Reset connection

SYN: Synchronize for setup

FIN: Final segment for teardown
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TCP Segment Header Format

Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number
ACK Sequence Number

Header Length Advertised Window0 Flags

Options

n 16-bit advertised window
¡ Space remaining in receive window



n 16-bit checksum
¡ Uses IP checksum algorithm
¡ Computed on header, data and pseudo header
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TCP Segment Header Format

Source IP Address

Destination IP Address

TCP Segment Length0 16 (TDP)

0 8 16 31

Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number

ACK Sequence Number

Header Length Advertised Window0 Flags

Options
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TCP Segment Header Format

Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number
ACK Sequence Number

Header Length Advertised Window0 Flags

Options

n 16-bit urgent data pointer 
¡ If URG = 1

¡ Index of last byte of urgent data in segment
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TCP Options

n Negotiate maximum segment size (MSS)
¡ Each host suggests a value
¡ Minimum of two values is chosen
¡ Prevents IP fragmentation over first and last hops

n Packet timestamp
¡ Allows RTT calculation for retransmitted packets
¡ Extends sequence number space for identification of stray 

packets
n Negotiate advertised window granularity

¡ Allows larger windows
¡ Good for routes with large bandwidth-delay products
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TCP State Descriptions

CLOSED Disconnected

LISTEN Waiting for incoming connection

SYN_RCVD Connection request received

SYN_SENT Connection request sent

ESTABLISHED Connection ready for data transport

CLOSE_WAIT Connection closed by peer

LAST_ACK Connection closed by peer, closed locally, await ACK

FIN_WAIT_1 Connection closed locally

FIN_WAIT_2 Connection closed locally and ACK�d

CLOSING Connection closed by both sides simultaneously

TIME_WAIT Wait for network to discard related packets

CLOSED Disconnected

LISTEN Waiting for incoming connection

SYN_RCVD Connection request received

SYN_SENT Connection request sent

ESTABLISHED Connection ready for data transport

CLOSE_WAIT Connection closed by peer

LAST_ACK Connection closed by peer, closed locally, await ACK

FIN_WAIT_1 Connection closed locally

FIN_WAIT_2 Connection closed locally and ACK�d

CLOSING Connection closed by both sides simultaneously

TIME_WAIT Wait for network to discard related packets

CLOSED Disconnected

LISTEN Waiting for incoming connection

SYN_RCVD Connection request received

SYN_SENT Connection request sent

ESTABLISHED Connection ready for data transport

CLOSE_WAIT Connection closed by peer

LAST_ACK Connection closed by peer, closed locally, await ACK

FIN_WAIT_1 Connection closed locally

FIN_WAIT_2 Connection closed locally and ACK�d

CLOSING Connection closed by both sides simultaneously

TIME_WAIT Wait for network to discard related packets

CLOSED Disconnected

LISTEN Waiting for incoming connection

SYN_RCVD Connection request received

SYN_SENT Connection request sent

ESTABLISHED Connection ready for data transport

CLOSE_WAIT Connection closed by peer

LAST_ACK Connection closed by peer, closed locally, await ACK

FIN_WAIT_1 Connection closed locally

FIN_WAIT_2 Connection closed locally and ACK�d

CLOSING Connection closed by both sides simultaneously

TIME_WAIT Wait for network to discard related packets
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TCP State Transition Diagram

CLOSED

CLOSED

ESTABLISHED

LISTEN

SYN_RCVD SYN_SENT

FIN_WAIT_1
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CLOSING

TIME_WAIT

CLOSE_WAIT

LAST_ACK

Passive open

Close/FIN

ACK

SYN/SYN + ACK

Active 
open/SYN

Close Close

SYN/SYN + ACK

Timeout 

FIN + 
ACK/ACK

SYN + ACK/ACK

Send/SYN

ACK

ACK
ACK

FIN/ACK

Close/ACK

FIN/ACK

FIN/ACK

Close/FIN
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TCP State Transition Diagram
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TCP State Transition Diagram
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TCP State Transition Diagram

CLOSED

CLOSED

ESTABLISHED

LISTEN

SYN_RCVD SYN_SENT

FIN_WAIT_1

FIN_WAIT_2

CLOSING

TIME_WAIT

CLOSE_WAIT

LAST_ACK

Passive open

Close/FIN

ACK

SYN/SYN + ACK

Active 

open/SYN

Close Close

SYN/SYN + ACK

Timeout 

FIN + 

ACK/ACK

SYN + ACK/ACK

Send/SYN

ACK

ACK

ACK

FIN/ACK

Close/ACK

FIN/ACK

FIN/ACK

Close/FIN

Reset after 

SYN/ACK was 

sent

RST



Spring 2018 © CS 438 Staff, University of Illinois 33

TCP State Transition Diagram

n Questions
¡ State transitions

n Describe the path taken by a server under normal 
conditions

n Describe the path taken by a client under normal 
conditions

n Describe the path taken assuming the client closes the 
connection first
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TCP State Transition Diagram
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TCP State Transition Diagram
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TCP State Transition Diagram
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TCP State Transition Diagram
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TCP State Transition Diagram
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TCP TIME_WAIT State

n What purpose does the TIME_WAIT stae serve?
n Problem

¡ What happens if a segment from an old connection arrives 
at a new connection?

n Maximum Segment Lifetime
¡ Max time an old segment can live in the Internet

n TIME_WAIT State
¡ Connection remains in this state from two times the 

maximum segment lifetime
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TCP State Transition Diagram
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TCP State Transition Diagram
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TCP Sliding Window Protocol

n Sequence numbers
¡ Indices into byte stream

n ACK sequence number 
¡ Actually next byte expected as opposed 

to last byte received
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TCP Sliding Window Protocol

n Initial Sequence Number
¡ Why not just use 0?

n Practical issue
¡ IP addresses and port #s uniquely identify a connection

¡ Eventually, though, these port #s do get used again

¡ … small chance an old packet is still in flight

¡ … and might be associated with new connection

n TCP requires (RFC793) changing ISN
¡ Set from 32-bit clock that ticks every 4 microseconds

¡ … only wraps around once every 4.55 hours

n To establish a connection, hosts exchange ISNs
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TCP Sliding Window Protocol

n Advertised window
¡ Enables dynamic receive window size

n Receive buffers
¡ Data ready for delivery to application until 

requested
¡ Out-of-order data to maximum buffer capacity

n Sender buffers
¡ Unacknowledged data
¡ Unsent data out to maximum buffer capacity
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TCP Sliding Window Protocol 
– Sender Side

n LastByteAcked <= LastByteSent
n LastByteSent <= LastByteWritten
n Buffer bytes between LastByteAcked and LastByteWritten

First unacknowledged byte Last byte sent

Data available, but 
outside window

Maximum buffer size

Advertised window
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TCP Sliding Window Protocol 
– Receiver Side

n LastByteRead <  NextByteExpected
n NextByteExpected <= LastByteRcvd + 1
n Buffer bytes between NextByteRead and LastByteRcvd

Next byte to be read by application
Next byte expected (ACK value)

Buffered, out-of-order data

Maximum buffer size

Advertised window



Flow Control vs. Congestion 
Control

n Flow control
¡ Preventing senders from overrunning the capacity of the 

receivers

n Congestion control
¡ Preventing too much data from being injected into the 

network, causing switches or links to become overloaded

n Which one does TCP provide?
n TCP provides both

¡ Flow control based on advertised window
¡ Congestion control discussed later in class
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Advertised Window Limits 
Rate

n W = window size
¡ Sender can send no faster than W/RTT 

bytes/sec
¡ Receiver implicitly limits sender to rate 

that receiver can sustain
¡ If sender is going too fast, window 

advertisements get smaller & smaller
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TCP Flow Control: Receiver

n Receive buffer size 
¡ = MaxRcvBuffer
¡ LastByteRcvd - LastByteRead < = MaxRcvBuf

n Advertised window
¡ = MaxRcvBuf - (NextByteExp - NextByteRead)
¡ Shrinks as data arrives and 
¡ Grows as the application consumes data
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TCP Flow Control: Sender

n Send buffer size 
¡ = MaxSendBuffer
¡ LastByteSent - LastByteAcked < = AdvertWindow

n Effective buffer 
¡ = AdvertWindow - (LastByteSent - LastByteAck)
¡ EffectiveWindow > 0 to send data

n Relationship between sender and receiver
¡ LastByteWritten - LastByteAcked < = 

MaxSendBuffer
¡ block sender if (LastByteWritten -

LastByteAcked) + y > MaxSenderBuffer
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TCP Flow Control

n Problem: Slow receiver application
¡ Advertised window goes to 0

¡ Sender cannot send more data

¡ Non-data packets used to update window

¡ Receiver may not spontaneously generate update or 
update may be lost

n Solution
¡ Sender periodically sends 1-byte segment, ignoring 

advertised window of 0

¡ Eventually window opens

¡ Sender learns of opening from next ACK of 1-byte 
segment
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TCP Flow Control

n Problem: Application delivers tiny pieces of data to 
TCP
¡ Example: telnet in character mode
¡ Each piece sent as a segment, returned as ACK
¡ Very inefficient

n Solution
¡ Delay transmission to accumulate more data
¡ Nagle�s algorithm

n Send first piece of data
n Accumulate data until first piece ACK�d
n Send accumulated data and restart accumulation
n Not ideal for some traffic (e.g., mouse motion)
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TCP Flow Control

n Problem: Slow application reads data in tiny pieces
¡ Receiver advertises tiny window
¡ Sender fills tiny window
¡ Known as silly window syndrome

n Solution
¡ Advertise window opening only when MSS or ½ of buffer 

is available
¡ Sender delays sending until window is MSS or ½ of 

receiver�s buffer (estimated)
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TCP Bit Allocation Limitations

n Sequence numbers vs. packet lifetime
¡ Assumed that IP packets live less than 60 

seconds
¡ Can we send 232 bytes in 60 seconds?
¡ Less than an STS-12 line

n Advertised window vs. delay-bandwidth
¡ Only 16 bits for advertised window
¡ Cross-country RTT = 100 ms
¡ Adequate for only 5.24 Mbps!
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TCP Sequence Numbers –
32-bit

Bandwidth Speed Time until wrap around

T1 1.5 Mbps 6.4 hours

Ethernet 10 Mbps 57 minutes

T3 45 Mbps 13 minutes

FDDI 100 Mbps 6 minutes

STS-3 155 Mbps 4 minutes

STS-12 622 Mbps 55 seconds

STS-24 1.2 Gbps 28 seconds
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TCP Advertised Window –
16-bit

Bandwidth Speed Delay x Bandwidth Product

T1 1.5 Mbps 18 KB

Ethernet 10 Mbps 122 KB

T3 45 Mbps 549 KB

FDDI 100 Mbps 1.2 MB

STS-3 155 Mbps 1.8 MB

STS-12 622 Mbps 7.4 MB

STS-24 1.2 Gbps 14.8 MB



Reasons for Retransmission
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How Long Should Sender 

Wait?

n Sender sets a timeout to wait for an 

ACK

¡ Too short

n wasted retransmissions

¡ Too long

n excessive delays when packet lost
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TCP Round Trip Time and 
Timeout

n How should TCP set 
its timeout value?
¡ Longer than RTT

n But RTT varies
¡ Too short

n Premature timeout
n Unnecessary 

retransmissions
¡ Too long

n Slow reaction to 
segment loss

n Estimating RTT
¡ SampleRTT

n Measured time from 
segment transmission 
until ACK receipt

n Will vary
n Want smoother 

estimated RTT
¡ Average several recent 

measurements
n Not just current 

SampleRTT
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TCP Adaptive Retransmission 
Algorithm - Original

n Theory
¡ Estimate RTT

¡ Multiply by 2 to allow for variations

n Practice
¡ Use exponential moving average (α = 0.1 to 0.2)

¡ Estimate = (α) * measurement + (1- α) * estimate

¡ Influence of past sample decreases 
exponentially fast
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TCP Adaptive Retransmission 
Algorithm - Original

n Problem: What does an ACK really ACK?
¡ Was ACK in response to first, second, etc 

transmission?
A B

ACK

Sample
RTT

A B

Original transmission

retransmission
Sample
RTT

Original transmission

retransmission

ACK
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TCP Adaptive Retransmission 
Algorithm – Karn-Partridge

n Algorithm
¡ Exclude retransmitted packets from RTT 

estimate
¡ For each retransmission

n Double RTT estimate
n Exponential backoff from congestion
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TCP Adaptive Retransmission 
Algorithm – Karn-Partridge

n Problem
¡ Still did not handle variations well
¡ Did not solve network congestion 

problems as well as desired
n At high loads round trip variance is high



Example RTT Estimation
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TCP Adaptive Retransmission 
Algorithm – Jacobson

n Algorithm
¡ Estimate variance of RTT

n Calculate mean interpacket RTT deviation to 
approximate variance

n Use second exponential moving average
n Dev = (β) * |RTT_Est – Sample| + (1–β) * Dev
n β = 0.25, A = 0.125 for RTT_est

¡ Use variance estimate as component of RTT 
estimate
n Next_RTT = RTT_Est + 4 * Dev

¡ Protects against high jitter
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TCP Adaptive Retransmission 
Algorithm – Jacobson

n Notes
¡ Algorithm is only as good as the granularity of 

the clock
¡ Accurate timeout mechanism is important for 

congestion control



Evolution of TCP
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1975 1980 1985 1990

1982

TCP & IP
RFC 793 & 791

1974

TCP described by

Vint Cerf and Bob Kahn
In IEEE Trans Comm

1983

BSD Unix 4.2
supports TCP/IP

1984

Nagel’s algorithm
to reduce overhead

of small packets;

predicts congestion 

collapse

1987

Karn’s algorithm
to better estimate 

round-trip time

1986

Congestion 
collapse
observed

1988

Van Jacobson’s 
algorithms

congestion avoidance 

and congestion control

(most implemented in 

4.3BSD Tahoe)

1990

4.3BSD Reno
fast retransmit

delayed ACK’s

1975

Three-way handshake
Raymond Tomlinson

In SIGCOMM 75



TCP Through the 1990s
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1993 1994 1996

1994
ECN

(Floyd)
Explicit 

Congestion
Notification

1993
TCP Vegas 

(Brakmo et al)
delay-based 

congestion avoidance

1996
SACK TCP
(Floyd et al)

Selective 
Acknowledgement

1996
Hoe

NewReno startup 
and loss recovery

And beyond:

TCP in challenged (e.g. 
wireless) conditions; 
faster flow completion; 
lower latency; �incast�
problem; …


