
TCP Internals

Spring 2018 © CS 438 Staff, University of Illinois 1

Spring 2018 © CS 438 Staff, University of Illinois 2

TCP Usage Model

n Connection setup
¡ 3-way handshake

n Data transport
¡ Sender writes data
¡ TCP

n Breaks data into segments
n Sends each segment over IP
n Retransmits, reorders and removes duplicates as necessary

¡ Receiver reads some data

n Teardown
¡ 4 step exchange

Spring 2018 © CS 438 Staff, University of Illinois 3

TCP Connection
Establishment

n 3-Way Handshake
¡ Sequence Numbers

n J,K

¡ Message Types
n Synchronize (SYN)
n Acknowledge (ACK)

¡ Passive Open
n Server listens for

connection from client

¡ Active Open
n Client initiates connection

to server

Synchronize (SYN) J

SYN K,

acknowledge (ACK) J+1

ACK K+1

Client Server

Time flows down

listen

Purpose of the handshake

n Why use a handshake before sending / processing
data?

n Suppose we don’t wait for the handshake
¡ send data (e.g., HTTP request) along with SYN
¡ deliver to application
¡ send some results (e.g., index.html) along with SYN ACK

n What could go wrong?
¡ Hint: remember packets can be delayed, dropped,

duplicated, …

Spring 2018 © CS 438 Staff, University of Illinois 4

Purpose of the handshake

n Why use a handshake
before sending /
processing data?

n Duplicated packet
causes data to be sent
to application twice

n Why does handshake
fix this?

Spring 2018 © CS 438 Staff, University of Illinois 5

request

results

Client Server

results

timeout request
- 1st Connection closed -

Purpose of the handshake

n If server receives
request a second time,
it responds with SYN
ACK a second time

n But sender will not
subsequently respond
with ACK (�what is this
garbage I just
received??�)

Spring 2018 © CS 438 Staff, University of Illinois 6

timeout

request

results

Client Server

results

timeout request
- 1st Connection closed -

Another purpose of the
handshake

n No handshake == security hole
¡ Attacker sends request
¡ …but spoofs source address, using address of a victim (C)
¡ Server happily sends massive amounts of data to victim
¡ Attacker repeats for 10,000 web servers
¡ Massive denial of service attack, almost free and

anonymous for the attacker!
n Used in the largest distributed denial of service

(DDoS) attacks in 2008, 2009, and 2010
¡ Use services that lack handshake (e.g., DNS over UDP)
¡ Amplification factor 1:76 in 2008!

Spring 2018 © CS 438 Staff, University of Illinois 7

Another purpose of the
handshake

n Handshake lets server verify source address is real

Spring 2018 © CS 438 Staff, University of Illinois 8

SYN
SYN ACK

Doesn�t match a
connection initiated by C:
ignore (or reply with reset)
No ACK received after
timeout: drop connection
without sending data

Q: does this prevent
reflection attack?

A: No, but at least it
prevents amplification

Handshaking

n Internet was not designed for accountability
¡ Hard to tell where a packet came from
¡ ISPs filter suspicious packets: sometimes easy,

sometimes hard, and sometimes not done
n And the Internet is not secure until everyone filters

n More generally, Internet was not designed for
security
¡ Vulnerabilities in most of the core protocols
¡ Even with handshake, early designs are vulnerable

n Had predictable Initial Sequence Number (why�s that bad?)
n Because security was not initial goal of the handshake

Spring 2018 © CS 438 Staff, University of Illinois 9

TCP Data Transport

n Data broken into segments
¡ Limited by maximum segment size (MSS)
¡ Defaults to 352 bytes
¡ Negotiable during connection setup
¡ Typically set to

n MTU of directly connected network – size of TCP and IP
headers

n Three events cause a segment to be sent
¡ ³ MSS bytes of data ready to be sent
¡ Explicit PUSH operation by application
¡ Periodic timeout

Spring 2018 © CS 438 Staff, University of Illinois 10

Spring 2018 © CS 438 Staff, University of Illinois 11

TCP Byte Stream

Application
process

Application
process

TCP TCP

TCP Segment TCP Segment TCP Segment…

Write
bytes

Read
bytes

Send buffer Recv buffer

TCP Connection Termination

n Two generals problem
¡ Enemy camped in valley
¡ Two generals� hills separated by enemy
¡ Communication by unreliable messengers
¡ Generals need to agree whether to attack or retreat

Spring 2018 © CS 438 Staff, University of Illinois 12

Two generals problem

n Can messages over an unreliable network be used
to guarantee two entities do something
simultaneously?
¡ No, even if all messages get through

n No way to be sure last message gets through!
Spring 2018 © CS 438 Staff, University of Illinois 13

11 am ok?

So, 11 it is?
Yes, 11 works

Yeah, but what it you

don�t get this ack?

Spring 2018 © CS 438 Staff, University of Illinois 14

TCP Connection Termination

n Message Types
¡ Finished (FIN)
¡ Acknowledge (ACK)

n Active Close
¡ Sends no more data

n Passive close
¡ Accepts no more data

Finished (FIN) J

ACK J+1

ACK K+1

Client Server

Time flows down

FIN K

Spring 2018 © CS 438 Staff, University of Illinois 15

TCP Segment Header Format

Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number
ACK Sequence Number

Header Length Advertised Window0 Flags

Options

TCP Segment Header Format

n 16-bit source and destination ports

Spring 2018 © CS 438 Staff, University of Illinois 16

Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number
ACK Sequence Number

Header Length Advertised Window0 Flags

Options

TCP Segment Header Format

Spring 2018 © CS 438 Staff, University of Illinois 17

Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number
ACK Sequence Number

Header Length Advertised Window0 Flags

Options

n 32-bit send and ACK sequence
numbers

ACKing and Sequence
Numbers

n Sender sends packet
¡ Data starts with sequence number X
¡ Packet contains B bytes

n X, X+1, X+2, ….X+B-1

Spring 2018 © CS 438 Staff, University of Illinois 18

byte X byte X+B - 1

B bytes

ACKing and Sequence
Numbers

n Upon receipt of packet, receiver sends an ACK
¡ If all data prior to X already received:

n ACK acknowledges X+B (because that is next expected
byte)

Spring 2018 © CS 438 Staff, University of Illinois 19

byte X+B

B bytes

ACKing and Sequence
Numbers

n Upon receipt of packet, receiver sends an ACK
¡ If highest byte already received is some smaller

value Y
n ACK acknowledges Y+1
n Even if this has been ACKed before

Spring 2018 © CS 438 Staff, University of Illinois 20

byte Y + 1

B bytes

byte Y

Spring 2018 © CS 438 Staff, University of Illinois 21

TCP Segment Header Format

Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number
ACK Sequence Number

Header Length Advertised Window0 Flags

Options

n 4-bit header length in 4-byte words
¡ Minimum 5 bytes
¡ Offset to first data byte

Spring 2018 © CS 438 Staff, University of Illinois 22

TCP Segment Header Format

Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number
ACK Sequence Number

Header Length Advertised Window0 Flags

Options

n Reserved
¡ Must be 0

Spring 2018 © CS 438 Staff, University of Illinois 23

TCP Segment Header Format

Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number
ACK Sequence Number

Header Length Advertised Window0 Flags

Options

n 6 1-bit flags
URG: Contains urgent data

ACK: Valid ACK seq. number

PSH: Do not delay data delivery

RST: Reset connection

SYN: Synchronize for setup

FIN: Final segment for teardown

Spring 2018 © CS 438 Staff, University of Illinois 24

TCP Segment Header Format

Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number
ACK Sequence Number

Header Length Advertised Window0 Flags

Options

n 16-bit advertised window
¡ Space remaining in receive window

n 16-bit checksum
¡ Uses IP checksum algorithm
¡ Computed on header, data and pseudo header

Spring 2018 © CS 438 Staff, University of Illinois 25

TCP Segment Header Format

Source IP Address

Destination IP Address

TCP Segment Length0 16 (TDP)

0 8 16 31

Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number

ACK Sequence Number

Header Length Advertised Window0 Flags

Options

Spring 2018 © CS 438 Staff, University of Illinois 26

TCP Segment Header Format

Source Port Destination Port

TCP Checksum Urgent Pointer

0 8 16 31

Sequence Number
ACK Sequence Number

Header Length Advertised Window0 Flags

Options

n 16-bit urgent data pointer
¡ If URG = 1

¡ Index of last byte of urgent data in segment

Spring 2018 © CS 438 Staff, University of Illinois 27

TCP Options

n Negotiate maximum segment size (MSS)
¡ Each host suggests a value
¡ Minimum of two values is chosen
¡ Prevents IP fragmentation over first and last hops

n Packet timestamp
¡ Allows RTT calculation for retransmitted packets
¡ Extends sequence number space for identification of stray

packets
n Negotiate advertised window granularity

¡ Allows larger windows
¡ Good for routes with large bandwidth-delay products

Spring 2018 © CS 438 Staff, University of Illinois 28

TCP State Descriptions

CLOSED Disconnected

LISTEN Waiting for incoming connection

SYN_RCVD Connection request received

SYN_SENT Connection request sent

ESTABLISHED Connection ready for data transport

CLOSE_WAIT Connection closed by peer

LAST_ACK Connection closed by peer, closed locally, await ACK

FIN_WAIT_1 Connection closed locally

FIN_WAIT_2 Connection closed locally and ACK�d

CLOSING Connection closed by both sides simultaneously

TIME_WAIT Wait for network to discard related packets

CLOSED Disconnected

LISTEN Waiting for incoming connection

SYN_RCVD Connection request received

SYN_SENT Connection request sent

ESTABLISHED Connection ready for data transport

CLOSE_WAIT Connection closed by peer

LAST_ACK Connection closed by peer, closed locally, await ACK

FIN_WAIT_1 Connection closed locally

FIN_WAIT_2 Connection closed locally and ACK�d

CLOSING Connection closed by both sides simultaneously

TIME_WAIT Wait for network to discard related packets

CLOSED Disconnected

LISTEN Waiting for incoming connection

SYN_RCVD Connection request received

SYN_SENT Connection request sent

ESTABLISHED Connection ready for data transport

CLOSE_WAIT Connection closed by peer

LAST_ACK Connection closed by peer, closed locally, await ACK

FIN_WAIT_1 Connection closed locally

FIN_WAIT_2 Connection closed locally and ACK�d

CLOSING Connection closed by both sides simultaneously

TIME_WAIT Wait for network to discard related packets

CLOSED Disconnected

LISTEN Waiting for incoming connection

SYN_RCVD Connection request received

SYN_SENT Connection request sent

ESTABLISHED Connection ready for data transport

CLOSE_WAIT Connection closed by peer

LAST_ACK Connection closed by peer, closed locally, await ACK

FIN_WAIT_1 Connection closed locally

FIN_WAIT_2 Connection closed locally and ACK�d

CLOSING Connection closed by both sides simultaneously

TIME_WAIT Wait for network to discard related packets

Spring 2018 © CS 438 Staff, University of Illinois 29

TCP State Transition Diagram

CLOSED

CLOSED

ESTABLISHED

LISTEN

SYN_RCVD SYN_SENT

FIN_WAIT_1

FIN_WAIT_2
CLOSING

TIME_WAIT

CLOSE_WAIT

LAST_ACK

Passive open

Close/FIN

ACK

SYN/SYN + ACK

Active
open/SYN

Close Close

SYN/SYN + ACK

Timeout

FIN +
ACK/ACK

SYN + ACK/ACK

Send/SYN

ACK

ACK
ACK

FIN/ACK

Close/ACK

FIN/ACK

FIN/ACK

Close/FIN

Spring 2018 © CS 438 Staff, University of Illinois 30

TCP State Transition Diagram

CLOSED

CLOSED

ESTABLISHED

LISTEN

SYN_RCVD SYN_SENT

FIN_WAIT_1

FIN_WAIT_2

CLOSING

TIME_WAIT

CLOSE_WAIT

LAST_ACK

Passive open

Close/FIN

ACK

SYN/SYN + ACK

Active

open/SYN

Close Close

SYN/SYN + ACK

Timeout

FIN +

ACK/ACK

SYN + ACK/ACK

Send/SYN

ACK

ACK

ACK

FIN/ACK

Close/ACK

FIN/ACK

FIN/ACK

Close/FIN

Active Close

Passive

Close

Spring 2018 © CS 438 Staff, University of Illinois 31

TCP State Transition Diagram

CLOSED

CLOSED

ESTABLISHED

LISTEN

SYN_RCVD SYN_SENT

FIN_WAIT_1

FIN_WAIT_2

CLOSING

TIME_WAIT

CLOSE_WAIT

LAST_ACK

Passive open

Close/FIN

ACK

SYN/SYN + ACK

Active

open/SYN

Close Close

SYN/SYN + ACK

Timeout

FIN +

ACK/ACK

SYN + ACK/ACK

Send/SYN

ACK

ACK

ACK

FIN/ACK

Close/ACK

FIN/ACK

FIN/ACK

Close/FIN

Event from local

application

Message from

receiver/

response sent

Event from local

application/

message sent

Spring 2018 © CS 438 Staff, University of Illinois 32

TCP State Transition Diagram

CLOSED

CLOSED

ESTABLISHED

LISTEN

SYN_RCVD SYN_SENT

FIN_WAIT_1

FIN_WAIT_2

CLOSING

TIME_WAIT

CLOSE_WAIT

LAST_ACK

Passive open

Close/FIN

ACK

SYN/SYN + ACK

Active

open/SYN

Close Close

SYN/SYN + ACK

Timeout

FIN +

ACK/ACK

SYN + ACK/ACK

Send/SYN

ACK

ACK

ACK

FIN/ACK

Close/ACK

FIN/ACK

FIN/ACK

Close/FIN

Reset after

SYN/ACK was

sent

RST

Spring 2018 © CS 438 Staff, University of Illinois 33

TCP State Transition Diagram

n Questions
¡ State transitions

n Describe the path taken by a server under normal
conditions

n Describe the path taken by a client under normal
conditions

n Describe the path taken assuming the client closes the
connection first

Spring 2018 © CS 438 Staff, University of Illinois 34

TCP State Transition Diagram

CLOSED

CLOSED

ESTABLISHED

LISTEN

SYN_RCVD SYN_SENT

FIN_WAIT_1

FIN_WAIT_2

CLOSING

TIME_WAIT

CLOSE_WAIT

LAST_ACK

Passive open

Close/FIN

SYN/SYN + ACK

Active

open/SYN

Close Close

SYN/SYN + ACK

Timeout

FIN +

ACK/ACK

SYN + ACK/ACK

ACK

ACK

ACK

FIN/ACK

Close/FIN

FIN/ACK

FIN/ACK

Close/FIN

ACK

Passive open

SYN/SYN + ACK

ACK

Active

open/SYN

SYN + ACK/ACK

Send/SYN

Establishment under

normal conditions

Spring 2018 © CS 438 Staff, University of Illinois 35

TCP State Transition Diagram

CLOSED

CLOSED

ESTABLISHED

LISTEN

SYN_RCVD SYN_SENT

FIN_WAIT_1

FIN_WAIT_2
CLOSING

TIME_WAIT

CLOSE_WAIT

LAST_ACK

Passive open

Close/FIN

SYN/SYN + ACK

Active
open/SYN

Close Close

SYN/SYN + ACK

Timeout

FIN +
ACK/ACK

SYN + ACK/ACK

ACK

ACK
ACK

FIN/ACK

Close/FIN

FIN/ACK

FIN/ACK

Close/FIN

ACK

Passive open

SYN/SYN + ACK

ACK

Active
open/SYN

SYN + ACK/ACK

Send/SYN

Lost ACK from
receiver?

Spring 2018 © CS 438 Staff, University of Illinois 36

TCP State Transition Diagram

CLOSED

CLOSED

ESTABLISHED

LISTEN

SYN_RCVD SYN_SENT

FIN_WAIT_1

FIN_WAIT_2
CLOSING

TIME_WAIT

CLOSE_WAIT

LAST_ACK

Passive open

Close/FIN

SYN/SYN + ACK

Active
open/SYN

Close Close

SYN/SYN + ACK

Timeout

FIN +
ACK/ACK

SYN + ACK/ACK

ACK

ACK
ACK

FIN/ACK

Close/FIN

FIN/ACK

FIN/ACK

Close/FIN

ACK

Passive open

SYN/SYN + ACK

ACK

Active
open/SYN

SYN + ACK/ACK

Send/SYN

Local send when in
LISTEN

Send/SYN
SYN/SYN + ACK

Never used

Spring 2018 © CS 438 Staff, University of Illinois 37

TCP State Transition Diagram

CLOSED

CLOSED

ESTABLISHED

LISTEN

SYN_RCVD SYN_SENT

FIN_WAIT_1

FIN_WAIT_2
CLOSING

TIME_WAIT

CLOSE_WAIT

LAST_ACK

Passive open

Close/FIN

SYN/SYN + ACK

Active
open/SYN

Close Close

SYN/SYN + ACK

Timeout

FIN +
ACK/ACK

SYN + ACK/ACK

ACK

ACK
ACK

FIN/ACK

Close/FIN

FIN/ACK

FIN/ACK

Close/FIN

ACK

Passive open

SYN/SYN + ACK

ACK

Active
open/SYN

SYN + ACK/ACK

Send/SYN

Timeouts?

Send/SYN
SYN/SYN + ACK

If no response after
multiple tries, return

to CLOSED

Spring 2018 © CS 438 Staff, University of Illinois 38

TCP State Transition Diagram

CLOSED

CLOSED

ESTABLISHED

LISTEN

SYN_RCVD SYN_SENT

FIN_WAIT_1

FIN_WAIT_2

CLOSING

TIME_WAIT

CLOSE_WAIT

LAST_ACK

Passive open

Close/FIN

SYN/SYN + ACK

Active

open/SYN

Close Close

SYN/SYN + ACK

Timeout

SYN + ACK/ACK

ACK

ACK

ACK

FIN/ACK

Close/FIN

FIN/ACK

FIN/ACK

Close/FIN

ACK

Send/SYN

Close/FIN

ACK

FIN/ACK Timeout

FIN/ACK

Close/FIN

ACK

FIN +

ACK/ACK

One side closes first

TCP TIME_WAIT State

n What purpose does the TIME_WAIT stae serve?
n Problem

¡ What happens if a segment from an old connection arrives
at a new connection?

n Maximum Segment Lifetime
¡ Max time an old segment can live in the Internet

n TIME_WAIT State
¡ Connection remains in this state from two times the

maximum segment lifetime

Spring 2018 © CS 438 Staff, University of Illinois 39

Spring 2018 © CS 438 Staff, University of Illinois 40

TCP State Transition Diagram

CLOSED

CLOSED

ESTABLISHED

LISTEN

SYN_RCVD SYN_SENT

FIN_WAIT_1

FIN_WAIT_2

CLOSING

TIME_WAIT

CLOSE_WAIT

LAST_ACK

Passive open

Close/FIN

SYN/SYN + ACK

Active

open/SYN

Close Close

SYN/SYN + ACK

Timeout

SYN + ACK/ACK

ACK

ACK

ACK

FIN/ACK

Close/FIN

FIN/ACK

FIN/ACK

Close/FIN

ACK

Send/SYN

Close/FIN

Timeout

FIN/ACK

ACK
FIN +

ACK/ACK

Both sides close at

the same time

Spring 2018 © CS 438 Staff, University of Illinois 41

TCP State Transition Diagram

CLOSED

CLOSED

ESTABLISHED

LISTEN

SYN_RCVD SYN_SENT

FIN_WAIT_1

FIN_WAIT_2

CLOSING

TIME_WAIT

CLOSE_WAIT

LAST_ACK

Passive open

Close/FIN

SYN/SYN + ACK

Active

open/SYN

Close Close

SYN/SYN + ACK

Timeout

SYN + ACK/ACK

ACK

ACK

ACK

FIN/ACK

Close/FIN

FIN/ACK

FIN/ACK

Close/FIN

ACK

Send/SYN

Close/FIN

Timeout

FIN +

ACK/ACK

FIN +

ACK/ACK

FIN_ACK received

(rare)

TCP Sliding Window Protocol

n Sequence numbers
¡ Indices into byte stream

n ACK sequence number
¡ Actually next byte expected as opposed

to last byte received

Spring 2018 © CS 438 Staff, University of Illinois 42

TCP Sliding Window Protocol

n Initial Sequence Number
¡ Why not just use 0?

n Practical issue
¡ IP addresses and port #s uniquely identify a connection

¡ Eventually, though, these port #s do get used again

¡ … small chance an old packet is still in flight

¡ … and might be associated with new connection

n TCP requires (RFC793) changing ISN
¡ Set from 32-bit clock that ticks every 4 microseconds

¡ … only wraps around once every 4.55 hours

n To establish a connection, hosts exchange ISNs
Spring 2018 © CS 438 Staff, University of Illinois 43

TCP Sliding Window Protocol

n Advertised window
¡ Enables dynamic receive window size

n Receive buffers
¡ Data ready for delivery to application until

requested
¡ Out-of-order data to maximum buffer capacity

n Sender buffers
¡ Unacknowledged data
¡ Unsent data out to maximum buffer capacity

Spring 2018 © CS 438 Staff, University of Illinois 44

Spring 2018 © CS 438 Staff, University of Illinois 45

TCP Sliding Window Protocol
– Sender Side

n LastByteAcked <= LastByteSent
n LastByteSent <= LastByteWritten
n Buffer bytes between LastByteAcked and LastByteWritten

First unacknowledged byte Last byte sent

Data available, but
outside window

Maximum buffer size

Advertised window

Spring 2018 © CS 438 Staff, University of Illinois 46

TCP Sliding Window Protocol
– Receiver Side

n LastByteRead < NextByteExpected
n NextByteExpected <= LastByteRcvd + 1
n Buffer bytes between NextByteRead and LastByteRcvd

Next byte to be read by application
Next byte expected (ACK value)

Buffered, out-of-order data

Maximum buffer size

Advertised window

Flow Control vs. Congestion
Control

n Flow control
¡ Preventing senders from overrunning the capacity of the

receivers

n Congestion control
¡ Preventing too much data from being injected into the

network, causing switches or links to become overloaded

n Which one does TCP provide?
n TCP provides both

¡ Flow control based on advertised window
¡ Congestion control discussed later in class

Spring 2018 © CS 438 Staff, University of Illinois 47

Advertised Window Limits
Rate

n W = window size
¡ Sender can send no faster than W/RTT

bytes/sec
¡ Receiver implicitly limits sender to rate

that receiver can sustain
¡ If sender is going too fast, window

advertisements get smaller & smaller

Spring 2018 © CS 438 Staff, University of Illinois 48

Spring 2018 © CS 438 Staff, University of Illinois 49

TCP Flow Control: Receiver

n Receive buffer size
¡ = MaxRcvBuffer
¡ LastByteRcvd - LastByteRead < = MaxRcvBuf

n Advertised window
¡ = MaxRcvBuf - (NextByteExp - NextByteRead)
¡ Shrinks as data arrives and
¡ Grows as the application consumes data

Spring 2018 © CS 438 Staff, University of Illinois 50

TCP Flow Control: Sender

n Send buffer size
¡ = MaxSendBuffer
¡ LastByteSent - LastByteAcked < = AdvertWindow

n Effective buffer
¡ = AdvertWindow - (LastByteSent - LastByteAck)
¡ EffectiveWindow > 0 to send data

n Relationship between sender and receiver
¡ LastByteWritten - LastByteAcked < =

MaxSendBuffer
¡ block sender if (LastByteWritten -

LastByteAcked) + y > MaxSenderBuffer

Spring 2018 © CS 438 Staff, University of Illinois 51

TCP Flow Control

n Problem: Slow receiver application
¡ Advertised window goes to 0

¡ Sender cannot send more data

¡ Non-data packets used to update window

¡ Receiver may not spontaneously generate update or
update may be lost

n Solution
¡ Sender periodically sends 1-byte segment, ignoring

advertised window of 0

¡ Eventually window opens

¡ Sender learns of opening from next ACK of 1-byte
segment

Spring 2018 © CS 438 Staff, University of Illinois 52

TCP Flow Control

n Problem: Application delivers tiny pieces of data to
TCP
¡ Example: telnet in character mode
¡ Each piece sent as a segment, returned as ACK
¡ Very inefficient

n Solution
¡ Delay transmission to accumulate more data
¡ Nagle�s algorithm

n Send first piece of data
n Accumulate data until first piece ACK�d
n Send accumulated data and restart accumulation
n Not ideal for some traffic (e.g., mouse motion)

Spring 2018 © CS 438 Staff, University of Illinois 53

TCP Flow Control

n Problem: Slow application reads data in tiny pieces
¡ Receiver advertises tiny window
¡ Sender fills tiny window
¡ Known as silly window syndrome

n Solution
¡ Advertise window opening only when MSS or ½ of buffer

is available
¡ Sender delays sending until window is MSS or ½ of

receiver�s buffer (estimated)

Spring 2018 © CS 438 Staff, University of Illinois 54

TCP Bit Allocation Limitations

n Sequence numbers vs. packet lifetime
¡ Assumed that IP packets live less than 60

seconds
¡ Can we send 232 bytes in 60 seconds?
¡ Less than an STS-12 line

n Advertised window vs. delay-bandwidth
¡ Only 16 bits for advertised window
¡ Cross-country RTT = 100 ms
¡ Adequate for only 5.24 Mbps!

Spring 2018 © CS 438 Staff, University of Illinois 55

TCP Sequence Numbers –
32-bit

Bandwidth Speed Time until wrap around

T1 1.5 Mbps 6.4 hours

Ethernet 10 Mbps 57 minutes

T3 45 Mbps 13 minutes

FDDI 100 Mbps 6 minutes

STS-3 155 Mbps 4 minutes

STS-12 622 Mbps 55 seconds

STS-24 1.2 Gbps 28 seconds

Spring 2018 © CS 438 Staff, University of Illinois 56

TCP Advertised Window –
16-bit

Bandwidth Speed Delay x Bandwidth Product

T1 1.5 Mbps 18 KB

Ethernet 10 Mbps 122 KB

T3 45 Mbps 549 KB

FDDI 100 Mbps 1.2 MB

STS-3 155 Mbps 1.8 MB

STS-12 622 Mbps 7.4 MB

STS-24 1.2 Gbps 14.8 MB

Reasons for Retransmission

Spring 2018 © CS 438 Staff, University of Illinois 57

Packet

ACK

Ti
m

eo
ut

Packet

ACK

Ti
m

eo
ut

Packet

Ti
m

eo
ut

Packet

ACK

Ti
m

eo
ut

Packet

ACK

Ti
m

eo
ut

Packet

ACK

Ti
m

eo
ut

ACK lost
DUPLICATE

PACKET

Packet lost Early timeout
DUPLICATE
PACKETS

How Long Should Sender

Wait?

n Sender sets a timeout to wait for an

ACK

¡ Too short

n wasted retransmissions

¡ Too long

n excessive delays when packet lost

Spring 2018 © CS 438 Staff, University of Illinois 58

TCP Round Trip Time and
Timeout

n How should TCP set
its timeout value?
¡ Longer than RTT

n But RTT varies
¡ Too short

n Premature timeout
n Unnecessary

retransmissions
¡ Too long

n Slow reaction to
segment loss

n Estimating RTT
¡ SampleRTT

n Measured time from
segment transmission
until ACK receipt

n Will vary
n Want smoother

estimated RTT
¡ Average several recent

measurements
n Not just current

SampleRTT

Spring 2018 © CS 438 Staff, University of Illinois 59

Spring 2018 © CS 438 Staff, University of Illinois 60

TCP Adaptive Retransmission
Algorithm - Original

n Theory
¡ Estimate RTT

¡ Multiply by 2 to allow for variations

n Practice
¡ Use exponential moving average (α = 0.1 to 0.2)

¡ Estimate = (α) * measurement + (1- α) * estimate

¡ Influence of past sample decreases
exponentially fast

Spring 2018 © CS 438 Staff, University of Illinois 61

TCP Adaptive Retransmission
Algorithm - Original

n Problem: What does an ACK really ACK?
¡ Was ACK in response to first, second, etc

transmission?
A B

ACK

Sample
RTT

A B

Original transmission

retransmission
Sample
RTT

Original transmission

retransmission

ACK

Spring 2018 © CS 438 Staff, University of Illinois 62

TCP Adaptive Retransmission
Algorithm – Karn-Partridge

n Algorithm
¡ Exclude retransmitted packets from RTT

estimate
¡ For each retransmission

n Double RTT estimate
n Exponential backoff from congestion

Spring 2018 © CS 438 Staff, University of Illinois 63

TCP Adaptive Retransmission
Algorithm – Karn-Partridge

n Problem
¡ Still did not handle variations well
¡ Did not solve network congestion

problems as well as desired
n At high loads round trip variance is high

Example RTT Estimation

Spring 2018 © CS 438 Staff, University of Illinois 64

100

150

200

250

300

350

1 50 100

time (seconnds)

R
TT

 (m
illi

se
co

nd
s)

SampleRTT Estimated RTT

Spring 2018 © CS 438 Staff, University of Illinois 65

TCP Adaptive Retransmission
Algorithm – Jacobson

n Algorithm
¡ Estimate variance of RTT

n Calculate mean interpacket RTT deviation to
approximate variance

n Use second exponential moving average
n Dev = (β) * |RTT_Est – Sample| + (1–β) * Dev
n β = 0.25, A = 0.125 for RTT_est

¡ Use variance estimate as component of RTT
estimate
n Next_RTT = RTT_Est + 4 * Dev

¡ Protects against high jitter

Spring 2018 © CS 438 Staff, University of Illinois 66

TCP Adaptive Retransmission
Algorithm – Jacobson

n Notes
¡ Algorithm is only as good as the granularity of

the clock
¡ Accurate timeout mechanism is important for

congestion control

Evolution of TCP

Spring 2018 © CS 438 Staff, University of Illinois 67

1975 1980 1985 1990

1982

TCP & IP
RFC 793 & 791

1974

TCP described by

Vint Cerf and Bob Kahn
In IEEE Trans Comm

1983

BSD Unix 4.2
supports TCP/IP

1984

Nagel’s algorithm
to reduce overhead

of small packets;

predicts congestion

collapse

1987

Karn’s algorithm
to better estimate

round-trip time

1986

Congestion
collapse
observed

1988

Van Jacobson’s
algorithms

congestion avoidance

and congestion control

(most implemented in

4.3BSD Tahoe)

1990

4.3BSD Reno
fast retransmit

delayed ACK’s

1975

Three-way handshake
Raymond Tomlinson

In SIGCOMM 75

TCP Through the 1990s

Spring 2018 © CS 438 Staff, University of Illinois 68

1993 1994 1996

1994
ECN

(Floyd)
Explicit

Congestion
Notification

1993
TCP Vegas

(Brakmo et al)
delay-based

congestion avoidance

1996
SACK TCP
(Floyd et al)

Selective
Acknowledgement

1996
Hoe

NewReno startup
and loss recovery

And beyond:

TCP in challenged (e.g.
wireless) conditions;
faster flow completion;
lower latency; �incast�
problem; …

