(CS447: Natural Language Processing Fall 2018

Homework 0

Handed Out: 08/31/2018 Due: 11:59pm, 09/07/2018

Please submit an archive of your solution (including code) on Compass by 11:59pm on the due date. Please
document your code where necessary.

Note about Homework 0

This homework is intended as a warm-up exercise to get you thinking about language and to get you to be
familiar with Python. If you don’t have experience with Python, we strongly recommend completing the
assignment in a timely fashion; attend TA office hours or submit questions via Piazza if you have difficulties.
This assignment with worth 2 points towards your homework grade for the course. You will
submit your work via Compass (“Course Content” — “Homeworks” — “Homework 07); see Section 2.7 for
more detailed instructions.

1 Question 1: Basic linguistic knowledge

I read a very interesting novel and a dull textbook over the summer break.

Parts of speech You probably remember from secondary school that words have parts of speech such as
noun, pronoun, verb, adjective, adverb, preposition, article, and conjunction. What parts of speech do each
of the words in the above sentence have? For how many of these words can you find a sentence where they
have a different part of speech? For example, walk in I walk is a verb, but in I took a walk it is a noun.

2 Question 2: Python

2.1 Our goal

In order to learn about Python (and some basic things we can do with text), we will be writing a Python
script that reads in a text file and analyzes the data in a number of ways. First, we want to know some
statistics about our data, e.g. the number of words it contains, or how often each word occurs. We will
introduce the bits of Python that you’ll need to solve the exercises, but for more information you should
read the Python Tutorial http://docs.python.org/tutorial/, esp. sections 1-7.

2.2 Running Python
You should be able to start Python from a shell, e.g on the EWS linux machines:

[juliahmr@linux-a2 ~]$ module load python3

[juliahmr@linux-a2 ~]$ python3

Python 3.5.2 (default, Jul 25 2018, 22:08:49)

[GCC 4.8.5 20150623 (Red Hat 4.8.5-28)] on linux

Type "help", "copyright", "credits" or "license" for more information.

Because of inconsistencies between Python versions 2 and 3, we’ve opted to use version 3 for this course. For
now, you can use python3 on the EWS machines. We may later switch to the Enthought Canopy version of
Python, which comes with NLTK.

If you can run Python, this will open a Python shell (exit with Control-D or type exit()). Python is an
interpreted language, so we could type everything into its own shell. But because we want to write larger
programs, we prefer to save our code to a file, e.g. hwO.py. Files that contain python code are also called
modules.

http://docs.python.org/tutorial/

2.3 Code and data for this assignment

If you downloaded this assignment from either Compass or the syllabus page on the course website, then
the archive should include two stub files: hwO_notNested.py and hwO_Nested.py. Your task is to finish
implementing the functions defined in these modules (see section 2.6) and evaluate them on the included
data file movies.txt.

2.4 Reading in a text file

In our python module, we will define various functions, e.g. to read a text file into a data structure we can
process:

Read a text file into a corpus
def readFileToCorpus(f):
""" Reads in the text file f which contains one sentence per line.
nnn
file = open(f, "r") # open the input file in read-only mode
corpus = [] # this will become a list of sentences
print("reading file ", f)
for line in file:
sentence = line.split() # split the line into a list of words
corpus.extend(sentence) # extend the current list of words with the words in the sentence
return corpus

As you can see, Python looks very similar to C or Java. The syntax (e.g. for for-loops) is a little different
though — there are no semicolons at the end of statements, or parentheses around blocks of code. Instead,
Python identifies blocks of code by indentation. It is therefore highly recommended that you use an editor
that has a Python mode to help you with correct formating of your code! Unlike C or Java, Python does
not explicitly type function arguments (or return types).

We will be using the file movies. txt, which contains sentences from movie reviews, one line per sentence:

[ramusa2@linux-al ~]$ head movies.txt

plot : two teen couples go to a church party , drink and then drive .

they get into an accident .

one of the guys dies , but his girlfriend continues to see him in her life , and has nightmares .
what’s the deal 7

As you can see, this file has been preprocessed already to normalize spelling and to split off punctuation.
In order to be able to run our module hw0. py as a python script, we also need to provide a main routine,
which is done by including the following at the end of the file:

if __name__ == "__main__":
movieCorpus = readFileToCorpus(’movies.txt’)

(Make sure that movies.txt is in the same directory as your script.)
Now we can run it directly from the terminal, except that it doesn’t do very much yet:

[ramusa2@linux-al ~]$ python hwO.py

Before we extend this script, let us introduce some of Python’s data structures:

2.5 Python data structures
2.5.1 Sequences: lists, tuples, strings

Lists, tuples and strings are all examples of Python’s built-in sequence data types. As such, they all allow
the operations given in table [1| (you won’t need many of these for the homework).

x in s True if an item of s is equal to x, else False
X not in s False if an item of s is equal to x, else True
s+t the concatenation of s and t

s * n, n * s n shallow copies of s concatenated

s[i] ith item of s, origin 0

s[i:j] slice of s from i to j

sli:j:k] slice of s from i to j with step k

len(s) length of s

min(s) smallest item of s

max(s) largest item of s

Table 1: Common sequence operations: s is a sequence (e.g. a list, tuple, or string)

Strings String literals can be enclosed in single or double quotes. There are also some escape sequences
such as \n (ASCII newline) and \t (ASCII tab).

>>> stringl = "this is a string"
>>> string2 = "this is also a string\n"
>>> string3 = ’this is another string\n’

>>> print(stringl)
this is a string

>>> print(string2)
this is also a string

>>> print(string3)
this is another string

>>>

Lists Python lists are similar to arrays in C or Java, except that the elements do not have to be of the
same type. You can mix strings and integers, for example.

>>> a = [’spam’, ’eggs’, 100, 1234]
>>> al0]

) Spam)

>>> al[0] = ’ham’

>>> a

a = [’ham’, ’eggs’, 100, 1234]

You can iterate over the elements in a string by using a for-loop (note: there is a colon at the end of the
for-statement; anything inside the for-statement is indented, and there is no end keyword).

for element in list:
print (element)

You can exit for-loops with the break command:

for element in list:

if element == 42:
print("Found it: ", element)
break
else:
print("Still haven’t found what I’m looking for: ", element)

We can either append elements to a list, or we can extend a list with another list (appending all of its
elements). When the argument of append is a list itself, we create a nested list:

>>> list = [1, 2, 3]
>>> 1list2 = [4, 5]
>>> list.append(list2)

>>> list

[1, 2, 3, [4, 5]]

>>> list.extend(1list2)
>>> list

[1, 2, 3, [4, 5], 4, 5]

Tuples Tuples allow us to group elements together. They are formed with parentheses.

>>> student = "John"

>>> gpa = 4.0

>>> studentGradeTuple = (student, gpa)
>>> studentl, gpal = studentGradeTuple
>>> studentl

>John’

2.5.2 Dictionaries (associative arrays)

A Python dictionary maps keys to values. It can be declared with curly brackets. You can loop through the
items by using the iteritems() operation:

>>> emptyDict = {}

>>> gpaDict = {"Mary":3.9, "Sue":4.0}

>>> gpaDict["John"] = 4.0

>>> print(gpaDict["John"])

4.0

>>> print(gpaDict[’John’])

4.0

>>> for student, gpa in gpaDict.iteritems():
print(student, "\t", str(gpa))

Note: when you try things out in the Python shell, you still need to enter a line break at the end of the
first line of the for statement, and then the prompt will change to ..., but you will still have to indent the
next line. The str() operation returns a string representation of its argument, and can be very useful for
printing purposes.

We can also sort a dictionary, either by its keys or by its values (in ascending or descending order):

>>> from operator import itemgetter

>>> gpaDictSortedByKey = sorted(gpaDict.items())

>>> gpaDictSortedByKeyReverse = sorted(gpaDict.items(), reverse=True)

>>> gpaDictSortedByValue = sorted(gpaDict.items() ,key=itemgetter(1))

>>> gpaDictSortedByValueReverse = sorted(gpaDict.items() ,key=itemgetter(1l), reverse=True)

2.5.3 Sets

When applied to a list, the set () operation returns a set (unordered collection) of all elements without
duplicates:

>>> mylist = [1, 2, 3, 2, 1, 3]
>>> mySet = set(myList)

>>> mySet

set([1, 2, 31)

2.5.4 Classes

Python also has classes, similar to Java. These allow you to create your own data types. We have defined a
class Token, which represents the ith word in the jth sentence.

class Token:
def __init__(self, s, w):
self.sentence = s
self.word = w

We can now represent the 5rd word in the 3th sentence as follows:

>>> token

= Token(3, 5)

>>> token.sentence

3

>>> token.word

5

2.6 Your tasks

1. Start with the file hwO_notNested.py, which represents a corpus as a list of words. The ith word in
the corpus is the element corpus[i] in the corpus list.

(a)
(b)
()

Write a function countWords(corpus) that counts the words in the corpus, and apply it to our
corpus.

Write a function getVocab(corpus) that returns an alphabetically sorted list of the vocabulary
used in the corpus, and apply it to our corpus.

We provide a function createCorpusIndex(corpus), which maps each word to a list of all of
its positions in the corpus at which it occurs. Write a function printWordFrequencies(index,
vocab) that takes this index and the corpus vocabulary as arguments and prints out all words
sorted by their frequencies (how often they occur in the corpus), in descending order (most frequent
word first).

We provide a function printConcordance (corpus, word_i), which prints out the word at posi-
tion word_i in its context. Write a function printCorpusConcordance(word, corpus, index)
that takes a word, the corpus and its index as arguments, and calls printConcordance (corpus,
word_i) to print out all occurrences of word in the corpus.

2. Now use the file hwO_Nested.py, which represents each sentence as a list of words, and the corpus as a
(nested) list of sentences. Here, the jth word in the ith sentences is the elementcorpus[i] [j] of the
nested corpus list.

(a)

Write a function printStats(corpus) that counts the sentences and words in the corpus, and
apply it to our corpus.

Write a function getVocab(corpus) that returns an alphabetically sorted list of the vocabulary
used in the corpus, and apply it to our corpus.

Write a function createCorpusIndex_TupleVersion(corpus), which maps each word to a list of
all of its positions in the corpus at which it occurs, representing the jth word in the ith sentences
as a tuple.

Write a function printWordFrequencies_TupleVersion(index, vocab) that takes this tuple-
based index and the corpus vocabulary as arguments and prints out all words sorted by their
frequencies (how often they occur in the corpus), in descending order (most frequent word first).

We provide a function printConcordance(corpus, word_i), which prints out the word at po-
sition word_i in its context. Write a function printCorpusConcordance _TupleVersion(word,
corpus, index) that takes a word, the corpus and its tuple-based index as arguments, and calls
printConcordance (corpus, word_i) to print out all occurrences of word in the corpus.

Write a function createCorpusIndex_ClassVersion(corpus), which maps each word to a list of
all of its positions in the corpus at which it occurs, representing the jth word in the ith sentences
as an instance of class Token.

Write a function printWordFrequencies_ClassVersion(index, vocab) that takes this class-
based index and the corpus vocabulary as arguments and prints out all words sorted by their
frequencies (how often they occur in the corpus), in descending order (most frequent word first).

We provide a function printConcordance (corpus, word_ i), which prints out the word at po-
sition word_i in its context. Write a function printCorpusConcordance_ClassVersion(word,
corpus, index) that takes a word, the corpus and its class-based index as arguments, and calls
printConcordance (corpus, word_i) to print out all occurrences of word in the corpus.

2.7 Submission

The assignment will count two points towards your final HW grade (the other assignments are worth ten
points each). The intent is for you to familiarize yourself with Python and Compass; as such, we won’t grade
your code for correctness (just do your best), but we do want to make sure that you know how to submit
future assignments in the correct format. For the other assignments in the course you may be required to
submit documentation along with your code (either a PDF report or a text README file); however, this is
not necessary for this assignment.

2.7.1 What you will be graded on

The grade for Homework 0 will be based on the following rubric:

1 point: Submit your work on Compass (any non-empty submission will be worth at least one
point).

1 point: Format your submission as described below, i.e. as a single archive (a gzipped tarball
named abcl23_cs447_ HWO.tar.gz) that unpacks into the correct file structure: a
directory named abc123_cs447 HWO0/, containing your modified versions of
hwO_notNested.py and hwO_Nested.py (abc123 should be replaced by your NetID).

See below for further submission instructions.

2.7.2 What to submit

Submit your solution on Compass by navigating to “Course Content” — “Homeworks” — “Homework 0”.
The item in this folder will allow you to attach a compressed tarball with your solution; please include the
following files:

hwO_notNested.py: your Python implementation of the first group of four tasks from Section 2.6.
hwO_Nested.py: your Python implementation of the second group of eight tasks from Section 2.6.

You may include the handout PDF and the movies.txt files if you like, but they aren’t required.

To create the tarball, save your files in a directory called abc123 _cs447_ HWO (where abc123 is your
NetID) and then create the archive from its parent directory (tar -czvf abc123_cs447 HWO.tar.gz
abc123 _cs447 _HWO).

Appendix: Installing Python

Running Python on the EWS Machines

You can run python 3 by typing module load python3, followed by python3 into a shell in the EWS linux
machines.

Copying the files

First, copy the cs447 HWO.zip archive to your home directory on the EWS machines, like so (replacing
juliahmr with your NetID):

“> scp cs447_HWO.zip juliahmr@linux.ews.illinois.edu:"/
Then SSH into your account and unzip the archive:

> ssh juliahmr@linux.ews.illinois.edu
[juliahmr@linux-a2 CS447]$ unzip cs447_HWO.zip
Archive: «cs447_HWO.zip

inflating: cs447_HWO/hwO_Nested.py

inflating: cs447_HWO/movies.txt

inflating: cs447_HWO/hwO.pdf

inflating: cs447_HWO/hwO_notNested.py
[juliahmr@linux-a2 CS447]1]1$ cd cs447_HWO

Next, check that you have the right version of python, e.g.

[juliahmr@linux-a2 ~]$ python3

Python 3.5.2 (default, Jul 25 2018, 22:08:49)

[GCC 4.8.5 20150623 (Red Hat 4.8.5-28)] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>>

Opening the Python interpreter let you verify that you’re using the right version (Python 3.5.2). Close the
shell (exit with Control-D or type exit()), and try running one of the stub modules we gave you:

[juliahmr@linux-a2 cs447_HWO]$ python3 hwO_notNested.py

reading file movies.txt

Reading sentence 1000

Reading sentence 2000

Reading sentence 3000

Reading sentence 4000

Reading sentence 5000

Reading sentence 6000

Your task 1: count the total number of words (tokens) in our corpus

Your task 2: return a sorted list of the vocabulary (word types) in our corpus

Your task 3: print out a list of all the words that occur in the corpus and their frequencies. This list should be
Your task 4: using printConcordance(corpus, word_i), print out the concordance of all occurrences of the word the

You're now ready to edit the stub files to implement the assignment.

Installing Python Yourself

For those of you that are interested in installing the python packages on your own machines rather than
using the EWS machines, you can use the distributions available at https://www.python.org/downloads/.
For compatability with EWS, make sure to get Python 3.5.2.

https://www.python.org/downloads/

	Question 1: Basic linguistic knowledge
	Question 2: Python
	Our goal
	Running Python
	Code and data for this assignment
	Reading in a text file
	Python data structures
	Sequences: lists, tuples, strings
	Dictionaries (associative arrays)
	Sets
	Classes

	Your tasks
	Submission
	What you will be graded on
	What to submit

