(CS447: Natural Language Processing Fall 2018
Homework 3

Handed Out: 10/19/2018 Due: 11:59pm, 11/09/2018

Please submit an archive of your solution (including code) on Compass by 11:59pm on the due date. Please
document your code where necessary.

Getting started

All files that are necessary to do the assignment are contained in a tarball which you can get from:
https://courses.engr.illinois.edu/cs447/HW/cs447_hw3.tar.gz

You need to unpack this tarball (tar -zxvf cs447_hw3.tar.gz) to get a directory that contains the code
and data you will need for this homework.

Part 1: Pointwise Mutual Information (4 points)

1.1 Goal

The first part of the assignment asks you to use pointwise mutual information (PMI) to identify correlated
pairs of words within the corpora.

1.1.1 Definition of P(w;) and P(w;, w;)

There are many ways to define the probability of an event or pair of events. For this assignment, we are
interested in the probability of observing each word (or pair of words) within a single sentence. We consider
a word type to be observed in a sentence if it occurs at least once; multiple occurrences of the same word
within a single sentence still only count as one observed event. Thus:

P(w;) is the probability that a sentence S drawn uniformly at random from the corpus contains at
least one occurence of word w;

P(w;, w;) is the probability that a sentence S drawn uniformly at random from the corpus contains
at least one occurence of word w; and at least one occurence of word w;

1.2 Data

The data for this part of the assignment is stored in movies.txt, the training corpus from Homework 1.

1.3 Provided Code

We have provided the module hw3_pmi.py. This file contains code for reading in the corpus and an empty
definition for your PMI class. It is up to you how you will implement the required functionality, but at the
very least your code should provide the methods described in the next section.

We have provided two helper methods in the PMI class:

pair(self, wl, w2): returns a pair (2-tuple) of words in sorted order; for any two words w1l and w2,
pair(wl, w2) == pair(w2, wil)

You can use the pair method to prevent duplicate word pair entries.

writePairsToFile(self, numPairs, wordPairs, filename): given wordPairs (a list of PMI value/word
pair triples, produced by the getPairsWithMaximumPMI method described in 1.4.3), this method cal-
culates each pair’s PMI and writes the first numPairs entries to the file specified by filename


https://courses.engr.illinois.edu/cs447/HW/cs447_hw3.tar.gz

Using these methods and the others you will implement in the next section, you should be able to examine
the effect of word frequency on word pair PMI.

1.4 What you need to implement
1.4.1 Calculating PMI (1 point)
You need to be able to calculate the PMI of a pair of words in the vocabulary.
getPMI(self, wl, w2): returns float p, where p is the pointwise mutual information for a pair of

words.

Implementation hints Use math.log(x, 2) to get the base-2 log of x.

You might be better off caching all of the relevant observed counts from the training data than calculating
those quantities on the fly. Think about how you can use the pair method and the data structures you’ve
seen so far to store co-occurrence counts for pairs of words.

1.4.2 Defining the vocabulary (0.5 points)

You need to be able to store the vocabulary of the training corpus, and obtain a list of words that occur in
at least a certain number of sentences. The frequency cutoff k will have a large effect on the types of word
pairs that have the highest PMI.

getVocabulary(self, k): returns a list of words L,,, where every word in L,, was observed in at
least k different sentences in the training data.

Note: For Part 1, “frequency cutoff” refers to the number of sentences a word appears in, i.e.
multiple occurences of a word in a single sentence only contribute a single count towards the
frequency cutoff.

1.4.3 Finding pairs of words with high PMI (1 point)

Given a vocabulary of possible words, you need to be able to find the n unique pairs of words in that
vocabulary that have the highest PMI.

getPairsWithMaximumPMI (self, words, n): given a vocabulary list (words), returns another list of
the pairs of words that have the highest PMI (without repeated or duplicate pairs). Each entry in the
returned list should be a triple (pmiValue, wl, w2), where pmiValue is the PMI of the pair of words
(wil, w2).

Implementation hints You may want to use a heap (see module heapq) to efficiently maintain the list of
top n candidates as you search through the set of possible word pairs. You definitely want to restrict your
search to only those pairs that were observed in the training corpus, rather than the space of all possible
word pairs.

1.5 Discussion (0.5 points per question)

You will submit your answers for this section on Compass.

Once you have finished implementing your model, you should be able to generate different sets of words
using getVocabulary, and find the pairs of words within each vocabulary that have high PMI. What does
the list of pairs look like if we consider fewer and fewer rare words?

Generate vocabularies using frequency cutoffs of e.g. 2, 5, 10, 50, 100, and 200, and compare the 100 word
pairs that have the highest PMI for each vocabulary. Then consider the following questions, providing your
answers on Compass through the Homework 3 Pointwise Mutual Information Discussion Questions
test.



1. Which cutoff is most useful for identifying the first and last names of popular actors and actresses?
2. Which cutoff is most useful for identifying common English phrases?

3. Which cutoff is least useful for identifying common English phrases or names?

1.5.1 Sanity check

The Python script pmi_sanity_check.py will check your PMI methods.

1.6 What to submit

See the end of this document for full submission guidelines, but the files you must submit for this portion
are:

hw3_pmi.py: your completed Python module for calculating pointwise mutual information (see section
1.4)

README. txt: a text file containing a summary of your solution

You can include your word pair lists, but we may reproduce some of them on our own to verify the accuracy
and speed of your code.

Part 2: Parsing with Probabilistic Context-Free Grammars (6 points)
2.1 Goal

Your second task is to implement the CKY algorithm for parsing using a probabilistic context-free grammar
(PCFG). Given a PCFG, the algorithm uses dynamic programming to return the most-likely parse for an
input sentence.

2.2 Data

We have given you a text file (toygrammar.pcfg) containing a toy grammar that generates sentences similar
to the running examples seen in class:

the woman eats the sushi with the tuna

the woman eats some sushi with the chopsticks
the woman eats some sushi with a man

etc.

Each binary rule in the grammar is stored on a separate line, in the following format:
prob P -> LC RC

where prob is the rule’s probability, P is the left-hand side of the rule (a parent nonterminal), and LC and
RC are the left and right children, respectively.

For unary rules, we only have a single child C' and the line has format:
prob P -> C

We provide code for reading this file format to produce the equivalent PCFG object in Python.



2.3 Provided code

We provide the module hw3_pcfg.py, which contains several classes that may be useful for chart parsing.
You should look over the source code yourself, but a brief summary of these classes includes:

Rule: a grammatical Rule has a probability and a parent category, and is extended by UnaryRule and
BinaryRule.

UnaryRule: a UnaryRule is a Rule with only a single child (word or nonterminal).
BinaryRule: a BinaryRule is a Rule with two children.

Item: an Item is a chart entry that stores a label and a Viterbi probability. It is extended by LeafItem
and Internalltem.

LeafItem: a LeafItem is a chart entry that corresponds to a leaf in the parse tree. For a leaf, the
label is a word and the Viterbi probability is 1.0.

Internalltem: an Internalltem is a chart entry that corresponds to a nonterminal with a particular
span in the parse tree. Its label is a nonterminal symbol, and its Viterbi probability is the probability
of the best subtree rooted by that symbol (for this span). Its number of parses counts the number of
possible trees rooted at the label for this span. Additionally, an Internalltem maintains a tuple of
pointers to its children (if the children were generated by a BinaryRule) or single child (if generated
by a UnaryRule). This tuple is a backpointer for the Viterbi parse.

PCFG: a PCFG maintains a collection of Rules; for your CKY algorithm, the rules are sorted by their
right-hand-side in the ckyRules dictionary.

2.4 What you need to implement
Your task is to finish implementing the CKY method in PCFG:

CKY(self, sentence): given sentence (a list of word strings), return the root of the Viterbi parse
tree (i.e. an Internalltem with label TOPE| whose probability is the Viterbi probability). By recursing
on the children of this item, we should be able to get the complete Viterbi tree. If no such tree exists,
return None (a parse failure).

In order to finish the CKY method implementation, you must also modify the constructor for InternalItem
to correctly set the number of parses. We also provide the stubs for the Chart and Cell classes to help guide
you in your implementation of the CKY chart.

Implementation hints

In Python, to obtain a tuple for a singleton value v, use (v,) instead of (v). You will need this for the
Internalltem’s child pointer when applying unary rules.

While our grammar is small, we still want you to implement your CKY algorithm using log probabilities
(using math.log(prob) with the default base). It is good practice for implementing an actual NLP system.

You will probably want to define submethods for your CKY algorithm, as well as data structures to represent
the parse chart or individual cells (each covering a particular span). You are welcome to add any functionality
you need, as long as your CKY method returns an Internalltem object as we have defined it.

When filling the cells of your chart, you should add all possible items that can generate the span using a
binary rule before adding items that can generate the span using a unary rule. Keep in mind that you only
check for unary rules once per cell; our grammar does not allow chains of unary rules within a cell.

IThe start symbol for the grammar



2.4.1 Test script

We have provided a hardcoded test script to check your implementation. After you have implemented your
CKY algorithm in hw3_pcfg.py, run

python hw3_pcfg_test.py

to evaluate your parser.

2.5 What to submit

The only file you need to submit for this part is your completed hw3_pcfg.py program. We will evaluate
your code using a test harness similar to the one provided (all files will be in the same format and we will
initialize your PCFG in the same way, but we may use a different grammar and test sentences).

2.6 What you will be graded on

The grade for your implementation of the CKY algorithm will be based on returning the correct Viterbi
trees (2.0 pts) and probabilities (2.0 pts) for our test harness, as well as the correct number of parse trees
for each sentence (2.0 pts).

Submission guidelines

You should submit your solution as a compressed tarball on Compass; to do this, save your files in a directory
called abc123 _hw3 (where abc123 is your NetID) and create the archive from its parent directory (tar -czvf
abc123 hu3.tar.gz abc123_hw3). Please include the following files:

1. hw3_pmi.py: your completed Python module for calculating pointwise mutual information (see section
1.4)

2. README. txt: a text file containing a summary of your solution
3. hw3_pcfg.py: your completed Python module for parsing using CKY and PCFGs in Part 2

Additionally, you must answer the following discussion questions on Compass when you submit your as-
signment. These questions can be found by navigating to Course Content — Homeworks — Homework 3
— Homework 3 Pointwise Mutual Information Discussion Questions



	Part 1: Pointwise Mutual Information (4 points)
	Goal
	Definition of P(wi) and P(wi, wj)

	Data
	Provided Code
	What you need to implement
	Calculating PMI (1 point)
	Defining the vocabulary (0.5 points)
	Finding pairs of words with high PMI (1 point)

	Discussion (0.5 points per question)
	Sanity check

	What to submit

	Part 2: Parsing with Probabilistic Context-Free Grammars (6 points)
	Goal
	Data
	Provided code
	What you need to implement
	Test script

	What to submit
	What you will be graded on


