#### CS447: Natural Language Processing http://courses.engr.illinois.edu/cs447 # Lecture 9: The CKY parsing algorithm Julia Hockenmaier juliahmr@illinois.edu 3324 Siebel Center # Last lecture's key concepts #### Natural language syntax Constituents Dependencies Context-free grammar Arguments and modifiers Recursion in natural language # Defining grammars for natural language ## An example CFG ``` DT → {the, a} N → {ball, garden, house, sushi } P → {in, behind, with} NP → DT N NP → NP PP PP → P NP ``` N: noun P: preposition NP: "noun phrase" PP: "prepositional phrase" ## Reminder: Context-free grammars ``` A CFG is a 4-tuple \langle N, \Sigma, R, S \rangle consisting of: A set of nonterminals N (e.g. N = \{S, NP, VP, PP, Noun, Verb, ....\}) A set of terminals \Sigma (e.g. \Sigma = \{I, you, he, eat, drink, sushi, ball, \}) A set of rules R \mathbf{R} \subseteq \{A \rightarrow \beta \text{ with left-hand-side (LHS)} A \in \mathbf{N} and right-hand-side (RHS) \beta \in (\mathbb{N} \cup \Sigma)^* } ``` A start symbol $S \in \mathbb{N}$ # Constituents: Heads and dependents There are different kinds of constituents: Noun phrases: the man, a girl with glasses, Illinois Prepositional phrases: with glasses, in the garden Verb phrases: eat sushi, sleep, sleep soundly #### Every phrase has a **head**: Noun phrases: the man, a girl with glasses, Illinois Prepositional phrases: with glasses, in the garden Verb phrases: eat sushi, sleep, sleep soundly The other parts are its **dependents**. Dependents are either arguments or adjuncts # Is string a a constituent? He talks [in class]. #### Substitution test: Can a be replaced by a single word? He talks [there]. #### Movement test: Can a be moved around in the sentence? [In class], he talks. #### **Answer test:** Can a be the answer to a question? Where does he talk? - [In class]. # Arguments are obligatory Words subcategorize for specific sets of arguments: Transitive verbs (sbj + obj): [John] likes [Mary] #### All arguments have to be present: \*[John] likes. \*likes [Mary]. #### No argument can be occupied multiple times: \*[John] [Peter] likes [Ann] [Mary]. #### Words can have multiple subcat frames: Transitive eat (sbj + obj): [John] eats [sushi]. Intransitive eat (sbj): [John] eats. # Adjuncts are optional Adverbs, PPs and adjectives can be adjuncts: Adverbs: John runs [fast]. a [very] heavy book. PPs: John runs [in the gym]. the book [on the table] Adjectives: a [heavy] book #### There can be an arbitrary number of adjuncts: John saw Mary. John saw Mary [yesterday]. John saw Mary [yesterday] [in town] John saw Mary [yesterday] [in town] [during lunch] [Perhaps] John saw Mary [yesterday] [in town] [during lunch] #### Heads, Arguments and Adjuncts in CFGs #### Heads: We assume that each RHS has one head, e.g. ``` VP → Verb NP (Verbs are heads of VPs) ``` NP → Det Noun (Nouns are heads of NPs) S → NP VP (VPs are heads of sentences) Exception: Coordination, lists: VP → VP conj VP #### **Arguments:** The head has a different category from the parent: VP → Verb NP (the NP is an argument of the verb) #### Adjuncts: The head has the same category as the parent: VP → VP PP (the PP is an adjunct) # **Chomsky Normal Form** The right-hand side of a standard CFG can have an **arbitrary number of symbols** (terminals and nonterminals): A CFG in **Chomsky Normal Form** (CNF) allows only two kinds of right-hand sides: - Two nonterminals: VP → ADV VP - One terminal: VP → eat Any CFG can be transformed into an equivalent CNF: VP $$\rightarrow$$ ADVP $\mathbf{VP_1}$ $\mathbf{VP_1} \rightarrow \mathbf{VP_2}$ NP $\mathbf{VP_2} \rightarrow \mathbf{eat}$ # A note about ε-productions Formally, context-free grammars are allowed to have **empty productions** ( $\epsilon$ = the empty string): ``` VP \rightarrow V NP NP \rightarrow DT Noun NP \rightarrow \epsilon ``` These can always be **eliminated** without changing the language generated by the grammar: ``` VP \rightarrow V NP NP \rightarrow DT Noun NP \rightarrow \epsilon becomes VP \rightarrow V NP VP \rightarrow V \epsilon NP \rightarrow DT Noun which in turn becomes VP \rightarrow V NP VP \rightarrow V NP \rightarrow DT Noun ``` We will assume that our grammars don't have ε-productions # CKY chart parsing algorithm #### Bottom-up parsing: start with the words #### Dynamic programming: save the results in a table/chart re-use these results in finding larger constituents Complexity: $O(n^3|G|)$ *n*: length of string, |G|: size of grammar) #### Presumes a CFG in Chomsky Normal Form: Rules are all either $A \rightarrow B C$ or $A \rightarrow a$ (with A,B,C nonterminals and a a terminal) # The CKY parsing algorithm To recover the parse tree, each entry needs pairs of backpointers. We eat sushi # **CKY** algorithm #### 1. Create the chart (an $n \times n$ upper triangular matrix for an sentence with n words) - Each cell chart[i][j] corresponds to the substring w(i)...w(j) - 2. Initialize the chart (fill the diagonal cells chart[i][i]): For all rules $X \to w^{(i)}$ , add an entry X to chart[i][i] #### 3. Fill in the chart: Fill in all cells chart[i][i+1], then chart[i][i+2], ..., until you reach chart[1][n] (the top right corner of the chart) - To fill chart[i][j], consider all binary splits w(i)...w(k)|w(k+1)...w(j) - If the grammar has a rule X → YZ, chart[i][k] contains a Y and chart[k+1][j] contains a Z, add an X to chart[i][j] with two backpointers to the Y in chart[i][k] and the Z in chart[k+1][j] - **4. Extract the parse trees** from the S in chart[1][n]. # CKY: filling the chart # CKY: filling one cell chart[2][6]: W1 W2 W3 W4 W5 W6 W7 chart[2][6]: chart[2][6]:< # The CKY parsing algorithm # The CKY parsing algorithm | | • | 0 | | | | |-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------|----------------------|-----------------|---------------------------| | we | we eat | we eat sushi | we eat sushi<br>with | | we eat sushi<br>with tuna | | $S \rightarrow NP VP$ $VP \rightarrow V NP$ | V<br>eat | VP<br>eat sushi | eat sushi with | | VP eat sushi with tuna | | $\begin{array}{c} VI \rightarrow VI \\ VP \rightarrow VP PP \\ V \rightarrow eat \end{array}$ | PPP th | | | | NP<br>sushi with tuna | | $NP \rightarrow NP PP$ $NP \rightarrow we$ | single entry for each nonterminal. Each entry may have a list of pairs of backpointers. | | | PP<br>with tuna | | | NP → sushi<br>NP → tuna | | | | tuna | | | $\begin{array}{c} PP \rightarrow P & NP \\ P \rightarrow \text{ with} \end{array}$ | We eat s | sushi wit | h tun | a | | #### What are the terminals in NLP? Are the "terminals": words or POS tags? For toy examples (e.g. on slides), it's typically the words With POS-tagged input, we may either treat the POS tags as the terminals, or we assume that the unary rules in our grammar are of the form POS-tag → word (so POS tags are the only nonterminals that can be rewritten as words; some people call POS tags "preterminals") # Additional unary rules In practice, we may allow other unary rules, e.g. NP → Noun (where Noun is also a nonterminal) In that case, we apply all unary rules to the entries in chart[i][j] after we've checked all binary splits (chart[i][k], chart[k+1][j]) Unary rules are fine as long as there are no "loops" that could lead to an infinite chain of unary productions, e.g.: $$X \rightarrow Y$$ and $Y \rightarrow X$ or: $X \rightarrow Y$ and $Y \rightarrow Z$ and $Z \rightarrow X$ #### CKY so far... Each entry in a cell chart[i][j] is associated with a nonterminal X. If there is a rule $X \to YZ$ in the grammar, and there is a pair of cells chart[i][k], chart[k+1][j] with a Y in chart[i][k] and a Z in chart[k+1][j], we can add an entry X to cell chart[i][j], and associate one pair of backpointers with the X in cell chart[i][k] Each entry might have multiple pairs of backpointers. When we extract the parse trees at the end, we can get all possible trees. We will need probabilities to find the single best tree! # Exercise: CKY parser #### I eat sushi with chopsticks with you ``` S \rightarrow NP VP NP \rightarrow NP PP NP \rightarrow sushi NP \rightarrow I NP \rightarrow chopsticks NP \longrightarrow you VP \rightarrow VP PP VP \rightarrow Verb NP Verb \rightarrow eat PP \rightarrow Prep NP Prep \rightarrow with ``` # How do you count the **number of parse trees** for a sentence? 1. For each pair of backpointers (e.g.VP $\rightarrow$ V NP): multiply #trees of children trees(VP<sub>VP</sub> $\rightarrow$ V NP) = trees(V) $\times$ trees(NP) 2. For each **list of pairs of backpointers** (e.g.VP $\rightarrow$ V NP and VP $\rightarrow$ VP PP): **sum** #trees trees(VP) = trees(VP<sub>VP</sub> $\rightarrow$ V NP) + trees(VP<sub>VP</sub> $\rightarrow$ VP PP) # Cocke Kasami Younger (1) # ckyParse(n): initChart(n) fillChart(n) ``` initChart(n):w_1...w_n...for i = 1...n:<br/>initCell(i,i)w_1...w_1initCell(i,i):......for c in lex(word[i]):<br/>addToCell(cell[i][i], c, null, null)...addToCell(Parent,cell,Left, Right)<br/>if (cell.hasEntry(Parent)):<br/>P = cell.getEntry(Parent)<br/>P.addBackpointers(Left, Right)w_nelse cell.addEntry(Parent, Left, Right) ``` # fillChart(n): for span = 1...n-1: for i = 1...n-span: fillCell(i,i+span) fillCell(i,j): for k = i..j-1: combineCells(i, k, j) # Dealing with ambiguity: Probabilistic Context-Free Grammars (PCFGs) # Grammars are ambiguous A grammar might generate multiple trees for a sentence: What's the most likely parse $\tau$ for sentence S? We need a model of $P(\tau \mid S)$ # Computing $P(\tau \mid S)$ #### Using Bayes' Rule: $$\arg \max_{\tau} P(\tau|S) = \arg \max_{\tau} \frac{P(\tau,S)}{P(S)} = \arg \max_{\tau} P(\tau,S) = \arg \max_{\tau} P(\tau,S) = \arg \max_{\tau} P(\tau) \text{ if } S = \text{yield}(\tau)$$ The **yield of a tree** is the string of terminal symbols that can be read off the leaf nodes # Computing P(\tau) T is the (infinite) set of all trees in the language: $$L = \{ s \in \Sigma^* | \exists \tau \in T : \text{yield}(\tau) = s \}$$ We need to define $P(\tau)$ such that: $$\forall \tau \in T: \quad 0 \le P(\tau) \le 1$$ $$\sum_{\tau \in T} P(\tau) = 1$$ The set T is generated by a context-free grammar #### Probabilistic Context-Free Grammars For every nonterminal X, define a probability distribution $P(X \rightarrow \alpha \mid X)$ over all rules with the same LHS symbol X: | S | ightarrow NP VP | 0.8 | |----|----------------------|-----| | S | ightarrow S conj S | 0.2 | | NP | ightarrow Noun | 0.2 | | NP | ightarrow Det Noun | 0.4 | | NP | ightarrow NP PP | 0.2 | | NP | ightarrow NP conj NP | 0.2 | | VP | ightarrow Verb | 0.4 | | VP | ightarrow Verb NP | 0.3 | | VP | ightarrow Verb NP NP | 0.1 | | VP | ightarrow VP PP | 0.2 | | PP | $\rightarrow$ P NP | 1.0 | # Computing $P(\tau)$ with a PCFG The probability of a tree $\tau$ is the product of the probabilities of all its rules: $$= 0.00384$$ | S | ightarrow NP VP | 0.8 | |----|-------------------------|-----| | S | ightarrow S conj S | 0.2 | | NP | ightarrow Noun | 0.2 | | NP | ightarrow Det Noun | 0.4 | | NP | $\longrightarrow$ NP PP | 0.2 | | NP | ightarrow NP conj NP | 0.2 | | VP | ightarrow Verb | 0.4 | | VP | ightarrow Verb NP | 0.3 | | VP | ightarrow Verb NP NP | 0.1 | | VP | ightarrow VP PP | 0.2 | | PP | $\rightarrow$ P NP | 1.0 | # PCFG parsing (decoding): Probabilistic CKY #### Probabilistic CKY: Viterbi Like standard CKY, but with probabilities. Finding the most likely tree $\operatorname{argmax}_{\tau} P(\tau, \mathbf{s})$ is similar to Viterbi for HMMs: **Initialization:** every chart entry that corresponds to a **terminal** (entries X in cell[i][i]) has a Viterbi probability $P_{VIT}(X_{[i][i]}) = 1$ **Recurrence:** For every entry that corresponds to a **non-terminal** X in cell[i][j], keep only the highest-scoring pair of backpointers to any pair of children (Y in cell[i][k] and Z in cell[k+1][j]): $P_{VIT}(X_{[i][j]}) = \operatorname{argmax}_{Y,Z,k} P_{VIT}(Y_{[i][k]}) \times P_{VIT}(Z_{[k+1][j]}) \times P(X \to YZ \mid X)$ **Final step:** Return the Viterbi parse for the start symbol S in the top cell[1][n]. #### Probabilistic CKY #### **Input: POS-tagged sentence** John\_N eats\_V pie\_N with\_P cream\_N | John | eats | pie | with | ) | cream | | |-----------------|----------------------|-------------------------------|-------------------------|---|----------------------------------------------|-------| | N NP<br>1.0 0.2 | S<br>0.8 · 0.2 · 0.3 | S<br>0.8 · 0.2 · 0.06 | S<br>0.2 · 0.0036 · 0.8 | | John | | | | V VP<br>1.0 0.3 | VP<br>1 · 0.3 · 0.2<br>= 0.06 | | | VP<br>x(1.0 · 0.008 · 0<br>0.06 · 0.2 · 0.3) | eats | | | | N NP<br>1.0 0.2 | | | NP<br>0.2 · 0.2 · 0.2<br>= 0.008 | pie | | | | | P<br>1.0 | | PP<br>1 · 1 · 0.2 | with | | | | | | | N NP<br>1.0 0.2 | cream | | S | $\longrightarrow$ NP VP | 0.8 | |----|-------------------------|-----| | S | ightarrow S conj S | 0.2 | | NP | ightarrow Noun | 0.2 | | NP | ightarrow Det Noun | 0.4 | | NP | ightarrow NP PP | 0.2 | | NP | ightarrow NP conj NP | 0.2 | | VP | ightarrow Verb | 0.3 | | VP | ightarrow Verb NP | 0.3 | | VP | ightarrow Verb NP NP | 0.1 | | VP | ightarrow VP PP | 0.3 | | PP | $\rightarrow$ P NP | 1.0 | | | | |