
Lecture 20:
Neural Networks for NLP
Zubin Pahuja
zpahuja2@illinois.edu

CS447: Natural Language Processing 1courses.engr.illinois.edu/cs447

https://courses.engr.illinois.edu/cs447/fa2018/

Today’s Lecture

• Feed-forward neural networks as classifiers
• simple architecture in which computation proceeds from one layer to the next

• Application to language modeling
• assigning probabilities to word sequences and predicting upcoming words

CS447: Natural Language Processing 2

Supervised Learning

Two kinds of prediction problems:
• Regression
• predict results with continuous output
• e.g. price of a house from its size, number of bedrooms, zip code, etc.

• Classification
• predict results in a discrete output
• e.g. whether user will click on an ad

CS447: Natural Language Processing 3

What’s a Neural Network?

CS447: Natural Language Processing 4

Why is deep learning taking off?

• Unprecedented amount of data
• performance of traditional learning algorithms

such as SVM, logistic regression plateaus

• Faster computation
• GPU acceleration

• algorithms that train faster and deeper
• using ReLU over sigmoid activation

• gradient descent optimizers, like Adam

• End-to-end learning
• model directly converts input data into output

prediction bypassing intermediate steps in a
traditional pipeline

CS447: Natural Language Processing 5

McCulloch-Pitts Neuron

CS447: Natural Language Processing 6

They are called neural because their origins lie in

But the modern use in language processing no longer draws on these early biological inspirations

Neural Units

• Building blocks of a neural network
• Given a set of inputs x1...xn, a unit

has a set of corresponding weights
w1...wn and a bias b, so the weighted
sum z can be represented as:

or, z = w · x + b using dot-product

CS447: Natural Language Processing 7

Neural Units

• Apply non-linear function f (or g) to
z to compute activation a:

• since we are modeling a single unit,
the activation is also the final output y

CS447: Natural Language Processing 8

Activation Functions: Sigmoid

• Sigmoid (σ)
• maps output into the range [0,1]
• differentiable

CS447: Natural Language Processing 9

Activation Functions: Tanh

• Tanh
• maps output into the range [-1, 1]
• better than sigmoid
• smoothly differentiable and maps

outlier values towards the mean

CS447: Natural Language Processing 10

Activation Functions: ReLU

• Rectified Linear Unit (ReLU)

y = max(x, 0)

• High values of z in sigmoid/ tanh
result in values of y that are close to 1
which causes problems for learning

CS447: Natural Language Processing 11

XOR Problem

• Minsky-Papert proved perceptron can’t compute XOR logical operation

CS447: Natural Language Processing 12

XOR Problem

• Perceptron can compute the logical AND and OR functions easily

• But it’s not possible to build a perceptron to compute logical XOR!

CS447: Natural Language Processing 13

XOR Problem

• Perceptron is a linear classifier but XOR is not linearly separable
• for a 2D input x0 and x1, the perceptron equation: w1x1 + w2x2 + b = 0 is the equation of a line

CS447: Natural Language Processing 14

XOR Problem: Solution

CS447: Natural Language Processing 15

• XOR function can be computed using two layers of ReLU-based units

• XOR problem demonstrates need for multi-layer networks

XOR Problem: Solution

CS447: Natural Language Processing 16

• Hidden layer forms a linearly separable representation for the input

In this example, we stipulated the weights but in real applications, the weights for
neural networks are learned automatically using the error back-propagation algorithm

Why do we need non-linear activation functions?

• Network of simple linear (perceptron) units cannot solve XOR problem
• a network formed by many layers of purely linear units can always be reduced

to a single layer of linear units
a[1] = z[1] = W[1] · x + b[1]

a[2] = z[2] = W[2] · a [1] + b[2]

= W[2] · (W[1] · x + b[1]) + b[2]

= (W[2] · W[1]) · x + (W[2] · b[1] + b[2])
= W’ · x + b’

… no more expressive than logistic regression!
• we’ve already shown that a single unit cannot solve the XOR problem

CS447: Natural Language Processing 17

Feed-Forward Neural Networks

• Each layer is fully-connected
• Represent parameters for hidden

layer by combining weight vector wi
and bias bi for each unit i into a
single weight matrix W and a single
bias vector b for the whole layer

![#] = &[#]' +)[#]
ℎ = +[#] = ,(![#])

where & ∈ ℝ12×14 and), ℎ ∈ ℝ12

CS447: Natural Language Processing 18

a.k.a. multi-layer perceptron (MLP), though it’s a misnomer

Feed-Forward Neural Networks

• Output could be real-valued number (for regression), or a probability
distribution across the output nodes (for multinomial classification)

![#] = &[#]ℎ +)[#], such that ![#] ∈ ℝ,-, &[#] ∈ ℝ,-×,/

• We apply softmax function to encode ![#] as a probability distribution

• So a neural network is like logistic regression over induced feature
representations from prior layers of the network rather than forming
features using feature templates

CS447: Natural Language Processing 19

Recap: 2-layer Feed-Forward Neural Network

![#] = &[#]'[(] + *[#]
'[#] = ℎ = ,[#](![#])
![/] = &[/]'[#] + *[/]
'[/] = ,[/](![/])
01 = '[/]

We use '[(] to stand for input 2, 01 for predicted output, 1 for ground truth output and g(⋅) for
activation function. ,[/] might be softmax for multinomial classification or sigmoid for binary
classification, while ReLU or tanh might be activation function ,(⋅) at the internal layers.

CS447: Natural Language Processing 20

N-layer Feed-Forward Neural Network

for i in 1..n:
![#] = &[#]'[#()] + +[#]
'[#] = ,[#](![#])

/0 = '[1]

CS447: Natural Language Processing 21

Training Neural Nets: Loss Function

• Models the distance between the system output and the gold output
• Same as logistic regression, the cross-entropy loss
• for binary classification

• for multinomial classification

CS447: Natural Language Processing 22

Training Neural Nets: Gradient Descent

• To find parameters that minimize loss
function, we use gradient descent
• But it’s much harder to see how to

compute the partial derivative of
some weight in layer 1 when the loss
is attached to some much later layer
• we use error back-propagation to partial

out loss over intermediate layers
• builds on notion of computation graphs

CS447: Natural Language Processing 23

Training Neural Nets: Computation Graphs

Computation is broken down into
separate operations, each of which
is modeled as a node in a graph

Consider ! ", $, % = % " + 2$

CS447: Natural Language Processing 24

Training Neural Nets: Backward Differentiation

• Uses chain rule from calculus
For f(x) = u(v(x)), we have

• For our function ! = #(% + 2(), we need the derivatives:

• Requires the intermediate derivatives:

CS447: Natural Language Processing 25

Training Neural Nets: Backward Pass

• Compute from right to left
• For each node:

1. compute local partial derivative
with respect to the parent

2. multiply it by the partial that is
passed down from the parent

3. then pass it to the child
• Also requires derivatives of

activation functions

CS447: Natural Language Processing 26

Training Neural Nets: Best Practices

• Non-convex optimization problem
1. initialize weights with small random numbers, preferably gaussians
2. regularize to prevent over-fitting, e.g. dropout

• Optimization techniques for gradient descent
• momentum, RMSProp, Adam, etc.

CS447: Natural Language Processing 27

Parameters vs Hyperparameters

• Parameters are learned by gradient descent
• e.g. weights matrix W and biases b

• Hyperparameters are set prior to learning
• e.g. learning rate, mini-batch size, model architecture (number of layers,

number of hidden units per layer, choice of activation functions),
regularization technique
• require to be tuned

CS447: Natural Language Processing 28

Neural Language Models
Predicting upcoming words from prior word context

CS447: Natural Language Processing 29

Neural Language Models

• Feed-forward neural LM is a standard feedforward network that takes as
input at time t a representation of some number of previous words
(wt−1,wt−2…) and outputs probability distribution over possible next words
• Advantages
• don’t need smoothing
• can handle much longer histories
• generalize over context of similar words
• higher predictive accuracy

• Uses include machine translation, dialog, language generation

CS447: Natural Language Processing 30

Embeddings

• Mapping from words in vocabulary V to vectors of real numbers e
• Each word may be represented as one hot-vector of length |V|

• Concatenate each of N context vectors for preceding words
• Long, sparse, hard to generalize. Can we learn a concise representation?

CS447: Natural Language Processing 31

Embeddings

• Allow neural n-gram LM to generalize to unseen data better

“I have to make sure when I get home to feed the cat.”

If we’ve never seen the word “dog” after “feed the”, n-gram LM will
predict “cat” given the prefix. But neural LM makes use of similarity of
embeddings to assign a reasonably high probability to both dog and cat

CS447: Natural Language Processing 32

Embeddings

Moving window at time t
with pre-trained embedding
vector, say using word2vec
for each of three previous
words wt−1, wt−2, and wt−3,
concatenated to produce
input

CS447: Natural Language Processing 33

Learning Embeddings for Neural n-gram LM

• Task may place strong constraints on what makes a good representation
• To learn embeddings, add an extra layer to the network and propagate

errors all the way back to the embedding vectors
• Represent each of N previous words as one hot-vector of length |V|,

and learn an embedding matrix E ∈ ℝ$×& such that for one-hot column
vector '(for word)(, the projection layer is *'(= ,(

CS447: Natural Language Processing 34

Learning Embeddings: Forward Pass

![#] = & = '(), '(+, … , '(-
.[)] = /[)]![#] + 1[)]
![)] = 2[)](.[)])
.[+] = /[+]![)] + 1[+]
56 = ![+] = 2[+](.[+])

Each node i in 56 estimates probability
7 89_; 89<), 89<+, 89<=)

CS447: Natural Language Processing 35

Training the Neural Language Model

• To set all the parameters θ = E,W,U,b, we do gradient descent using
error back propagation on the computation graph to compute gradient
• Loss Function: cross-entropy (negative log likelihood)

L = −log p &'(&')*, &'),, &')-.*)

Training the parameters to minimize loss will result both in an algorithm for
language modeling (a word predictor) but also a new set of embeddings E

CS447: Natural Language Processing 36

Summary

• Neural networks are built out of neural units, which take weighted sum of
inputs and apply a non-linear activation function such as sigmoid, tanh, ReLU
• In a fully-connected feed-forward network, each unit in layer i is connected

to each unit in layer i + 1, and there are no cycles
• Power of neural networks comes from the ability of early layers to learn

representations that can be utilized by later layers in the network
• Neural networks are trained by optimization algorithms like gradient descent

using error back-propagation on a computation graph
• Neural language models use a neural network as a probabilistic classifier, to

compute the probability of the next word given the previous n words
• Neural language models can use pretrained embeddings, or can learn

embeddings from scratch in the process of language modeling

CS447: Natural Language Processing 37

