
CS447: Natural Language Processing
http://courses.engr.illinois.edu/cs447

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

Lecture 2:
Tokenization and
Morphology

http://courses.engr.illinois.edu/cs498jh4
http://courses.engr.illinois.edu/cs498jh4
mailto:juliahmr@illinois.edu
mailto:juliahmr@illinois.edu

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Lect
ure

2:

What
will w

e

discu
ss to

day?

2

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Lecture 2: Overview
Today, we’ll look at words:
— How do we identify words in text?
— Word frequencies and Zipf’s Law
— What is a word, really?
— What is the structure of words?
— How can we identify the structure of words?  

To do this, we’ll need a bit of linguistics,  
some data wrangling, and a bit of automata theory. 

Later in the semester we’ll ask more questions about words:
How can we identify different word classes (parts of speech)?  
What is the meaning of words? How can we represent that?

3

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Lecture 2: Reading
Most of the material is taken from Chapter 2  
(3rd Edition)
 
I won’t cover regular expressions (2.1.1) or edit distance (2.5), 
because I assume you have all seen this material before.  
I you aren’t familiar with regular expressions, read this section
because it’s very useful when dealing with text files! 

The material on finite-state automata, finite-state
transducers and morphology is from the 2nd Edition
of this textbook, but everything you need should be
explained in these slides.

4

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Lecture 2: Key Concepts
You should understand the distinctions between
— Word forms vs. lemmas
— Word tokens vs. word types
— Finite-state automata vs. finite-state transducers
— Inflectional vs. derivational morphology 

And you should know the implications of Zipf’s Law
for NLP (coverage!)

5

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Lect
ure

2:

Tok
eniz

atio
n

6

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Tokenization: Identifying word boundaries

Text is just a sequence of characters: 

Of course he wants to take the advanced course
too. He already took two beginners’ courses.

How do we split this text into words and sentences?  

[[Of, course, he, wants, to, take, the, advanced, course, too, .],
 [He, already, took, two, beginners’, courses, .]]

7

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

How do we identify the words in a text?

For a language like English, this seems like  
a really easy problem:

A word is any sequence of alphabetical characters 
between whitespaces that’s not a punctuation mark?

 
That works to a first approximation, but…
… what about abbreviations like D.C.?
… what about complex names like New York?
… what about contractions like doesn’t or couldn't've?
… what about New York-based ?
… what about names like SARS-Cov-2, or R2-D2?
… what about languages like Chinese that have no whitespace,  
 or languages like Turkish where one such “word” may  
 express as much information as an entire English sentence?

8

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Words aren’t just defined
by blanks
Problem 1: Compounding

“ice cream”, “website”, “web site”, “New York-based”

Problem 2: Other writing systems have no blanks
Chinese: 我开始写⼩说 = 我 开始 写 ⼩说 
 I start(ed) writing novel(s)  

Problem 3: Contractions and Clitics
English: “doesn’t” , “I’m” ,
Italian: “dirglielo” = dir + gli(e) + lo
 tell + him + it

9

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Tokenization Standards
Any actual NLP system will assume a particular
tokenization standard.

Because so much NLP is based on systems that are trained on
particular corpora (text datasets) that everybody uses, these
corpora often define a de facto standard.  

Penn Treebank 3 standard:
Input:
"The San Francisco-based restaurant,"
 they said, "doesn’t charge $10".
Output:
“_ The _ San _ Francisco-based _ restaurant _ , _” _
they_ said_ ,_ "_ does _ n’t _ charge_ $_ 10 _ " _ . _

10

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Aside: What about sentence boundaries?

How can we identify that this is two sentences?
Mr. Smith went to D.C. Ms. Xu went to Chicago instead.

Challenge: punctuation marks in abbreviations (Mr., D.C, Ms,…)
[It’s easy to handle a small number of known exceptions,  
but much harder to identify these cases in general]

See also this headline from the NYT (08/26/20):
Anthony Martignetti (‘Anthony!’), Who Raced Home for Spaghetti, Dies at 63

 
How many sentences are in this text?

"The San Francisco-based restaurant," they said, "doesn’t charge $10".
Answer: just one, even though “they said” appears in the
middle of another sentence.
Similarly, we typically treat this also just as one sentence:
They said: ”The San Francisco-based restaurant doesn’t charge $10".

11

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Spelling variants, typos, etc.
The same word can be written in different ways:

— with different capitalizations:  
 lowercase “cat” (in standard running text)  
 capitalized “Cat” (as first word in a sentence, or in titles/headlines), 
 all-caps “CAT” (e.g. in headlines)
— with different abbreviation or hyphenation styles: 
 US-based, US based, U.S.-based, U.S. based
 US-EU relations, U.S./E.U. relations, …
— with spelling variants (e.g. regional variants of English): 
 labor vs labour, materialize vs materialise,
— with typos (teh)

 
Good practice: Be aware of (and/or document) any normalization
(lowercasing, spell-checking, …) your system uses!

12

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Lect
ure

2:

Word
Freq

uenc
ies

and
 Zipf’s

 Law

13

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Counting words: tokens vs types
When counting words in text, we distinguish between
word types and word tokens: 

— The vocabulary of a language  
 is the set of (unique) word types:
 V = {a, aardvark, …., zyzzva}  
 
— The tokens in a document include all occurrences  
 of the word types in that document or corpus

 (this is what a standard word count tells you)
 
— The frequency of a word (type) in a document  
 = the number of occurrences (tokens) of that type

14

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

How many different words are there in English?

How large is the vocabulary of English  
(or any other language)?

Vocabulary size = the number of distinct word types
Google N-gram corpus: 1 trillion tokens,  
13 million word types that appear 40+ times 

If you count words in text, you will find that…
…a few words (mostly closed-class) are very frequent  
 (the, be, to, of, and, a, in, that,…)
… most words (all open class) are very rare.
… even if you’ve read a lot of text,  
 you will keep finding words you haven’t seen before.
Word frequency: the number of occurrences of a word type  
in a text (or in a collection of texts)

15

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Zipf’s law: the long tail

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000

Fr
eq

ue
nc

y
(lo

g)

Number of words (log)

How many words occur N times?

W
or

d
fre

qu
en

cy
 (l

og
-s

ca
le

)

In natural language:
A small number of events (e.g. words) occur with high frequency
A large number of events occur with very low frequency

16

A few words  
are very frequent

English words, sorted by frequency (log-scale)
w1 = the, w2 = to, …., w5346 = computer, ...

Most words  
are very rare

How many words occur once, twice, 100 times, 1000 times?

the r-th most
common word wr
has P(wr) ∝ 1/r

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Implications of Zipf’s Law for NLP
The good:

Any text will contain a number of words that are very common.
We have seen these words often enough that we know (almost)
everything about them. These words will help us get at the
structure (and possibly meaning) of this text.

The bad:
Any text will contain a number of words that are rare.
We know something about these words, but haven’t seen them
often enough to know everything about them. They may occur
with a meaning or a part of speech we haven’t seen before.

The ugly:
Any text will contain a number of words that are unknown to us.
We have never seen them before, but we still need to get at the
structure (and meaning) of these texts.

17

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Dealing with the bad and the ugly
Our systems need to be able to generalize  
from what they have seen to unseen events.

There are two (complementary) approaches  
to generalization:

— Linguistics provides us with insights about the rules and
structures in language that we can exploit in the (symbolic)
representations we use
 E.g.: a finite set of grammar rules is enough to describe an infinite language  

— Machine Learning/Statistics allows us to learn models
(and/or representations) from real data that often work well
empirically on unseen data
 E.g. most statistical or neural NLP

18

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

How do we represent words?
Option 1: Words are atomic symbols
— Each (surface) word form is its own symbol
— Add some generalization by mapping  
 different forms of a word to the same symbol

— Normalization: map all variants of the same word (form)  
 to the same canonical variant (e.g. lowercase everything,  
 normalize spellings, perhaps spell-check)
—Lemmatization: map each word to its lemma  
 (esp. in English, the lemma is still a word in the language,  
 but lemmatized text is no longer grammatical)
— Stemming: remove endings that differ among word forms  
 (no guarantee that the resulting symbol is an actual word)

19

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

How do we represent words?
Option 2: Represent the structure of each word

 “books” => “book N pl” (or “book V 3rd sg”)
 
This requires a morphological analyzer (more later today)
 
The output is often a lemma (“book”)  
plus morphological information (“N pl” i.e. plural noun)
 
This is particularly useful for highly inflected languages, e.g.
Czech, Finnish, Turkish, etc. (less so for English or Chinese):
In Czech, you might need to know that nejnezajímavějším  
is a regular, feminine, plural, dative adjective in the superlative. 

20

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

How do we represent unknown words?
Many NLP systems assume a fixed vocabulary, but still have
to handle out-of-vocabulary (OOV) words. 

Option 1: the UNK token
Replace all rare words (with a frequency at or below a given threshold, e.g. 2,
3, or 5) in your training data with an UNK token (UNK = “Unknown word”).
Replace all unknown words that you come across after training (including rare
training words) with the same UNK token  

Option 2: substring-based representations
[often used in neural models]
Represent (rare and unknown) words [“Champaign”] as sequences of  
characters [‘C’, ‘h’, ‘a’,…,’g’, ’n'] or substrings [“Ch”, “amp”, “ai”, “gn”]
 
Byte Pair Encoding (BPE): learn which character sequences  
are common in the vocabulary of your language, and treat those  
common sequences as atomic units of your vocabulary

21

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Lect
ure

2:

What
is a

word,

real
ly?

22

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

How many different words are there in English?

How large is the vocabulary of English  
(or any other language)?

Vocabulary size = the number of distinct word types
Google N-gram corpus: 1 trillion tokens,  
13 million word types that appear 40+ times
[here, we’re treating inflected forms (took, taking) as distinct]

You may have heard statements such as  
“adults know about 30,000 words”
“you need to know at least 5,000 words to be fluent”

Such statements do not refer to inflected word forms  
(take/takes/taking/take/takes/took) but to lemmas or
dictionary forms (take), and assume if you know  
a lemma, you know all its inflected forms too.

23

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

 
 

Actual text doesn’t consist of dictionary entries:
wants is a form of want
took is a form of take
courses is a form of course

Linguists distinguish between
— the (surface) forms that occur in text:  
 want, wants, beginners’, took,…
— and the lemmas that are the uninflected forms of these words:  
 want, beginner, take, …
In NLP, we sometimes map words to lemmas (or simpler
“stems”), but the raw data always consists of surface forms

Which words appear in this text?

24

Of course he wants to take the advanced course
too. He already took two beginners’ courses.

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

How many different words are there?
Inflection creates different forms of the same word:

Verbs: to be, being, I am, you are, he is, I was,  
Nouns: one book, two books 

Derivation creates different words from the same lemma:
grace ⇒ disgrace ⇒ disgraceful ⇒ disgracefully  

Compounding combines two words into a new word:
cream ⇒ ice cream ⇒ ice cream cone ⇒ ice cream cone bakery

Word formation is productive:
New words are subject to all of these processes:  
Google ⇒ Googler, to google, to ungoogle, to misgoogle,
googlification, ungooglification, googlified, Google Maps, Google
Maps service,...

25

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

uygarlaştıramadıklarımızdanmışsınızcasına
uygar_laş_tır_ama_dık_lar_ımız_dan_mış_sınız_casına  

“as if you are among those whom we were not able to civilize  
(=cause to become civilized)”
uygar: civilized
_laş: become
_tır: cause somebody to do something
_ama: not able
_dık: past participle
_lar: plural
_ımız: 1st person plural possessive (our)
_dan: among (ablative case)
_mış: past
_sınız: 2nd person plural (you)
_casına: as if (forms an adverb from a verb)

26

A Turkish word

K. Oflazer pc to J&M

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Inflectional morphology in English
Verbs:
 Infinitive/present tense: walk, go
 3rd person singular present tense (s-form): walks, goes
 Simple past: walked, went
 Past participle (ed-form): walked, gone
 Present participle (ing-form): walking, going

Nouns:
 Common nouns inflect for number:  
 singular (book) vs. plural (books)
 Personal pronouns inflect for person, number, gender, case:

I saw him; he saw me; you saw her; we saw them; they saw us.

27

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Derivational morphology in English
Nominalization:

V + -ation: computerization
V+ -er: killer
Adj + -ness: fuzziness  

Negation:
un-: undo, unseen, ...
mis-: mistake,...

Adjectivization:

V+ -able: doable
N + -al: national

28

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Morphemes: stems, affixes
 dis-grace-ful-ly
 prefix-stem-suffix-suffix

Many word forms consist of a stem  
plus a number of affixes (prefixes or suffixes)

Exceptions: Infixes are inserted inside the stem  
 Circumfixes (German gesehen) surround the stem

Morphemes: the smallest (meaningful/grammatical)
parts of words.

Stems (grace) are often free morphemes.
Free morphemes can occur by themselves as words.
Affixes (dis-, -ful, -ly) are usually bound morphemes.
Bound morphemes have to combine with others to form words.

29

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Morphemes and morphs
The same information (plural, past tense, …) is often
expressed in different ways in the same language.

One way may be more common than others,  
and exceptions may depend on specific words:
-Most plural nouns: add -s to singular: book-books,
but: box-boxes, fly-flies, child-children
-Most past tense verbs add -ed to infinitive: walk-walked,
but: like-liked, leap-leapt

Such exceptions are called irregular word forms 

Linguists say that there is one underlying morpheme  
(e.g. for plural nouns) that is “realized” as different “surface”
forms (morphs) (e.g. -s/-es/-ren)
Allomorphs: two different realizations (-s/-es/-ren)  
of the same underlying morpheme (plural)

30

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Side note: “Surface”?
This terminology comes from Chomskyan
Transformational Grammar.
-Dominant early approach in theoretical linguistics,  
superseded by other approaches (“minimalism”).
-Not computational, but has some historical influence on
computational linguistics (e.g. Penn Treebank)

“Surface” = standard English (Chinese, Hindi, etc.).
“Surface string” = a written sequence of characters or words

vs. “Deep”/“Underlying” structure/representation:
A more abstract representation.
Might be the same for different sentences/words  
with the same meaning.

31

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Lect
ure

2:

Fini
te-S

tate
 Aut

omata

and

Regu
lar

Lang
uage

s

32

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Formal languages
An alphabet ∑ is a set of symbols:

e.g. ∑= {a, b, c}

A string ω is a sequence of symbols, e.g ω=abcb.
The empty string ε consists of zero symbols. 

The Kleene closure ∑* (‘sigma star’) is the (infinite)  
set of all strings that can be formed from ∑:
∑*= {ε, a, b, c, aa, ab, ba, aaa, ...} 

A language L ⊆ ∑* over ∑ is also a set of strings.
Typically we only care about proper subsets of ∑* (L ⊂ Σ).

33

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

An automaton is an abstract model of a computer.
It reads an input string symbol by symbol.
It changes its internal state depending on  
the current input symbol and its current internal state.

Automata and languages

34

a b a c d e

Automaton

Input
string

1. read input

q
Current
state

2. change
state Automaton

q’
New
state

a

Current input symbol

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Automata and languages
The automaton either accepts or rejects  
the input string.
Every automaton defines a language

(= the set of strings it accepts).

35

a b a c d e

Automaton

Input
string

read accept!

reject!

Input string is
in the language

Input string is
NOT in the language

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Automata and languages

Different types of automata define  
different language classes: 

—Finite-state automata define  
 regular languages 

—Pushdown automata define  
 context-free languages 

—Turing machines define  
 recursively enumerable languages

36

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Finite-state automata
A (deterministic) finite-state automaton (FSA)  
consists of:
-a finite set of states Q = {q0….qN}, including a start state q0
and one (or more) final (=accepting) states (say, qN)
-a (deterministic) transition function  
δ(q,w) = q’ for q, q’ ∈ Q, w ∈ Σ

37

final state
(note the

double line)

q0

q3

q2

q1
q4q4

a
b c

x y

move from state q2
to state q4

if you read ‘y’

start state

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

q0
a

q3q2q1
b

a
q0

a
q3q2q1

b

a

b a a a

b a a a

b a a a

b a a a q0
a

q3q2q1
b

a

q0
a

q3q2q1
b

a

b a a a

38

q0
a

q3q2q1
b

a

Start in q0

 Accept! 
We’ve reached the end of the string,  
and are in an accepting state.

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

q0
a

q3q2q1
b

a

b

q0
a

q3q2q1
b

a

b

39

Start in q0

Reject!
(q1 is not a  
final state)

Rejection: Automaton does not
end up in accepting state

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 40

Reject!
(There is no  

transition  
labeled ‘c’)

Rejection: Transition not defined

q0
a

q3q2q1
b

a
q0

a
q3q2q1

b

a

b a c

b a c

b a c

q0
a

q3q2q1
b

a

b a c

q0
a

q3q2q1
b

a

Start in q0

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Every NFA can be transformed into an equivalent DFA: 
 
 
 
 
 

Recognition of a string w with a DFA is linear in the length of w  

Finite-state automata define the class of regular languages
L1 = { anbm } = {ab, aab, abb, aaab, abb,… } is a regular language,
L2 = { anbn } = {ab, aabb, aaabbb,…} is not (it’s context-free).
You cannot construct an FSA that accepts all the strings in L2 and nothing else.

Finite State Automata (FSAs)

q3

q3

b

q0
a

q3q2
b

a

q1

q3q0 q3
b

a

41

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Regular Expressions
Regular expressions (regexes) can also be used  
to define a regular language.
Simple patterns:
-Standard characters match themselves: ‘a’, ‘1’
-Character classes: ‘[abc]’, ‘[0-9]’, negation: ‘[^aeiou]’
(Predefined: \s (whitespace), \w (alphanumeric), etc.)
-Any character (except newline) is matched by ‘.’

Complex patterns: (e.g. ^[A-Z]([a-z])+\s)
-Group: ‘(…)’
-Repetition: 0 or more times: ‘*’, 1 or more times: ‘+’
-Disjunction: ‘...|…’
-Beginning of line ‘^’ and end of line ‘$’

42

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Lect
ure

2:

Fini
te-s

tate
 aut

omata

for
morph

olog
y

43

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

q0
stemprefix

q1 q3q2dis-grace:

suffixq0 q1
stem q3q2grace-ful:

stemq0 q1 q2
prefix suffix q3q3dis-grace-ful:

Finite state automata for morphology

grace:

44

q0
stem

q3q1

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Union: merging automata

grace,
dis-grace,
grace-ful,
dis-grace-ful

q0 q1

ε stem suffix
q3q3prefix q3q2

45

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

q3q1

noun1

FSAs for derivational morphology

q0

q3q5

-ation

q3q6

-er

-iz
q2

-e q3q3

adj1 -able q4

q3q7

noun2
-al

noun2 = {nation, form,…}

noun3

q10

-al

q3q11
-e

noun3 = {natur, structur,…}

noun1 = {fossil,mineral,...}
adj1 = {equal, neutral}
adj2 = {minim, maxim}

q3q9adj2 q8
-al

-iz

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Lect
ure

2:

Fini
te-S

tate

Tran
sducer

s

47

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

FSAs can recognize (accept) a string,  
but they don’t tell us its internal structure. 

We need is a machine that maps (transduces) 
the input string into an output string  
that encodes its structure:

Recognition vs. Analysis

48

c a t sInput
(Surface form)

c a t +N +plOutput 
(Lexical form)

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Morphological parsing

 disgracefully
 dis grace ful ly
 prefix stem suffix suffix
 NEG grace+N +ADJ +ADV

49

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Morphological generation
We cannot enumerate all possible English words,  
but we would like to capture the rules that define
whether a string could be an English word or not.

That is, we want a procedure that can generate  
(or accept) possible English words…

grace, graceful, gracefully
disgrace, disgraceful, disgracefully,
ungraceful, ungracefully,
undisgraceful, undisgracefully,…

without generating/accepting impossible English words
*gracelyful, *gracefuly, *disungracefully,…

NB: * is linguists’ shorthand for “this is ungrammatical”
50

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Finite State Automata (FSAs)
A finite-state automaton M = 〈Q, Σ, q0, F, δ〉 consists of:

— A finite set of states Q = {q0, q1,.., qn}
— A finite alphabet Σ of input symbols (e.g. Σ = {a, b, c,…})
— A designated start state q0 ∈ Q
— A set of final states F ⊆ Q
— A transition function δ:
 For a deterministic (D)FSA: Q × Σ → Q
 δ(q,w) = q’ for q, q’ ∈ Q, w ∈ Σ
 If the current state is q and the current input is w, go to q’
  
 For a nondeterministic (N)FSA: Q × Σ → 2Q

 δ(q,w) = Q’ for q ∈ Q, Q’ ⊆ Q, w ∈ Σ
 If the current state is q and the current input is w, go to any q’ ∈ Q’

51

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Finite-state transducers
A finite-state transducer T = 〈Q, Σ, Δ, q0, F, δ, σ〉 consists of:
— A finite set of states Q = {q0, q1,.., qn}
— A finite alphabet Σ of input symbols (e.g. Σ = {a, b, c,…})
— A finite alphabet Δ of output symbols (e.g. Δ = {+N, +pl,…})
— A designated start state q0 ∈ Q
— A set of final states F ⊆ Q
— A transition function δ: Q × Σ → 2Q  

 δ(q,w) = Q’ for q ∈ Q, Q’ ⊆ Q, w ∈ Σ
— An output function σ: Q × Σ → Δ* 
 σ(q,w) = ω for q ∈ Q, w ∈ Σ, ω ∈ Δ*
 If the current state is q and the current input is w, write ω. 
 (NB: Jurafsky&Martin (2nd ed.) define σ: Q × Σ* → Δ*. Why is this equivalent?)

52

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

An FST T = Lin ⨉ Lout defines a relation  
between two regular languages Lin and Lout: 

Lin = {cat, cats, fox, foxes, ...}

Lout = {cat+N+sg, cat+N+pl, fox+N+sg, fox+N+pl ...}

T = { ⟨cat, cat+N+sg⟩,
 ⟨cats, cat+N+pl⟩,
 ⟨fox, fox+N+sg⟩,
 ⟨foxes, fox+N+pl⟩ }

Finite-state transducers

53

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Some FST operations
Inversion T-1:

The inversion (T-1) of a transducer  
switches input and output labels. 

This can be used to switch from parsing words 
to generating words. 

Composition (T◦T’): (Cascade)
Two transducers T = L1 ⨉ L2 and T’ = L2 ⨉ L3 can be
composed into a third transducer T’’ = L1 ⨉ L3.

Sometimes intermediate representations are useful  

54

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

English spelling rules
Peculiarities of English spelling (orthography) 

The same underlying morpheme (e.g. plural-s)  
can have different orthographic “surface realizations”  
(-s, -es)  

This leads to spelling changes  
at morpheme boundaries:

E-insertion: fox +s = foxes
E-deletion: make +ing = making

55

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Intermediate representations
English plural -s: cat ⇒ cats dog ⇒ dogs
but: fox ⇒ foxes, bus ⇒ buses buzz ⇒ buzzes

We define an intermediate representation to capture
morpheme boundaries (^) and word boundaries (#):

Lexicon: cat+N+PL fox+N+PL
⇒ Intermediate representation: cat^s# fox^s#

⇒ Surface string: cats foxes  

Intermediate-to-Surface Spelling Rule:
If plural ‘s’ follows a morpheme ending in ‘x’,‘z’ or ‘s’, insert ‘e’.

56

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

FST composition/cascade:

57

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Tlex: Lexical to intermediate level

58

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Te-insert: intermediate to surface level

59

q0

a:a,…,r:r, 
t:t,…,w:w,

y:y

s:s, x:x, z:z
q2

a:a,…,r:r,t:t,
…,w:w,y:y#:ε

q3q1

^:ε
q6

#:ε

q3q3

^:e q5

s:s

q3q8#:ε^ = morpheme boundary
= word boundary
ε = empty string

s:s, x:x, z:z
q4

#:ε

a:a,…,r:r,
t:t,…,w:w,y:y

^:e

q7
s:s

Intermediate-to-
Surface Spelling
Rule:

If plural ‘s’ follows a
morpheme ending in
‘x’,‘z’ or ‘s’, insert ‘e’.

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Dealing with ambiguity
book: book +N +sg or book +V?

Generating words is generally unambiguous,  
but analyzing words often requires disambiguation. 

We need a nondeterministic FST.
Efficiency problem: Not every nondeterministic FST
can be translated into a deterministic one!  

We also need a scoring function to identify which
analysis is more likely.

We may need to know the context in which the word
appears: (I read a book vs. I book flights)

60

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

What about compounds?
Semantically, compounds have hierarchical structure: 

(((ice cream) cone) bakery)
not (ice ((cream cone) bakery))

((computer science) (graduate student))
not (computer ((science graduate) student))

We will need context-free grammars to capture this
underlying structure.

61

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

The
end

62

