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Probabillistic classifiers

We want to find the most likely class y for the input x:

yF = argmax P(Y =y|X =X)

P(Y =vy|X = x):
The probability that the class label is y
when the input feature vector is X

y* = argmax  f(y)
Let y* be the y that maximizes f(y)
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Modeling P(Y | X) with Bayes Rule

Bayes Rule relates P(Y|X) to P(X|Y) and P(Y):
P(Y, X)
P(X)
~ PXX|V)P(Y)
P

Likelihood Prior

x P(X|Y) P(Y)

P(Y|X) =

Posterior

\_

Bayes rule: The posterior P(Y | X) is proportional
to the prior P(Y) times the likelihood P(X|Y)
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o s § P(Y | X) with Bayes Rule
after having seen the data X
(Bayes Rule relates P(Y|X) to P(X|Y) and P(Y):
P(Y, X)

P(X)

P(Y|X) =

Posterior

Prior P (Y ) £
' £ Probability of the label Y %
£ independent of the data X &

SRR _ =~

| Likelihood P(X | Y) 1 9%
. Probability of the data X
| according to class ¥ !

Bayes rule: The posterior P(Y | X) is proportional
to the prior P(Y) times the likelihood P(X|Y)
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Using Bayes Rule for our classifier

-

y* = argmaxyP(Y | X)

P(X | Y)P(Y)
= argmax

; PCX) [ Bayes Rule ]

[ P(X) doesn’t
change argmaxy |

= argmaxyP(X | Y)P(Y)
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Classification more generally

Feature Class

Before we can use a classifier on our data,
we have to map the data to “feature” vectors
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Feature engineering as a prerequisite
for classification

" To talk about classification mathematically, we assume
each input item is represented as a ‘feature’ vector x = (x;....xx)

— Each element in x is one feature.
— The number of elements/features N is fixed, and may be very large.
— X has to capture all the information about the item that the classifier needs.

But the raw data points (e.g. documents to classify)
are typically not in vector form.

" Before we can train a classifier, we therefore have to first define
a suitable feature function that maps raw data points to vectors.

In practice, feature engineering (designing suitable feature

. functionsz IS very imEortant for accurate classification. |
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Probabillistic classifiers

a
A probabilistic classifier returns the most likely class y*
for input X:

yF = argmaxyP(Y =y| X =X)

\_

[Last class:] Naive Bayes uses Bayes Rule:
yF = argmaxyP(y | X) = argmaxyP(X | v)P(y)

Naive Bayes models the joint distribution of the class and the data:

P(x|y)P(y) =P(X,y)
Joint models are also called generative models because we can view them
as stochastic processes that generate (labeled) items:

Sample/pick a label y with P(y), and then an item X with P(X | y)

[ [Today:] Logistic Regression models P(y | X ) directly |

This is also called a discriminative or conditional model, because it only
models the probability of the class given the input, and not of the raw data itself.
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Key questions for today’s class

What do we mean by generative vs. discriminative
models/classifiers?

Why is it difficult to incorporate complex features
iInto a generative model like Naive Bayes?

How can we use (standard or multinomial) logistic
regression for (binary or multiclass) classification?

How can we train logistic regression models with
(stochastic) gradient descent?
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Today’s class

Part 1: Review and Overview

Part 2: From generative to discriminative classifiers
(Logistic Regression
and Multinomial Regression)

Part 3: Learning Logistic Regression Models
with (Stochastic) Gradient Descent

Reading: Chapter 5 (Jurafsky & Martin, 3rd Edition)
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Probabillistic classifiers

a
A probabilistic classifier returns the most likely class y*
for input X:

yF = argmaxyP(Y =y| X =X)

\_

[Last class:] Naive Bayes uses Bayes Rule:
yF = argmaxyP(y | X) = argmaxyP(X | v)P(y)

Naive Bayes models the joint distribution of the class and the data:

P(x|y)P(y) =P(X,y)
Joint models are also called generative models because we can view them
as stochastic processes that generate (labeled) items:

Sample/pick a label y with P(y), and then an item X with P(X | y)

[ [Today:] Logistic Regression models P(y | X ) directly |

This is also called a discriminative or conditional model, because it only
models the probability of the class given the input, and not of the raw data itself.
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(Directed) Graphical Models

Graphical models are a visual notation
for probability models.

([ . . .
Each node represents a distribution
over one random variable:

P(X):@

p
Arrows represent dependencies (i.e. what other
random variables the current node is conditioned on)

P(Y)P(X | Y) P(Y)P(Z)P(X | Y, Z)
020
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Generative vs Discriminative Models

In classification:
— The data X = (xy, ..., X,) is observed (shaded nodes).
— The label y is hidden (and needs to be inferred)

1 Generative Model ) ( Discriminative Model h
(Naive Bayes) (Logistic Regression)
Px|y) P(y | x)
W®»®
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How do we model P(Y =y | X = x)
such that we can compute it for any X?

We’ve probably never seen any particular X
that we want to classify at test time.

Even if we could define and compute probability distributions
PY=y|X =x)
with ZyJEY P(Y=yj | X,;=x;) =1 Good! P(Y) sums to 1

for any single feature x;, € X = (X, ..., X;, ..., X,,)...

....we can’t just multiply these probabilities together
to get one distribution over all y; € Y for a given X

P(Y:lezx):=Z[ HP(Y=y1|Xi=xi) <! caet
yeY bt i=l.n P(Y) does not sum to 1J
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The sigmoid function o(x)

The sigmoid function o(x) maps
any real number x to the range (0,1):

e’ 1

o(x) =

eX+1 14e=

05 r

0
-109-8-76-5-4-3-2-1 0123456738 910
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Using o() with feature vectors X

We can use the sigmoid o() to express a Bernoulli distribution
Coin flips: P(Heads) = o(x) and P(Tails) = 1 — P(Heads) = 1 — o(x)

But to use the sigmoid o() for binary classification,
we need to model the conditional probability P(Y € {0,1} | x = X)
such that it depends on the particular feature vector X € X

Also: We don’t know how important each feature (element) x;
of x = (x, ..., x,) for our particular classification task is...

... and we need to feed a single real number into o()!

Solution: Assign (learn) a vector of feature weights f = (f,,.... f,)

and compute fx = )’ fx; to obtain a single real, and then o(fx)

i=1
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P(Y | X) with Logistic Regression:
Binary Classification

Task: Model P(y € {0,1} | x)
for any input (feature) vector x = (x,...,x,)

Idea: Learn feature weights w = (w,, ..., w,) (and a bias term b)
to capture how important each feature x; is for predicting y = 1

(

For binary classification (y € {0,1}),

(standard) logistic regression uses the sigmoid function:
1

1 + exp( —(Wx + b))

Parameters to learn: one feature weight vector w and one bias term b

P(Y=1|x)=0(wx+b) =
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What about multi-class classification?

Now we need to model P(Y | X) such that...

(... The probability of any class y. depends on j and X: |
-> Define class-specific feature weights f;: fx
\_ W,
(. .. The probability of any one class Y (for any input X) )
is positive: VyexVier gyt PP =y; | X=%) >0
-» Exponentiate fjx: exp(fjx) )

... And the probabilities of all classes W (for each input X) )

sumtoone: Vix:%_ (P =y |X=x)=1

f.
> Renormalize exp(fx): Py = y, | X = x) = — 2
/ zk GXp(ka)

R
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P(Y | X) with Logistic Regression:
Multiclass Classification

Task: Model P(y € {y, ..., Vx} | X)
for any input (feature) vector x = (x,...,x,)

Idea: Learn feature weights w; = (w;;,...,w,;) (and a bias term bj)
to capture how important each feature x; is for predicting class y;

p
For multiclass classification (y € {0,1,...,K}),

multinomial logistic regression uses the softmax function:
exp(z)) exp( —(W;x + b))

1 x) = solimaxe sz=1 exp(z) ZkK=1 exp( —(W;X + b))

Parameters to learn: one feature weight vector W; and one bias term bj per class
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The softmax function

(The softmax function turns any vector of reals Z = (zy, ..., 2,)
into a discrete probability distribution p = (py, ..., p,,)
where Ve, 0<p; <1l and 2 ,p;=1

CXPp (Zj)
ZkK=1 eXp(Zk)
\_

p; = softmax(z); =

Logistic regression applies the softmax to a linear combination
of the input features X: z = X

Models based on logistic regression are also known as
Maximum Entropy (MaxEnt) models

We will see the softmax again when we talk about neural nets,
but there the input is typically a much more complex, nonlinear
function of the input features.
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NB: Binary logistic regression is just a special
case of multinomial logistic regression

(Binary logistic regression needs a distribution over y € {0,1}:
1
1 + exp( —(wWx + b))
exp( —(wx + b))

Z’(Y=0|x)= 1 + exp( —(wx + b)) =1-Ar=1]x)

P(Y=1|x)=

‘Compare with Multinomial logistic regression over y € {0,1}:
exp( —(wx + b))

P(Y=1|x)=

exp( —(Wx + by)) + exp( —(WoX + b))
P(Y=0|x) = exp( —(wWoX + by))
g exp( —(W X + by)) + exp( —(WoX + by))

- Binary logistic regression is a special case of multinomial logistic
regression over two classes with exp( —(w,x+ b)) = 1
(i.e. where w, is set to the null vector and b, := 0)
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Using Logistic Regression
How do we create a (binary) logistic regression classifier?

1) Feature design:
Decide how to map raw inputs to feature vectors X

2) Training:
Learn parameters w and b on training data
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Feature Design:
From raw inputs to feature vectors X

Feature design for generative models

(Naive Bayes):

— In a generative model, we have to learn a model for P(x | y).
— Getting a proper distribution (ZX P(x | y)=1)is difficult

— NB assumes that the features (elements of x) are independent*
and defines P(x | y) = HiP(xi | v) via a multinomial or Bernoulli

(*more precisely, conditionally independent given y)

— Different kinds of feature values (boolean, integer, real) require
different kinds of distributions P(x; | ¥) (Bernoulli, multinomial, etc.)
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Feature Design:
From raw inputs to feature vectors X

Feature design for conditional models
(Logistic Regression):

— In a conditional model, we only have to learn P(y | X)

— It is much easier to get a proper distribution
(X PO IX)=1)
— We don’t need to assume that our features are independent

— Any numerical feature x; can be used directly
to compute exp(w;;x;)
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Useful features that are not independent

Different features can overlap in the input

(e.g. we can model both unigrams and bigrams, or overlapping bigrams)

Features can capture properties of the input

(e.g. whether words are capitalized, in all-caps, contain particular
[classes of] letters or characters, etc.)

This also makes it easy to use predefined dictionaries of words
(e.g. for sentiment analysis, or gazetteers for names):
Is this word “positive” (‘happy’) or “negative” (‘awful)?

Is this the name of a person (‘Smith’) or city (‘Boston’) [it may be both (‘Paris’)]
Features can capture combinations of properties

(e.g. whether a word is capitalized and ends in a full stop)
We can use the outputs of other classifiers as features

(e.g. to combine weak [less accurate] classifiers for the same task,
or to get at complex properties of the input that require a learned classifier)
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Feature Design and Selection

How do you specify features?

We can’t manually enumerate 10,000s of features

(e.g. for every possible bigram: “an apple’, ..., “Zillion zebras”)

Instead we use feature templates that define what type of
feature we want to use

(e.g. “any pair of adjacent words that appears >2 times in the training data’)

How do you know which features to use?

|dentifying useful sets of feature templates requires

expertise and a lot of experimentation (e.g. ablation studies)
Which specific set of feature (templates) works well depends very much

on the particular classification task and dataset.

Feature selection methods prune useless features

automatically. This reduces the number of weights to learn.
(e.g. ‘of the’ may not be useful for sentiment analysis, but ‘very coof is)
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Learning parameters w and b

Training objective: Find parameters w and b that
“capture the training data Dain as well as possible”

More formally (and since we’re being probabilistic):

Find w and b that assign the largest possible conditional
probability to the labels of the items in Dhrain

(W, b*) = argmax ., [ POy 1x)
(Xi’yi)EDtmin
= Maximize P( 1 | x;) for any (xi,1) with a positive label in Dirain

= Maximize P(0 | x;) for any (xi,0) with a negative label in Dyain

Since y; € {0,1} we can rewrite this to:
(W*.b¥) =argmax, [ PCLIxyi-[1-P(1[x)]"™
(Xp>YDED, i
Foryi =1, this comes outto: P(1 | x)!(1 - P(1]x))"=P(1]x,)
Foryi=0,thisis:  P(1|x)°(1—=P(1|x)'=1-P(1|x,)=P(0]x,
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Learning = Optimization = Loss Minimization

Learning = parameter estimation = optimization:

Given a particular class of model (logistic regression, Naive Bayes, ...) and data Dtrain,
find the best parameters for this class of model on Dyrain

If the model is a probabilistic classifier, think of

optimization as Maximum Likelihood Estimation (MLE)

“Best” = return (among all possible parameters for models of this class)
parameters that assign the largest probability {0 Dirain

‘In general (incl. for probabilistic classifiers),

think of optimization as Loss Minimization:

“Best” = return (among all possible parameters for models of this class)
parameters that have the smallest loss on Diyain

“Loss”: how bad are the predictions of a model?

The loss function we use to measure loss depends on the class of model
L(y,y): how bad is it to predict y if the correct label is y ?
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Conditional MLE = Cross-Entropy Loss

-

~

Conditional MLE: Maximize probability of labels in Drain

(we, b =argmax, . [ P(y1x)
(Xi Y i) €D train
= Maximize P( 1 | x;) for any (xi,1) with a positive label in Dyain

= Maximize P( 0 | x;) for any (x;,0) with a negative label in Din

Equivalently: Minimize negative log prob. of correct labels in Dirain
P(y;, | x) =0 < —log(P(y; | X)) = +o0 if y; is the correct label for X, this is the worst possible model

Py, |x)=1& —log(P(y; | x)) =0 if y; is the correct label for X, this is the best possible model

(

.
The negative log probability of the correct label is a loss function:

—log(P(y; | x;)) is smallest (0) when we assign all probability to the correct label
—log(P(y; | x,)) is largest (+ co) when we assign all probability to the wrong label

This negative log likelihood loss is also called cross-entropy loss
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From loss to per-example cost

-

\_

Let’s define the “cost” of our classifier on the whole dataset
as its average loss on each of the m training examples:

|
COStCE(Dtrain) — z Z _lOg P( yi | Xi)

i=1..m

For each example:
—log P(y; | X))
= —log( P(1 | x;) - P(O | Xi)l_yi)
[either y; =1 or y;, = (]

= —[y,log( P(1|x,))+ (1 —y)log(P(0 | x,))]
[moving the log inside]

= —[ y;log(c(wx; + b)) + (1 — y)log(l — c(WX; + b))]
[plugging in definition of P(1 | X;) ]
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The loss surface

Any specific parameter setting
(any instantiation of the feature weights f')
yields a particular loss on the training data.

Loss

Imagine a (very high-)dimensional landscape,
where each f is one point, and
height at I = loss of classifier with weights

Parameters
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Learning = Moving in this landscape

Learning = finding the

Loss parameters that correspond

to the global minimum of
the loss surface

RV

global Parameters
minimum
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Learning = Moving in this landscape

... but you don’t
see very far...

Start at a
random point...

Cglobal Parameters
minimum
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Learnlng Movmg in this Iandscape

You can only take small
local steps

‘global Parameters
minimum
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Movmg with Gradient Descent

“|How do you know where and how much to move?

— Determine a step size 77 (learning rate)
— The gradient of the loss V L(f) (= vector of partial derivatives)
indicates the direction of steepest increase in L(f):

V() = (5L(f) - SL(F) >
o oty

Go in the opposite direction (i.e. downhill)

=> Update your weights with f := 1 —  V L(f)

3
"
3
R v

global " Parameters
minimum
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Gradient Descent finds local optlma

Flndlng the global
minimum in general
IS hard

. ., e 'eters
minimum
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Gradlent Descent flnds Iocal optlma

You often get stuck in
local minima
(or on plateaus)

minimum
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(Stochastic) Gradient Descent

— We want to find parameters that have minimal cost (loss)
on our training data.

— But we don’t know the whole loss surface.

— However, the gradient of the cost (loss) of our current
parameters tells us how the slope of the loss surface

at the point given by our current parameters

— And then we can take a (small) step in the right (downhill)
direction (to update our parameters)

Gradient descent:
Compute loss for entire dataset before updating weights

Stochastic gradient descent:
Compute loss for one (randomly sampled) training example
before updating weights
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Stochastic Gradient Descent

function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns 6
# where: L 1s the loss function
# f is a function parameterized by 0
# X is the set of training inputs x x@) L xn)
# y is the set of training outputs (labels) y(l), y(z) ey y(”)

00
repeat T times

For each training tuple (x(l) (1) (in random order)
Compute $() = f ( ; 9) # What is our estimated output §?
Compute the loss LW, y@) # How far off is ${)) from the true output y{)?
g VoL(f(x);0),y\) # How should we move 6 to maximize loss ?
0—0 —ng # go the other way instead

return 6
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Gradient for Logistic Regression

Computing the gradient of the loss for example x; and
weight w;is very simple (x;: j-th feature of xi)
oL(w, D)

= [o(WX; + D) — y;lx;
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More detalls

The learning rate 7 affects convergence

There are many options for setting the learning rate:
fixed, decaying (as a function of time), adaptive,...

Often people use more complex schemes and optimizers

Mini-batch training computes the gradient
on a small batch of training examples at a time.
Often more stable than SGD.

Regularization keeps the size of the weights
under control
L1 or L2 regularization
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