
CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Conv
olut

iona
l

Neur
al N

ets

1

Lecture 8:  
Convolutional Neural Nets

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Dense  
(Fully-Connected)

Networks
[last lecture] 

 

Sparse Networks
(with shared parameters: CNNs)

[3 parameters, applied 4 times, overlapping inputs]

[4 parameters, applied 3 times, non-overlapping inputs]

Convolutional Neural Nets (ConvNets, CNNs)

2

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Convolutional Neural Nets
2D CNNs are a standard architecture for image data.
Neocognitron (Fukushima, 1980):  
 CNN with convolutional and downsampling (pooling) layers

CNNs are inspired by receptive fields in the visual
cortex: Individual neurons respond to small regions
(patches) of the visual field.
Neurons in deeper layers respond to larger regions.
Neurons in the same layer share the same weights.
This parameter tying allows CNNs to handle variable
size inputs with a fixed number of parameters.
CNNs can be used as input to fully connected nets.
In NLP, CNNs are mainly used for classification.

3

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

A toy example

A 3x4 black-and-white image is a 3x4 matrix of pixels.

4

a b c d
e f g h
i j k l

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Applying a 2x2 filter

A filter is an -size matrix that can be applied to
-size patches of the input image.

This operation is called convolution, but it works just like a
dot product of vectors.

N×N N×N
N×N

5

[w x
y z]

[aw + bx + ey + fz bw + cx + fy + gz cw + dx + gy + hz
ew + fx + iy + jz fw + gx + jy + kz gw + hx + ky + lz]

a b c d
e f g h
i j k l

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Applying a 2x2 filter

6

[w x
y z]

[aw + bx + ey + fz bw + cx + fy + gz cw + dx + gy + hz
ew + fx + iy + jz fw + gx + jy + kz gw + hx + ky + lz]

a b c d
e f g h
i j k l

We can apply the same filter to all -size patches
of the input image.
We obtain another matrix (the next layer in our network).
The elements of the filter are the parameters of this layer.

N×N N×N

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Applying a 2x2 filter

7

[w x
y z]

[aw + bx + ey + fz bw + cx + fy + gz cw + dx + gy + hz
ew + fx + iy + jz fw + gx + jy + kz gw + hx + ky + lz]

a b c d
e f g h
i j k l

We can apply the same filter to all -size patches
of the input image.
We obtain another matrix (the next layer in our network).
The elements of the filter are the parameters of this layer.

N×N N×N

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Applying a 2x2 filter

8

[w x
y z]

[aw + bx + ey + fz bw + cx + fy + gz cw + dx + gy + hz
ew + fx + iy + jz fw + gx + jy + kz gw + hx + ky + lz]

a b c d
e f g h
i j k l

We can apply the same filter to all -size patches
of the input image.
We obtain another matrix (the next layer in our network).
The elements of the filter are the parameters of this layer.

N×N N×N

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Applying a 2x2 filter

9

[w x
y z]

[aw + bx + ey + fz bw + cx + fy + gz cw + dx + gy + hz
ew + fx + iy + jz fw + gx + jy + kz gw + hx + ky + lz]

a b c d
e f g h
i j k l

We can apply the same filter to all -size patches
of the input image.
We obtain another matrix (the next layer in our network).
The elements of the filter are the parameters of this layer.

N×N N×N

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Applying a 2x2 filter

10

[w x
y z]

[aw + bx + ey + fz bw + cx + fy + gz cw + dx + gy + hz
ew + fx + iy + jz fw + gx + jy + kz gw + hx + ky + lz]

a b c d
e f g h
i j k l

We can apply the same filter to all -size patches
of the input image.
We obtain another matrix (the next layer in our network).
The elements of the filter are the parameters of this layer.

N×N N×N

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Applying a 2x2 filter

We’ve turned a 3x4 matrix into a 2x3 matrix,  
so our image has shrunk.
Can we preserve the size of the input?

11

[w x
y z]

[aw + bx + ey + fz bw + cx + fy + gz cw + dx + gy + hz
ew + fx + iy + jz fw + gx + jy + kz gw + hx + ky + lz]

a b c d
e f g h
i j k l

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

0w + 0x + 0y + az 0w + 0x + ay + bz 0w + 0x + by + cz 0w + 0x + cy + dz
0w + ax + 0y + ez aw + bx + ey + fz bw + cx + fy + gz cw + dx + gy + hz
0w + ex + 0y + iz ew + fx + iy + jz fw + gx + jy + kz gw + hx + ky + lz

0 0 0 0 0
0 0w + 0x + 0y + az 0w + 0x + ay + bz 0w + 0x + by + cz 0w + 0x + cy + dz
0 0w + ax + 0y + ez aw + bx + ey + fz bw + cx + fy + gz cw + dx + gy + hz
0 0w + ex + 0y + iz ew + fx + iy + jz fw + gx + jy + kz gw + hx + ky + lz

a b c d
e f g h
i j k l

Zero padding

12

0 0 0 0 0
0 a b c d
0 e f g h
0 i j k l

[w x
y z]

If we pad each matrix with 0s, we can maintain the
same size throughout the network

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

0 0 0 0 0
0 g(az) g(ay + bz) g(by + cz) g(cy + dz)
0 g(ax + ez) g(aw + bx + ey + fz) g(bw + cx + f y + gz) g(cw + dx + gy + hz)
0 g(ex + iz) g(ew + fx + iy + jz) g(fw + gx + jy + kz) g(gw + hx + ky + lz)

After the nonlinear activation function

13

0 0 0 0 0
0 a b c d
0 e f g h
0 i j k l

[w x
y z]

NB: Convolutional layers are typically followed by
ReLUs.

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Second
Hidden
Layer

First
Hidden
Layer

Input  
Data

Second  
Convolution

First  
Convolution

Going from layer to layer…

14

0 0 0 0 0
0 a b c d
0 e f g h
0 i j k l

[w x
y z]

[w1 x1
y1 z1]0 0 0 0 0

0 a1 b1 c1 d1

0 e1 f1 g1 h1

0 i1 j1 k1 l1

0 0 0 0 0
0 a2 b2 c2 d2

0 e2 f2 g2 h2

0 i2 j2 k2 l2

One element in the 2nd
layer corresponds to a
3x3 patch in the input:
The “receptive field”

gets larger in each layer

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Changing the stride
Stride = the step size for sliding across the image

Stride = 1: Consider all patches [see previous example]
Stride = 2: Skip one element between patches
Stride = 3: Skip two elements between patches,…

A larger stride size yields a smaller output image.

 Input: Filter:

 Stride = 2:

0 0 0 0
a b c d
e f g h
i j k l

[w x
y z]

[0w + 0x + ay + bz 0w + 0x + cy + dz
ew + fx + iy + jz gw + hx + ky + lz]

15

[Note that different zero-padding  
may be required with a different  
stride]

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Handling color images: channels
Color images have a number of color channels:

Each pixel in an RGB image is a (red, green, blue)
triplet: ■=(255, 0, 0) or ■=(120, 5, 155)

An RGB image is a tensor  
 height width depth  
 #channels = depth of the image

Convolutional filters are applied to all channels  
of the input
We still specify filter size in terms of the image patch, because the
#channels is a function of the data (not a parameter we control)
We still talk about 2 2 or 3 3 etc. filters, although with channels,
they apply to a region (and have weights)

N×M N×M×3
× ×

× × C
N × N × C N × N × C

16

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Channels in internal layers
So far, we have just applied a single filter  
to get to the next layer.
 
But we could run different filters (with
different weights) to define a layer with channels.

(If we initialize their weights randomly, they will learn different
properties of the input)

The hidden layers of CNNs have often  
a large number of channels.

(Useful trick: 1x1 convolutions increase or decrease the nr. of
channels without affecting the size of the visual field)

N×N

K N×N
K

17

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Pooling Layers
Pooling layers reduce the size of the representation, and are often
used following a pair of conv+ReLU layers

Each pooling layer returns a 3D tensor of the same depth as its
input (but with smaller height & width) and is defined by
— a filter size (what region gets reduced to a single value)
— a stride (step size for sliding the window across the input)
— a pooling function (max pooling, avg pooling, min pooling, …)

Pooling units don’t have weights, but simply return the maximum/
minimum/average value of their inputs

Typically, pooling layers only receive input from a single channel.
So they don’t reduce the depth (#channels).

18

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Max-pooling
Max-pooling in our example  
with a 2x2 filter and stride=2: 
 
 
 

 Input: 2x2 MaxPooling

 Stride = 2:

0 0 0 0
a b c d
e f g h
i j k l

[max(0,0,a, b) max(0,0,c, d)
max(e, f, i, j) max(g, h, k, l)]

19

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

(2D) CNNs
An image is a 2D (width × height) matrix of pixels (e.g. RGB values)
=> it is a 3D tensor: color channels (“depth”) × width × height
Each convolutional layer returns a 3d tensor, and is defined by:

— the depth (#filters) of its output
— a filter size (the square size of the input regions for each filter),
— a stride (the step size for how to slide filters across the input)
— zero padding (how many 0s are added around edges of input)

=> Filter size, stride, zero padding define the width/height of the output
Each unit in a convolutional layer
— receives input from a square region/patch (across w×h)  
 in the preceding layer (across all depth channels)
— returns the dot product of the input activations and its weights
Within a layer, all units at the same depth use the same weights
Convolutional layers are often followed by ReLU activations
http://cs231n.github.io/convolutional-networks/

20

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

1D CNNs for text
Text is a (variable-length) sequence of words (word vectors)

[#channels = dimensionality of word vectors]
We can use a 1D CNN to slide a window of n tokens across:

— Filter size n = 3, stride = 1, no padding
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog

— Filter size n = 2, stride = 2, no padding:
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog

21

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

1D CNNs for text classification
Input: a variable length sequence of word vectors 
(#channels/depth = dimensionality of word vectors)

Zero padding: Add zero vectors (or to BOS/EOS)  
to beginning and/or end of sentence (and/or hidden layers) 

Filters: N-dimensional vectors (sliding windows of N-grams)
Filter size N in the first layer: size of the N-grams we consider  

Conv. layers typically have a ReLU (or tanh) activation
Maxpooling layers reduce the dimensionality.

CNN depth: how many layers do we use?  

The last CNN layer (a tensor) needs to be
reshaped (flattened) into a -dimensional vector  
to be fed into a dense feedforward net for classification

H×W×D
(H×W×D)

22

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Understanding CNNs for text classification
Jacovi et al.’18 https://www.aclweb.org/anthology/W18-5408/

— Different filters detect (suppress) different types of ngrams
— Max-pooling removes irrelevant n-grams
— In a single-layer CNN with max-pooling, each filter output  
 can be traced back to a single input ngram
— Each filter can also be associated with a class it predicts
— The positions in a filter check whether specific  
 types of words are present or absent in the input
— Filters can produce erroneous output  
 (abnormally high activations) on artificial input

23

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Readings and nice illustrations
https://www.deeplearningbook.org/contents/convnets.html
https://towardsdatascience.com/a-comprehensive-guide-to-
convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://github.com/vdumoulin/conv_arithmetic/blob/master/
README.md

24

