
CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Lect
ure

10:

Dyna
mic P

rogr
amming

for
HMMs

1

Lecture 10:  
Introduction to POS Tagging

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

HMM decoding (Viterbi)
We are given a sentence w = w(1)…w(N)

 w= “she promised to back the bill” 

We want to use an HMM tagger to find its POS tags t
t* = argmaxt P(w, t)
 = argmaxt P(t(1))·P(w(1)| t(1))·P(t(2)| t(1))·…·P(w(N)| t(N))

But: with T tags, w has O(TN) possible tag sequences!
To do this efficiently (in O(T2N) time), we will use a
dynamic programming technique called  
the Viterbi algorithm which exploits the independence
assumptions in the HMM.

2

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Dynamic programming
Dynamic programming is a general technique to solve
certain complex search problems by memoization

1.) Recursively decompose the large search
problem into smaller subproblems  
that can be solved efficiently

–There is only a polynomial number of subproblems. 

2.) Store (memoize) the solutions of each
subproblem in a common data structure

–Processing this data structure takes polynomial time

3

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

The Viterbi algorithm
A dynamic programming algorithm which finds the
best (=most probable) tag sequence t* for an input
sentence w: t* = argmaxt P(w | t)P(t)

Complexity: linear in the sentence length.
With a bigram HMM, Viterbi runs in O(T2N) steps  
for an input sentence with N words and a tag set of T tags. 

The independence assumptions of the HMM tell us  
how to break up the big search problem  
(find t* = argmaxt P(w | t)P(t)) into smaller subproblems.  

The data structure used to store the solution of these
subproblems is the trellis.

4

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

States

Bookkeeping: the trellis

We use a N×T table (“trellis”) to keep track of the HMM. 
The HMM can assign one of the T tags to each of the N words.

w(1) w(2) ... w(i-1) w(i) w(i+1) ... w(N-1) w(N)

t1

...

tj

...

tT
Words (“time steps”)

5

word w(i) has tag tj

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

w(1) w(2) ... w(i-1) w(i) w(i+1) ... w(N-1) w(N)

t1

...

tj

...

tT

Computing P(t,w) for one tag sequence

P(w(1) | t1)

P(w(2) | tj)

P(w(i) | ti)

P(t(1)=t1)

P(tj | t1)

P(ti | t…)

P(t..| ti)

P(w(i+1) | ti+1)

P(w(N) | tj)

P(tj | t..)

6

One path through the trellis = one tag sequence

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Viterbi: Basic Idea
Task: Find the tag sequence  
that maximizes the joint probability

The choice of affects the probability of ,  
which in turn affects the probability of , etc:

→ We cannot fix (or any tag) until the end of the sentence!

t(1)…t(N−1)t(N)

π(t(1))P(w(1) ∣ t(1))
N

∏
i=2

P(t(i) ∣ t(i−1))P(w(i) ∣ t(i))

t(1) t(2)

t(3)

π(t(1))P(w(1) ∣ t(1))P(t(2) ∣ t(1))P(w(2) ∣ t(2))P(t(3) ∣ t(2))…
t(1)

7

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Step 3: You have already found the best for any .  
Now, for any particular choice of for ,  
pick the tag for that gives the highest probability to

ti t(2) = tj
t(3) = tk w(3)

tj w(2)

argmaxtjπ(t(1) = ti)P(w(1) ∣ t(1) = ti)P(t(2) = tj ∣ t(1) = ti)P(w(2) ∣ t(2) = tj)P(t(3) = tk ∣ t(2) = tj)

Step 2b):  
Compute  

P(w(2) ∣ t(2) = tj)

Step 2a): for any particular choice of for ,  
pick the tag for that gives the highest probability to

t(2) = tj w(2)

ti w(1)

argmaxtiπ(t(1) = ti)P(w(1) ∣ t(1) = ti)P(t(2) = tj ∣ t(1) = ti)

Step 1: For any particular choice of
 for , compute t(1) = ti w(1)

π(t(1) = ti)P(w(1) ∣ t(1) = ti)

This depends
only on the choice

of t(3) = tk

This depends only on
the choices of 

 and t(2) = tj t(3) = tk

This depends  
only on the choice of t(1) = ti

This depends
only on the choice

of t(2) = tj

This depends only
on the choices of

 and t(1) = ti t(2) = tj

You want to find the best tag sequence  
 

t(1)t(2)t(3)… = titjtk…

argmaxti,tj,tk,...π(t(1) = ti)P(w(1) ∣ t(1) = ti)P(t(2) = tj ∣ t(1) = ti)P(w(2) ∣ t(2) = tj)P(t(3) = tk ∣ t(2) = tj)P(w(3) ∣ t(3) = tk)…

Exploiting the independence assumptions

8

For all words  
in the sentence: 
  
 For all tags  
 in the tag set:
 
 Find the best  
 tag sequence
 that ends in

i = 1..N

j = 1...T

t(1)...(i)

t(i) = tj

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Viterbi: Basic Idea
Assume we knew (for any tag) the maximum
probability of any complete sequence  
that ends in that tag [N: last word in w] 

Call that probability the Viterbi probability of tag  
at position , and store it as trellis[N][j].viterbi

Then, the probability of the best tag sequence  
(i.e. the maximum probability of any complete
sequence) for our sentence is
maxk∈{1,..,T}(trellis[N][k].viterbi)

tj
t(1)…t(N)

t(N) = tj

tj
N

t(1)…t(N)

9

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Viterbi: Basic Idea
Viterbi probability of tag for word : trellis[i][j].viterbi  
The highest probability of the prefix
and any tag sequence ending in

trellis[i][j].viterbi = max P(w(1)…w(i), t(1)…, t(i) = tj)

The probability of the best tag sequence overall is given by:
maxk trellis[N][k].viterbi
(the largest entry in the last column of the trellis)

The Viterbi probability trellis[i][j].viterbi (for any cell in the trellis) 
can easily be computed based on the cells in the preceding
column, trellis[i-1][k].viterbi

tj w(i)

P(w(1)...(i), t(1)...(i)) w(1)...(i)

t(1)...(i) t(i) = tj

10

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Transition prob. 
 for tj given tk

Emission prob. 
 for w(i) given tj

Viterbi probability of tag tk for
the preceding word w(i-1)

Initial probability for tag tj  
Emission probability for w(1)

Viterbi: Basic Idea
Viterbi probability of tag for word : trellis[i][j].viterbi  
The highest probability of the prefix
and any tag sequence ending in

Base case: First word in the sentence

Recurrence: Any other word in the sentence

tj w(i)

P(w(1)...(i), t(1)...(i)) w(1)...(i)

t(1)...(i) t(i) = tj

w(1)

trellis[1][j] .viterbi = π(tj)P(w(1) ∣ tj)
w(i)

trellis[i][j] .viterbi =

max
k (trellis[i−1][k] .viterbi × P(tj ∣ tk)P(w(i) ∣ tj))

11

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Initialization
For a bigram HMM:
Given an N-word sentence w(1)…w(N) and a tag set
consisting of T tags, create a trellis of size N×T

In the first column, initialize each cell trellis[1][k] as  
 trellis[1][k] := π(tk)P(w(1) | tk)
(there is only a single tag sequence for the first word
that assigns a particular tag to that word)

12

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Viterbi: filling in the first column

We want to find the best (most likely) tag sequence  
for the entire sentence.
Each cell trellis[i][j] (corresponding to word w(i) with tag tj) contains:
— trellis[i][j].viterbi: the probability of the best sequence ending in tj
— trellis[i][j].backpointer: to the cell k in the previous column that
corresponds to the best tag sequence ending in tj

w(1)

DT

...

NNS

...

VBZ

13

π(DT) × P(w(1) ∣ DT)

π(NNS) × P(w(1) ∣ NNS)

π(VBZ) × P(w(1) ∣ VBZ)

: probability that a
sentence starts with DT 
 

: probability
that tag DT emits word w(1)

π(DT)

P(w(1) ∣ DT)

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

At any internal cell
– For each cell in the preceding column: multiply its Viterbi

probability with the transition probability to the current cell.
– Keep a single backpointer to the best (highest scoring) cell  

in the preceding column
–Multiply this score with the emission probability  

of the current word

14

w(n-1) w(n)

t1 P(w(1..n-1), t(n-1)=t1)
... ...
ti P(w(1..n-1), t(n-1)=ti)
... ...
tT P(w(1..n-1), tn-1=tT)

P(ti |t1)

P(ti | ti)

P(ti | tT)

trellis[n][i].viterbi =
 P(w(n) | ti)

⋅Maxj(trellis[n-1][j].viterbi ⋅ P(ti |tj))

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

At the end of the sentence
In the last column (i.e. at the end of the sentence)
pick the cell with the highest entry, and trace back the
backpointers to the first word in the sentence.

15

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 16

w(1) w(2) ... w(i-1) w(i) w(i+1) ... w(N-1) w(N)

t1

...

tj

...

tT

 Retrieving t* = argmaxt P(t,w)

By keeping one backpointer from each cell to the cell  
in the previous column that yields the highest probability,  

we can retrieve the most likely tag sequence when we’re done.

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Viterbi
Each cell trellis[i][j] (word w(i) with tag tj) contains:
— The Viterbi probability trellis[i][j].viterbi:  
 The maximum probability P(w(1)…w(i), t(1),…, t(i) = tj)  
 of any tag sequence that ends in tj for the prefix w(1)…(i)

— A backpointer trellis[i][j].backpointer = k*
 to the cell trellis[i–1][k*] in the preceding column  
 that corresponds to the tag
To fill trellis[i][j], find the best cell in the previous column (trellis[i–1][k*])
based on the previous column and the transition probabilities P(tj | tk)

k* for trellis[i][j] := Maxk (trellis[i–1][k] ⋅ P(tj | tk))
The entry in trellis[i][j] includes the emission probability P(w(i)| tj)

trellis[i][j] := P(w(i) | tj) ⋅ (trellis[i–1][k*] ⋅ P(tj | tk*))

We also associate a backpointer from trellis[i][j] to trellis[i–1][k*]
Finally, return the highest scoring entry in the last column of the trellis  
(= for the last word) and follow its backpointers

17

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Viterbi
trellis[i][j].viterbi (word w(j), tag tj) stores the probability
of the best tag sequence for w(1)…w(i) that ends in tj

trellis[i][j].viterbi = max P(w(1)…w(i), t(1)…, t(i) = tj)

We can recursively compute trellis[i][j].viterbi from the
entries in the previous column trellis[i-1][j].viterbi
trellis[i][j].viterbi =
 P(w(i)| tj) ⋅Maxk(trellis[i-1][k].viterbiP(tj | tk))

At the end of the sentence, we pick the highest
scoring entry in the last column of the trellis

18

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 19

Janet will back the bill
DT
RB
NN
JJ
VB
MD

NNP

max

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 20

Janet will back the bill
DT
RB
NN
JJ
VB
MD

NNP

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 21

Janet will back the bill
DT
RB
NN
JJ
VB
MD

NNP

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 22

Janet will back the bill
DT
RB
NN
JJ
VB
MD

NNP

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 23

Janet will back the bill
DT
RB
NN
JJ
VB
MD

NNP

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 24

Janet will back the bill
DT
RB
NN
JJ
VB
MD

NNP

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 25

Janet will back the bill
DT
RB
NN
JJ
VB
MD

NNP

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 26

Janet will back the bill
DT
RB
NN
JJ
VB
MD

NNP

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 27

Janet will back the bill
DT
RB
NN
JJ
VB
MD

NNP
max

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 28

Janet will back the bill
DT
RB
NN
JJ
VB
MD

NNP
max

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 29

Janet will back the bill
DT
RB
NN
JJ
VB
MD

NNP
max

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 30

Janet will back the bill
DT
RB
NN
JJ
VB
MD

NNP
max

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 31

Janet will back the bill
DT
RB
NN
JJ
VB
MD

NNP
max

Janet_NNP will_MD back_VB the_DT bill_NN

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

The Viterbi algorithm
Viterbi(w1…n){

for t (1...T) // INITIALIZATION: first column
 trellis[1][t].viterbi = p_init[t] × p_emit[t][w1]
for i (2...n){ // RECURSION: every other column
 for t (1....T){
 trellis[i][t] = 0
 for t’ (1...T){
 tmp = trellis[i-1][t’].viterbi × p_trans[t’][t]
 if (tmp > trellis[i][t].viterbi){
 trellis[i][t].viterbi = tmp
 trellis[i][t].backpointer = t’}}
 trellis[i][t].viterbi ×= p_emit[t][wi]}}
t_max = NULL, vit_max = 0; // FINISH: find the best cell in the last column
for t (1...T)
 if (trellis[n][t].vit > vit_max){t_max = t; vit_max = trellis[n][t].value }
return unpack(n, t_max);
}

32

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Viterbi for Trigram HMMs
In a Trigram HMM, transition probabilities are of the form:

P(t(i) = ti | t(i−1) = tj, t(i−2) = tk)
The i-th tag in the sequence influences the probabilities  
of the (i+1)-th tag and the (i+2)-th tag:
 … P(t(i+1) | t(i), t(i−1)) … P(t(i+2) | t(i+1), t(i))

Hence, each row in the trellis for a trigram HMM has to
correspond to a pair of tags — the current and the preceding tag:

(abusing notation)  
trellis[i]⟨j,k⟩: word w(i) has tag tj, word w(i−1) has tag tk

The trellis now has T2 rows.  
But we still need to consider only T transitions into each cell,  
since the current word’s tag is the next word’s preceding tag:
Transitions are only possible from trellis[i]⟨j,k⟩ to trellis[i+1]⟨l,j⟩

33

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

The three basic problems for HMMs
Given an output sequence w=w(1)…w(N):

w=“she promised to back the bill”
Problem I (Likelihood): find P(w | λ)

Given an HMM λ = (A, B, π), compute the likelihood  
of the observed output, P(w | λ)

Problem II (Decoding i.e. Tagging): find Q=q(1)..q(N)
Given an HMM λ = (A, B, π), what is the most likely sequence
of states Q=q(1)..q(N) ≈ t(1)...t(N) to generate w?

Problem III (MLE Estimation): find argmax λ P(w | λ)
Find the parameters A, B, π which maximize P(w | λ)

34

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Dynamic programming algorithms for
HMMs
I. Likelihood of the input:
Compute P(w| λ) for an w and HMM λ
⇒ Forward algorithm  

II. Decoding (=tagging) the input:
Find best tags t*=argmaxt P(t | w,λ) for input w and HMM λ
⇒ Viterbi algorithm  

III. Estimation (=learning the model):
Find best model parameters λ*=argmax λ P(t, w | λ)
for unlabeled training data w
⇒ Forward-Backward algorithm

35

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Computing P(w): the Forward algorithm
To compute the probability of a sentence according  
to an HMM, we have to sum over all possible tag
sequences:

The Forward algorithm computes this sum efficiently:
Base case: For the first word in the sentence, and for each tag j:  
  

Recurrence: For any other word i, and for each tag j:  

End: For the last word in the sentence, and for all tags k:  

P(w) = ∑
t

P(w, t)

forward[1][j] = π(tj)P(w(1) ∣ tj)

forward[i][j] = P(w(i) ∣ tj)∑
k

forward[i−1][k]P(tj ∣ tk)

P(w) = ∑
k

forward[N][k]

36

Same as
Viterbi,

except sum
instead of

max

