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HMM decoding (Viterbi)
We are given a sentence w = w(1)…w(N) 

 w= “she promised to back the bill” 

We want to use an HMM tagger to find its POS tags t
t* = argmaxt P(w, t)
    = argmaxt  P(t(1))·P(w(1)| t(1))·P(t(2)| t(1))·…·P(w(N)| t(N))

 
But: with T tags, w has O(TN)  possible tag sequences!  
To do this efficiently (in O(T2N) time), we will use a 
dynamic programming technique called  
the Viterbi algorithm which exploits the independence 
assumptions in the HMM. 
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Dynamic programming
Dynamic programming is a general technique to solve 
certain complex search problems by memoization

1.) Recursively decompose the large search 
problem into smaller subproblems  
that can be solved efficiently

–There is only a polynomial number of subproblems. 

2.) Store (memoize) the solutions of each 
subproblem in a common data structure

–Processing this data structure takes polynomial time
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The Viterbi algorithm
A dynamic programming algorithm which finds the 
best (=most probable) tag sequence t* for an input 
sentence w: t* = argmaxt P(w | t)P(t) 

Complexity: linear in the sentence length.
With a bigram HMM, Viterbi runs in O(T2N) steps  
for an input sentence with N words and a tag set of T tags. 

The independence assumptions of the HMM tell us  
how to break up the big search problem  
(find t* = argmaxt P(w | t)P(t)) into smaller subproblems.  

The data structure used to store the solution of these 
subproblems is the trellis.
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States

Bookkeeping: the trellis

We use a N×T table (“trellis”) to keep track of the HMM. 
The HMM can assign one of the T tags to each of the N words.

w(1) w(2) ... w(i-1) w(i) w(i+1) ... w(N-1) w(N)

t1

...

tj

...

tT
Words (“time steps”)

5

word w(i) has tag tj
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w(1) w(2) ... w(i-1) w(i) w(i+1) ... w(N-1) w(N)

t1

...

tj

...

tT

Computing P(t,w) for one tag sequence

P(w(1) | t1)

P(w(2) | tj)

P(w(i) | ti)

P(t(1)=t1)

P(tj | t1)

P(ti | t…)

P(t..| ti)

P(w(i+1) | ti+1)

P(w(N) | tj )

P(tj | t..)
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One path through the trellis = one tag sequence
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Viterbi: Basic Idea
Task: Find the tag sequence  
that maximizes the joint probability

The choice of  affects the probability of ,  
which in turn affects the probability of , etc:

→ We cannot fix  (or any tag) until the end of the sentence! 

t(1)…t(N−1)t(N)

π(t(1))P(w(1) ∣ t(1))
N

∏
i=2

P(t(i) ∣ t(i−1))P(w(i) ∣ t(i))

t(1) t(2)

t(3)

π(t(1))P(w(1) ∣ t(1))P(t(2) ∣ t(1))P(w(2) ∣ t(2))P(t(3) ∣ t(2))…
t(1)
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Step 3: You have already found the best  for any .  
Now, for any particular choice of  for ,  
pick the tag  for   that gives the highest probability to 

ti t(2) = tj
t(3) = tk w(3)

tj w(2)

argmaxtjπ(t(1) = ti)P(w(1) ∣ t(1) = ti)P(t(2) = tj ∣ t(1) = ti)P(w(2) ∣ t(2) = tj)P(t(3) = tk ∣ t(2) = tj)

Step 2b):  
Compute  

P(w(2) ∣ t(2) = tj)

Step 2a): for any particular choice of  for ,  
pick the tag  for   that gives the highest probability to 

t(2) = tj w(2)

ti w(1)

argmaxtiπ(t(1) = ti)P(w(1) ∣ t(1) = ti)P(t(2) = tj ∣ t(1) = ti)

Step 1: For any particular choice of 
 for , compute t(1) = ti w(1)

π(t(1) = ti)P(w(1) ∣ t(1) = ti)

This depends 
only on the choice 

of t(3) = tk

This depends only on 
the choices of 

  and  t(2) = tj t(3) = tk

This depends  
only on the choice of t(1) = ti

This depends 
only on the choice 

of t(2) = tj

This depends only  
on the choices of 

 and t(1) = ti t(2) = tj

You want to find the best tag sequence  
 

t(1)t(2)t(3)… = titjtk…

argmaxti,tj,tk,...π(t(1) = ti)P(w(1) ∣ t(1) = ti)P(t(2) = tj ∣ t(1) = ti)P(w(2) ∣ t(2) = tj)P(t(3) = tk ∣ t(2) = tj)P(w(3) ∣ t(3) = tk)…

Exploiting the independence assumptions
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For all words  
in the sentence: 
  
     For all tags  
     in the tag set:
 
        Find the best  
        tag sequence 
        that ends in 

i = 1..N

j = 1...T

t(1)...(i)

t(i) = tj
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Viterbi: Basic Idea
Assume we knew (for any tag ) the maximum 
probability of any complete sequence   
that ends in that tag   [N: last word in w] 

Call that probability the Viterbi probability of tag   
at position , and store it as trellis[N][j].viterbi 

Then, the probability of the best tag sequence  
(i.e. the maximum probability of any complete 
sequence ) for our sentence is 
maxk∈{1,..,T}(trellis[N][k].viterbi)

tj
t(1)…t(N)

t(N) = tj

tj
N

t(1)…t(N)

9



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Viterbi: Basic Idea
Viterbi probability of tag  for word :   trellis[i][j].viterbi  
The highest probability  of the prefix  
and any tag sequence  ending in 

trellis[i][j].viterbi = max P(w(1)…w(i), t(1)…, t(i) = tj )

The probability of the best tag sequence overall is given by: 
maxk trellis[N][k].viterbi    
(the largest entry in the last column of the trellis)

The Viterbi probability trellis[i][j].viterbi (for any cell in the trellis) 
can easily be computed based on the cells in the preceding 
column, trellis[i-1][k].viterbi

tj w(i)

P(w(1)...(i), t(1)...(i)) w(1)...(i)

t(1)...(i) t(i) = tj

10
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Transition prob. 
 for tj given tk 

Emission prob. 
 for w(i) given tj

Viterbi probability of tag tk for 
the preceding word w(i-1)

Initial probability for tag tj  
Emission probability for w(1) 

Viterbi: Basic Idea
Viterbi probability of tag  for word :   trellis[i][j].viterbi  
The highest probability  of the prefix  
and any tag sequence  ending in 

Base case: First word  in the sentence

Recurrence: Any other word  in the sentence
                       

           

tj w(i)

P(w(1)...(i), t(1)...(i)) w(1)...(i)

t(1)...(i) t(i) = tj

w(1)

trellis[1][ j] .viterbi = π(tj)P(w(1) ∣ tj)
w(i)

trellis[i][ j] .viterbi =

max
k (trellis[i−1][k] .viterbi × P(tj ∣ tk)P(w(i) ∣ tj))

11
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Initialization
For a bigram HMM:
Given an N-word sentence w(1)…w(N) and a tag set 
consisting of T tags, create a trellis of size N×T 

In the first column, initialize each cell trellis[1][k] as  
      trellis[1][k] := π(tk)P(w(1) | tk)
(there is only a single tag sequence for the first word 
that assigns a particular tag to that word)

12
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Viterbi: filling in the first column

We want to find the best (most likely) tag sequence  
for the entire sentence. 
Each cell trellis[i][j] (corresponding to word w(i) with tag tj) contains:
— trellis[i][j].viterbi: the probability of the best sequence ending in tj 
— trellis[i][j].backpointer: to the cell k in the previous column that 
corresponds to the best tag sequence ending in tj

w(1)

DT   

...

NNS

...

VBZ

13

π(DT) × P(w(1) ∣ DT)

π(NNS) × P(w(1) ∣ NNS)

π(VBZ) × P(w(1) ∣ VBZ)

: probability that a 
sentence starts with DT 
 

: probability 
that tag DT emits word w(1) 

π(DT)

P(w(1) ∣ DT)
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At any internal cell
– For each cell in the preceding column: multiply its Viterbi 

probability with the transition probability to the current cell. 
– Keep a single backpointer to the best (highest scoring) cell  

in the preceding column
–Multiply this score with the emission probability  

of the current word

14

w(n-1) w(n)

t1 P(w(1..n-1), t(n-1)=t1)
... ...
ti P(w(1..n-1), t(n-1)=ti)          
... ...
tT P(w(1..n-1), tn-1=tT)

P(ti |t1)

P(ti | ti)

P(ti | tT)

trellis[n][i].viterbi = 
 P(w(n) | ti) 

⋅Maxj( trellis[n-1][j].viterbi ⋅ P(ti |tj) )
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At the end of the sentence
In the last column (i.e. at the end of the sentence)
pick the cell with the highest entry, and trace back the 
backpointers to the first word in the sentence.

15
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w(1) w(2) ... w(i-1) w(i) w(i+1) ... w(N-1) w(N)

t1

...

tj

...

tT

 Retrieving t* = argmaxt P(t,w)

By keeping one backpointer from each cell to the cell  
in the previous column that yields the highest probability,  

we can retrieve the most likely tag sequence when we’re done. 
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Viterbi
Each cell trellis[i][j] (word w(i) with tag tj) contains:
— The Viterbi probability trellis[i][j].viterbi:  
     The maximum probability P(w(1)…w(i), t(1),…, t(i) = tj )  
     of any tag sequence that ends in  tj   for the prefix w(1)…(i)

— A backpointer trellis[i][j].backpointer = k*  
     to the cell trellis[i–1][k*] in the preceding column  
     that corresponds to the tag 
To fill trellis[i][j], find the best cell in the previous column (trellis[i–1][k*]) 
based on the previous column and the transition probabilities P(tj | tk)

k* for trellis[i][j] :=  Maxk ( trellis[i–1][k] ⋅ P(tj | tk) ) 
The entry in trellis[i][j] includes the emission probability P(w(i)| tj)


trellis[i][j] :=  P(w(i) | tj) ⋅ (trellis[i–1][k*] ⋅ P(tj | tk*))

We also associate a backpointer from trellis[i][j] to trellis[i–1][k*]
Finally, return the highest scoring entry in the last column of the trellis  
(= for the last word) and follow its backpointers

17
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Viterbi
trellis[i][j].viterbi (word w(j), tag tj) stores the probability 
of the best tag sequence for w(1)…w(i) that ends in tj 

trellis[i][j].viterbi = max P(w(1)…w(i), t(1)…, t(i) = tj )

We can recursively compute trellis[i][j].viterbi from the 
entries in the previous column trellis[i-1][j].viterbi
trellis[i][j].viterbi =   
        P(w(i)| tj) ⋅Maxk( trellis[i-1][k].viterbiP(tj | tk) ) 

At the end of the sentence, we pick the highest 
scoring entry in the last column of the trellis

18
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Janet will back the bill
DT
RB
NN
JJ
VB
MD

NNP

max
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Janet will back the bill
DT
RB
NN
JJ
VB
MD

NNP
max

Janet_NNP will_MD back_VB the_DT bill_NN
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The Viterbi algorithm
Viterbi( w1…n){ 

for t (1...T)  // INITIALIZATION: first column 
   trellis[1][t].viterbi = p_init[t] × p_emit[t][w1] 
for i (2...n){  // RECURSION: every other column 
    for t (1....T){ 
        trellis[i][t] = 0 
        for t’ (1...T){ 
             tmp = trellis[i-1][t’].viterbi × p_trans[t’][t] 
             if (tmp > trellis[i][t].viterbi){  
                  trellis[i][t].viterbi = tmp 
                  trellis[i][t].backpointer = t’}}  
        trellis[i][t].viterbi ×= p_emit[t][wi]}} 
t_max = NULL, vit_max = 0;  // FINISH: find the best cell in the last column 
for t (1...T) 
    if (trellis[n][t].vit > vit_max){t_max = t; vit_max = trellis[n][t].value } 
return unpack(n, t_max); 
}
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Viterbi for Trigram HMMs
In a Trigram HMM, transition probabilities are of the form:

P(t(i) = ti | t(i−1) = tj, t(i−2) = tk )
The i-th tag in the sequence influences the probabilities  
of the (i+1)-th tag and the (i+2)-th tag:
 … P(t(i+1) | t(i), t(i−1)) … P(t(i+2) | t(i+1), t(i))

Hence, each row in the trellis for a trigram HMM has to 
correspond to a pair of tags — the current and the preceding tag: 

(abusing notation)  
trellis[i]⟨j,k⟩: word w(i) has tag tj, word w(i−1) has tag tk

The trellis now has T2 rows.  
But we still need to consider only T transitions into each cell,  
since the current word’s tag is the next word’s preceding tag:
Transitions are only possible from trellis[i]⟨j,k⟩ to trellis[i+1]⟨l,j⟩

33
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The three basic problems for HMMs
Given an output sequence w=w(1)…w(N): 

w=“she promised to back the bill”
Problem I (Likelihood): find P(w | λ )

Given an HMM λ = (A, B, π), compute the likelihood  
of the observed output, P(w | λ )

Problem II (Decoding i.e. Tagging): find Q=q(1)..q(N) 
Given an HMM λ = (A, B, π), what is the most likely sequence 
of states Q=q(1)..q(N) ≈ t(1)...t(N)  to generate w?

Problem III (MLE Estimation): find argmax λ P(w | λ )
Find the parameters A, B, π  which maximize P(w | λ) 

 

34
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Dynamic programming algorithms for 
HMMs
I. Likelihood of the input:
Compute P(w| λ ) for an w and HMM λ 
⇒ Forward algorithm  

II. Decoding (=tagging) the input: 
Find best tags t*=argmaxt P(t | w,λ) for input w and HMM λ 
⇒ Viterbi algorithm  

III. Estimation (=learning the model): 
Find best model parameters λ*=argmax λ P(t, w | λ)  
for unlabeled training data w 
⇒ Forward-Backward algorithm

35
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Computing P(w): the Forward algorithm
To compute the probability of a sentence according  
to an HMM, we have to sum over all possible tag 
sequences: 

The Forward algorithm computes this sum efficiently:
Base case: For the first word in the sentence, and for each tag j:  
       

Recurrence: For any other word i, and for each tag j:  
       

End: For the last word in the sentence, and for all tags k:  
       

P(w) = ∑
t

P(w, t)

forward[1][ j] = π(tj)P(w(1) ∣ tj)

forward[i][ j] = P(w(i) ∣ tj)∑
k

forward[i−1][k]P(tj ∣ tk)

P(w) = ∑
k

forward[N][k]

36

Same as 
Viterbi, 

except sum 
instead of 

max


