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Today’s lecture

Part 1: Recurrent Neural Nets for various NLP tasks

Part 2: Practicalities:
Training RNNs
Generating with RNNs
Using RNNs in complex networks

Part 3: Changing the recurrent architecture
to go beyond vanilla RNNs:
LSTMs, GRUs
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Recurrent Neural Nets (RNNSs)

Feedforward nets can only handle inputs and
outputs that have a fixed size.

-

Recurrent Neural Nets (RNNs) handle variable
length sequences (as input and as output)

There are 3 main variants of RNNSs,
which differ in their internal structure:

Basic RNNs (Elman nets),
Long Short-Term Memory cells (LSTMs)

Gated Recurrent Units (GRUSs)

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/




RNNs in NLP

RNNS are used for...

... language modeling and generation, including...
... auto-completion and...
... machine translation

... Sequence classification (e.g. sentiment analysis)

... sequence labeling (e.g. POS tagging)
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Recurrent neural networks (RNNs)

Basic RNN: Generate a sequence of T outputs
by running a variant of a feedforward net T times.

Recurrence:

The hidden state computed at the previous step (h(t1)

is fed into the hidden state at the current step (h®)

With H hidden units, this requires additional H2 parameters

Time:t-1 —» t — t+1
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I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 6

input input




Basic RNNs

Each time step corresponds to a feedforward net
where the hidden layer gets its input not just from the
layer below but also from the activations of the hidden
layer at the previous time step

output
hidden
npu (@09

t—1 t t+1
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Basic RNNs

Each time step t corresponds to a feedforward net whose
hidden layer h(t) gets input from the layer below (x) and from

the output of the hidden layer at the previous time step h{t-1)
C Yt )

[
C hy )
L
C N1 ), C Xt )

p
Computing the vector of hidden states at time ¢

h® = g(Uh""" + Wx")
The i-th element of h: 1" = g< » Uih("™D + Z 14 x(f>>

\
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A basic RNN unrolled in time

\/
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RNNs for language modeling

If our vocabulary consists of V words, the output layer
(at each time step) has V units, one for each word.

The softmax gives a distribution over the V words
for the next word.

To compute the probability of string wOw® . wmwn+D)
(Where w® = <s>, and with) = <\s>), feed in w as input

at time step 1 and compute
n+1

HP(W(i) | w©. .w(i_l))
i=1
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RNNs for language generation

To generate wOw®, , wnw+D)
(Where w® = <s>, and w+h) = <\s>)...

...Give w© as first input, and

... Choose the next word according to the probability
Pw® | wO, yw=Dy

...Feed the predicted word w® in as input
at the next time step.

... Repeat until you generate <\s>
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RNNs for language generation

AKA "autoregressive generation”
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RNN for Autocompletion
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An RNN for Machine Translation
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Encoder-Decoder (seg2seq) model

Task: Read an input sequence
and return an output sequence

— Machine translation: translate source into target language
— Dialog system/chatbot: generate a response

Reading the input sequence: RNN Encoder
Generating the output sequence: RNN Decoder

Encoder - Decoder
00000030090
icder QQQQQQ}QQQ}OOO 000# OOO OOO
e Q Q Q ‘AA v m
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Encoder-Decoder (seg2seq) model

Encoder RNN:

reads in the input sequence

passes its last hidden state to the initial hidden state
of the decoder

Decoder RNN:

generates the output sequence
typically uses different parameters from the encoder
may also use different input embeddings
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RNNSs for sequence classification

If we just want to assign one label to the entire
sequence, we don’t need to produce output at each
time step, so we can use a simpler architecture.

We can use the hidden state of the last word

in the sequence as input to a feedforward net:

o
O

A
C

RNN

C X HCx% " H(C X C_ %1
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Basic RNNs for sequence labeling

Sequence labeling (e.g. POS tagging):
Assign one label to each element in the sequence.

RNN Architecture:
Each time step has a distribution over output classes

[ [LUTDD }[ Duﬂiﬂiuu M DDU:.‘:—LDD M DDDHZD:.D }[ DDHD$DDD }

RNN

A A A A

(_Janet ) C( will Y back ) ( the ) ( bill )

Extension: add a CRF layer to capture dependencies among labels of adjacent tokens.
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RNNSs for sequence labeling

In sequence labeling, we want to assign
a label or tag t() to each word w()

Now the output layer gives a (softmax) distribution

over the T possible tags,
and the hidden layer contains information
about the previous words and the previous tags.

To compute the probability of a tag sequence t®. . .tm
for a given string w).. . wm, feed in wl) (and possibly
t(-1) as input at time step i and compute

PO w®,, wi-D ¢, tGD)
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RNN Practicalities

This part will discuss how to train and use RNNSs.

We will also discuss how to go beyond basic RNNSs.

The last part used a simple RNN with one layer to illustrate
how RNNs can be used for different NLP tasks.

In practice, more complex architectures are common.

Three complementary ways to extend basic RNNs:

— Using RNNs in more complex networks
(bidirectional RNNs, stacked RNNSs) [This Part]

— Modifying the recurrent architecture
(LSTMs, GRUSs)

— Adding attention mechanisms
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Using RNNs in more
complex architectures




Stacked RNNs

We can create an RNN that has “vertical” depth
(at each time step) by stacking multiple RNNs:

C Y%
C_viy HC vy (Y D, Y
A A A
RNN 3
A A A A
RNN 2
A A A A
RNN 1
A A A A
X HC X% HC X ) C_xn )
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Bidirectional RNNs

Unless we need to generate a sequence, we can run
two RNNs over the input sequence,
one in the forward direction, and one in the backward direction.

Their hidden states will capture different context information
C vy HOC ¥ H(C _¥3 )

Py I Py I Py T Py I
RNN 2 (Right to Left) <{———————

A

A

RNN 1 (LefttoRighty —————————>

A A A A

X )X HY(C X3 ) ( X )
To obtain a single hidden state at time t: h(t) = h(t) 2 h(t)
where @ is typlcally concatenatlon
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Bidirectional RNNs for sequence classification

Combine...

...the forward RNN'’s hidden state for the last word, and
...the backward RNN’s hidden state for the first word
into a single vector

N4
o

L\

C—

N

C "1 back ) RNN 2 (Right to Left) <———
A A

RNN 1 (LefttoRighty T——————> ( Pp forw )
A

X Y X% H(C X3 C_*

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 25




Training and
Generating
Sequences with RNNs




How to generate with an RNN

Greedy decoding:
Always pick the word with the highest probability

(if you start from <s>, this only generates a single sentence)

Sampling:
Sample a word according to the given distribution

Beam search decoding:
Keep a number of hypotheses after each time step
— Fixed-width beam: keep the top k hypotheses

— Variable-width beam: keep all hypotheses whose
score is with a certain factor of the best score
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Beam Decoding (fixed width k=4)

Keep the k best options around at each time step.

Operate breadth-first: keep the k best next hypotheses among
the best continuations for each of the current k hypotheses.

Reduce beam width every time a sequence is completed (EOS)

<
A’Q( 40
g o g O et | et g
ACoICol e, | GO eosy
“lgn & (L EOS VEc
()] ¥
Jc| ™ eos “,
0 1 2 3 Q, 5 6 7
“¢
P
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Training RNNSs for generation

Maximum likelihood estimation (MLE):

Given training samples wPw® . W) find the parameters 6*
that assign the largest probability to these training samples:

0* = argmax ,Py(wDw® . .w) = argmax, H P w® | wD,  wi=D)
=1..T

Since P,(wMw® .. wD) is factored into P,(w? |wD) .. .w=D),
we can train models to assign a higher probability to

the word w'”) that occurs in the training data after w®.. w1
than any other word w; € V'

Ve i Po(w? | wD wl D) > Py(w, | ) wD)
This is also called teacher forcing.
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Teacher forcing

Each training sequence w'Vw® @)

turns into 7 training items:

Give wDw@ . wl=D as input to the RNN,
and train it to maximize the probability of w®

(as you would in standard classification,
or when training an n-gram language model).

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

30



Problems with teacher forcing

Exposure bias:
When we train an RNN for sequence generation, the prefix
yD. . 3D that we condition on comes from the original data

When we use an RNN for sequence generation, the prefix
y(l). : .y(’_l) that we condition on is also generated by the RNN,

— The model is run on data that may look quite different
from the data it was trained on.

— The model is not trained to predict the best next token
within a generated sequence, or to predict the best sequence

— Errors at earlier time-steps propagate through the sequence.
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Remedies

Minimum risk training:
(Shen et al. 2016, https://www.aclweb.org/anthology/P16-1159.pdf)

— define a loss function (e.g. negative BLEU) to compare
generated sequences against gold sequences

—Minimize risk (expected loss on training data) such that candidates
outputs with a smaller loss (higher BLEU score) have higher probability.

Reinforcement learning-based approaches:

(Ranzato et al. 2016 https://arxiv.org/pdf/1511.06732.pdf)
— use BLEU as a reward (i.e. like MRT)

— perhaps pre-train model first with standard teacher forcing.

GAN-based approaches (“professor forcing”)
(Goyal et al. 2016, http://papers.nips.cc/paper/6099-professor-forcing-a-
new-algorithm-for-training-recurrent-networks. pdf)

— combine standard RNN with an adversarial model that aims to
distinguish original from generated sequences

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 32




I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 33




RNN variants: LSTMs, GRUs

Long Short-Term Memory networks (LSTMs)
are RNNs with a more complex recurrent architecture

Gated Recurrent Units (GRUs)
are a simplification of LSTMs

Both contain “Gates” to control how much of the input
or previous hidden state to forget or remember

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 34




From RNNs to LSTMs

In Vanilla (EIman) RNNSs, the current hidden state h®
is a nonlinear function of the previous hidden state h¢-D
and the current input x:

h® = g(Uh""D + Wx® + b,

With g=tanh (the original definition):
=> Models suffer from the vanishing gradient problem:
they can’t be trained effectively on long sequences.

With g=RelLU
=> Models suffer from the exploding gradient problem:
they can’t be trained effectively on long sequences.
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From RNNs to LSTMs

LSTMs (Long Short-Term Memory networks)

were introduced to overcome the vanishing gradient problem.

Hochreiter and Schmidhuber, Neural Computation 9(8), 1997
https://www.bioinf.jku.at/publications/older/2604.pdf

Like RNNs, LSTMs contain a hidden state that gets passed
through the network and updated at each time step

LSTMs contain an additional cell state that also gets passed
through the network and updated at each time step

LSTMSs contain three different gates (input/forget/output)
that read in the previous hidden state and current input
to decide how much of the past hidden and cell states to keep.

These gates mitigate the vanishing/exploding gradient problem
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Recap: Activation functions

1.5
1 L

} -—/
0 V4

0.5

exp(2x) — 1

Hyperbolic Tangent: tanh(x) = el[-1,+1
yp g anh(x) xp(20) £ 1 [ ]

(

Rectified Linear Unit: ReLU(x) = max(0, x) € [0, +o0]

Sigmoid (logistic function): o(x) = e [0,1]
I + exp(—x)
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RNN variants: LSTMs, GRUs

Long Short-Term Memory networks (LSTMs) are RNNs
with a more complex recurrent architecture

Gated Recurrent Units (GRUs) are a simplification of LSTMs

Both contain “Gates” to control how much of the input or past
hidden state to forget or remember

a
A gate performs element-wise multiplication of

a) a d-dimensional sigmoid layer g
(all elements between 0 and 1), and

b) a d-dimensional input vector u

Result: d-dimensional output vector v which is like the input u,
but elements where gi= 0 are (partially) “forgotten”

\
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Gating mechanisms

Gates are trainable layers with a sigmoid activation function
often determined by the current input x® and the (last) hidden state h¢=1 eg.:

g = o(W;x" + Uh""V + b))
| 8 is a vector of (Bernoulli) probabilities (Vi : 0 < g, < 1)

Unlike traditional (0,1) gates, neural gates are differentiable (we can train them)

g is combined with another vector u (of the same dimensionality)
by element-wise multiplication (Hadamard product): v=g Q u

fg,~0,v,~0, andifg,~ 1, v, ® u,
Each g; has its own set of trainable parameters to determine how much of u; to keep

a
Gates can also be used to form
linear combinations of two input vectors t, u:

— Addition of two independent gates: v = g, ®t + g, Xu
— Linear interpolation (coupled gates): v =g @t + (1 — g) Xu
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Long Short-Term Memory Networks (LSTMSs)

(" )
—
\, )-’

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

At time 1, the LSTM cell reads in

— a c-dimensional previous cell state vector ct=D
— an h-dimensional previous hidden state vector h/="
— a ad-dimensional current input vector x()
At time 7, the LSTM cell returns
— a c-dimensional new cell state vector ¢!
— an h-dimensional new hidden state vector h”
(which may also be passed to an output layer)
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LSTM operations

Based on the previous cell state ¢~ | previous hidden state h/~!
and the current input X(t), the LSTM computes:

(.. Anew intermediate cell state & that depends on h®=1 and x®:

¢® = tanh(W x? + Uh""V + b )
f N
... Three gates ', i, 0\ which each depend on h®=" and x:
— The forget gate f\) = G(fo(t) + Ufh(t_l) + bf) decides
how much of the last ¢/~ to remember in the new cell state: f® & ¢~
— The input gate i) = 6<WiX(t) +Uh®D 4 bi) decides
how much of the intermediate ¢ to use in the new cell state: i ® ¢
— The output gate 0 = 6(W x® + U h“"V + b ) decides
how much of the new ¢ to use in the next hidden state: h® = o ® ¢

A

\_

>
The new cell state ¢ = tanh(f(t) R ¢V +id® E(t)) is a linear combination
of cell states ¢'~!) and & that depends on forget gate £ and input gate i

The new hidden state h® = 0 ® ¢ depends on ¢ and the output gate 0
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Gated Recurrent Units (GRUSs)

Based on h=V and x!, a GRU computes:

( ~
— areset gate r'”) to determine how much of h“=" to keep in h”

r = ¢(W,x?+Uh" +p)

. v

(_ an intermediate hidden state h® that depends on x® and r'Y ® h¢~ h
h® = ¢p(W,x? + U, @ h""V) + b,) [¢ = tanhor ReLU]

(_ an update gate z*) to determine how much of hY=Y to keep in h”
2" = 6(Wx” +UhD +5,)

~ ™)

— a new hidden state h"”) as a linear interpolation of K~ and h®
with weights determined by the (coupled) update gate 7\

h® = 20 @ h=D + (1 — z0) @ h®
\_ /

Cho et al. (2014) Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
https://arxiv.org/pdf/1406.1078.pdf
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LSTMs vs GRUs

LSTMs are more expressive than GRUs
and basic RNNs (they’re better at learning long-range
dependencies)

But GRUs are easier to train than LSTMs
(useful when training data is limited)
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