
CS447: Natural Language Processing
http://courses.engr.illinois.edu/cs447

Julia Hockenmaier
juliahmr@illinois.edu
3324 Siebel Center

Lecture 14:
Statistical Machine
Translation

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Part
 1: W

ord

Alig
nment

in t
he

IBM mode
ls

2

Lecture 14:  
Machine Translation II

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Statistical Machine Translation
Given a Chinese input sentence (source)… 
 主席：各位議員，早晨。
…find the best English translation (target)  
 President: Good morning, Honourable Members. 

We can formalize this as T* = argmaxT P(T | S)
 
Using Bayes Rule simplifies the modeling task,  
so this was the first approach for statistical MT  
(the so-called “noisy-channel model”):  
 T* = argmaxT P(T | S) = argmaxT P(S | T)P(T)
 where P(S | T): translation model
 P(T): language model

3

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

The noisy channel model
This is really just an application of Bayes’ rule: 
 

 

The translation model P(S | T) is intended to capture  
the faithfulness of the translation. [this is the noisy channel]

Since we only need P(S | T) to score S, and don’t need it to
generate a grammatical S, it can be a relatively simple model.
P(S | T) needs to be trained on a parallel corpus

The language model P(T) is intended to capture  
the fluency of the translation.

P(T) can be trained on a (very large) monolingual corpus

T* = argmaxT P(T ∣ S)
= argmaxT P(S ∣ T)

Translation Model

P(T)
⏟

Language Model

4

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

IBM models
First statistical MT models, based on noisy channel:

Translate from (French/foreign) source f to (English) target e
via a translation model P(f | e) and a language model P(e)
The translation model goes from target e to source f  
via word alignments a: P(f | e) = ∑a P(f, a | e)

Original purpose: Word-based translation models
Later: Were used to obtain word alignments,  
which are then used to obtain phrase alignments  
for phrase-based translation models  

Sequence of 5 translation models
Model 1 is too simple to be used by itself,  
but can be trained very easily on parallel data.

5

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

IBM translation models: assumptions
The model “generates” the ‘foreign’ source sentence f
conditioned on the ‘English’ target sentence e  
by the following stochastic process:

1. Generate the length of the source f  
 with probability p = ...

2. Generate the alignment of the source f  
 to the target e with probability p = ...

3. Generate the words of the source f  
 with probability p = ...

6

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Word alignment
John loves Mary. … that John loves Mary. 

Jean aime Marie. … dass John Maria liebt.

7

Jean aime Marie

John

loves

Mary

dass John Maria liebt

that

John

loves

Mary

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Word alignment

8

Maria no dió una bofetada a la bruja verde

Mary

did

not

slap

the

green

witch

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Word alignment

9

Marie a traversé le lac à la nage

Mary

swam

across

the

lake

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Word alignment

10

Ta
rg

et

Source
Marie a traversé le lac à la nage

Mary

swam

across

the

lake

One target word can be aligned to many source words.

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Word alignment

11

Ta
rg

et

Source
Marie a traversé le lac à la nage

Mary

swam

across

the

lake

One target word can be aligned to many source words.
But each source word can only be aligned to one target word.
This allows us to model P(source | target)

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Word alignment

12

Some source words may not align to any target words.

Ta
rg

et

Source
Marie a traversé le lac à la nage

Mary

swam

across

the

lake

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Some source words may not align to any target words.

Word alignment

13

Ta
rg

et

Source
Marie a traversé le lac à la nage

NULL

Mary

swam

across

the

lake

To handle this we assume a NULL word in the target sentence.

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Representing word alignments

14

1 2 3 4 5 6 7 8
Marie a traversé le lac à la nage

0 NULL
1 Mary
2 swam
3 across
4 the
5 lake

Position 1 2 3 4 5 6 7 8
Foreign Marie a traversé le lac à la nage

Alignment 1 3 3 4 5 0 0 2

Every source word f[i] is aligned to one target word e[j] (incl. NULL).  
We represent alignments as a vector a (of the same length as the
source) with a[i] = j

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Part
 2: T

he I
BM

alig
nment

mode
ls

15

Lecture 14:  
Machine Translation II

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Use the noisy channel (Bayes rule) to get the best
(most likely) target translation e for source sentence f: 
 

The translation model P(f | e) requires alignments a 
 
 

Generate f and the alignment a with P(f, a | e): 
 

m = #words
in fj

marginalize (=sum)
over all alignments a

The IBM models

16

noisy channel
arg max

e
P (e|f) = arg max

e
P (f |e)P (e)

P (f |e) =
�

a⇥A(e,f)

P (f ,a|e)

P (f ,a|e) = P (m|e)⇧ ⌅⇤ ⌃
Length: |f |=m

m⇥

j=1

P (aj |a1..j�1, f1..j�1, m, e)
⇧ ⌅⇤ ⌃

Word alignment aj

P (fj |a1..jf1..j�1, e, m)
⇧ ⌅⇤ ⌃

Translation fj

arg max
e

P (e|f) = arg max
e

P (f |e)P (e)

P (f |e) =
�

a⇥A(e,f)

P (f ,a|e)

P (f ,a|e) = P (m|e)⇧ ⌅⇤ ⌃
Length: |f |=m

m⇥

j=1

P (aj |a1..j�1, f1..j�1, m, e)
⇧ ⌅⇤ ⌃

Word alignment aj

P (fj |a1..jf1..j�1, e, m)
⇧ ⌅⇤ ⌃

Translation fj

probability of
alignment aj

probability
of word fj

arg max
e

P (e|f) = arg max
e

P (f |e)P (e)

P (f |e) =
�

a⇥A(e,f)

P (f ,a|e)

P (f ,a|e) = P (m|e)⇧ ⌅⇤ ⌃
Length: |f |=m

m⇥

j=1

P (aj |a1..j�1, f1..j�1, m, e)
⇧ ⌅⇤ ⌃

Word alignment aj

P (fj |a1..jf1..j�1, e, m)
⇧ ⌅⇤ ⌃

Translation fj

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Position 1 2 3 4 5 6 7 8
Alignment 1 3 3 4 5 0 0 2

0 1 2 3 4 5
NULL Mary swam across the lake

IBM model 1: Generative process
For each target sentence e = e1..en of length n:  
 
 

1. Choose a length m for the source sentence (e.g m = 8)
 
2. Choose an alignment a = a1...am for the source sentence
Each aj corresponds to a word ei in e: 0 ≤ aj ≤ n
 
 

3. Translate each target word eaj into the source language

17

0 1 2 3 4 5
NULL Mary swam across the lake

Position 1 2 3 4 5 6 7 8
Alignment 1 3 3 4 5 0 0 2
Translation Marie a traversé le lac à la nage

Position 1 2 3 4 5 6 7 8
Alignment 1 3 3 4 5 0 0 2

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Model parameters
Length probability P(m | n):

What’s the probability of generating a source sentence of
length m given a target sentence of length n?  
Count in training data, or use a constant

Alignment probability: P(a | m, n):
Model 1 assumes all alignments have the same probability:
For each position a1...am, pick one of the n+1 target positions
uniformly at random

Translation probability: P(fj = lac | aj = i, ei = lake):
In Model 1, these are the only parameters we have to learn.

18

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

IBM model 1: details
The length probability is constant: P(m | e) = ε
The alignment probability is uniform 
(n = length of target string): P(ai | e) = 1/(n+1)
The translation probability depends only on eai  
(the corresponding target word): P(fi | eai)

19

P (f ,a|e) = P (m|e)⌅ ⇤⇥ ⇧
Length: |f |=m

m�

j=1

P (aj |a1..j�1, f1..j�1, m, e)
⌅ ⇤⇥ ⇧

Word alignment aj

P (fj |a1..jf1..j�1, e, m)
⌅ ⇤⇥ ⇧

Translation fj

= �
m�

j=1

1
n + 1

P (fj |eaj)

=
�

(n + 1)m

m�

j=1

P (fj |eaj)
All alignments have
the same probability

Translation depends
only on the aligned

English word

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Finding the best alignment
How do we find the best alignment between e and f?

20

â = arg max
a

P (f ,a|e)

= arg max
a

�

(n + 1)m

m�

j=1

P (fj |eaj)

= arg max
a

m�

j=1

P (fj |eaj)

âj = arg max
aj

P (fj |eaj)

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Learning translation probabilities
The only parameters that need to be learned are the
translation probabilities P(f | e)
 P(fj = lac | ei = lake)

If the training corpus had word alignments, we could
simply count how often ‘lake’ is aligned to ‘lac’:
 P(lac | lake) = count(lac, lake) ⁄ ∑w count(w, lake)
But we don’t have gold word alignments.

So, instead of relative frequencies, we have to use
expected relative frequencies:
 P(lac | lake) = 〈count(lac, lake)〉 ⁄ 〈∑w count(w, lake)〉

21

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Training Model 1 with EM
The only parameters that need to be learned are the
translation probabilities P(f | e)  

We use the EM algorithm to estimate these parameters 
from a corpus with S sentence pairs s = 〈 f (s), e(s)〉 with
alignments A(f (s), e(s))

Initialization: guess P(f | e)
Expectation step: compute expected counts  
 

Maximization step: recompute probabilities P(f |e)

22

P̂ (f |e) =
�c(f, e)⇥�
f ��c(f �, e)⇥

�c(f, e)⇥ =
�

s�S

�c(f, e|e(s), f (s))⇥

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Expectation-Maximization (EM)
1. Initialize a first model, M(0)  

2. Expectation (E) step:  
Go through training data to gather expected counts
〈count(lac, lake)〉

3. Maximization (M) step:  
Use expected counts to compute a new model M(i+1)
P(i+1)(lac | lake) = 〈count(lac, lake)〉 ⁄ 〈∑w count(w, lake)〉

4. Check for convergence: 
Compute log-likelihood of training data with Mi+1  
If the difference between new and old log-likelihood
smaller than a threshold, stop. Else go to 2.

23

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

The E-step

24

Compute the expected count ⇥c(f, e|f , e)⇤:

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

P (a|f , e) · c(f, e|a, e, f)⌥ ⌃⇧ �
How often are f,e aligned in a?

P (a|f , e) =
P (a, f |e)
P (f |e)

=
P (a, f |e)�
a� P (a�, f |e)

P (a, f |e) =
⌅

j

P (fj |eaj)

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

⇥
j P (fj |eaj)�

a�
⇥

j P (fj |ea�
j
)

· c(f, e|a, e, f)

Compute the expected count ⇥c(f, e|f , e)⇤:

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

P (a|f , e) · c(f, e|a, e, f)⌥ ⌃⇧ �
How often are f,e aligned in a?

P (a|f , e) =
P (a, f |e)
P (f |e)

=
P (a, f |e)�
a� P (a�, f |e)

P (a, f |e) =
⌅

j

P (fj |eaj)

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

⇥
j P (fj |eaj)�

a�
⇥

j P (fj |ea�
j
)

· c(f, e|a, e, f)

Compute the expected count ⇥c(f, e|f , e)⇤:

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

P (a|f , e) · c(f, e|a, e, f)⌥ ⌃⇧ �
How often are f,e aligned in a?

P (a|f , e) =
P (a, f |e)
P (f |e)

=
P (a, f |e)�
a� P (a�, f |e)

P (a, f |e) =
⌅

j

P (fj |eaj)

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

⇥
j P (fj |eaj)�

a�
⇥

j P (fj |ea�
j
)

· c(f, e|a, e, f)

Compute the expected count ⇥c(f, e|f , e)⇤:

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

P (a|f , e) · c(f, e|a, e, f)⌥ ⌃⇧ �
How often are f,e aligned in a?

P (a|f , e) =
P (a, f |e)
P (f |e)

=
P (a, f |e)�
a� P (a�, f |e)

P (a, f |e) =
⌅

j

P (fj |eaj)

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

⇥
j P (fj |eaj)�

a�
⇥

j P (fj |ea�
j
)

· c(f, e|a, e, f)

Compute the expected count ⇥c(f, e|f , e)⇤:

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

P (a|f , e) · c(f, e|a, e, f)⌥ ⌃⇧ �
How often are f,e aligned in a?

P (a|f , e) =
P (a, f |e)
P (f |e)

=
P (a, f |e)�
a� P (a�, f |e)

P (a, f |e) =
⌅

j

P (fj |eaj)

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

⇥
j P (fj |eaj)�

a�
⇥

j P (fj |ea�
j
)

· c(f, e|a, e, f)

We need to know , the probability that word fj
is aligned to word eaj under the alignment a

Compute the expected count ⇥c(f, e|f , e)⇤:

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

P (a|f , e) · c(f, e|a, e, f)⌥ ⌃⇧ �
How often are f,e aligned in a?

P (a|f , e) =
P (a, f |e)
P (f |e)

=
P (a, f |e)�
a� P (a�, f |e)

P (a, f |e) =
⌅

j

P (fj |eaj)

⇥c(f, e|f , e)⇤ =
⇤

a⇥A(f ,e)

⇥
j P (fj |eaj)�

a�
⇥

j P (fj |ea�
j
)

· c(f, e|a, e, f)

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Other translation models
Model 1 is a very simple (and not very good) translation model.
 
IBM models 2-5 are more complex. They take into account:
– “fertility”: the number of foreign words 

generated by each target word
– the word order and string position of the aligned words

25

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Part
 3:

Phra
se-b

ased

tran
slati

on m
ode

ls

26

Lecture 14:  
Machine Translation II

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Phrase-based translation models
Assumption: fundamental units of translation are phrases: 
 
 
 

Phrase-based model of P(F | E):
1. Split target sentence deterministically into phrases ep1...epn
2. Translate each target phrase epi into source phrase fpi  
with translation probability φ(fpi |epi)
3. Reorder foreign phrases with distortion probability  
d(ai-bi-1) = c|ai-bi-1 -1|
ai = start position of source phrase generated by ei
bi-1 = end position of source phrase generated by ei-1

27

主席：各位議員，早晨。 

President (in Cantonese): Good morning, Honourable Members. 

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Phrase-based models of P(f | e)
Split target sentence e=e1..n into phrases ep1..epN:

 [The green witch] [is] [at home] [this week]

Translate each target phrase epi into source phrase
fpi with translation probability P(fpi |epi):
 [The green witch] = [die grüne Hexe], ... 

Arrange the set of source phrases { fpi } to get s
with distortion probability P(fp |{ fpi }):  
 [Diese Woche] [ist] [die grüne Hexe] [zuhause]

28

P (f |e = ⇤ep1, ..., epl) =
�

i

P (fpi|epi)P (fp|{fpi})

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Translation probability P(fpi | epi)
Phrase translation probabilities can be obtained from a
phrase table: 
 
 
 
 
 
 
 
 

This requires phrase alignment

29

EP FP count
green witch grüne Hexe …
at home zuhause 10534
at home daheim 9890
is ist 598012
this week diese Woche ….

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Word alignment

30

Diese Woche ist die grüne Hexe zuhause

The

green

witch

is

at

home

this

week

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

 Phrase alignment

31

Diese Woche ist die grüne Hexe zuhause

The

green

witch

is

at

home

this

week

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Obtaining phrase alignments
We’ll skip over details, but here’s the basic idea:  

For a given parallel corpus (F—E)
1. Train two word aligners, (F→E and E→F)
2. Take the intersection of these alignments  
 to get a high-precision word alignment
3. Grow these high-precision alignments  
 until all words in both sentences are included  
 in the alignment.

Consider any pair of words in the union of the alignments, and
incrementally add them to the existing alignments

4. Consider all phrases that are consistent with  
 this improved word alignment

32

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Part
 4: De

cod
ing

(for
 phr

ase-

base
d M

T)

33

Lecture 14:  
Machine Translation II

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Phrase-based models of P(f | e)
Split target sentence e=e1..n into phrases ep1..epN:

 [The green witch] [is] [at home] [this week]

Translate each target phrase epi into source phrase
fpi with translation probability P(fpi |epi):
 [The green witch] = [die grüne Hexe], ... 

Arrange the set of source phrases { fpi } to get s
with distortion probability P(fp |{ fpi }):  
 [Diese Woche] [ist] [die grüne Hexe] [zuhause]

34

P (f |e = ⇤ep1, ..., epl) =
�

i

P (fpi|epi)P (fp|{fpi})

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Translating
How do we translate a foreign sentence (e.g. “Diese
Woche ist die grüne Hexe zuhause”) into English?
–We need to find ê = argmaxe P(f | e)P(e)
–There is an exponential number of candidate
translations e
– But we can look up phrase translations ep and  

P(fp | ep) in the phrase table:

35

diese Woche ist die grüne Hexe zuhause
this 0.2 week 0.7 is 0.8 the 0.3 green 0.3 witch 0.5 at home 1.00.5

these 0.5 the green 0.4 sorceress 0.6
this week 0.6 green witch 0.7

is this week 0.4 the green witch 0.7

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Generating a (random) translation
1. Pick the first Target phrase ep1 from the candidate list.

 P := PLM(<s> ep1)PTrans(fp1 | ep1)
 E = the, F= <….die…>

2. Pick the next target phrase ep2 from the candidate list
 P := P × PLM(ep2 | ep1)PTrans(fp2 | ep2)
 E = the green witch, F = <….die grüne Hexe...>
3. Keep going: pick target phrases epi until the entire source
sentence is translated
 P := P × PLM(epi | ep1…i-1)PTrans(fpi | epi)
 E = the green witch is, F = <….ist die grüne Hexe...>

36

diese Woche ist die grüne Hexe zuhause
this 0.2 week 0.7 is 0.8 the 0.3 green 0.3 witch 0.5 at home 0.5

these 0.5 the green 0.4 sorceress 0.6
this week 0.6 green witch 0.7

is this week 0.4 the green witch 0.7

1

4 2

3 5

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Finding the best translation
How can we find the best translation efficiently?

There is an exponential number of possible translations. 

We will use a heuristic search algorithm
We cannot guarantee to find the best (= highest-scoring)
translation, but we’re likely to get close.

We will use a “stack-based” decoder
(If you’ve taken Intro to AI: this is A* (“A-star”) search)
We will score partial translations based on how good we
expect the corresponding completed translation to be.
Or, rather: we will score partial translations on how bad we expect the
corresponding complete translation to be.  
That is, our scores will be costs (high=bad, low=good)

37

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Scoring partial translations
Assign expected costs to partial translations (E, F):

expected_cost(E,F) = current_cost(E,F)
 + future_cost(E,F)

The current cost is based on the score  
of the partial translation (E, F)
 e.g. current_cost(E,F) = logP(E)P(F | E)
The (estimated) future cost is a lower bound on the
actual cost of completing the partial translation (E, F):

true_cost(E,F) (= current_cost(E,F) + actual_future_cost(E,F))
≥ expected_cost(E,F) (= current_cost(E,F) + est_future_cost(E,F))

because actual_future_cost(E,F) ≥ est_future_cost(E,F)
(The estimated future cost ignores the distortion cost)

38

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

Stack-based decoding
Maintain a priority queue (=’stack’) of partial translations
(hypotheses) with their expected costs.
Each element on the stack is open (we haven’t yet pursued this
hypothesis) or closed (we have already pursued this hypothesis) 

At each step:
—Expand the best open hypothesis (the open translation with
the lowest expected cost) in all possible ways.
—These new translations become new open elements  
on the stack.
—Close the best open hypothesis. 

Additional Pruning (n-best / beam search):  
Only keep the n best open hypotheses around

39

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

E:
F: *******
Cost: 999

Stack-based decoding

40

E: these
F: d******
Cost: 852

E: the
F: ***d***
Cost: 500

E: at home
F: ******z
Cost: 993

...

...

E: current translation
F: which words in F
F: have we covered?

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

E:
F: *******
Cost: 999

Stack-based decoding

41

E: these
F: d******
Cost: 852

E: the
F: ***d***
Cost: 500

E: at home
F: ******z
Cost: 993

...

...

E:
F: *******
Cost: 999

We’re done with this
node now (all
continuations have a
lower cost)

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

E:
F: *******
Cost: 999

Stack-based decoding

42

E: these
F: d******
Cost: 852

E: the
F: ***d***
Cost: 500

E: at home
F: ******z
Cost: 993

...

...

E:
F: *******
Cost: 999

Expand one of these
new yellow nodes
next

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

E:
F: *******
Cost: 999

Stack-based decoding

43

E: these
F: d******
Cost: 852

E: the
F: ***d***
Cost: 500

E: at home
F: ******z
Cost: 993

...

...

E: the witch
F: ***d*H*
Cost: 700

E: the green witch
F: ***dgH*
Cost: 560

...

...

E:
F: *******
Cost: 999

E: the at home
F: ***d*H*
Cost: 983

E: the
F: ***d***
Cost: 500

Expand the yellow
node with the lowest
cost

CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/

E:
F: *******
Cost: 999

Stack-based decoding

44

E: these
F: d******
Cost: 852

E: the
F: ***d***
Cost: 500

E: at home
F: ******z
Cost: 993

...

...

E: the witch
F: ***d*H*
Cost: 700

E: the green witch
F: ***dgH*
Cost: 560

...

...

E: the at home
F: ***d*H*
Cost: 983

E:
F: *******
Cost: 999

E: the
F: ***d***
Cost: 500

E: the green witch
F: ***dgH*
Cost: 560

Expand the next node  
with the lowest cost

