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What have you learned in this class?

— What ts NLP?
The core tasks (as well as data sets and
evaluation metrics) that people work on in NLP

— How does NLP work?
The fundamental models, algorithms and representations
that have been developed for these tasks

o Why ts NL? hard?
The relevant linguistic concepts and phenomena
that have to be handled to do well at these tasks
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The focus of this class

We want to identify the structure and meaning

of words, sentences, texts and conversations
N.B.: we do not deal with speech (no signal processing)

We mainly deal with language analysis/understanding,
and less with language generation/production

We focus on fundamental concepts, methods, models,

and algorithms, not so much on current research:
Data (natural language): linguistic concepts and phenomena
Representations: grammars, automata, etc.
Neural and statistical models over these representations
Learning & inference algorithms for these models
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Why is natural language hard?

Ambiguity:
What does “I made her duck” mean?
Ambiguity exists at all levels (lexical, syntactic, referential,...)

Coverage:

What does “/ made her duck cassoulet” mean?
Zipf’s Law: there is a long tail of rare/unknown words

NLP still mostly relies on supervised learning,
(which requires large annotated datasets)
and/or pre-training on raw text

(which requires vast amounts of data)
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Why is NLP hard?

NLP still mostly relies on supervised learning,
(which requires large annotated datasets)
and/or pre-training on raw text

(which requires vast amounts of data)

Supervised learning doesn’t generalize well
to out-of-domain data

In NLP: out-of-domain = different genres (news vs. blogs, social media,
scientific papers, written vs spoken language), registers (formal vs.
colloquial), dialects (British vs. US, AAE, Indian English), or time periods.

NLP annotations have to be designed

There are many design choices to be made: what do you want to
represent, how fine-grained should the labels be?

We don’t know a priori what style of annotation is most useful,
or easiest to predict
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What is language understanding?

The abillity to...
... answer gquestions about a text
Example: Question answering
... draw (logical/commonsense) inferences:
Example: Entailment recognition
... connect language to the world:
Example: Image Description
... communicate with others to perform a task
Example: Grounded dialogue
for instruction giving and following
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Language understanding as the ability
to answer questions about text

More than a decade ago, Carl LLewis stood on the threshold of what was
to become the greatest athletics career in history. He had just broken
two of the legendary Jesse Owens' college records, but never believed
he would become a corporate icon, the focus of hundreds of millions of
dollars 1n advertising. His sport was still nominally amateur.

Eighteen Olympic and World Championship gold medals and 21 world
records later, [Lewis has become the richest man in the history of track
and field — a multi-millionaire.

Who is Carl Lewis?

Did Carl Lewis break any world records?

(and how do you know that?)

Is Carl Lewis wealthy? What about Jesse Owens?
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Language understanding as
the ability to draw inferences

People are shopping
IN a supermarket

They are standing or vvalkmg.
They are pushing ..
shopping carts. .
They are in an indoor space
There are aisles of shelves

They are sitting at desks
They are walking
onthe street. L.
They are buying Clothes
They are at home.




Language understanding as
the ability to describe the world

People are shopping
IN a supermarket




Language understanding as
the ability to give or follow instructions

<Architect> Perfect, just mkae them both 1 block taller




Huge language models solve NLP?

A language model can be used to generate (produce) text

Massive neural language models trained on vast amounts of text
have been developed in the last few years

Most recent incarnation: GPT-3 (175B parameters, trained on 300B tokens)

But these models have no access to meaning.
See also Bender & Koller "20 for a critique https://www.aclweb.org/anthology/

2020.acl-main.463.pdf

Human Prompt (given to GPT-3)
At the party, I poured myself a glass of lemonade,
but it turned out to be too sour, so I added a
little sugar.
I didn’t see a spoon handy, so I stirred it with a
GPT-3, Bloviator: cigarette. But that turned out to be a bad idea
OpenAl’s language because
gehne':a,tor hqs noidea [GPT-3’s generated continuation]
whatit’s talking about it kept falling on the floor. That’s when he
- - decided to start the Cremation Association of
by Gary Marcus and Ermest Davis Augusi 22,2020 North America, which has become a major cremation
provider with 145 locations.

Opinion

https://www.technologyreview.com/

2020/08/22/1007539/gpt3-openai- from Marcus & Davis '20
language-generator-artificial-intelligence- https://www.technologyreview.com/2020/08/22/1007539/gpt3-openai-language-generator-artificial-intelligence-
ai-opinion/ ai-opinion/
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What are the “next big things”™?

Core NLP is still not “solved”
— What is the role of linguistics and/or linguistically inspired annotations?

— A lot of our current techniques (BERT etc.) only work when vast amounts
of text and computing resources are available (not true outside of a few

big tech companies, or for most languages of the world)
— Situated language understanding/generation are still very difficult
— Our ability to automatically draw inferences from text is still limited

NLP works well enough to have real-world uses

— But applying NLP techniques in any new domain typically
requires some amount of manually annotated training and test

data (which requires both domain and NLP expertise)
— We need to grapple with ethical implications
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Addendum: NLP toolkits

nttps://opennlp.apache.org
nttps://spacy.io

nttps://www.nltk.org
nttps://allennlp.org
nttps://stanfordnlp.qgithub.io/CoreNLP/
nttps://gate.ac.uk
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How many different words are there?

Inflection creates different forms of the same word:

Verbs: to be, being, I am, you are, he is, I was,
Nouns: one book, two books

Derivation creates different words from the same lemma:
grace = disgrace = disgraceful = disgracefully

Compounding combines two words into a new word:
cream => ice cream => ice cream cone = ice cream cone bakery

Word formation is productive:
New words are subject to all of these processes:
Google = Googler, to google, to ungoogle, to misgoogle,
googlification, ungooglification, googlified, Google Maps, Google
Maps service,...
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Zigf’s law: the long talil

Hov/ many words occur once, twice, 100 times, 1000 times?

100000 —— — —

| A few words
10000 are very frequent

the r-th most
common word w;

1000 |

Most words
are very rare

100 %gﬁ

Word frequency (log-scale)

10 |

1

1 10
English words, sorted by frequency (log-scale)
W1 = the, wWa = to, ...., W5346 = computer, ...

TOU00 100000

In natural language:
A small number of events (e.g. words) occur with high frequency
A large number of events occur with very low frequency
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Implications of Zipf's Law for NLP

The good:
Any text will contain a number of words that are very common.

We have seen these words often enough that we know (almost)
everything about them. These words will help us get at the
structure (and possibly meaning) of this text.

The bad:

Any text will contain a number of words that are rare.

We know something about these words, but haven’t seen them

often enough to know everything about them. They may occur

with a meaning or a part of speech we haven’t seen before.
The ugly:

Any text will contain a number of words that are unknown to us.

We have never seen them before, but we still need to get at the
structure (and meaning) of these texts.
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Dealing with the bad and the ugly

Our systems need to be able to generalize
from what they have seen to unseen events.

There are two (complementary) approaches

to generalization:
— Linguistics provides us with insights about the rules and
structures in language that we can exploit in the (symbolic)

representations we use
E.g.: a finite set of grammar rules is enough to describe an infinite language

— Machine Learning/Statistics allows us to learn models
(and/or representations) from real data that often work well

empirically on unseen data
E.g. most statistical or neural NLP
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How do we represent words?

Option 1: Words are atomic symbols
— Each (surface) word form is its own symbol
— Add some generalization by mapping

different forms of a word to the same symbol

— Normalization: map all variants of the same word (form)
to the same canonical variant (e.g. lowercase everything,
normalize spellings, perhaps spell-check)

—Lemmatization: map each word to its lemma
(esp. in English, the lemma is still a word in the language,
but lemmatized text is no longer grammatical)

— Stemming: remove endings that differ among word forms
(no guarantee that the resulting symbol is an actual word)
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How do we represent words?

Option 2: Represent the structure of each word
“books” => “book N pl” (or “book V 3rd sg”)

This requires a morphological analyzer (more later today)

The output is often a lemma (“book”)
plus morphological information (“N pl” i.e. plural noun)

This is particularly useful for highly inflected languages, e.g.

Czech, Finnish, Turkish, etc. (less so for English or Chinese):

In Czech, you might need to know that nejnezajimavejsim
is a regular, feminine, plural, dative adjective in the superlative.
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How do we represent unknown words?

Many NLP systems assume a fixed vocabulary, but still have
to handle out-of-vocabulary (OOV) words.

Option 1: the UNK token

Replace all rare words (with a frequency at or below a given threshold, e.g. 2,
3, or 5) in your training data with an UNK token (UNK = “Unknown word”).
Replace all unknown words that you come across after training (including rare
training words) with the same UNK token

Option 2: substring-based representations

[often used in neural models]

Represent (rare and unknown) words [“Champaign”] as sequences of
characters [‘'C’, ‘h’, ‘a’,...,’g’, 'n'] or substrings [‘Ch”, “amp”, “ai”, “gn”]
Byte Pair Encoding (BPE): learn which character sequences

are common in the vocabulary of your language, and treat those

common sequences as atomic units of your vocabulary
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What do words mean,
and how do we represent that?

oS -
~ P S

[ ... cassoulet ... }

>

Do we want to represent that...
... “cassoulet” is a French dish?
... “cassoulet” contains meat?
... “‘cassoulet” is a stew?
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What do words mean,
and how do we represent that?

o
L~ e SoYPN

... bar ...

Do we want to represent...
.. that a “bar” are places to have a drink?
.. that a “bar” is a long rods?
.. that to “bar” something means to block it?
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What does this word mean?

This plant needs to be watered each day.
= living plant

This plant manufactures 1000 widgets each day.
= factory

Word Sense Disambiguation (WSD):

|dentify the sense of content words (nouns, verbs,

adjectives) in context (assuming a fixed inventory of word
senses).

Presumes the words to classify have a discrete set of
senses.
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Different approaches
to lexical semantics

Roughly speaking, NLP draws on two different types
of approaches to capture the meaning of words:

The lexicographic tradition aims to capture the
information represented in lexicons, dictionaries, etc.

The distributional tradition aims to capture the
meaning of words based on large amounts of raw text
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WordNet

Very large lexical database of English:
110K nouns, 11K verbs, 22K adjectives, 4.5K adverbs
(WordNets for many other languages exist or are under construction)

Word senses grouped into synonym sets (“synsets”) linked
into a conceptual-semantic hierarchy
81K noun synsets, 13K verb synsets, 19K adj. synsets, 3.5K adv synsets
Avg. # of senses: 1.23 nouns, 2.16 verbs, 1.41 adj, 1.24 adverbs

Conceptual-semantic relations: hypernym/hyponym

also holonym/meronym
Also lexical relations, in particular lemmatization

Available at http://wordnet.princeton.edu
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Language understanding requires knowing

when words have similar meanings

Question answering:

Q: “How ftall is Mt. Everest?”

Candidate A: “The official height of Mount Everest is 29029 feet”

“tall” is similar to “height”

Plagiarism detection

MAINFRAMES MAINFRAMES
Mainframes are primarily referred to large Mainframes usually are referred those

computers with rapid, advanced
processing capabilities that can
execute and perform tasks equivalent
to many Personal Computers (PCs)
machines networked together. Itis
characterized with high quantity
Random Access Memory (RAM), very
large secondary storage devices, and
high-speed processors to cater for the
needs of the computers under its
service.

Consisting of advanced components,
mainframes have the capability of
running multiple large applications
required by many and most enterprises
and organizations. This is one of its
advantages. Mainframes are also
suitable to cater for those applications
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computers with fast, advanced
processing capabilities that could
perform by itself tasks that may require
a lot of Personal Computers (PC)
Machines. Usually mainframes would
have lots of RAMs, very large
secondary storage devices, and very
fast processors to cater for the needs
of those computers under its service.

Due to the advanced components

mainframes have, these computers
have the capability of running multiple
large applications required by most
enterprises, which is one of its
advantage. Mainframes are also
suitable to cater for those applications
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The Distributional Hypothesis

Zellig Harris (1954):

“oculist and eye-doctor ... occur in almost the same
environments”

“If A and B have almost identical environments we say that
they are synonyms.”

John R. Firth 1957:

You shall know a word by the company it keeps.

The contexts in which a word appears
tells us a lot about what it means.

Words that appear in similar contexts have similar meanings
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Two ways NLP uses context for semantics

Distributional similarities (vector-space semantics):
Use the set of all contexts in which words
(= word types) appear to measure their similarity

Assumption: Words that appear in similar contexts (tea, coffee)
have similar meanings.

Word sense disambiguation

Use the context of a particular occurrence of a word
(token) to identify which sense it has.

Assumption: If a word has multiple distinct senses

(e.g. plant. factory or green plant), each sense will
appear in different contexts.

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 32




How do we represent words
to capture word similarities?

As atomic symbols?

[e.g. as in a traditional n-gram language model, or
when we use them as explicit features in a classifier]

This is equivalent to very high-dimensional one-hot vectors:
aardvark=[1,0,...,0], bear=[0,1,000],..., zebra=|o,...,0,1]

No: height/tall are as different as height/cat

~

As very high-dimensional sparse vectors?
[to capture so-called distributional similarities]

As lower-dimensional dense vectors?
[“word embeddings” — important prerequisite for neural NLP]
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What is the structure
of a sentence?

( . - N
Sentence structure is hierarchical:

A sentence consists of words (I, eat, sushi, with, tuna)
...which form phrases or constituents: “sushi with tuna”

(

Sentence structure defines dependencies
between words or phrases:

VY

[I[ eat[sushi [with tunal]] ]
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Constituents:
Heads and dependents

There are different kinds of constituents:
Noun phrases: the man, a girl with glasses, Illinois ===
Prepositional phrases: with glasses, in the garden |oversimpiiication.

. Some phrases (John,
Verb phrases: eat sushi, sleep, sleep soundly Kim and Mary) have

multiple heads, others

(I like coffee and [you
tea]) perhaps don't

Every phrase has one head—= —even have a head
Noun phrases: the man, a girl with glasses, I1linois [ng: some linguists think

the argument-adjunct

Prepos“ional phraseS: Wl—th glasses, m the garden distinction isn’t always
Verb phrases: eat SllShi, sleep, sleep SOU.Ildly clear-cut, and there are

some cases tha}t could
The other parts are its dependents. e reated as ohon or
Dependents are either arguments or adjuncts

something in-between
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Arguments are obligatory

Words subcategorize for specific sets of arguments:

Transitive verbs (sbj + obj): [John] likes [Mary]
The set/list of arguments is called a subcat frame

All arguments have to be present:
*[John] likes.  *likes [Mary].

No argument slot can be occupied multiple times:
*[John] [Peter] likes [Ann] [Mary].

Words can have multiple subcat frames:

Transitive eat (sbj + obj): [John] eats [sushi].
Intransitive eat (sbj): [John] eats
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Adjuncts (modifiers) are optional

Adverbs, PPs and adjectives can be adjuncts

Adverbs: John runs [fast].
a [very] heavy book.
PPs:  John runs [in the gym].

the book [on the table]
Adjectives: a [heavy] book

There can be an arbitrary number of adjuncts:
John saw Mary.
John saw Mary [yesterday].
John saw Mary [yesterday] [in town]
John saw Mary [yesterday] [in town] [during lunch]
[Perhaps] John saw Mary [yesterday] [in town] [during lunch]
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Context-free grammars (CFGs) define
phrase structure trees

~
NP — I
NP —> sushi
NP — tuna
NP — NP PP
P — with
PP — P NP
S — NP VP
VvV — eat
VP — V NP
-

S
NP

NP Vv NP P~ NP

eat sushi  with tuna

NP: Noun Phrase

P: Preposition

S: Sentence

PP: Prepositional Phrase
Vv: Verb

VP: Verb Phrase

Leaf nodes (I, eat, ...) correspond to
the words in the sentence

Intermediate nodes (NP, VP, PP)
span substrings (= the yield of the
node), and correspond to nonterminal
constituents

The root spans the entire sentence
and is labeled with the start symbol
of the grammar (here, S)
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Dependency grammar

f

DGs describe the structure of sentences

as a directed acyclic graph.
The nodes of the graph are the words
The edges of the graph are the dependencies.
Edge labels indicate different dependency types.

Typically, the graph is assumed to be a tree.

sbj obj
: eat susili.

Note: the relationship between DG and CFGs:
If a CFG phrase structure tree is translated into DG,
the resulting dependency graph has no crossing edges.
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From CFGs to dependencies

p
S—_
/ VP
\NP
// >PP
NP Vv NP P “NP
| eat sushi with tuna

CFG (bold = head child):

S — NP VP
VP —~ VNP
NP — NP PP
PP —~ P NP

RooT

SBJ | OBy PC ATT

ATTATA

| eat sushi with tuna

Start at the root of the tree (S)

Follow the head path (‘spine’ of the tree)
to the head word of the sentence (‘eat’).

Add a ROOT dependency to this word.

For all other maximal projections: follow
their head paths to get their head words
and add the corresponding dependencies
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Dependency structures in general

Nested (projective)

dependency trees i
(CFGs)

Non-projective (Z jf ; §§: i \

dependency trees

Non-local dependency m

graphs
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Probabilistic Context-Free Grammars

For every nonterminal X, define a probability distribution
P(X — a | X) over all rules with the same LHS symbol X:

S — NP VP 0.8
S — S conj S 0.2
NP — Noun 0.2
NP — Det Noun 0.4
NP — NP PP 0.2
NP — NP conj NP 0.2
VP — Verb 0.4
VP — Verb NP 0.3
VP — Verb NP NP 0.1
VP — VP PP 0.2
PP — P NP 1.0
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CKY chart parsing algorithm

Bottom-up parsing:
start with the words
Dynamic programming:
save the results in a table/chart
re-use these results in finding larger constituents

Complexity: O( n3|G|)
n: length of string, |G|: size of grammar)

" Presumes a CFG in Chomsky Normal Form:

Rules are all either A = B C (RHS = two nonterminals)
or A—a (RHS = a single terminal)

(with A, B, C nonterminals and a a terminal)
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Parsing algorithms for DG

‘Transition-based’ parsers:

Learn a sequence of actions to parse sentences

Models:
State =  stack of partially processed items

+ queue/buffer of remaining tokens

+ set of dependency arcs that have been found already
Transitions (actions) = add dependency arcs; stack/queue operations

‘Graph-based’ parsers:

Learn a model over dependency graphs

Models:
a function (typically sum) of local attachment scores

For dependency trees, you can use a minimum spanning tree algorithm
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Predicate-argument structure

Understanding a sentence = knowing who did what
(to whom, when, where, why...)
Verbs corresponds to predicates (what was done)

Their arguments (and modifiers) identify
who did it, to whom, where, when, why, etc.

wgho did V_V‘HAT toW_I-I.OM WHLE.RE
N N N N\

The police officer detained the suspect at the scene of the crime
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What do verbs mean?

Verbs describe events or states (‘eventualities’):
Tom broke the window with a rock.
The window broke.
The window was broken by Tom/by a rock.

If we naively translate verbs to (logical) predicates...
(subject = first argument, object = second argument, etc.)

break (Tom, window, rock)
break (window)

break (window, Tom)

break (window, rock)

... we don’t really capture that these sentences
describe the same event.
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There are many different ways
to describe the same event

Grammatical roles # Semantic roles
Tom broke the window with a rock.
The window broke.
The window was broken by Tom/by a rock.

Related verbs/nouns can describe the same event:
XYZ corporation bought the stock.
They sold the stock to XYZ corporation.
The stock was bought by XYZ corporation.
The purchase of the stock by XYZ corporation...
The stock purchase by XYZ corporation...

Can we map sentences describing the same event
to the same representation?
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Semantic/Thematic roles

Verbs describe events or states (‘eventualities’):
Tom broke the window with a rock.

The window broke.
The window was broken by Tom/by a rock.

Thematic roles refer to participants of these events:
Agent (who performed the action): Tom
Patient (who was the action performed on): window
Tool/Instrument (what was used to perform the action): rock

Semantic/thematic roles (agent, patient) are different
from grammatical roles (subject or object).
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Semantic Role Labeling (SRL)

WHO did WHAT to WHOM WHERE

NS N7 N7 NS

The police officer detained the suspect at the scene of the crime
AGENT PRED. THEME LOCATION

The task of identifying...
— all predicates in a sentence

— the arguments of each predicate
and their semantic role

SRL systems for English are typically trained
on PropBank or FrameNet
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FrameNet

Baker et al. 1998, Fillmore et al. 2003, Fillmore and Baker 2009, Ruppenhofer et al. 2006

[You] can’t[blame] [the program] [for being unable to 1dentify it]
COGNIZER PRED.  EVALUEE REASON

A FrameNet frame defines a set of frame-specific
semantic roles (called frame elements), and includes

a set of predicates (e.g verbs) that take these roles.

t also includes example sentences (not shown below)
(" )
Frame: Change-position-on-a-scale
Predicates: rise, increase,...

Frame Elements: ITEM, ATTRIBUTE, INITIAL VALUE, FINAL VALUE
This frame consists of words that indicate the change of an
ITEM’s position on a scale (the ATTRIBUTE) from a starting point

(INITIAL VALUE) to an end point (FINAL VALUE)
g .
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PropBank Frames and Annotations

agree.01 ArgO: Agreer Arg1: Proposition

Arg2: Other entity agreeing
[argo The group] agreed [are: it wouldn’t make an offer]
[argo JOhn] agrees with [arg2 Mary]

fall.01 Arg1: patient/thing falling  Arg2: extent/amount fallen
Arg3: start point Arg4: end point
[arg: Sales] fell [arg4 to $251 million]
[argr Junk bonds] fell [are2 by 5%]
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How can we understand discourse?

On Monday, John went to Einstein’s. He wanted to buy lunch.
But the cafe was closed. That made him angry, so the next day
he went to Green Street instead.

Understanding discourse requires (among other things):

1) doing coreference resolution:
‘the cafe’and ‘Einstein’s’refer to the same entity

He and John refer to the same person.
That refers to ‘the cafe was closed..

2) identifying discourse (‘coherence’) relations:

‘He wanted to buy lunch’is the reason for
‘John went to Bevande.’
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The coreference resolution task

Victoria Chen, Chief Financial Officer of Megabucks)
Banking Corpjsince 2004, saw her pay jump 20%, to $1.3
million, as the 37-year-old also became the Denver-based
financial services company’ls presidefnj It has been ten
years since she came to Megabucks from

rival Lotsabucks.

Return Coreference Chains

(sets of mentions that refer to the same entities)

1. {Victoria Chen, Chief Financial Officer...since 2004, her, the 37-year-
old, the Denver-based financial services company’s president}

2. {Megabucks Banking Corp, Denver-based financial services
company, Megabucks}

3. {her pay}
4. {rival Lotsabucks}
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The importance of world knowledge

Coreference resolution often needs
world (“commonsense”) knowledge.

Compare:

The city councilmen refused the demonstrators a permit
because they feared violence.

The city councilmen refused the demonstrators a permit
because they advocated violence.

CF: The Winograd Schema Challenge
https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html
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World knowledge may capture
bias

Preferred attachments (both by humans and
systems) often reflect stereotypes (e.g. about
occupations and gender)

A man and his son get into a terrible car crash. The father dies,
and the boy is badly injured. In the hospital, the surgeon looks
at the patient and exclaims, “I can’t operate on this boy, he’s
my son!” https://www.aclweb.org/anthology/Ni18-2002/
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Entity-based coherence

John wanted to buy a piano for his living room.
Jenny also wanted to buy a piano.

He went to the piano store.

It was nearby:.

The living room was on the second floor.
She didn’t find anything she liked.
The piano he bought was hard to get up to that floor.

This is incoherent because the sentences switch back
and forth between entities (John, Jenny, the piano,
the store, the living room)
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Topical coherence

Before winter I built a chimney, and shingled the sides of my
house...

I have thus a tight shingled and plastered house... with a
garret and a closet, a large window on each side....

These sentences clearly talk about the same topic: both contain
a lot of words having to do with the structures of houses and
building (they belong to the same ‘semantic field’).

When nearby sentences talk about the same topic, they often
exhibit lexical cohesion (they use the same or semantically
related words).
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Rhetorical coherence

John took a train from Paris to Istanbul.

He likes spinach.
This discourse is incoherent because there is no apparent
rhetorical relation between the two sentences.

(Did you try to construct some explanation, perhaps that Istanbul has
exceptionally good spinach, making the very long train ride worthwhile?)

Jane took a train from Paris to Istanbul.
She had to attend a conference.

This discourse is coherent because there is clear rhetorical
relation between the two sentences.
The second sentence provides a REASON or EXPLANATION

for the first.
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Discourse structure 1s hierarchical

1-7
Background
— ——
1-3 4-7
Volitional-result Evidence
— T B
1) Farmington 2-3 4) The people b-7
police had to Circumstance waiting in line Concession
help control carried a — T
traffic recently 2)when 3) The hotel's message, a  5) Everyrule has b-7
hundreds of help-wanted refutation, of exceptions, Antithesis
peoplelinedup announcement-  claims thatthe
to be amongthe for 300 openings jobless could be b) butthe tragic  7) notlaziness.
first applying for -was arare employed if only and
jobs atthe opporunity for they showed too-common
yet-to-open many enough moxie. tableaux of
Marriott Hotel. unemployed. hundreds or
even thousands
of people
snake-lining up
for any task with
a paycheck
illustrates a lack
of jobs,

RST website: http://www.sfu.ca/rst/
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Penn Discourse Treebank (PDTB)

Miltsakaki et al. 2004, Prasad et al. 2008, 2014

The PDTB annotates explicit and implicit discourse
connectives and their argument spans.

Explicit connective (“as a result”)

[arg1 Jewelry displays in department stores were often cluttered and
uninspired. And the merchandise was, well, fake].

As a result, [arg2 marketers of faux gems steadily lost space in
department stores to more fashionable rivals—cosmetics makers]

Implicit connective (no lexical item)

[arg1 In July, the Environmental Protection Agency imposed a gradual
ban on virtually all uses of asbestos.]

[arg2 By 1997, almost all remaining uses of cancer-causing asbestos will be
outlawed]
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From discourse to dialogue

Discourse:
The speaker communicates to an absent, passive listener
(or audience), and attempts to get them to construct a similar

model of the state of affairs.
The speaker does not receive any feedback from the audience.

Dialogue:

Both parties are present and active participants.

They each bring their own mental model of the state of affairs.
Communication succeeds if both parties understand each other’s
mental models (and perhaps even get their models to agree).

Both parties provide feedback to each other.
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A dialogue between
a customer (C) and a travel agent (A)

Ci: ...I need to travel in May.

A1: And, what day in May did you want to travel?

Co: OK uh I need to be there for a meeting that’s from the 12th to the 15th.
Ao: And you're flying into what city?

Cg: Seattle.

A dialogue is a conversation between two speakers
that consists of a sequence of turns

Turn = an utterance by one of the two speakers

Turn-taking requires the ability to detect
when the other speaker has finished

Multiparty dialogue: A conversation among
more than two speakers
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Dialogues have structure too

Dialogues have (hierarchical) structure:
“Adjacency pairs”: Some acts (first pair part) typically
followed by (set up expectation for) another (second pair part):

Question — Answer,
Proposal = Acceptance/Rejection, etc.

Sometimes, a subdialogue is required
(e.g. for clarification questions):
A: I want to book a ticket for tomorrow
B: Sorry, I didn’t catch where you want to go?
A: To Chicago
B: And where do you want to leave from?

B: Okay, I’ve got the following options: ...
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Chatbots vs Dialogue Systems

Chatbots: Chitchat, often used for entertainment,
originally as testbed for clinical therapy

Dialogue Systems: Typically to perform specific
tasks (e.g. customer service, reservations, etc.,
smart devices, cars, etc.)
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Task-driven dialog as slot filling

If the purpose of the dialog is to complete a specific
task (e.g. book a plane ticket), that task can often be
represented as a frame with a number of slots to fill.

The task is completed if all necessary slots are filled.

This assumes a "domain ontology”:

A knowledge structure representing possible user
intentions for the given task
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Evaluating Classifiers

Evaluation setup:
Split data into separate training, (development) and test sets.

‘ TRAINING E or ‘E' TRAININGE

Better setup: n-fold cross validation:
Split data into n sets of equal size

Run n ex]E-erimentsi using set / to test and remainder to train
IS gIvVes average, mameai aﬁn mmlﬂma ?a?c?c?uErames

When comparing two classifiers:

Use the same test and training data with the same classes
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Confusion Matrices

A confusion matrix tabulates how many items
that are labeled with class y in the gold data
are labeled with class y’ by the classifier.

gold labels
urgent normal  spam

urgent 8 1 0 1
ot mormal | 5| 60 | 50
spam | 3 30 | 200

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 70




Precision, Recall, F-Measure

ltems labeled X
In the gold standard
(‘truth’)

=TP +FN

ltems labeled X
by the system
=TP + FP

False
Negatives
(FN)

Precision: P = -/( -+ -)
Recal: R=TP /(TP +FN)

F-measure: harmonic mean of precision and recall
F=(2-P-R)/(P +R)
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Macro-average vs. Micro-average

Which average should you report?

Macro-average (average P/R of all classes):

Useful if performance on all classes
IS equally important.

Micro-average (average P/R of all items):

Useful if performance on all items
IS equally important.
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Intrinsic vs extrinsic evaluation

How do we know whether one model
IS better than another?

There are two ways to evaluate models:

- intrinsic evaluation (on an unseen test set)
measures how well the model captures what it is supposed to
capture (e.g. probabilities, precision/recall or accuracies on
unseen test data)

- extrinsic (task-based) evaluation measures how useful the
model when used as a component in a particular task.

Both cases require an evaluation metric
that allows us to measure and compare
the performance of different models.
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Human vs automatic evaluation
Example: Machine Translation

What do we need to evaluate in machine translation?

— Correctness of the translation
— Fluency of the translation, appropriateness, ...

We need appropriate evaluation metrics

Automatic evaluation (on an unseen test set)

Inexpensive, can be done on a large scale,
but may not capture what we want to evaluate.

Human evaluation (also on an unseen test set)

Expensive, and not easily reproducible or comparable across

evaluations (different judges, different questions, ...)
But human evaluation is often required to actually measure what we want

the evaluation to capture.
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Classification and classifiers

(A classifier is a function f(X) that maps
input items X € X toclass labelsy € Y
(X is a vector space, Y is a finite set)

Binary classification:
Each input item is mapped to exactly one of 2 classes

Multi-class classification:
Each input item is mapped to exactly one of K classes (K > 2)

Multi-label classification:
Each input item is mapped to N of K classes
(N =1, varies per input item)
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Classification as supervised machine learning

Classification tasks: Map inputs to a fixed set of class labels

Underlying assumption: Each input really has one (or N) correct labels
Corollary: The correct mapping is a function (aka the ‘target function’)

How do we obtain a classifier (model) for a given task?
— If the target function is very simple (and known), implement it directly

— Otherwise, if we have enough correctly labeled data,
estimate (aka. learn/train) a classifier based on that labeled data.

(" Supervised machine learning:

Given (correctly) labeled training data, obtain a classifier
that predicts these labels as accurately as possible.

Learning is supervised because the learning algorithm can get feedback
about how accurate its predictions are from the labels in the training data.
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Supervised learning: Training

s N
Labeled
Training Data
D train Learned
(X, y,) model
(X,, ¥.) g(x)
(XNa YN)
. Y,

Give the learning algorithm examples in D train
The learning algorithm returns a model g(x)
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Learning = Optimization = Loss Minimization

Learning = parameter estimation = optimization:

Given a particular class of model (logistic regression, Naive Bayes, ...) and data Dtrain,
find the best parameters for this class of model on Dyrain

If the model is a probabilistic classifier, think of

optimization as Maximum Likelihood Estimation (MLE)

“Best” = return (among all possible parameters for models of this class)
parameters that assign the largest probability {0 Dirain

‘In general (incl. for probabilistic classifiers),

think of optimization as Loss Minimization:

“Best” = return (among all possible parameters for models of this class)
parameters that have the smallest loss on Diyain

“Loss”: how bad are the predictions of a model?

The loss function we use to measure loss depends on the class of model
L(y,y): how bad is it to predict y if the correct label is y ?
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Supervised learning: Testing

Reserve some data for testing.
Apply the learned model to the raw test data to obtain predicted

labels for the test data and compare against the actual test labels.

r

Raw Test
Data
X test

\

[.earned
model

g(x)

( N )
Predicted Test
Labels Labels
g(X test) Y test
g(x’,) Vi
g(x’,) Yo
g(X,M) Y’M
\_ J _J
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Probabillistic classifiers

a
A probabilistic classifier returns the most likely class y*
for input X:

yF = argmaxyP(Y =y| X =X)

\_

Naive Bayes uses Bayes Rule:
yF = argmaxyP(y | X) = argmaxyP(X | v)P(y)

Naive Bayes models the joint distribution of the class and the data:

P(x|y)P(y) =P(X,y)
Joint models are also called generative models because we can view them
as stochastic processes that generate (labeled) items:

Sample/pick a label y with P(y), and then an item X with P(X | y)

[ Logistic Regression models P(y | X ) directly j

This is also called a discriminative or conditional model, because it only
models the probability of the class given the input, and not of the raw data itself.
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Generative vs Discriminative Models

In classification:
— The data X = (xy, ..., X,) is observed (shaded nodes).
— The label y is hidden (and needs to be inferred)

1 Generative Model ) ( Discriminative Model h
(Naive Bayes) (Logistic Regression)
Px|y) P(y | x)
W®»®
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What are neural networks?

A family of machine learning models that was
originally inspired by how neurons (nerve cells)
process information and learn.

In NLP, neural networks are now widely used, e.g. for
— Classification

(e.g. sentiment analysis)

— (Sequence) generation

(e.g. in machine translation, response generation for dialogue, etc.

— Representation Learning (neural embeddings)
(word embeddings, sequence embeddings, graph embeddings,...)

— Structure Prediction (incl. sequence labeling)
(e.g. part-of-speech tagging, named entity recognition, parsing,...)
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The Perceptron (Rosenblatt 1958)

A linear classifier based on a threshold activation function:
Return y=+1 iff fxX)=wx+b>0

y=—1iff f(X)=wx+b<0

y € {—1,+ 1} makes
the update rule easier
to write than y € {0,1}

Linear classifier for x = (x, x,) Threshold Activation
A O f(x)>o0
os X0 o ® 02 f(x) y
orthogonal © X)<0
d;(t):itshiin — Linear decision
boundary ﬁ/ _ boundary: > fx)

% | line/hyperplane

X % where X

fx)=wx+b=0[ 1

Threshold activation is inspired by the “all-or-none character”

(McCulloch & Pitts, 1943) of how neurons process information

Training:

( Perceptron update rule: (online stochastic gradient descent) e
If the predicted j}(l) ;é y(l) W(i—l—l) — W(l) + ﬂy(l)X(l)/ makes a mistake

Increment w (lower the slope of the decision boundary) when y should be +1, decrement w when it should be -1)
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From Perceptrons to
(Feedforward) Neural Nets

A perceptron can be seen as a single neuron
(one output unit with a vector or layer of input units):

Output unit: scalar y = f(X)

({' % Input layer: vector X

But each element of the mput can be a neuron itself:

f Fully Connected Feedforward Net
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Multi-layer feedforward networks

We typically assume feedforward networks are
orgamzed mto Iayers

Wka& &ke me&work re&urms -

0 : :
2«,...’ __Output layer: vector y |

= W"‘\ .-vq.—‘— =

‘}IV\Eerho& .........
L (Chidden”) oo

. ﬂt'»\ ,4!& N\

- —qwa—a—w‘—g‘

‘ ‘ ‘ ‘ Input Iayer vectorx

Ehat is entered into the network ]

' computations ]
f'? F ‘ ’ ‘ “Hidden Iayer vector h1 B
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Nonlinear Activation Functions g()

sigmoid(x) tanh(x) hardtanh(x) ReLU(x)

1.0 1.0 1.0 1.0
0.5 / 0.5 0.5 0.5 /
0.0 0.0 0.0 0.0
0.5 0.5 0.5 0.5
-1 -1.0 -1 -1.0

.0 . .0 .
6 -4 -2 0 2 46 6 -4 -2 0 2 4 6 6 -4 -2 0 2 4 6 6 -4 -2 0 2 46

Fig.:Y. Goldberg (2017) Neural Network Methods for Natural Language Processing

Sigmoid (logistic function) s(x) = %
e—x

Outputs in [0,1] range. Useful for output units (probabilities), interpolation
e? — 1

e> + 1
Outputs in [-1,1] range. Useful for internal units

Hyperbolic tangent: tanh(x) =

Hard tanh htanh(x) = -1 for x < -1, 1 for x > 1, x otherwise
Outputs in [-1,1] range. Approximates tanh

Rectified Linear Unit: ReLU(x) = max(0,x)
Outputs in [0, +o°]. Works very well for internal units.
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The softmax function

(The softmax function turns any vector of reals Z = (zy, ..., 2,)
into a discrete probability distribution p = (py, ..., p,,)
where Ve, 0<p; <1l and 2 ,p;=1

CXPp (Zj)
ZkK=1 eXp(Zk)
\_

Logistic regression applies the softmax to a linear combination
of the input features X: z = X

p; = softmax(z); =

Models based on logistic regression are also known as
Maximum Entropy (MaxEnt) models

We will see the softmax again when we talk about neural nets,
but there the input is typically a much more complex, nonlinear
function of the input features.
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Multi-Class Classification
with a multilayer feedforward net

With K output classes, the output layer has K units
with a softmax activation function:

Output layer:

Avectory = (yy, ..., Yx) Where the i-th
element corresponds to the probability
that the input has class

: exp(z;
y; = softmax(z;) = — p(z;)
2y SXP(%)

such that we get a categorical
distribution over all K classes
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Multi-Label Classification
with a multilayer feedforward net

With K output classes, K output units
with K sigmoid activation functions:

Output layer:
Avectory = (yy, ..., Yx) Where the i-th

element corresponds to the probability
that the input does (or doesn’t) have

O class i

We now have a separate probability for
each possible class label.
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Convolutional Neural Nets (ConvNets, CNNSs)

[4 parameters, applied 3 times, non-overlapping inputs]

Sparse Networks
(with shared parameters: CNNSs)

Q
Q

QO
®
5 EETD

[3 parameters, applied 4 times, overlapping inputs]

Dense
(Fully-Connected)
Networks
[last lecture]

—_—
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1D CNNs for text

Text is a (variable-length) sequence of words (word vectors)
[#channels = dimensionality of word vectors]

We can use a 1D CNN to slide a window of n tokens across:

— Filter size n = 3, stride = 1, no padding

The
The
The
The
The
The

— Filter size n = 2, stride = 2, no padding:

quick
quick
quick
quick
quick
quick

brown
brown
brown
brown
brown

brown

fox
fox
fox
fox
fox
fox

The quick brown fox

The quick brown fox

The quick brown fox

The quick brown fox
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Recurrent neural networks (RNNs)

Basic RNN: Generate a sequence of T outputs
by running a variant of a feedforward net T times.

Recurrence:

The hidden state computed at the previous step (h(t1)

is fed into the hidden state at the current step (h®)

With H hidden units, this requires additional H2 parameters

Time:t-1 —» t — t+1
output [QQQO)| [QQQO| QOO QOO

hidden

output

hidden

Q00000000
Feedforward Net Recurrent Net
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RNN variants: LSTMs, GRUs

Long Short-Term Memory networks (LSTMs)
are RNNs with a more complex recurrent architecture

Gated Recurrent Units (GRUSs)
are a simplification of LSTMs

Both contain “Gates” to control how much of the input
or previous hidden state to forget or remember

LSTMs are more expressive than GRUs and basic RNNs
(they’re better at learning long-range dependencies),

but GRUs are easier to train than LSTMs

(useful when training data is limited)
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Encoder-Decoder (seg2seq) model

Task: Read an input sequence
and return an output sequence

— Machine translation: translate source into target language
— Dialog system/chatbot: generate a response

Reading the input sequence: RNN Encoder
Generating the output sequence: RNN Decoder

Encoder - Decoder
00000030090
icder QQQQQQ}QQQ}OOO 000# OOO OOO
e Q Q Q ‘AA v m

447 Natural Language Processing
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RNNSs for sequence classification

If we just want to assign one label to the entire
sequence, we don’t need to produce output at each
time step, so we can use a simpler architecture.

We can use the hidden state of the last word

in the sequence as input to a feedforward net:

o
O

A
C

RNN

C X HCx% " H(C X C_ %1
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Basic RNNs for sequence labeling

Sequence labeling (e.g. POS tagging):
Assign one label to each element in the sequence.

RNN Architecture:
Each time step has a distribution over output classes

[ [LUTDD }[ Duﬂiﬂiuu M DDU:.‘:—LDD M DDDHZD:.D }[ DDHD$DDD }

RNN

A A A A

(_Janet ) C( will Y back ) ( the ) ( bill )

Extension: add a CRF layer to capture dependencies among labels of adjacent tokens.
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Adding attention to the decoder

We want to condition the output generation of the decoder on
a context-dependent representation of the input sequence.

"
Attention computes a probability distribution over the

encoder’s hidden states that depends on the decoder’s
current hidden state

(This distribution is computed anew for each output symbol)

This attention distribution is used to compute a weighted
average of the encoder’s hidden state vectors.

This context-dependent embedding of the input sequence
is fed into the output of the decoder RNN.
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Attention, more formally

Define a probability distribution a'? = ( l(t), o ag))
over the S elements of the input sequence

that depends on the current output element ¢

Use this distribution to compute a weighted average of the
encoder’s output Z aPo_ or hidden states Z a"h,

s=1..§ s=1..§
and feed that into the decoder. Je. suis étudiont </5>

attention
vector

context

HE

a student <s> Je suis étudiant
hhﬁps //www tensorflow.org/tutorials/text/nmt_with_attention
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Attention, more formally

(" )
1. Compute a probability distribution o' = (al(t), . ag))
over the encoder’s hidden states h®®
that depends on the decoder’s current h®”
(0 H()
0 exp(sth®, h®))
- X exp(s(h®, h6)))
[ 2. Use a¥to compute a weighted avg. ¢ of the encoder’'sh®:
=Y alh®
g s=1..5 )
3. Use both ¢ and h'¥) to compute a new output 0", e.g. as )
0! = tanh(W,h"” + W,c®)
\_ W,
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Defining Attention Weights

(Hard attention (degenerate case, non-differentiable):

\

a® = (a,...,al) is a one-hot vector
(e.g. 1 = most similar element to decoder’s vector, 0 = all other elements)
W
~

 Soft attention (general case):

(1) — (2) (f) -
al) = (al e O ) is not a one-hot

— Use the dot product (no learned parameters):
S(h(t), h(S)) — h® . h®

— Learn a bilinear matrix W:
(h(t) h(S)) (h(t)) Wh(S)

— Learn separate weights for the hidden states:
s(h®, h®) = v7 tanh( W;h® + W,h®)
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Transformers

Sequence transduction model based on attention
(no convolutions or recurrence)

— easier to parallelize than recurrent nets

— faster to train than recurrent nets

— captures more long-range dependencies
than CNNs with fewer parameters

Transformers use stacked self-attention
and position-wise, fully-connected layers
for the encoder and decoder

Transformers form the basis of BERT, GPT(2-3), and
other state-of-the-art neural sequence models.
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Transformer Architecture

Non-Recurrent Encoder-Decoder

architecture

— No hidden states

— Context information
captured via attention

and positional encodings

— Consists of stacks of layers
with various sublayers

( )
~>{ Add & Norm |

Feed
Forward

A

N

~—>| Add & Norm )

Multi-Head
Attention

\ J

Positional N
Encoding ®_?

Output

Probafbilities
| Softmax |
| Linear )

A

1t

Input
Embedding

T

Inputs
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Feed
Forward
r
| Add & Norm J<~
Multi-Head
Attention
} ) t N x
[LAdd & Norm e~
Masked
Multi-Head
Attention
it
\_ — )
@ Positional
Encoding
Output
Embedding
Outputs
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Language models

Many NLP tasks require natural language output:
—Machine translation: return text in the target language
—Speech recognition: return a transcript of what was spoken
—Natural language generation: return natural language text
—Spell-checking: return corrected spelling of input

Language models define probability distributions

over (natural language) strings or sentences.
-> We can use a language model to generate strings
-> We can use a language model to score/rank candidate strings
so that we can choose the best (i.e. most likely) one:
if PLm(A) > PLm(B), return A, not B
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The NLP Pipeline

An NLP system may use some or all
of the following steps:

Tokenizer/Segmenter
to identify words and sentences

Morphological analyzer/POS-tagger

to identify the part of speech and structure of words
Word sense disambiguation

to identify the meaning of words
Syntactic/semantic Parser

to obtain the structure and meaning of sentences

Coreference resolution/discourse model
to keep track of the various entities and events mentioned
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NLP Pipeline: Assumptions

Each step in the NLP pipeline embellishes the input with
explicit information about its linguistic structure

POS tagging: parts of speech of word,
Syntactic parsing: grammatical structure of sentence,....

Each step in the NLP pipeline requires
its own explicit (“symbolic”) output representation:
POS tagging requires a POS tag set

— (e.g. NN=common noun singular, NNS = common noun plural, ...)

Syntactic parsing requires constituent or dependency labels
— (e.g. NP = noun phrase, or nsubj = nominal subject)

These representations should capture
linguistically appropriate generalizations/abstractions

Designing these representations requires linguistic expertise
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NLP Pipeline: Shortcomings

Each step in the pipeline relies on a learned model
that will return the most likely representations
— This requires a lot of annotated training data for each step

— Annotation is expensive and sometimes difficult
(people are not 100% accurate)

— These models are never 100% accurate
— Models make more mistakes if their input contains mistakes

How do we know that we have captured the “right”
generalizations when designing representations?
— Some representations are easier to predict than others

— Some representations are more useful for the next steps
in the pipeline than others

— But we won’t know how easy/useful a representation is
until we have a model that we can plug into a particular pipeline
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Statistical POS tagging

She promised to back the billl

w= w w(2) w(3) w@d w®) w©)
t = t) t(2) t(3) t@ 1S 1)

PRP VBD TO VB DT NN

| What is the most likely sequence of tags t=t().. .t
t for the given sequence of words w=w,. . w®) ? ’
P t* = argmax; P(t | w)
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POS tagging with generative models

argmax P(t|w) argma P(t, w)
X — X
= S P(w)

= argmtaXP(t, W)

= argmtaXP(t)P(w\t)
P(t,w): the joint distribution of the labels we want to predict (t)
and the observed data (w).

We decompose P(t,w) into P(t) and P(w | t) since these
distributions are easier to estimate.

Models based on joint distributions of labels and observed data
are called generative models: think of P(t)P(w | t) as a stochastic
process that first generates the labels, and then generates the

data we see, based on these labels.
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Hidden Markov Models (HMMs)

HMMs are the most commonly used generative models for POS tagging
(and other tasks, e.g. in speech recognition)

HMMs make specific independence assumptions in P(t) and P(wl t):

-
1) P(t) is an n-gram (typically bigram or trigram) model over tags:
Prigram(® = [ [ PC? | 1471 Poigram(® = [ PG@ | #1162

P(t® | ti-D) and P(r® | -1, 1i-2)) are called transition probabilities

(2) In P(w | t), each w(® depends only on [is generated by/conditioned on] t:
Pw | t) = [ [ Pov® | )

l
P(w® | ¢®) are called emission probabilities

These probabilities don’t depend on the position in the sentence (),

but are defined over word and tag types.
With subscripts ik, to index word/tag types, they become P(7;| t;), P(t;1 t;, tx), P(wil t,)
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The Viterbi algorithm

A dynamic programming algorithm which finds the
best (=most probable) tag sequence t* for an input
sentence w: t* = argmax¢ P(w | t)P(t)

Complexity: linear in the sentence length.

With a bigram HMM, Viterbi runs in O(T2N) steps
for an input sentence with N words and a tag set of T tags.

The independence assumptions of the HMM tell us
how to break up the big search problem
(find t* = argmax; P(w | t)P(t)) into smaller subproblems.

The data structure used to store the solution of these

subproblems is the trellis.
I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 113




Sequence Labeling

Input: a sequence of n tokens/words:

Pierre Vinken , 61 years old , will join IBM ‘s board as a
nonexecutive director Nov. 29

Output: a sequence of n labels, such that

each token/word is associated with a label:

POS-tagging: Pierre NNP Vinken NNP , , 61 CD years NNS

old JJ , , will MD join_ VB IBM NNP ‘s POS board NN as_IN
a DT nonexecutive JJ director NN Nov. NNP 29 CD .

Named Entity Recognition: Pierre B-PERS Vinken I-PERS , O 61 O
years 0 old O , O will O join O IBM B-ORG ‘s O board O
as O a O nonexecutive O director O Nov. B-DATE 29 I-

DATE . O

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 114




BlIO encodings in general

BIO encoding can be used to frame any task

that requires the identification of non-overlapping
and non-nested text spans as a sequence labeling
problem, e.g.:

— NP chunking
— Shallow Parsing
— Named entity recognition
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Seqguence labeling algorithms

Statistical models:
— Maximum Entropy Markov Models (MEMMS)
— Conditional Random Fields (CRFs)

Neural models:

— Recurrent networks (or transformers)
that predict a label at each time step,
possibly with a CRF output layer.
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Named Entity Recognition

Pierre Vinken , 61 years old , will join IBM ‘s board
as a nonexecutive director Nov. 29 .

[PERS Pierre Vinken] , 61 years old , will join
[ORG IBM] ‘s board as a nonexecutive director
[DATE Nov. 2]

Task: identify all mentions of named entities
(people, organizations, locations, dates)

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 117




Named Entity Types

Type Tag Sample Categories Example sentences

People PER people, characters Turing is a giant of computer science.

Organization ORG companies, sports teams The IPCC warned about the cyclone.

Location LOC regions, mountains, seas The Mt. Sanitas loop is in Sunshine Canyon.

Geo-Political GPE countries, states, provinces Palo Alto is raising the fees for parking.
Entity

Facility FAC bridges, buildings, airports Consider the Golden Gate Bridge.

Vehicles VEH planes, trains, automobiles It was a classic Ford Falcon.

DTV AE A list of generic named entity types with the kinds of entities they refer to.

These types were developed for the news domain
as part of NIST’s Automatic Content Extraction (ACE)
program.

Other domains (e.g. biomedical text) require different
types (proteins, genes, diseases, etc.)
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Relation Extraction from text

|dentify relations between named entities,
typically from a small set of predefined relations.

Relations Types Examples

Physical-Located PER-GPE He was in Tennessee
Part-Whole-Subsidiary ORG-ORG XYZ, the parent company of ABC
Person-Social-Family PER-PER Yoko’s husband John
Org-AFF-Founder PER-ORG Steve Jobs, co-founder of Apple...

The 17 relations ( orange ) used in ACE:

Lasting
Personal

Citizen-
Resident-
Ethnicity-

Membership
Sports-Affiliation

ser-Owner-Inventor-
Manufacturer
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Question Answering

Question Answering can mean different things:

— Being able to query a knowledge base
(e.g. a database of known facts) in natural language.
This may require a semantic parser
to translate the natural language question into, say, SQL

— Being able to query a collection of documents
that is known (or assumed) to contain answers
(as short text spans in these documents)

— Being able to answer questions about a single document
by returning short text spans in the document that answer
these questions (“reading comprehension”)

— Being able to answer knowledge questions about a domain
(e.g. take multiple choice exams on science questions)

Reading: Chapter 25
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Question Answering (QA) as an
Information Retrieval (IR) task

Answer a user’s questions by finding a text snippet in
a large document collection that contains the answer.

Questions that can be answered in this way
are typically about simple “factoids”

Question Answer

Where 1s the Louvre Museum located? in Paris, France
What’s the abbreviation for limited partnership? L.P.

What are the names of Odin’s ravens? Huginn and Muninn
What currency is used in China? the yuan

What kind of nuts are used in marzipan? almonds

What instrument does Max Roach play? drums

What’s the official language of Algeria? Arabic

How many pounds are there in a stone? 14
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Reading comprehension
as span-extraction QA

Reading comprehension tests often ask children to
answer questions based on a short paragraph.

Although reading comprehension can be formulated
as a multiple-choice task, or a free answer task
(which is difficult to evaluate), the span-extraction
perspective requires that answers correspond to text
spans
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Science exams as testbed for QA

Task: Answer multiple choice questions
from 8th-grade science exams

1. Which equipment will best separate a mixture of iron filings and
black pepper?
(1) magnet (2) filter paper (3) triple-beam balance (4) voltmeter

This requires a lot of background knowledge that
has to be acquired from somewhere (e.g. textbooks),
and reasoning capabilities

https://allenai.org/content/docs/Aristo_Milestone.pdf
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The Vauquois triangle

Interlingua

Direct transfer

Transfer

‘ Source I ‘ Target l
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Statistical Machine Translation

Given a Chinese input sentence (source)...
IR BAERE, TR
...find the best English translation (target)
President: Good morning, Honourable Members.

We can formalize thisas T* =argmaxr P(TIS)

(

Using Bayes Rule simplifies the modeling task,
so this was the first approach for statistical MT
(the so-called “noisy-channel model”):
T* = argmaxt P(T | S ) = argmaxt P(S | T )P(T)
where P(S|T): translation model
P(T): language model

I CS447 Natural Language Processing (J. Hockenmaier) https://courses.grainger.illinois.edu/cs447/ 126




Statistical MT: Training and Decoding

~

Parallel corpora

W

I R R ARG L R L
]

it .
|  MOTION: PRESIDENT (in Cantonese): Good
#” : .

-1 morning, Honourable Members. We will now start
=]

ining

the meeting. First of all, the motion on the

Tra

AN

Monolinqual corpora

L
L

Good morning, Honourable Members. We will now start the
meeting. First of all, the motion on the "Appointment of the
Chief Justice of the Court of Final Appeal of the Hong Kong

Special Administgative Region". Secretary for Justice.

Translation Model

‘ = .
Pu (B = | morning) '

Language Model

Pim(honorable | good morning)l

Decoding

Source

Decoding Algorithm

President: Good
morning, Honourable
Members.
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Phrase-based translation models

Assumption: fundamental units of translation are phrases:

if SEdE, FTEo

—>
President (in Cantonese): Good morning, Honourable Members

Phrase-based model of P(F | E):

1. Split target sentence deterministically into phrases ep;...ep
2. Translate each target phrase ep; into source phrase fp;
with translation probability o(fp; |ep;)

3. Reorder foreign phrases with distortion probability
d(ai-bi-1) = claibi-1-1]

a; = start position of source phrase generated by e;

bi.1= end position of source phrase generated by e;.;
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