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What have you learned in this class?
— What is NLP?  
     The core tasks (as well as data sets and  
     evaluation metrics) that people work on in NLP
 
— How does NLP work? 
     The fundamental models, algorithms and representations  
     that have been developed for these tasks
 
— Why is NLP hard?
     The relevant linguistic concepts and phenomena  
     that have to be handled to do well at these tasks
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The focus of this class
We want to identify the structure and meaning 
of words, sentences, texts and conversations 


N.B.: we do not deal with speech (no signal processing)


We mainly deal with language analysis/understanding, 
and less with language generation/production


We focus on fundamental concepts, methods, models, 
and algorithms, not so much on current research:


Data (natural language): linguistic concepts and phenomena

Representations:  grammars, automata, etc. 

Neural and statistical models over these representations 

Learning & inference algorithms for these models

4
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Why is natural language hard?
Ambiguity:  
What does “I made her duck” mean?

Ambiguity exists at all levels (lexical, syntactic, referential,…)  

Coverage:
What does “I made her duck cassoulet” mean?

Zipf’s Law: there is a long tail of rare/unknown words

NLP still mostly relies on supervised learning,  
(which requires large annotated datasets)  
and/or pre-training on raw text  
(which requires vast amounts of data) 

5
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Why is NLP hard?
NLP still mostly relies on supervised learning,  
(which requires large annotated datasets)  
and/or pre-training on raw text  
(which requires vast amounts of data) 

Supervised learning doesn’t generalize well  
to out-of-domain data

In NLP: out-of-domain = different genres (news vs. blogs, social media, 
scientific papers, written vs spoken language), registers (formal vs. 
colloquial), dialects (British vs. US, AAE, Indian English), or time periods. 

NLP annotations have to be designed
There are many design choices to be made: what do you want to 
represent, how fine-grained should the labels be?
We don’t know a priori what style of annotation is most useful,  
or easiest to predict
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What is language understanding?
The ability to…  
… answer questions about a text  

  Example: Question answering 
... draw (logical/commonsense) inferences: 

Example: Entailment recognition 
... connect language to the world: 

Example: Image Description 
... communicate with others to perform a task 

Example: Grounded dialogue  
                 for instruction giving and following
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Language understanding as the ability 
to answer questions about text

8

More than a decade ago, Carl Lewis stood on the threshold of what was 
to become the greatest athletics career in history. He had just broken 
two of the legendary Jesse Owens' college records, but never believed 
he would become a corporate icon, the focus of hundreds of millions of 
dollars in advertising. His sport was still nominally amateur.  
Eighteen Olympic and World Championship gold medals and 21 world 
records later, Lewis has become the richest man in the history of track 
and field – a multi-millionaire. 

Who is Carl Lewis?
Did Carl Lewis break any world records?
(and how do you know that?)
Is Carl Lewis wealthy? What about Jesse Owens?



They are sitting at desks. 
They are walking  
on the street.  
They are buying clothes. 
They are at home.

They are standing or walking. 
They are pushing  
shopping carts. 
They are in an indoor space. 
There are aisles of shelves 

Language understanding as  
the ability to draw inferences

People are shopping  
in a supermarket

YesNo



People are shopping  
in a supermarket

YesNo

Language understanding as  
the ability to describe the world



Target<Architect> Ok, this one looks vaguely like a giraffe.
<Builder> lol
<Architect> If you squint a little
<Architect> It is two dimensionsal, we are going to need two legs with one block 
between them, they will be red.

<Architect> Perftect
<Builder>   where now
<Architect> Make one to the right of that one, there should be 1 space 
between them

<Architect> Perfect, just mkae them both 1 block taller

Language understanding as  
the ability to give or follow instructions
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Huge language models solve NLP?
A language model can be used to generate (produce) text
Massive neural language models trained on vast amounts of text 
have been developed in the last few years
Most recent incarnation: GPT-3 (175B parameters, trained on 300B tokens)
But these models have no access to meaning.  
See also Bender & Koller ’20 for a critique https://www.aclweb.org/anthology/
2020.acl-main.463.pdf 
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https://www.technologyreview.com/
2020/08/22/1007539/gpt3-openai-
language-generator-artificial-intelligence-
ai-opinion/

     Human Prompt (given to GPT-3)  
At the party, I poured myself a glass of lemonade,  
but it turned out to be too sour, so I added a 
little sugar. 
I didn’t see a spoon handy, so I stirred it with a 
cigarette. But that turned out to be a bad idea 
because
      [GPT-3’s generated continuation] 
it kept falling on the floor. That’s when he 
decided to start the Cremation Association of 
North America, which has become a major cremation 
provider with 145 locations.

from Marcus & Davis ’20 
https://www.technologyreview.com/2020/08/22/1007539/gpt3-openai-language-generator-artificial-intelligence-
ai-opinion/
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What are the “next big things”?
Core NLP is still not “solved”

— What is the role of linguistics and/or linguistically inspired annotations? 
— A lot of our current techniques (BERT etc.) only work when vast amounts 
    of text and computing resources are available (not true outside of a few  
    big tech companies, or for most languages of the world)
— Situated language understanding/generation are still very difficult
— Our ability to automatically draw inferences from text is still limited

NLP works well enough to have real-world uses
— But applying NLP techniques in any new domain typically 
requires some amount of manually annotated training and test 
data (which requires both domain and NLP expertise)
— We need to grapple with ethical implications

13
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Addendum: NLP toolkits
https://opennlp.apache.org
https://spacy.io
https://www.nltk.org 
https://allennlp.org 
https://stanfordnlp.github.io/CoreNLP/ 
https://gate.ac.uk 

16



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Key 
conc
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: 

Words
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How many different words are there?
Inflection creates different forms of the same word:   

Verbs: to be, being, I am, you are, he is, I was,  
Nouns: one book, two books 

Derivation creates different words from the same lemma:
grace ⇒ disgrace ⇒ disgraceful ⇒ disgracefully  

Compounding combines two words into a new word: 
cream ⇒ ice cream ⇒ ice cream cone ⇒ ice cream cone bakery 

Word formation is productive: 
New words are subject to all of these processes:  
Google ⇒ Googler, to google, to ungoogle, to misgoogle, 
googlification, ungooglification, googlified, Google Maps, Google 
Maps service,... 

18
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Zipf’s law: the long tail
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In natural language:
A small number of events (e.g. words) occur with high frequency
A large number of events occur with very low frequency

19

A few words  
are very frequent

English words, sorted by frequency (log-scale)
w1 = the, w2 = to, …., w5346 = computer, ...

Most words  
are very rare

How many words occur once, twice, 100 times, 1000 times? 

the r-th most 
common word wr  
has P(wr) ∝ 1/r
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Implications of Zipf’s Law for NLP
The good: 

Any text will contain a number of words that are very common.
We have seen these words often enough that we know (almost) 
everything about them. These words will help us get at the 
structure (and possibly meaning) of this text.

The bad:
Any text will contain a number of words that are rare.
We know something about these words, but haven’t seen them 
often enough to know everything about them. They may occur 
with a meaning or a part of speech we haven’t seen before. 

The ugly:
Any text will contain a number of words that are unknown to us. 
We have never seen them before, but we still need to get at the 
structure (and meaning) of these texts. 

20
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Dealing with the bad and the ugly
Our systems need to be able to generalize  
from what they have seen to unseen events.

There are two (complementary) approaches  
to generalization:

— Linguistics provides us with insights about the rules and   
structures in language that we can exploit in the (symbolic)   
representations we use
 E.g.: a finite set of grammar rules is enough to describe an infinite language  

— Machine Learning/Statistics allows us to learn models 
(and/or representations) from real data that often work well 
empirically on unseen data
 E.g. most statistical or neural NLP

21
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How do we represent words?
Option 1: Words are atomic symbols 
— Each (surface) word form is its own symbol
— Add some generalization by mapping  
    different forms of a word to the same symbol

— Normalization: map all variants of the same word (form)  
     to the same canonical variant (e.g. lowercase everything,    
     normalize spellings, perhaps spell-check)
—Lemmatization: map each word to its lemma  
    (esp. in English, the lemma is still a word in the language,  
     but lemmatized text is no longer grammatical)
— Stemming: remove endings that differ among word forms  
    (no guarantee that the resulting symbol is an actual word)

22
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How do we represent words?
Option 2: Represent the structure of each word

 “books” => “book N pl” (or “book V 3rd sg”)
 
This requires a morphological analyzer (more later today)
 
The output is often a lemma (“book”)  
plus morphological information (“N pl” i.e. plural noun)
 
This is particularly useful for highly inflected languages, e.g. 
Czech, Finnish, Turkish, etc. (less so for English or Chinese):
In Czech, you might need to know that nejnezajímavějším  
is a regular, feminine, plural, dative adjective in the superlative. 
       

23
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How do we represent unknown words?
Many NLP systems assume a fixed vocabulary, but still have 
to handle out-of-vocabulary (OOV) words. 

Option 1: the UNK token
Replace all rare words (with a frequency at or below a given threshold, e.g. 2, 
3, or 5) in your training data with an UNK token (UNK = “Unknown word”).
Replace all unknown words that you come across after training (including rare 
training words) with the same UNK token  

Option 2: substring-based representations
[often used in neural models]
Represent (rare and unknown) words [“Champaign”] as sequences of  
characters [‘C’, ‘h’, ‘a’,…,’g’, ’n'] or substrings [“Ch”, “amp”, “ai”, “gn”]
 
Byte Pair Encoding (BPE): learn which character sequences  
are common in the vocabulary of your language, and treat those  
common sequences as atomic units of your vocabulary

24
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What do words mean,  
and how do we represent that?

Do we want to represent that…
… “cassoulet” is a French dish?
… “cassoulet” contains meat?
… “cassoulet” is a stew?

25

… cassoulet …
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What do words mean,  
and how do we represent that?

Do we want to represent…
… that a “bar” are places to have a drink?
… that a “bar” is a long rods?
… that to “bar” something means to block it?

26

… bar …
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What does this word mean?

27

This plant needs to be watered each day.  
⇒ living plant

This plant manufactures 1000 widgets each day.  
⇒ factory  

Word Sense Disambiguation (WSD):
Identify the sense of content words (nouns, verbs, 
adjectives) in context (assuming a fixed inventory of word 
senses).  
Presumes the words to classify have a discrete set of 
senses. 
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Different approaches  
to lexical semantics

Roughly speaking, NLP draws on two different types 
of approaches to capture the meaning of words: 

The lexicographic tradition aims to capture the 
information represented in lexicons, dictionaries, etc.

The distributional tradition aims to capture the 
meaning of words based on large amounts of raw text 

28
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WordNet
Very large lexical database of English:

110K nouns, 11K verbs, 22K adjectives, 4.5K adverbs
(WordNets for many other languages exist or are under construction) 

Word senses grouped into synonym sets (“synsets”) linked 
into a conceptual-semantic hierarchy

81K noun synsets, 13K verb synsets, 19K adj. synsets, 3.5K adv synsets
Avg. # of senses: 1.23 nouns, 2.16 verbs, 1.41 adj, 1.24 adverbs 

Conceptual-semantic relations: hypernym/hyponym
also holonym/meronym 
Also lexical relations, in particular lemmatization  

Available at http://wordnet.princeton.edu 

29



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Language understanding requires knowing 
when words have similar meanings

Question answering:
Q: “How tall is Mt. Everest?” 
Candidate A: “The official height of Mount Everest is 29029 feet”
“tall” is similar to “height”

Plagiarism detection: 

30



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

The Distributional Hypothesis
Zellig Harris (1954):

“oculist and eye-doctor … occur in almost the same 
environments”
“If A and B have almost identical environments we say that 
they are synonyms.”

John R. Firth 1957:
You shall know a word by the company it keeps. 

The contexts in which a word appears  
tells us a lot about what it means.

Words that appear in similar contexts have similar meanings

31
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Two ways NLP uses context for semantics

Distributional similarities (vector-space semantics): 
Use the set of all contexts in which words  
(= word types) appear to measure their similarity

Assumption: Words that appear in similar contexts (tea, coffee) 
have similar meanings.  

Word sense disambiguation 
Use the context of a particular occurrence of a word 
(token) to identify which sense it has. 

Assumption: If a word has multiple distinct senses  
(e.g. plant: factory or green plant), each sense will  
appear in different contexts. 

32
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How do we represent words  
to capture word similarities?
As atomic symbols?

[e.g. as in a traditional n-gram language model, or  
when we use them as explicit features in a classifier]

This is equivalent to very high-dimensional one-hot vectors: 
 aardvark=[1,0,…,0], bear=[0,1,000],…, zebra=[0,…,0,1]  
No: height/tall are as different as height/cat

As very high-dimensional sparse vectors?
[to capture so-called distributional similarities]

As lower-dimensional dense vectors?
[“word embeddings” —  important prerequisite for neural NLP]

33
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Key 
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 [                                         ]   [                                               ]   [                               ] I   eat   sushi    with  tuna

What is the structure
of a sentence?
Sentence structure is hierarchical:

A sentence consists of words (I, eat, sushi, with, tuna) 
…which form phrases or constituents: “sushi with tuna” 

Sentence structure defines dependencies  
between words or phrases:

35

 [                 ]   
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Constituents: 
Heads and dependents

There are different kinds of constituents:
Noun phrases: the man, a girl with glasses, Illinois 
Prepositional phrases: with glasses, in the garden
Verb phrases: eat sushi, sleep, sleep soundly 

 
Every phrase has one head:

Noun phrases: the man, a girl with glasses, Illinois 
Prepositional phrases: with glasses, in the garden 
Verb phrases: eat sushi, sleep, sleep soundly

The other parts are its dependents.
Dependents are either arguments or adjuncts

36

NB: this is an 
oversimplification.
Some phrases (John, 
Kim and Mary) have 
multiple heads, others  
(I like coffee and [you 
tea]) perhaps don’t 
even have a head

NB: some linguists think 
the argument-adjunct 
distinction isn’t always 
clear-cut, and there are 
some cases that could 
be treated as either, or 
something in-between 
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Arguments are obligatory
Words subcategorize for specific sets of arguments:

Transitive verbs (sbj + obj):   [John] likes [Mary] 
The set/list of arguments is called a subcat frame  

All arguments have to be present:
*[John] likes.       *likes [Mary]. 

No argument slot can be occupied multiple times:
*[John] [Peter] likes [Ann] [Mary]. 

Words can have multiple subcat frames:
Transitive eat (sbj + obj):   [John] eats [sushi].
Intransitive eat (sbj): [John] eats

37
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Adjuncts (modifiers) are optional
Adverbs, PPs and adjectives can be adjuncts 

Adverbs: John runs [fast].   
                 a [very] heavy book.  
PPs:      John runs [in the gym].   
               the book [on the table] 
Adjectives: a [heavy] book 

There can be an arbitrary number of adjuncts:
John saw Mary. 
John saw Mary [yesterday]. 
John saw Mary [yesterday] [in town] 
John saw Mary [yesterday] [in town] [during lunch] 
[Perhaps] John saw Mary [yesterday] [in town] [during lunch]

38
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Context-free grammars (CFGs) define 
phrase structure trees

39

NP: Noun Phrase 
P:  Preposition
S:  Sentence
PP: Prepositional Phrase
V:  Verb
VP: Verb Phrase

NP ⟶ I
NP ⟶ sushi
NP ⟶ tuna
NP ⟶ NP PP
P  ⟶ with
PP ⟶ P NP
S  ⟶ NP VP
V  ⟶ eat  
VP ⟶ V  NP

Leaf nodes (I, eat, …) correspond to  
the words in the sentence  

Intermediate nodes (NP, VP, PP) 
span substrings (= the yield of the 
node), and correspond to nonterminal 
constituents 

The root spans the entire sentence 
and is labeled with the start symbol  
of the grammar (here, S)

Correct analysis

Incorrect analysis

eat with tunasushi
NPNP

VP

PP
NP

V P

sushi  eat with chopsticks
NPNP

VP

PPVP
V P

eat sushi with tuna

eat sushi with chopsticks

eat sushi with chopsticks
NPNP

NP
VP

PP
V P

eat with tunasushi
NPNP

VP

PPVP
V P

eat sushi with tuna

eat sushi with chopsticks

S

NP
I
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Dependency grammar
DGs describe the structure of sentences  
as a directed acyclic graph.

The nodes of the graph are the words
The edges of the graph are the dependencies.
Edge labels indicate different dependency types.

Typically, the graph is assumed to be a tree.

 
 
Note: the relationship between DG and CFGs:

If a CFG phrase structure tree is translated into DG,
the resulting dependency graph has no crossing edges.

40

I   eat   sushi.

sbj obj
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From CFGs to dependencies

CFG (bold = head child):
S → NP VP     
VP → V NP      
NP → NP PP
PP → P NP

41

Correct analysis

Incorrect analysis

eat with tunasushi
NPNP

VP

PP
NP

V P

sushi  eat with chopsticks
NPNP

VP

PPVP
V P

eat sushi with tuna

eat sushi with chopsticks

eat sushi with chopsticks
NPNP

NP
VP

PP
V P

eat with tunasushi
NPNP

VP

PPVP
V P

eat sushi with tuna

eat sushi with chopsticks

S

NP
I I   eat  sushi  with  tuna

ROOT

SBJ OBJ ATTPC

Start at the root of the tree (S)
Follow the head path (‘spine’ of the tree)  
to the head word of the sentence (‘eat’).
Add a ROOT dependency to this word.
For all other maximal projections: follow 
their head paths to get their head words 
and add the corresponding dependencies 
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Dependency structures in general
Nested (projective) 
dependency trees
(CFGs) 
 

Non-projective  
dependency trees

Non-local dependency
graphs

42
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Probabilistic Context-Free Grammars
For every nonterminal  X, define a probability distribution  
P(X → α | X) over all rules with the same LHS symbol X: 

43

S � NP VP 0.8
S � S conj S 0.2
NP � Noun 0.2
NP � Det Noun 0.4
NP � NP PP 0.2
NP � NP conj NP 0.2
VP � Verb 0.4
VP � Verb NP 0.3
VP � Verb NP NP 0.1
VP � VP PP 0.2
PP � P NP 1.0
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CKY chart parsing algorithm
Bottom-up parsing:

start with the words 
Dynamic programming:

save the results in a table/chart
re-use these results in finding larger constituents 

Complexity: O( n3|G| ) 
n: length of string, |G|: size of grammar)

Presumes a CFG in Chomsky Normal Form:
Rules are all either A → B C  (RHS = two nonterminals) 
or A → a    (RHS = a single terminal) 
(with A, B, C nonterminals and a a terminal)

44
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Parsing algorithms for DG
‘Transition-based’ parsers:

Learn a sequence of actions to parse sentences
Models:  
State = stack of partially processed items  
            + queue/buffer of remaining tokens 
            + set of dependency arcs that have been found already  
Transitions (actions) = add dependency arcs; stack/queue operations 
 

‘Graph-based’ parsers:
Learn a model over dependency graphs
Models:  
a function (typically sum) of local attachment scores
For dependency trees, you can use a minimum spanning tree algorithm

45
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Predicate-argument structure
Understanding a sentence = knowing who did what 
(to whom, when, where, why…)
Verbs corresponds to predicates (what was done)
Their arguments (and modifiers) identify  
who did it, to whom, where, when, why, etc.

46

The police officer detained the suspect at the scene of the crime

WHO did WHAT to WHOM WHERE
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What do verbs mean?
Verbs describe events or states (‘eventualities’):

Tom broke the window with a rock. 
The window broke. 
The window was broken by Tom/by a rock. 

If we naively translate verbs to (logical) predicates… 
(subject = first argument, object = second argument, etc.)
break(Tom, window, rock)  
break(window)  
break(window, Tom)  
break(window, rock)

… we don’t really capture that these sentences  
describe the same event. 

47
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There are many different ways  
to describe the same event
Grammatical roles ≠ Semantic roles 

Tom broke the window with a rock. 
The window broke. 
The window was broken by Tom/by a rock. 

Related verbs/nouns can describe the same event:

XYZ corporation bought the stock. 
They sold the stock to XYZ corporation. 
The stock was bought by XYZ corporation. 
The purchase of the stock by XYZ corporation...  
The stock purchase by XYZ corporation... 

Can we map sentences describing the same event 
to the same representation?

48
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Semantic/Thematic roles
Verbs describe events or states (‘eventualities’):

Tom broke the window with a rock. 
The window broke. 
The window was broken by Tom/by a rock. 

Thematic roles refer to participants of these events:
Agent (who performed the action): Tom
Patient (who was the action performed on): window
Tool/Instrument (what was used to perform the action): rock 

Semantic/thematic roles (agent, patient) are different 
from grammatical roles (subject or object).

49
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Semantic Role Labeling (SRL)

The task of identifying…
— all predicates in a sentence
— the arguments of each predicate  
     and their semantic role  
 
SRL systems for English are typically trained  
on PropBank or FrameNet

50

The police officer detained the suspect at the scene of the crime 
AGENT              PRED.   THEME                     LOCATION

WHO did WHAT to WHOM WHERE
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FrameNet

A FrameNet frame defines a set of frame-specific 
semantic roles (called frame elements), and includes 
a set of predicates (e.g verbs) that take these roles.

It also includes example sentences (not shown below)


51

Baker et al. 1998, Fillmore et al. 2003, Fillmore and Baker 2009, Ruppenhofer et al. 2006 

Frame: Change-position-on-a-scale  
Predicates: rise, increase,…

Frame Elements: ITEM, ATTRIBUTE, INITIAL VALUE, FINAL VALUE 
This frame consists of words that indicate the change of an 
ITEM’s position on a scale (the ATTRIBUTE) from a starting point 
(INITIAL VALUE) to an end point (FINAL VALUE)

   [You]    can’t [blame] [the program] [for being unable to identify it] 
 COGNIZER            PRED.         EVALUEE           REASON
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PropBank Frames and Annotations
agree.01  Arg0: Agreer         Arg1: Proposition

           Arg2: Other entity agreeing
  [Arg0 The group] agreed [Arg1 it wouldn’t make an offer]   
  [Arg0 John] agrees with  [Arg2 Mary]                                       

 
 
fall.01 Arg1: patient/thing falling     Arg2: extent/amount fallen

        Arg3:  start point                   Arg4: end point
    [Arg1 Sales] fell [Arg4 to $251 million]                                    
    [Arg1 Junk bonds] fell  [Arg2 by 5%]                                       
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How can we understand discourse?

Understanding discourse requires (among other things):
1) doing coreference resolution:

‘the cafe’ and ‘Einstein’s’ refer to the same entity
He and John refer to the same person.  
That refers to ‘the cafe was closed’.

2) identifying discourse (‘coherence’) relations:
‘He wanted to buy lunch’ is the reason for  
‘John went to Bevande.’

54

On Monday, John went to Einstein’s. He wanted to buy lunch. 
But the cafe was closed. That made him angry, so the next day 
he went to Green Street instead.
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The coreference resolution task
Victoria Chen, Chief Financial Officer of Megabucks  
Banking Corp since 2004, saw her pay jump 20%, to $1.3 
million, as the 37-year-old also became the Denver-based 
financial services company’s president. It has been ten 
years since she came to Megabucks from  
rival Lotsabucks. 

Return Coreference Chains  
(sets of mentions that refer to the same entities)

1. {Victoria Chen, Chief Financial Officer...since 2004, her, the 37-year-
old, the Denver-based financial services company’s president}
2. {Megabucks Banking Corp, Denver-based financial services 
company, Megabucks}
3. {her pay} 
4. {rival Lotsabucks}
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The importance of world knowledge

56

Coreference resolution often needs  
world (“commonsense”) knowledge.  
 
Compare: 

The city councilmen refused the demonstrators a permit  
because they feared violence. 

The city councilmen refused the demonstrators a permit  
because they advocated violence.

CF: The Winograd Schema Challenge  
https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html 
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World knowledge may capture 
bias 

57

Preferred attachments (both by humans and 
systems) often reflect stereotypes (e.g. about 
occupations and gender)

A man and his son get into a terrible car crash. The father dies, 
and the boy is badly injured. In the hospital, the surgeon looks 
at the patient and exclaims, “I can’t operate on this boy, he’s 
my son!”  https://www.aclweb.org/anthology/N18-2002/  
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Entity-based coherence
John wanted to buy a piano for his living room.  
Jenny also wanted to buy a piano. 
He went to the piano store. 
It was nearby.  
The living room was on the second floor. 
She didn’t find anything she liked. 
The piano he bought was hard to get up to that floor.  

This is incoherent because the sentences switch back 
and forth between entities (John, Jenny, the piano, 
the store, the living room) 
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Topical coherence
Before winter I built a chimney, and shingled the sides of my 
house...  
I have thus a tight shingled and plastered house... with a 
garret and a closet, a large window on each side....  

These sentences clearly talk about the same topic: both contain 
a lot of words having to do with the structures of houses and 
building (they belong to the same ‘semantic field’).  

When nearby sentences talk about the same topic, they often 
exhibit lexical cohesion (they use the same or semantically 
related words). 
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Rhetorical coherence
John took a train from Paris to Istanbul. 
He likes spinach. 
This discourse is incoherent because there is no apparent 
rhetorical relation between the two sentences. 
(Did you try to construct some explanation, perhaps that Istanbul has 
exceptionally good spinach, making the very long train ride worthwhile?)

Jane took a train from Paris to Istanbul. 
She had to attend a conference. 
This discourse is coherent because there is clear rhetorical 
relation between the two sentences.  
The second sentence provides a REASON or EXPLANATION 
for the first. 
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Discourse structure is hierarchical

RST website: http://www.sfu.ca/rst/ 
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The PDTB annotates explicit and implicit discourse 
connectives and their argument spans.
Explicit connective (“as a result”)
[arg1 Jewelry displays in department stores were often cluttered and 
uninspired. And the merchandise was, well, fake].  
As a result, [arg2 marketers of faux gems steadily lost space in 
department stores to more fashionable rivals—cosmetics makers]  

Implicit connective (no lexical item)
[arg1 In July, the Environmental Protection Agency imposed a gradual 
ban on virtually all uses of asbestos.]  
[arg2 By 1997, almost all remaining uses of cancer-causing asbestos will be 
outlawed]

Penn Discourse Treebank (PDTB)
Miltsakaki et al. 2004, Prasad et al. 2008, 2014 
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From discourse to dialogue
Discourse:  
The speaker communicates to an absent, passive listener  
(or audience), and attempts to get them to construct a similar 
model of the state of affairs.
The speaker does not receive any feedback from the audience. 

 
Dialogue:  
Both parties are present and active participants.   
They each bring their own mental model of the state of affairs. 
Communication succeeds if both parties understand each other’s 
mental models (and perhaps even get their models to agree).
Both parties provide feedback to each other. 
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A dialogue is a conversation between two speakers 
that consists of a sequence of turns  

Turn = an utterance by one of the two speakers
Turn-taking requires the ability to detect  
when the other speaker has finished
Multiparty dialogue: A conversation among  
more than two speakers

64

C1: ...I need to travel in May. 
A1: And, what day in May did you want to travel? 
C2: OK uh I need to be there for a meeting that’s from the 12th to the 15th. 
A2: And you’re flying into what city? 
C3: Seattle.

A dialogue between  
a customer (C) and a travel agent (A)
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Dialogues have structure too
Dialogues have (hierarchical) structure: 

“Adjacency pairs”: Some acts (first pair part) typically 
followed by (set up expectation for) another (second pair part):  
Question → Answer,  
Proposal → Acceptance/Rejection, etc.
 
Sometimes, a subdialogue is required  
(e.g. for clarification questions):

A: I want to book a ticket for tomorrow 
B: Sorry, I didn’t catch where you want to go? 
A: To Chicago 
B: And where do you want to leave from? 
…  
B: Okay, I’ve got the following options: … 
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Chatbots vs Dialogue Systems
Chatbots:  Chitchat, often used for entertainment, 
originally as testbed for clinical therapy

Dialogue Systems: Typically to perform specific 
tasks (e.g. customer service, reservations, etc.,  
smart devices, cars, etc.)
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Task-driven dialog as slot filling
If the purpose of the dialog is to complete a specific 
task (e.g. book a plane ticket), that task can often be 
represented as a frame with a number of slots to fill. 
 
The task is completed if all necessary slots are filled. 

This assumes a "domain ontology”:

A knowledge structure representing possible user 
intentions for the given task
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Evaluation setup:
Split data into separate training, (development) and test sets.  
 
 

Better setup: n-fold cross validation:
Split data into n sets of equal size
Run n experiments, using set i to test and remainder to train  
 
This gives average, maximal and minimal accuracies 

When comparing two classifiers:
Use the same test and training data with the same classes

Evaluating Classifiers
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Confusion Matrices
A confusion matrix tabulates how many items  
that are labeled with class y in the gold data  
are labeled with class y’ by the classifier.

70

14 CHAPTER 4 • NAIVE BAYES AND SENTIMENT CLASSIFICATION
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Figure 4.5 Confusion matrix for a three-class categorization task, showing for each pair of
classes (c1,c2), how many documents from c1 were (in)correctly assigned to c2

Figure 4.6 Separate contingency tables for the 3 classes from the previous figure, showing the pooled contin-
gency table and the microaveraged and macroaveraged precision.

4.8 Test sets and Cross-validation

The training and testing procedure for text classification follows what we saw with
language modeling (Section ??): we use the training set to train the model, then use
the development test set (also called a devset) to perhaps tune some parameters,development

test set
devset and in general decide what the best model is. Once we come up with what we think

is the best model, we run it on the (hitherto unseen) test set to report its performance.
While the use of a devset avoids overfitting the test set, having a fixed training

set, devset, and test set creates another problem: in order to save lots of data for
training, the test set (or devset) might not be large enough to be representative. It
would be better if we could somehow use all our data both for training and test. We
do this by cross-validation: we randomly choose a training and test set division ofcross-validation
our data, train our classifier, and then compute the error rate on the test set. Then
we repeat with a different randomly selected training set and test set. We do this
sampling process 10 times and average these 10 runs to get an average error rate.
This is called 10-fold cross-validation.10-fold

cross-validation
The only problem with cross-validation is that because all the data is used for

testing, we need the whole corpus to be blind; we can’t examine any of the data
to suggest possible features and in general see what’s going on. But looking at the
corpus is often important for designing the system. For this reason, it is common
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Precision, Recall, F-Measure

71

False 
Positives 

(FP)

False 
Negatives

(FN)

True 
Positives

(TP)

Items labeled X  
in the gold standard  

(‘truth’)

Items labeled X  
by the system

= TP + FP
= TP + FN

Precision: P = TP ∕( TP + FP ) 
Recall:       R = TP ∕( TP + FN )
F-measure: harmonic mean of precision and recall  
                    F = (2·P·R)∕(P + R)
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Macro-average vs. Micro-average
Which average should you report?

Macro-average (average P/R of all classes):
Useful if performance on all classes  
is equally important. 

Micro-average (average P/R of all items):
Useful if performance on all items  
is equally important.
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Intrinsic vs extrinsic evaluation
How do we know whether one model  
is better than another? 

There are two ways to evaluate models:
- intrinsic evaluation (on an unseen test set) 
measures how well the model captures what it is supposed to 
capture (e.g. probabilities, precision/recall or accuracies on 
unseen test data)
-extrinsic (task-based) evaluation measures how useful the 
model when used as a component in a particular task.

Both cases require an evaluation metric  
that allows us to measure and compare  
the performance of different models.
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Human vs automatic evaluation 
Example: Machine Translation
What do we need to evaluate in machine translation?

— Correctness of the translation
— Fluency of the translation, appropriateness, … 

We need appropriate evaluation metrics

Automatic evaluation (on an unseen test set)
Inexpensive, can be done on a large scale,  
but may not capture what we want to evaluate.  

Human evaluation (also on an unseen test set)
Expensive, and not easily reproducible or comparable across   
evaluations (different judges, different questions, …) 
But human evaluation is often required to actually measure what we want 
the evaluation to capture.
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Classification and classifiers
A classifier is a function  that maps  
input items  to class labels  

(  is a vector space,  is a finite set) 

Binary classification:  
Each input item is mapped to exactly one of 2 classes

Multi-class classification:  
Each input item is mapped to exactly one of K classes (K > 2)

Multi-label classification:  
Each input item is mapped to N of K classes  
(N ≥1, varies per input item)

f(x)
x ∈ X y ∈ Y

X Y
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Classification as supervised machine learning

Classification tasks: Map inputs to a fixed set of class labels
Underlying assumption: Each input really has one (or N) correct labels 
Corollary: The correct mapping is a function (aka the ‘target function’)

How do we obtain a classifier (model) for a given task?
— If the target function is very simple (and known), implement it directly
— Otherwise, if we have enough correctly labeled data,  
    estimate (aka. learn/train) a classifier based on that labeled data.  

Supervised machine learning: 
Given (correctly) labeled training data, obtain a classifier  
that predicts these labels as accurately as possible.

Learning is supervised because the learning algorithm can get feedback 
about how accurate its predictions are from the labels in the training data.
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Supervised learning: Training

78

Labeled 
Training Data 

D train 

 (x1, y1) 
(x2, y2) 

… 
(xN, yN) 

Learned 
model 
g(x)

Learning 
Algorithm

Give the learning algorithm examples in D train

The learning algorithm returns a model g(x)
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Learning = Optimization = Loss Minimization

Learning = parameter estimation = optimization: 
Given a particular class of model (logistic regression, Naive Bayes, …) and data Dtrain, 
find the best parameters for this class of model on Dtrain

If the model is a probabilistic classifier, think of 
optimization as Maximum Likelihood Estimation (MLE)

“Best” = return (among all possible parameters for models of this class) 
parameters that assign the largest probability  to Dtrain 

In general (incl. for probabilistic classifiers),  
think of optimization as Loss Minimization:

“Best” = return (among all possible parameters for models of this class) 
parameters that have the smallest loss on Dtrain

“Loss”: how bad are the predictions of a model? 
   The loss function we use to measure loss depends on the class of model  
   : how bad is it to predict  if the correct label is  ?L( ̂y, y) ̂y y
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Test  
Labels 

Y test 

 y’1 
 y’2 

... 
y’M

Raw Test 
Data 
X test 

 

x’1 
x’2 
…. 
x’M

Supervised learning: Testing
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Learned 
model 
g(x)

Predicted 
Labels 
g(X test) 

 
g(x’1) 
g(x’2) 

…. 
g(x’M)

Reserve some data for testing.

Apply the learned model to the raw test data to obtain predicted 
labels for the test data and compare against the actual test labels.
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Probabilistic classifiers
A probabilistic classifier returns the most likely class   
for input :

 

Naive Bayes uses Bayes Rule:
  

Naive Bayes models the joint distribution of the class and the data: 

Joint models are also called generative models because we can view them  
as stochastic processes that generate (labeled) items:

Sample/pick a label  with , and then an item  with 

Logistic Regression models  directly
This is also called a discriminative or conditional model, because it only 
models the probability of the class given the input, and not of the raw data itself.

y*
x

y* = argmaxyP(Y = y |X = x)

y* = argmaxyP( y ∣ x ) = argmaxyP( x ∣ y )P( y )

P( x ∣ y) P( y ) = P( x, y )

y P(y) x P(x ∣ y)
P( y ∣ x )
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Generative vs Discriminative Models
In classification: 
— The data  is observed (shaded nodes).

— The label  is hidden (and needs to be inferred)
x = (x1, …, xn)
y

82

Discriminative Model  
(Logistic Regression)

P(y ∣ x)

Y

X1 Xi Xn

Generative Model 
(Naive Bayes)

P(x ∣ y)

X1 Xi Xn

Y
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What are neural networks?
A family of machine learning models that was 
originally inspired by how neurons (nerve cells) 
process information and learn.  

In NLP, neural networks are now widely used, e.g. for 
— Classification 

     (e.g. sentiment analysis)

— (Sequence) generation 
     (e.g. in machine translation, response generation for dialogue, etc.  

— Representation Learning (neural embeddings)
     (word embeddings, sequence embeddings, graph embeddings,…)

— Structure Prediction (incl. sequence labeling)
     (e.g. part-of-speech tagging, named entity recognition, parsing,…)
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The Perceptron (Rosenblatt 1958)
A linear classifier based on a threshold activation function: 

         Return       iff     
                           iff       
 
 
 
 
 
 

Threshold activation is inspired by the “all-or-none character”  
(McCulloch & Pitts, 1943) of how neurons process information

Perceptron update rule: (online stochastic gradient descent)
If the predicted :        
Increment  (lower the slope of the decision boundary) when  should be +1, decrement  when it should be -1)

y = + 1 f(x) = wx + b > 0
y = − 1 f(x) = wx + b ≤ 0

̂y(i) ≠ y(i) w(i+1) = w(i) + ηy(i)x(i)
w y w
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Threshold Activation
y

f(x)

Linear classifier for x = (x1, x2)

x1

x2 f(x) < 0

f(x) > 0

 is 
orthogonal

to the 
decision 
boundary

w

w
Linear decision 

boundary:
line/hyperplane  

where 
f (x) = wx + b = 0

 makes  
the update rule easier  
to write than 

y ∈ {−1, + 1}

y ∈ {0,1}

Training:
Change weights 
when the model 

makes a mistake
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From Perceptrons to 
(Feedforward) Neural Nets

Fully Connected Feedforward Net

A perceptron can be seen as a single neuron  
(one output unit with a vector or layer of input units):  
 
 

But each element of the input can be a neuron itself: 

86

Input layer: vector x

Output unit: scalar y = f(x)
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Internal 
 (“hidden”)  
 computations

The data that is entered into the network

What the network returns

Multi-layer feedforward networks
We typically assume feedforward networks are 
organized into layers:

Input layer: vector x

 Hidden layer: vector h1

87

Hidden layer: vector hn

Output layer: vector y

…    …    …
…    …    … 
…    …    …. 
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Nonlinear Activation Functions g()

Sigmoid (logistic function) 
Outputs in [0,1] range. Useful for output units (probabilities), interpolation

Hyperbolic tangent:   
Outputs in [-1,1] range. Useful for internal units

Hard tanh   htanh(x) =  −1 for x < −1, 1 for x > 1, x otherwise
Outputs in [-1,1] range. Approximates tanh

Rectified Linear Unit:    
   Outputs in [0, +∞]. Works very well for internal units. 

σ(x) =
1

1 + e−x

tanh(x) =
e2x − 1
e2x + 1

ReLU(x) = max(0,x)
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The softmax function
The softmax function turns any vector of reals   
into a discrete probability distribution   
where   and     

 

Logistic regression applies the softmax to a linear combination 
of the input features :    
Models based on logistic regression are also known as 
Maximum Entropy (MaxEnt) models 
We will see the softmax again when we talk about neural nets, 
but there the input is typically a much more complex, nonlinear 
function of the input features.

z = (z1, …, zn)
p = (p1, …, pn)

∀j∈{1,…,n}: 0 < pj < 1 Σn
j=1pj = 1

pj = softmax(z)j =
exp(zj)

∑K
k=1 exp(zk)

x z = fx
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Multi-Class Classification  
with a multilayer feedforward net
With  output classes, the output layer has  units  
with a softmax activation function: 

K K

90

Output layer:  
A vector  where the i-th 
element corresponds to the probability 
that the input has class i: 

such that we get a categorical 
distribution over all K classes

y = (y1, …, yK)

yi = softmax(zi) =
exp(zi)

∑K
k=1 exp(zk)
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Multi-Label Classification  
with a multilayer feedforward net
With  output classes,  output units  
with  sigmoid activation functions: 

K K
K
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Output layer:  
A vector  where the i-th 
element corresponds to the probability 
that the input does (or doesn’t) have 
class i: 
         
We now have a separate probability for 
each possible class label.

y = (y1, …, yK)

yi = sigmoid(wixi + bi)
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Dense  
(Fully-Connected) 

Networks
[last lecture] 

 

Sparse Networks
(with shared parameters: CNNs)

[3 parameters, applied 4 times, overlapping inputs]                     

[4 parameters, applied 3 times, non-overlapping inputs]

Convolutional Neural Nets (ConvNets, CNNs)

92



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

1D CNNs for text
Text is a (variable-length) sequence of words (word vectors)

[#channels = dimensionality of word vectors]
We can use a 1D CNN to slide a window of n tokens across:

— Filter size n = 3, stride = 1, no padding
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog

— Filter size n = 2, stride = 2, no padding:
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
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Recurrent neural networks (RNNs)
Basic RNN: Generate a sequence of T outputs  
by running a variant of a feedforward net T times.

Recurrence:  
The hidden state computed at the previous step (h(t-1))  
is fed into the hidden state at the current step (h(t))  
With H hidden units, this requires additional H2 parameters
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RNN variants: LSTMs, GRUs
Long Short-Term Memory networks (LSTMs)  
are RNNs with a more complex recurrent architecture 

Gated Recurrent Units (GRUs)  
are a simplification of LSTMs 
 
Both contain “Gates” to control how much of the input  
or previous hidden state to forget or remember

LSTMs are more expressive than GRUs and basic RNNs 
(they’re better at learning long-range dependencies),  
but GRUs are easier to train than LSTMs  
(useful when training data is limited)
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DecoderEncoder

Encoder-Decoder (seq2seq) model
Task: Read an input sequence  
and return an output sequence
–Machine translation: translate source into target language
– Dialog system/chatbot: generate a response

Reading the input sequence: RNN Encoder
Generating the output sequence: RNN Decoder
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RNNs for sequence classification
If we just want to assign one label to the entire 
sequence, we don’t need to produce output at each 
time step, so we can use a simpler architecture.

We can use the hidden state of the last word 
in the sequence as input to a feedforward net:
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Basic RNNs for sequence labeling
Sequence labeling (e.g. POS tagging):  
Assign one label to each element in the sequence.
 
RNN Architecture: 
Each time step has a distribution over output classes 
 
 
 
 
 
 

Extension: add a CRF layer to capture dependencies among labels of adjacent tokens.
98
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Figure 9.7 Autoregressive generation with an RNN-based neural language model.

task is part-of-speech tagging, discussed in detail in Chapter 8. In an RNN approach
to POS tagging, inputs are word embeddings and the outputs are tag probabilities
generated by a softmax layer over the tagset, as illustrated in Fig. 9.8.

In this figure, the inputs at each time step are pre-trained word embeddings cor-
responding to the input tokens. The RNN block is an abstraction that represents
an unrolled simple recurrent network consisting of an input layer, hidden layer, and
output layer at each time step, as well as the shared U , V and W weight matrices that
comprise the network. The outputs of the network at each time step represent the
distribution over the POS tagset generated by a softmax layer.

To generate a tag sequence for a given input, we can run forward inference over
the input sequence and select the most likely tag from the softmax at each step. Since
we’re using a softmax layer to generate the probability distribution over the output

Janet will back

RNN

the bill

Figure 9.8 Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained
word embeddings serve as inputs and a softmax layer provides a probability distribution over
the part-of-speech tags as output at each time step.
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Adding attention to the decoder
We want to condition the output generation of the decoder on 
a context-dependent representation of the input sequence. 

Attention computes a probability distribution over the 
encoder’s hidden states that depends on the decoder’s 
current hidden state 

(This distribution is computed anew for each output symbol)

This attention distribution is used to compute a weighted 
average of the encoder’s hidden state vectors. 

This context-dependent embedding of the input sequence  
is fed into the output of the decoder RNN. 
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Attention, more formally
Define a probability distribution   
over the S elements of the input sequence  
that depends on the current output element t    

Use this distribution to compute a weighted average of the 
encoder’s output   or hidden states  

and feed that into the decoder.

α(t) = (α(t)
1 , . . . , α(t)

S )

∑
s=1..S

α(t)
s os ∑

s=1..S

α(t)
s hs
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Attention, more formally
1. Compute a probability distribution   
over the encoder’s hidden states   
that depends on the decoder’s current  

  

2. Use  to compute a weighted avg.  of the encoder’s :
                             

3. Use both  and  to compute a new output , e.g. as 
                           

α(t) = (α(t)
1 , . . . , α(t)

S )
h(s)

h(t)

α(t)
s =

exp(s(h(t), h(s)))
∑s′ 

exp(s(h(t), h(s′ )))
α(t) c(t) h(s)

c(t) = ∑
s=1..S

α(t)
s h(s)

c(t) h(t) o(t)

o(t) = tanh(W1h(t) + W2c(t))
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Defining Attention Weights
Hard attention (degenerate case, non-differentiable):  
      is a one-hot vector  
     (e.g. 1 = most similar element to decoder’s vector, 0 = all other elements)

Soft attention (general case):   
       is not a one-hot

 — Use the dot product (no learned parameters):       
             

 — Learn a bilinear matrix W: 
                 

 — Learn separate weights for the hidden states: 
             

α(t) = (α(t)
1 , . . . , α(t)

S )

α(t) = (α(t)
1 , . . . , α(t)

S )

s(h(t), h(s)) = h(t) ⋅ h(s)

s(h(t), h(s)) = (h(t))TWh(s)

s(h(t), h(s)) = vT tanh(W1h(t) + W2h(s))
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Transformers
Sequence transduction model based on attention
(no convolutions or recurrence)
— easier to parallelize than recurrent nets
— faster to train than recurrent nets
— captures more long-range dependencies  
     than CNNs with fewer parameters
Transformers use stacked self-attention  
and position-wise, fully-connected layers  
for the encoder and decoder

Transformers form the basis of BERT, GPT(2-3), and 
other state-of-the-art neural sequence models.
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Transformer Architecture
Non-Recurrent Encoder-Decoder  
architecture

— No hidden states
— Context information  
    captured via attention
    and positional encodings
— Consists of stacks of layers 
    with various sublayers

104



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Language models
Many NLP tasks require natural language output:

—Machine translation: return text in the target language
—Speech recognition: return a transcript of what was spoken
—Natural language generation: return natural language text
—Spell-checking: return corrected spelling of input

Language models define probability distributions  
over (natural language) strings or sentences.
➔ We can use a language model to generate strings
➔ We can use a language model to score/rank candidate strings  
    so that we can choose the best (i.e. most likely) one:  
    if PLM(A) > PLM(B), return A, not B
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The NLP Pipeline
An NLP system may use some or all  
of the following steps:  

Tokenizer/Segmenter
to identify words and sentences

Morphological analyzer/POS-tagger
to identify the part of speech and structure of words

Word sense disambiguation
to identify the meaning of words 

Syntactic/semantic Parser
to obtain the structure and meaning of sentences

Coreference resolution/discourse model
to keep track of the various entities and events mentioned
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NLP Pipeline: Assumptions
Each step in the NLP pipeline embellishes the input with 
explicit information about its linguistic structure  

POS tagging: parts of speech of word,
Syntactic parsing: grammatical structure of sentence,…. 

Each step in the NLP pipeline requires  
its own explicit (“symbolic”) output representation:

POS tagging requires a POS tag set 
– (e.g. NN=common noun singular, NNS = common noun plural, …)
Syntactic parsing requires constituent or dependency labels
– (e.g. NP = noun phrase, or nsubj = nominal subject) 

These representations should capture  
linguistically appropriate generalizations/abstractions

Designing these representations requires linguistic expertise 
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NLP Pipeline: Shortcomings
Each step in the pipeline relies on a learned model  
that will return the most likely representations
– This requires a lot of annotated training data for each step
– Annotation is expensive and sometimes difficult  

(people are not 100% accurate)
– These models are never 100% accurate
– Models make more mistakes if their input contains mistakes

 
How do we know that we have captured the “right” 
generalizations when designing representations? 
– Some representations are easier to predict than others
– Some representations are more useful for the next steps  

in the pipeline than others
– But we won’t know how easy/useful a representation is  

until we have a model that we can plug into a particular pipeline 
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       She     promised   to    back  the     bill
w =   w(1)         w(2)        w(3)      w(4)   w(5)    w(6) 
  

t  =    t(1)         t(2)        t(3)      t(4)   t(5)    t(6) 

        PRP     VBD     TO    VB   DT   NN
 
What is the most likely sequence of tags t= t(1)…t(N) 
for the given sequence of words w= w(1)…w(N) ?
t* = argmaxt P(t | w)

Statistical POS tagging
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POS tagging with generative models
 
 
 
 

P(t,w): the joint distribution of the labels we want to predict (t) 
and the observed data (w).
We decompose P(t,w) into P(t) and P(w | t) since these 
distributions are easier to estimate. 

Models based on joint distributions of labels and observed data 
are called generative models: think of P(t)P(w | t) as a stochastic 
process that first generates the labels, and then generates the 
data we see, based on these labels.
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Estimate argmaxt P(t|w) directly (in a conditional model)
or use Bayes’ Rule (and a generative model):

argmax
t

P(t|w) = argmax
t

P(t,w)
P(w)

= argmax
t

P(t,w)

= argmax
t

P(t)P(w|t)

Estimate argmaxt P(t|w) directly (in a conditional model)
or use Bayes’ Rule (and a generative model):

argmax
t

P(t|w) = argmax
t

P(t,w)
P(w)

= argmax
t

P(t,w)

= argmax
t

P(t)P(w|t)

Estimate argmaxt P(t|w) directly (in a conditional model)
or use Bayes’ Rule (and a generative model):

argmax
t

P(t|w) = argmax
t

P(t,w)
P(w)

= argmax
t

P(t,w)

= argmax
t

P(t)P(w|t)

Estimate argmaxt P(t|w) directly (in a conditional model)
or use Bayes’ Rule (and a generative model):

argmax
t

P(t|w) = argmax
t

P(t,w)
P(w)

= argmax
t

P(t,w)

= argmax
t

P(t)P(w|t)



CS447 Natural Language Processing (J. Hockenmaier)  https://courses.grainger.illinois.edu/cs447/

Hidden Markov Models (HMMs)
HMMs are the most commonly used generative models for POS tagging 
(and other tasks, e.g. in speech recognition)
 
HMMs make specific independence assumptions in P(t) and P(w| t): 

1) P(t) is an n-gram (typically bigram or trigram) model over tags: 
                    

P(t(i) | t(i–1)) and P(t(i) | t(i–1), t(i–2)) are called transition probabilities

2) In P(w | t), each w(i)  depends only on [is generated by/conditioned on] t(i):
       

   P(w(i) | t(i)) are called emission probabilities  
 
These probabilities don’t depend on the position in the sentence (i),  
but are defined over word and tag types.  
With subscripts i,j,k, to index word/tag types, they become P(ti | tj), P(ti | tj, tk), P(wi | tj)

Pbigram(t) = ∏
i

P(t(i) ∣ t(i−1)) Ptrigram(t) = ∏
i

P(t(i) ∣ t(i−1), t(i−2))

P(w ∣ t) = ∏
i

P(w(i) ∣ t(i))
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The Viterbi algorithm
A dynamic programming algorithm which finds the 
best (=most probable) tag sequence t* for an input 
sentence w: t* = argmaxt P(w | t)P(t) 

Complexity: linear in the sentence length.
With a bigram HMM, Viterbi runs in O(T2N) steps  
for an input sentence with N words and a tag set of T tags. 

The independence assumptions of the HMM tell us  
how to break up the big search problem  
(find t* = argmaxt P(w | t)P(t)) into smaller subproblems.  

The data structure used to store the solution of these 
subproblems is the trellis.
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Sequence Labeling
Input: a sequence of n tokens/words:
Pierre Vinken , 61 years old , will join IBM ‘s board as a 
nonexecutive director Nov. 29  

Output: a sequence of n labels, such that  
each token/word is associated with a label:

POS-tagging: Pierre_NNP Vinken_NNP ,_, 61_CD years_NNS 
old_JJ ,_, will_MD join_VB IBM_NNP ‘s_POS board_NN as_IN 
a_DT nonexecutive_JJ director_NN Nov._NNP 29_CD ._.

Named Entity Recognition: Pierre_B-PERS Vinken_I-PERS ,_O 61_O 
years_O old_O ,_O will_O join_O IBM_B-ORG ‘s_O board_O 
as_O a_O nonexecutive_O director_O Nov._B-DATE 29_I-
DATE ._O
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BIO encodings in general
BIO encoding can be used to frame any task  
that requires the identification of non-overlapping  
and non-nested text spans as a sequence labeling 
problem, e.g.:  

— NP chunking
— Shallow Parsing
— Named entity recognition
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Sequence labeling algorithms
Statistical models:

— Maximum Entropy Markov Models (MEMMs)
— Conditional Random Fields (CRFs)

Neural models:
— Recurrent networks (or transformers)  
    that predict a label at each time step, 
    possibly with a CRF output layer.
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Named Entity Recognition

117

Pierre Vinken , 61 years old , will join IBM ‘s board 
as a nonexecutive director Nov. 29 .

[PERS Pierre Vinken] , 61 years old , will join  
[ORG IBM] ‘s board as a nonexecutive director  
[DATE Nov. 2] .

Task: identify all mentions of named entities 
 (people, organizations, locations, dates)
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Named Entity Types

These types were developed for the news domain  
as part of NIST’s Automatic Content Extraction (ACE) 
program.
Other domains (e.g. biomedical text) require different 
types (proteins, genes, diseases, etc.)
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18.1 • NAMED ENTITY RECOGNITION 3

sentiment analysis we might want to know a consumer’s sentiment toward a partic-
ular entity. Entities are a useful first stage in question answering, or for linking text
to information in structured knowledge sources like Wikipedia.

Figure 18.1 shows typical generic named entity types. Many applications will
also need to use specific entity types like proteins, genes, commercial products, or
works of art.

Type Tag Sample Categories Example sentences
People PER people, characters Turing is a giant of computer science.
Organization ORG companies, sports teams The IPCC warned about the cyclone.
Location LOC regions, mountains, seas The Mt. Sanitas loop is in Sunshine Canyon.
Geo-Political
Entity

GPE countries, states, provinces Palo Alto is raising the fees for parking.

Facility FAC bridges, buildings, airports Consider the Golden Gate Bridge.
Vehicles VEH planes, trains, automobiles It was a classic Ford Falcon.

Figure 18.1 A list of generic named entity types with the kinds of entities they refer to.

Named entity recognition means finding spans of text that constitute proper
names and then classifying the type of the entity. Recognition is difficult partly be-
cause of the ambiguity of segmentation; we need to decide what’s an entity and what
isn’t, and where the boundaries are. Another difficulty is caused by type ambiguity.
The mention JFK can refer to a person, the airport in New York, or any number of
schools, bridges, and streets around the United States. Some examples of this kind
of cross-type confusion are given in Figures 18.2 and 18.3.

Name Possible Categories
Washington Person, Location, Political Entity, Organization, Vehicle
Downing St. Location, Organization
IRA Person, Organization, Monetary Instrument
Louis Vuitton Person, Organization, Commercial Product

Figure 18.2 Common categorical ambiguities associated with various proper names.

[PER Washington] was born into slavery on the farm of James Burroughs.
[ORG Washington] went up 2 games to 1 in the four-game series.
Blair arrived in [LOC Washington] for what may well be his last state visit.
In June, [GPE Washington] passed a primary seatbelt law.
The [VEH Washington] had proved to be a leaky ship, every passage I made...

Figure 18.3 Examples of type ambiguities in the use of the name Washington.

18.1.1 NER as Sequence Labeling
The standard algorithm for named entity recognition is as a word-by-word sequence
labeling task, in which the assigned tags capture both the boundary and the type. A
sequence classifier like an MEMM/CRF, a bi-LSTM, or a transformer is trained to
label the tokens in a text with tags that indicate the presence of particular kinds of
named entities. Consider the following simplified excerpt from our running exam-
ple.

[ORG American Airlines], a unit of [ORG AMR Corp.], immediately matched
the move, spokesman [PER Tim Wagner] said.
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Relation Extraction from text
Identify relations between named entities, 
typically from a small set of predefined relations.

The 17 relations (orange) used in ACE: 
 
 
 
 
 
 

18.2 • RELATION EXTRACTION 9

Relations Types Examples
Physical-Located PER-GPE He was in Tennessee
Part-Whole-Subsidiary ORG-ORG XYZ, the parent company of ABC
Person-Social-Family PER-PER Yoko’s husband John
Org-AFF-Founder PER-ORG Steve Jobs, co-founder of Apple...
Figure 18.10 Semantic relations with examples and the named entity types they involve.

Domain D = {a,b,c,d,e, f ,g,h, i}
United, UAL, American Airlines, AMR a,b,c,d
Tim Wagner e
Chicago, Dallas, Denver, and San Francisco f ,g,h, i

Classes
United, UAL, American, and AMR are organizations Org = {a,b,c,d}
Tim Wagner is a person Pers = {e}
Chicago, Dallas, Denver, and San Francisco are places Loc = { f ,g,h, i}

Relations
United is a unit of UAL PartOf = {ha,bi,hc,di}
American is a unit of AMR
Tim Wagner works for American Airlines OrgAff = {hc,ei}
United serves Chicago, Dallas, Denver, and San Francisco Serves = {ha, f i,ha,gi,ha,hi,ha, ii}
Figure 18.11 A model-based view of the relations and entities in our sample text.

These relations correspond nicely to the model-theoretic notions we introduced
in Chapter 16 to ground the meanings of the logical forms. That is, a relation consists
of a set of ordered tuples over elements of a domain. In most standard information-
extraction applications, the domain elements correspond to the named entities that
occur in the text, to the underlying entities that result from co-reference resolution, or
to entities selected from a domain ontology. Figure 18.11 shows a model-based view
of the set of entities and relations that can be extracted from our running example.
Notice how this model-theoretic view subsumes the NER task as well; named entity
recognition corresponds to the identification of a class of unary relations.

Sets of relations have been defined for many other domains as well. For example
UMLS, the Unified Medical Language System from the US National Library of
Medicine has a network that defines 134 broad subject categories, entity types, and
54 relations between the entities, such as the following:

Entity Relation Entity
Injury disrupts Physiological Function
Bodily Location location-of Biologic Function
Anatomical Structure part-of Organism
Pharmacologic Substance causes Pathological Function
Pharmacologic Substance treats Pathologic Function

Given a medical sentence like this one:

(18.1) Doppler echocardiography can be used to diagnose left anterior descending
artery stenosis in patients with type 2 diabetes

We could thus extract the UMLS relation:

Echocardiography, Doppler Diagnoses Acquired stenosis

Wikipedia also offers a large supply of relations, drawn from infoboxes, struc-infoboxes
tured tables associated with certain Wikipedia articles. For example, the Wikipedia
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Figure 18.9 The 17 relations used in the ACE relation extraction task.

ber of correctly labeled responses to the total labeled; and F-measure is the harmonic
mean of the two. For named entities, the entity rather than the word is the unit of
response. Thus in the example in Fig. 18.6, the two entities Tim Wagner and AMR
Corp. and the non-entity said would each count as a single response.

The fact that named entity tagging has a segmentation component which is not
present in tasks like text categorization or part-of-speech tagging causes some prob-
lems with evaluation. For example, a system that labeled American but not American
Airlines as an organization would cause two errors, a false positive for O and a false
negative for I-ORG. In addition, using entities as the unit of response but words as
the unit of training means that there is a mismatch between the training and test
conditions.

18.2 Relation Extraction

Next on our list of tasks is to discern the relationships that exist among the detected
entities. Let’s return to our sample airline text:

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it
has increased fares by [MONEY $6] per round trip on flights to some
cities also served by lower-cost carriers. [ORG American Airlines], a
unit of [ORG AMR Corp.], immediately matched the move, spokesman
[PER Tim Wagner] said. [ORG United], a unit of [ORG UAL Corp.],
said the increase took effect [TIME Thursday] and applies to most
routes where it competes against discount carriers, such as [LOC Chicago]
to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].

The text tells us, for example, that Tim Wagner is a spokesman for American
Airlines, that United is a unit of UAL Corp., and that American is a unit of AMR.
These binary relations are instances of more generic relations such as part-of or
employs that are fairly frequent in news-style texts. Figure 18.9 lists the 17 relations
used in the ACE relation extraction evaluations and Fig. 18.10 shows some sample
relations. We might also extract more domain-specific relation such as the notion of
an airline route. For example from this text we can conclude that United has routes
to Chicago, Dallas, Denver, and San Francisco.
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Question Answering
Question Answering can mean different things: 
— Being able to query a knowledge base  
    (e.g. a database of known facts) in natural language.  
    This may require a semantic parser  
    to translate the natural language question into, say, SQL
— Being able to query a collection of documents  
    that is known (or assumed) to contain answers  
    (as short text spans in these documents)
— Being able to answer questions about a single document  
     by returning short text spans in the document that answer  
     these questions (“reading comprehension”)
— Being able to answer knowledge questions about a domain   
     (e.g. take multiple choice exams on science questions)
Reading: Chapter 25
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Question Answering (QA) as an  
Information Retrieval (IR) task
Answer a user’s questions by finding a text snippet in 
a large document collection that contains the answer.
Questions that can be answered in this way 
are typically about simple “factoids”
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25.1 IR-based Factoid Question Answering

The goal of information retrieval based question answering is to answer a user’s
question by finding short text segments on the web or some other collection of doc-
uments. Figure 25.1 shows some sample factoid questions and their answers.

Question Answer
Where is the Louvre Museum located? in Paris, France
What’s the abbreviation for limited partnership? L.P.
What are the names of Odin’s ravens? Huginn and Muninn
What currency is used in China? the yuan
What kind of nuts are used in marzipan? almonds
What instrument does Max Roach play? drums
What’s the official language of Algeria? Arabic
How many pounds are there in a stone? 14

Figure 25.1 Some sample factoid questions and their answers.

Figure 25.2 shows the three phases of an IR-based factoid question-answering
system: question processing, passage retrieval and ranking, and answer extraction.
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Figure 25.2 IR-based factoid question answering has three stages: question processing, passage retrieval, and
answer processing.

25.1.1 Question Processing

The main goal of the question-processing phase is to extract the query: the keywords
passed to the IR system to match potential documents. Some systems additionally
extract further information such as:

• answer type: the entity type (person, location, time, etc.) of the answer.
• focus: the string of words in the question that is likely to be replaced by the

answer in any answer string found.
• question type: is this a definition question, a math question, a list question?

For example, for the question Which US state capital has the largest population?
the query processing might produce:
query: “US state capital has the largest population”
answer type: city
focus: state capital

In the next two sections we summarize the two most commonly used tasks, query
formulation and answer type detection.
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Reading comprehension  
as span-extraction QA
Reading comprehension tests often ask children to 
answer questions based on a short paragraph.

Although reading comprehension can be formulated 
as a multiple-choice task, or a free answer task 
(which is difficult to evaluate), the span-extraction 
perspective requires that answers correspond to text 
spans 
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Science exams as testbed for QA
Task: Answer multiple choice questions  
from 8th-grade science exams 

1. Which equipment will best separate a mixture of iron filings and 
black pepper?  
(1) magnet (2) filter paper (3) triple-beam balance (4) voltmeter 

This requires a lot of background knowledge that 
has to be acquired from somewhere (e.g. textbooks),  
and reasoning capabilities  
 
https://allenai.org/content/docs/Aristo_Milestone.pdf
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Words
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Semantics

Syntactic transfer

Semantic transfer

Direct transfer

The Vauquois triangle
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Statistical Machine Translation
Given a Chinese input sentence (source)… 
            主席：各位議員，早晨。 
…find the best English translation (target)  
     President:  Good morning, Honourable Members. 

We can formalize this as    T* = argmaxT P( T | S )
 
Using Bayes Rule simplifies the modeling task,  
so this was the first approach for statistical MT  
(the so-called “noisy-channel model”):  
     T* = argmaxT P( T | S ) = argmaxT P( S | T )P(T)
  where  P( S | T ): translation model           
                P(T): language model 
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Translation Model
Ptr(早晨 | morning)

Language Model
Plm(honorable | good morning)

MOTION: PRESIDENT (in Cantonese): Good 
morning, Honourable Members. We will now start 

the meeting. First of all, the motion on the 

Parallel corpora Monolingual corpora
Good morning, Honourable Members. We will now start the 
meeting. First of all, the motion on the "Appointment of the 
Chief Justice of the Court of Final Appeal of the Hong Kong 

Special Administrative Region". Secretary for Justice.

Good morning, Honourable Members. We will now start the 
meeting. First of all, the motion on the "Appointment of the 
Chief Justice of the Court of Final Appeal of the Hong Kong 

Special Administrative Region". Secretary for Justice.

Good morning, Honourable Members. We will now start the 
meeting. First of all, the motion on the "Appointment of the 
Chief Justice of the Court of Final Appeal of the Hong Kong 

Special Administrative Region". Secretary for Justice.

Decoding Algorithm

Source

主席：各位議
員，早晨。

Target

President:  Good 
morning, Honourable 

Members.
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Phrase-based translation models
Assumption:  fundamental units of translation are phrases: 
 
 
 

Phrase-based model of P(F | E):
1. Split target sentence deterministically into phrases ep1...epn 
2. Translate each target phrase epi  into source phrase fpi   
with translation probability φ(fpi |epi) 
3. Reorder foreign phrases with distortion probability  
d(ai-bi-1) = c|ai-bi-1 -1| 
ai   = start position of source phrase generated by ei  
bi-1 = end position of source phrase generated by ei-1
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主席：各位議員，早晨。 

President (in Cantonese):  Good morning, Honourable Members. 


