
HW 2 (due Wednesday, at noon, September 12, 2018)
CS 473: Algorithms, Fall 2018 Version: 1.01

Submission guidelines and policies as in homework 1.

1 (100 pts.) Weighted discrepancy on the line.
You are given a set W = {w1, . . . , wn} of n numbers, where wi ∈ JUK = {1, . . . , U}, for all i, where U is
some positive integer number. The purpose of this question is to partition the numbers into two sets that
are as balanced as possible. In particular, let si ∈ {−1,+1} be an indicator to which of the two sets wi

is assigned to, for all i. An assignment as such, is a vector S ∈ {−1,+1}n, where the two resulting sets
in the partition are L(S) = {wi | si = −1} and R(S) = {wi | si = 1}.

1.A. (50 pts.) Given an assignment S = (s1, . . . , sn), the balance of the partition is

B(S) =

∣∣∣∣∣
n∑

i=1

siwi

∣∣∣∣∣ =
∣∣∣∣∣∣
∑

x∈L(S)

x−
∑

y∈R(S)

y

∣∣∣∣∣∣
Provide an algorithm, as fast as possible, that computes (and outputs) the assignment that realizes

B(w1, . . . , wn) = min
S∈{−1,+1}n

B(S).

The running time would depend on both n and U . What is the running time of your algorithm?
How much space does your algorithm need? The smaller, the better.
Can you improve the space, if you only need to compute the value of the optimal solution (not the
assignment itself).
Pseudo-code for the algorithm is highly recommended for this part.

1.B. (50 pts.) Given a parameter k, let S(k, n) be the set of all vectors in {−1,+1}n that have at
most k coordinates with −1 in them. Provide an algorithm, as fast as possible, that computes the
assignment that realizes minS∈S(k,n)B(S).

1.C. (Not for submission, but you can think about it.)
Given integers i ≤ j, and an assignment S, let B(S, i, j) =

∣∣∣∑j
`=i siwi

∣∣∣ be the balance of the
subsequence wi, . . . , wj for the given assignment. The discrepancy of the input, given an assignment
S, is D(S) = maxi≤j B(S, i, j). The discrepancy of the input D(w1, . . . , wn) = minS∈{−1,+1}n D(S).
Provide an algorithm, as fast as possible, that computes the assignment that realizes D(w1, . . . , wn).

2 (100 pts.) Good path.
(To solve this problem, you might want to revisit topological ordering, and how to compute it in linear
time.)
Consider a DAG G with n vertices and m edges that represents courses available. Each vertex v of G
corresponds to a course, with value αv (which might be negative, if it is a useless course). A vertex v is
useful if αv > 0.

2.A. (20 pts.) Show an algorithm that in linear time computes all the vertices that can reach a sink of
G via a path that goes through at least one useful vertex.

2.B. (20 pts.) Describe an algorithm that, in linear time, computes all the vertices that can reach a sink
of G via a path that goes through at least β useful vertices, where β is a prespecified parameter.

1

2.C. (30 pts.) Show an algorithm, as fast as possible, that computes for all the vertices v in G the most
beneficial path from v to any sink of G. The benefit of a path is the total sum of the values of
vertices along the path.

2.D. (30 pts.) Using the above, describe how to compute, in linear time, a path that visits all the vertices
of G if such a path exists.

3 (100 pts.) Frequent flier miles.
You are give an directed graph G with n vertices and m edges, positive prices on the edges of G, a
parameter k ≤ n, and two vertices s and t. (That is, for every edge (u, v) ∈ E(G), there is an associated
price p

(
(u, v)

)
> 0.) Describe an algorithm, as fast as possible, that computes the shortest path from s

to t, where the path is allowed to not pay for (at most) k edges used by the path. What is the running
time of your algorithm? (You can use the Dijkstra algorithm as a subroutine if you want/need to.)

2

