
HW 4 (due Wednesday, at noon, September 26, 2018)
CS 473: Algorithms, Fall 2018 Version: 1.1

Submission guidelines and policies as in homework 1.

1 (100 pts.) Sorting network by merging.

1.A. (10 pts.) Prove that an n-input sorting network must contain at least one comparator between the
ith and (i+ 1)th lines for all i = 1, 2, ..., n− 1.

1.B. (20 pts.) Suppose that we have 2n elements < a1, a2, ..., a2n > and wish to partition them into the
n smallest and the n largest. Prove that we can do this in constant additional depth after separately
sorting < a1, a2, ..., an > and < an+1, an+2, ..., a2n >.
(Hint: Go over the class notes for sorting networks – there is a three line argument here.).

1.C. (30 pts.) Consider a merging network – such a network takes two sorted sequences and merge them
into a sorted input. Specifically, in this case, the inputs are a1, a2, . . . , an, for n an exact power of 2, in
which the two monotonic sequences to be merged are 〈a1, a3, . . . , an−1〉 and 〈a2, a4, . . . , an〉 (namely,
the input is a sequence of n numbers, where the odd numbers or sorted, and the even numbers are
sorted). Prove that the number of comparators in this kind of merging network is Ω(n log n). Why
is this an interesting lower bound? (Hint: Partition the comparators into three sets: One involving
inputs only the first half, inputs involving only the bottom half, and comparators involving both
halves – then argue one of these sets has to have Ω(n) comparators, write down a recurrence, and
solve it.)

1.D. (40 pts.) Prove that any merging network, regardless of the order of inputs, requires Ω(n log n)
comparators. (Hint: Use part (C).)

2 (100 pts.) Reorderings.
A permutation network on n inputs and n outputs has switches that allow it to connect its inputs to its
outputs according to any n! possible permutations. Figure 1 shows the 2-input, 2-output permutation
network P2, which consists of a single switch that can be set either to feed its inputs straight through to
its outputs or to cross them.

2.A. (5 pts.) Argue that if we replace each comparator in a sorting network with the switch of Figure 1,
the resulting network is a permutation network. That is, for any permutation π, there is a way to
set the switches in the network so that input i is connected to output π(i).

P
2

P
2

Figure 1: Permutation Switch
2.B. (2 pts.) Figure 2 shows the recursive construction of an 8-input, 8-output permutation network P8

that uses two copies of P4 and 8 switches. The Switches have been set to realize the permutation
π = 〈π(1), π(2), . . . , π(8)〉 = 〈4, 7, 3, 5, 1, 6, 8, 2〉, which requires (recursively) that the top P4 realize
〈4, 2, 3, 1〉 and the bottom P4 realize 〈2, 3, 1, 4〉.

1



P8
P4

P4

1

2

3

4

5

6

7

8

1

2

3

4

5

7

8

Figure 2: Permutation Network of Size 8
Show how to realize the permutation 〈5, 3, 4, 6, 1, 8, 2, 7〉 on P8 by drawing the switch settings and
the permutations performed by the two P4’s.

2.C. (5 pts.) Let n be an exact power of 2. Define Pn recursively in terms of two Pn/2’s in a manner
similar to the way we defined P8.
Describe an algorithm (ordinary random-access machine) that runs in O(n)-time that sets the n
switches connected to the inputs and outputs of Pn and specifies the permutations that must be
realized by each Pn/2 in order to accomplish any given n-element permutation. Prove that your
algorithm is correct.

2.D. (3 pts.) What are the depth size of Pn? How long does it take on an ordinary random-access
machine to compute all switch settings, including those within the Pn/2’s?

2.E. (5 pts.) Argue that for n > 2, any permutation network (not just Pn) must realize some permutation
by two distinct combinations of switch settings.

3 (100 pts.) Two is enough
Consider a uniform rooted tree of height h (every leaf is at distance h from the root). The root, as well
as any internal node, has, say, 4 children. Each leaf has a boolean value associated with it. Each internal
node returns true, if two or more of its children are one. The evaluation problem consists of determining
the value of the root; at each step, an algorithm can choose one leaf whose value it wishes to read.

3.A. (35 pts.) [This part is a challenging question – lets see what you can do.] Show that for any
deterministic algorithm, there is an instance (a set of boolean values for the leaves) that forces it to
read all n = 4h leaves. (Hint: Consider an adversary argument, where you provide the algorithm
with the minimal amount of information as it requests bits from you. In particular, one can devise
an adversary algorithm that forces you to read all input bits. And naturally, first solve the cases
h = 1, h = 2, etc. Partial credit would be given for solving the cases h = 1, 2, 3.)

3.B. Consider a tree T with h = 1. Consider the algorithm that permute the children of the root of T ,
and evaluate them by this order. The algorithm stops as soon as one can compute the value of the
root (for example, the algorithm encountered two ones). Let X be the number of leafs this algorithm
evaluates. Prove that E[X] < 4. What exactly is your upper bound for E[X]?
(Hint: There are really only 5 different inputs: Calculate E[X] for each one of these scenarios, and
return the weakest upper bound you found.)

3.C. Consider the recursive randomized algorithm that evaluates (recursively) the subtrees of a node in a
random order, and stops as soon as the value of the node is resolved. (Unlike part (A), the specific
input is fixed in advance – there is no adversary here.) Show the expected number of leaves read by
the algorithm on any instance is at most nc, where c is a constant strictly smaller than 1,

2


