
HW 5 (due Wednesday, at noon, October 10, 2018)
CS 473: Algorithms, Fall 2018 Version: 1.0

Submission guidelines and policies as in homework 1.

1 (100 pts.) Storing fast.
Consider an array A[1 . . . n] which is initially empty. One can check in constant time whether an entry in
array is empty, or store a value in an array. Think about this array as a cache. You are given a stream
x1, . . . , xm of elements to store in the array. Let rand(n) be a library function that returns a random
number chosen uniformly from {1, . . . , n}.
In the ith iteration, the algorithm randomly select a location ri ← rand(n), and tries to store xi in the
location A[ri]. If this location already contains a value, the algorithm retries by resampling ri ← rand(n),
and repeat doing it till success.

1.A. (10 pts.) For m = n prove an exact bound on the expected number of calls to rand(n).
1.B. (10 pts.) For m = n/2 prove an exact bound on the expected number of calls to rand(n).
1.C. (20 pts.) Consider the variant that after trying 3 times for each element to store it, the algorithm

simply reject it. For m = n, provide an upper bound (as tight as possible [constants matter here])
on the expected number of elements being rejected.

1.D. (20 pts.) We take all the rejected elements from the previous part (for simplicity assume the number
of these elements is exactly your upper bound from the previous part), and the algorithm tries to
store them again, in a new array B2[1 . . . , n], which is initially empty, again doing three tries before
rejecting an element. Provide an upper bound (as tight as possible) on the expected number of
elements being rejected.

1.E. (10 pts.) Assume we do the above for i layers. Let Ri−1 be the number of elements that got rejected
in the first i− 1 layers. Assume that Ri−1 ≤ qin, for some constant qi < 1/2. Let Zi be the number
of elements that get rejected in the ith layer. Prove that E[Zi] ≤ q3i n.

1.F. (30 pts.) Prove an upper bound (as small as possible), using the above, that holds with high
probability, on the number of rounds one need to have till all elements are stored somewhere.

Note, that the assumption that the number elements getting rejected is exactly the expected bound, is of
course false. The same analysis essentially holds, but the details becomes much hairier.

2 (100 pts.) Cuts and stuff.

2.A. (10 pts.) Consider a graph G = (V,E) with n vertices, m edges and a min cut of size k. Let F be
the collection of all min-cuts in G (i.e., all the cuts in F are of size k). What is the probability that
MinCut (the simpler variant – see class notes) would output a specific min-cut S ∈ F?
(Here, we are looking for a lower bound on the probability, since two minimum cuts of the same size
might have different probabilities to be output.)
[And yes, this is easy.]

2.B. (10 pts.) Let S be a set of numbers. Consider a randomized algorithm, that for any x ∈ S, outputs
x with probability at least p. Prove that |S| ≤ 1/p.

2.C. (10 pts.) Bound the size of F using (B).
2.D. (10 pts.) A good cut is a cut (S, S) such that the induced subgraphs GS and GS are connected.

Consider a specific good cut C =
(
S, S

)
with kt edges in it, where t ≥ 1. What is the probability

that MinCut would output this cut? (Again, proof a lower bound on this probability.)
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2.E. (40 pts.) Consider the set F(t) of all good cuts in G of size at most kt. Bound the size of F(t).
2.F. (20 pts.) Consider the set F′(t) of all cuts in G (not necessarily all good) of size at most kt. Bound

the size of F′(t).

3 (100 pts.) Cut, cut, cut.

3.A. (40 pts.) Given a connected graph G = (V,E) with n vertices, and m ≥ n edges, consider the
algorithm that assign edges random weights (say in [0, 1]), and computes the MST T of the resulting
graph. Let e be the heaviest edge in T and consider the cut induced by the two connected components
of T − e. Prove that with probability ≥ 2/n(n− 1), this is a mincut of G.

3.B. (Not for submission - for fun.) Provide an algorithm that in (expected or deterministic) O(m) time
returns the heaviest edge in the MST of G. [Without computing the MST, of course.]

3.C. (Harder – not for submission.) Consider the task of computing any spanning tree T1 of G, then
computing any spanning (forest) T2 of G − E(T), and continuing in this fashion, where Ti is a
spanning forest of the graph remaining from G after removing the edges of T1, . . . ,Ti−1. Prove, that
one can compute a sequence of such spanning forests T1,T2, . . . in O(m polylog n) time.

3.D. (60 pts.) Assume you are given that the mincut in G is of size k. Present an algorithm, with running
time O(mpolylog n), that computes a graph H ⊆ G, such that:
(i) The mincut of H is a mincut of G.
(ii) |E(H)| = O(nk).
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