HW 6 (due Wednesday, at noon, October 17, 2018)

CS 473: Algorithms, Fall 2018 Version: 1.3

Submission guidelines and policies as in homework 1.

1 (100 pts.) Steiner tree.

Consider an undirected graph G = (V, E) with positive weights on the edges. Here G has n vertices and
m edges. We are given a set X C V, and the task is to compute the lightest spanning tree that contains
all the vertices of X. This problem is known as the Steiner tree problem, and it is NP-HARD.

Consider the following randomized algorithm. It first computes a random permutation z1,...,x; of the
vertices of X. Let T; be a spanning tree of {z1,...,z;} computed by the algorithm. Initially, T; is just
the vertex x1. In the ith iteration, it connects z; to the closest vertex of J;_; using a shortest path p;. It
adds p; to T;—1 to get T;. the algorithm then outputs J; as the approximation.

1.A.

1.B.

1.C.
1.D.
1.E.

(10 pTs.) Show an example where this algorithm would not output the optimal solution, independent
of the permutation.

(20 pTS.) Let C be the shortest cycle that visits all the vertices of X (the cycle C' is not necessarily
simple). Let opt be the optimal Steiner tree of X in G. Prove that w(opt) < w(C) < 2w(opt).

(20 pTS.) Let R; be the length of p;. Prove that E[R;] < 2w(C)/i.

(40 pTS.) Prove that E[w(T:)] = O(w(C)logt).

(10 pTs.) Prove that the above algorithm provides a O(logn) approximation to the Steiner tree
problem, in expectation. (This is easier than easy.)

2 (100 pTs.) Back and forth.

2.A.

2.B.

2.C.

2.D.

2.E.

(10 pTS.) Prove that for any x1,...,z, > 0, we have > " | ﬁ > i, where a = (E?:l xz) /n.
(Hint: Follows readily from an inequality well known to the internet.)

(20 p1s.) Consider a graph G and a random permutation 71, ..., m, of its vertices, and consider the
greedy algorithm that, in the ith iteration, adds m; to the computed independent set I if none of the
neighbors of m; were already in the independent set. Prove that for a vertex v € V, the probability
of v to be in I is at least 1/(d(v) 4+ 1), where d(v) denotes the degree of v in G.

Prove that E[|I|] > 57, where J is the average degree of a vertex in G.

(20 pTs.) Prove that in a graph G with n, there are at most n/2 vertices with degree larger or equal
to 20, where ¢ is the average degree of a vertex in G.

(20 pTS.) A partial coloring is a coloring of some of the vertices of the graph, such that every two
vertices that are colored and have an edge between them have a different color (i.e., some vertices
might not be colored). Present an efficient algorithm that partially colors, say, at least half the
vertices in the graph. What is the number of colors your algorithm uses in the worst case (the lower,
the better).

(30 PTS.) A weak k coloring is a coloring of the vertices of the graph, such that there are few
edges that are assigned the same color. In particular, for a k coloring x of a graph G, let f(x) be the
number of edges in G that are violated (i.e., they are assigned the same color). Present an algorithm
that compute in randomized polynomial time a weak k coloring that violates at most m/k edges,
where m is the number of edges of G. The result of the algorithm must be correct (but the running
time can be a random variable). What is the running time of your algorithm? (Faster is better —
also prove the bound on the running time of your algorithm.)

(Hint: Use randomization. Start by showing an algorithm that achieves the desired coloring in
expectation, and continue from there.)



(100 pTsS.) K closest servers.

Consider an undirected graph G with n vertices and m edges, with positive weights on the edges. In
addition, you are given a set S of servers. For each vertex v in the graph, we are interested in computing
the set N(S,v, k) — which is the set of the k closest servers to v in S (assume all shortest path distances
are unique).

3.A.

3.B.

3.C.

3.D.

3.E.

(20 pTs.) Show how to modify Dijkstra algorithm, such that given a set Y of vertices, one can
compute for all the vertices in G their closest vertex in Y. What is the running time of your
algorithm? (Faster is better.)

(20 ptS.) Let R be a random sample from S, where every vertex is chosen with probability 1/k. Let
u be a vertex in N(S,v,k). Prove that with probability at least 1/(ck), for some absolute constant
¢, we have that v € R, and no other vertex of N(S,v,k) is in R.

(20 pts.) Let Ry,..., Ry be t = O(klogn) random samples generated as above. For i = 1,...,t,,
and for each vertex v in the graph, compute its closest neighbor n;(v) = ClosestNeighbor(v, R;) —
that is, the closest vertex in R; to v. What is the running time of your algorithm.

(20 pts.) Let L(v) = {ni(v),...,ni(v)}. Prove, that with high probability, for all v € V(G), we have
N(S,v,k) C L(v).
(20 pTs.) Present an algorithm, as fast as possible, using the above, that computes for each vertex

of G its k closest servers in S. What is the running time of your algorithm? Your algorithm should
succeed with high probability.

(There is a deterministic algorithm for this problem with better running time, but it is less elegant.)



