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Preface

This manuscript is a collection of class notes for the (no longer required graduate) course “473G/573 Graduate
Algorithms” taught in the University of Illinois, Urbana-Champaign, in 1. Spring 2006, 2. Fall 07, 3. Fall 09,
4. Fall 10, 5. Fall 13, and 6. Fall 14.

Class notes for algorithms class are as common as mushrooms after a rain. I have no plan of publishing
these class notes in any form except on the web. In particular, Jeff Erickson has class notes for 374/473 which
are better written and cover some of the topics in this manuscript (but naturally, I prefer my exposition over
his).

My reasons in writing the class notes are to (i) avoid the use of a (prohibitly expensive) book in this class,
(ii) cover some topics in a way that deviates from the standard exposition, and (iii) have a clear description of
the material covered. In particular, as far as I know, no book covers all the topics discussed here. Also, this
manuscript is available (on the web) in more convenient lecture notes form, where every lecture has its own
chapter.

Most of the topics covered are core topics that I believe every graduate student in computer science should
know about. This includes NP-Completeness, dynamic programming, approximation algorithms, randomized
algorithms and linear programming. Other topics on the other hand are more optional and are nice to know
about. This includes topics like network flow, minimum-cost network flow, and union-find. Nevertheless, I
strongly believe that knowing all these topics is useful for carrying out any worthwhile research in any subfield
of computer science.

Teaching such a class always involve choosing what not to cover. Some other topics that might be worthy
of presentation include advanced data-structures, computational geometry, etc – the list goes on. Since this
course is for general consumption, more theoretical topics were left out (e.g., expanders, derandomization, etc).

In particular, these class notes cover way more than can be covered in one semester. For my own sanity, I
try to cover some new material every semester I teach this class. Furthermore, some of the notes contains more
detail than I cover in class.

In any case, these class notes should be taken for what they are. A short (and sometime dense) tour of some
key topics in algorithms. The interested reader should seek other sources to pursue them further.

If you find any typos, mistakes, errors, or lies, please email me.
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Part I
NP Completeness

Chapter 1

NP Completeness I

"Then you must begin a reading program immediately so that you man understand the crises of our age," Ignatius said
solemnly. "Begin with the late Romans, including Boethius, of course. Then you should dip rather extensively into
early Medieval. You may skip the Renaissance and the Enlightenment. That is mostly dangerous propaganda. Now,
that I think about of it, you had better skip the Romantics and the Victorians, too. For the contemporary period,
you should study some selected comic books."

"You’re fantastic."
"I recommend Batman especially, for he tends to transcend the abysmal society in which he’s found himself. His

morality is rather rigid, also. I rather respect Batman."
– A confederacy of Dunces, John Kennedy Toole.

1.1. Introduction
The question governing this course, would be the development of efficient algorithms. Hopefully, what is an
algorithm is a well understood concept. But what is an efficient algorithm? A natural answer (but not the only
one!) is an algorithm that runs quickly.

What do we mean by quickly? Well, we would like our algorithm to:
(A) Scale with input size. That is, it should be able to handle large and hopefully huge inputs.
(B) Low level implementation details should not matter, since they correspond to small improvements in

performance. Since faster CPUs keep appearing it follows that such improvements would (usually) be
taken care of by hardware.

(C) What we will really care about are asymptotic running time. Explicitly, polynomial time.
In our discussion, we will consider the input size to be n, and we would like to bound the overall running

time by a function of n which is asymptotically as small as possible. An algorithm with better asymptotic
running time would be considered to be better.

Example 1.1.1. It is illuminating to consider a concrete example. So assume we have an algorithm for a problem
that needs to perform c2n operations to handle an input of size n, where c is a small constant (say 10). Let
assume that we have a CPU that can do 109 operations a second. (A somewhat conservative assumption, as
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Input size n2 ops n3 ops n4 ops 2n ops n! ops
5 0 secs 0 secs 0 secs 0 secs 0 secs

20 0 secs 0 secs 0 secs 0 secs 16 mins
30 0 secs 0 secs 0 secs 0 secs 3 · 109 years
50 0 secs 0 secs 0 secs 0 secs never
60 0 secs 0 secs 0 secs 7 mins never
70 0 secs 0 secs 0 secs 5 days never
80 0 secs 0 secs 0 secs 15.3 years never
90 0 secs 0 secs 0 secs 15,701 years never
100 0 secs 0 secs 0 secs 107 years never
8000 0 secs 0 secs 1 secs never never

16000 0 secs 0 secs 26 secs never never
32000 0 secs 0 secs 6 mins never never
64000 0 secs 0 secs 111 mins never never

200,000 0 secs 3 secs 7 days never never
2,000,000 0 secs 53 mins 202.943 years never never

108 4 secs 12.6839 years 109 years never never
109 6 mins 12683.9 years 1013 years never never

Figure 1.1: Running time as function of input size. Algorithms with exponential running times can handle
only relatively small inputs. We assume here that the computer can do 2.5 · 1015 operations per second, and
the functions are the exact number of operations performed. Remember – never is a long time to wait for a
computation to be completed.

currently [Jan 2006]¬, the blue-gene supercomputer can do about 3 · 1014 floating-point operations a second.
Since this super computer has about 131,072 CPUs, it is not something you would have on your desktop any
time soon.) Since 210 ≈ 103, you have that our (cheap) computer can solve in (roughly) 10 seconds a problem
of size n = 27.

But what if we increase the problem size to n = 54? This would take our computer about 3 million years to
solve. (It is better to just wait for faster computers to show up, and then try to solve the problem. Although
there are good reasons to believe that the exponential growth in computer performance we saw in the last 40
years is about to end. Thus, unless a substantial breakthrough in computing happens, it might be that solving
problems of size, say, n = 100 for this problem would forever be outside our reach.)

The situation dramatically change if we consider an algorithm with running time 10n2. Then, in one second
our computer can handle input of size n = 104. Problem of size n = 108 can be solved in 10n2/109 = 1017−9 = 108

which is about 3 years of computing (but blue-gene might be able to solve it in less than 20 minutes!).
Thus, algorithms that have asymptotically a polynomial running time (i.e., the algorithms running time is

bounded by O(nc) where c is a constant) are able to solve large instances of the input and can solve the problem
even if the problem size increases dramatically.

Can we solve all problems in polynomial time? The answer to this question is unfortunately no. There
are several synthetic examples of this, but it is believed that a large class of important problems can not be
solved in polynomial time.

Circuit Satisfiability
Instance: A circuit C with m inputs
Question: Is there an input for C such that C returns true for it.

¬But the recently announced Super Computer that would be completed in 2012 in Urbana, is naturally way faster. It supposedly
would do 1015 operations a second (i.e., petaflop). Blue-gene probably can not sustain its theoretical speed stated above, which is
only slightly slower.
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x1

x2

x3

x4

x5

And Or Not

x

y
x ∧ y x

y
x ∨ y x x

As a concrete example, consider the circuit depicted on the right.
Currently, all solutions known to Circuit Satisfiability require checking all

possibilities, requiring (roughly) 2m time. Which is exponential time and too
slow to be useful in solving large instances of the problem.

This leads us to the most important open question in theoretical computer
science:

Question 1.1.2. Can one solve Circuit Satisfiability in polynomial time?

The common belief is that Circuit Satisfiability can NOT be solved in polynomial time. Circuit Satisfiability
has two interesting properties.
(A) Given a supposed positive solution, with a detailed assignment (i.e., proof): x1 ← 0, x2 ← 1, ..., xm ← 1

one can verify in polynomial time if this assignment really satisfies C. This is done by computing what
every gate in the circuit what its output is for this input. Thus, computing the output of C for its input.
This requires evaluating the gates of C in the right order, and there are some technicalities involved, which
we are ignoring. (But you should verify that you know how to write a program that does that efficiently.)
Intuitively, this is the difference in hardness between coming up with a proof (hard), and checking that a
proof is correct (easy).

(B) It is a decision problem. For a specific input an algorithm that solves this problem has to output either
TRUE or FALSE.

1.2. Complexity classes
Definition 1.2.1 (P: Polynomial time). Let P denote is the class of all decision problems that can be solved in
polynomial time in the size of the input.

Definition 1.2.2 (NP: Nondeterministic Polynomial time). Let NP be the class of all decision problems that can
be verified in polynomial time. Namely, for an input of size n, if the solution to the given instance is true, one
(i.e., an oracle) can provide you with a proof (of polynomial length!) that the answer is indeed TRUE for this
instance. Furthermore, you can verify this proof in polynomial time in the length of the proof.

Clearly, if a decision problem can be solved in polynomial time,
then it can be verified in polynomial time. Thus, P ⊆ NP.

Remark. The notation NP stands for Non-deterministic Polynomial.
The name come from a formal definition of this class using Turing
machines where the machines first guesses (i.e., the non-deterministic
stage) the proof that the instance is TRUE, and then the algorithm
verifies the proof.

Definition 1.2.3 (co-NP). The class co-NP is the opposite of NP – if
the answer is FALSE, then there exists a short proof for this negative
answer, and this proof can be verified in polynomial time.

Figure 1.2: The relation between
the different complexity classes
P, NP, and co-NP.

See Figure 1.2 for the currently believed relationship between these classes (of course, as mentioned above,
P ⊆ NP and P ⊆ co-NP is easy to verify). Note, that it is quite possible that P = NP = co-NP, although
this would be extremely surprising.

Definition 1.2.4. A problem Π is NP-Hard, if being able to solve Π in polynomial time implies that P = NP.

Question 1.2.5. Are there any problems which are NP-Hard?
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Intuitively, being NP-Hard implies that a problem is ridiculously hard. Conceptually, it would imply that
proving and verifying are equally hard - which nobody that did CS 473 believes is true.

In particular, a problem which is NP-Hard is at least as hard as ALL the problems in NP, as such it is
safe to assume, based on overwhelming evidence that it can not be solved in polynomial time.

Theorem 1.2.6 (Cook’s Theorem). Circuit Satisfiability is NP-Hard.

Definition 1.2.7. A problem Π is NP-Complete (NPC in short) if it is both NP-Hard and in NP.

Clearly, Circuit Satisfiability is NP-Complete, since we can verify a positive solution in polynomial time in
the size of the circuit,

By now, thousands of problems have been shown to be NP-
Complete. It is extremely unlikely that any of them can be solved
in polynomial time.

Definition 1.2.8. In the formula satisfiability problem, (a.k.a. SAT)
we are given a formula, for example:(

a ∨ b ∨ c ∨ d
)
⇐⇒

(
(b ∧ c) ∨ (a⇒ d) ∨ (c , a ∧ b)

)
and the question is whether we can find an assignment to the vari-
ables a, b, c, . . . such that the formula evaluates to TRUE.

NP

co-NP

NP-Hard

P

NP-Complete

Figure 1.3: The relation between the com-
plexity classes.

It seems that SAT and Circuit Satisfiability are “similar” and as such both should be NP-Hard.

Remark 1.2.9. Cook’s theorem implies something somewhat stronger than implied by the above statement.
Specifically, for any problem in NP, there is a polynomial time reduction to Circuit Satisfiability. Thus, the
reader can think about NPC problems has being equivalent under polynomial time reductions.

1.2.1. Reductions

Let A and B be two decision problems.
Given an input I for problem A, a reduction is a transformation of the input I into a new input I ′, such that

A(I) is TRUE ⇔ B(I ′) is TRUE.

Thus, one can solve A by first transforming and input I into an input I ′ of B, and solving B(I ′).
This idea of using reductions is omnipresent, and used almost in any program you write.
Let T : I → I ′ be the input transformation that maps A into B. How fast is T? Well, for our nefarious

purposes we need polynomial reductions; that is, reductions that take polynomial time.
For example, given an instance of Circuit Satisfiability, we would like to generate an equivalent formula. We

will explicitly write down what the circuit computes in a formula form. To see how to do this, consider the
following example.

x1

x2

x3

x4

x5

y1 y4

y5

y2
y3

y7

y6

y8

y1 = x1 ∧ x4 y2 = x4 y3 = y2 ∧ x3
y4 = x2 ∨ y1 y5 = x2 y6 = x5
y7 = y3 ∨ y5 y8 = y4 ∧ y7 ∧ y6 y8

We introduced a variable for each wire in the circuit, and we wrote down explicitly what each gate computes.
Namely, we wrote a formula for each gate, which holds only if the gate computes correctly the output for its
given input.
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Input: boolean circuit C
⇓ O(size o f C)

transform C into boolean formula F

⇓

Find SAT assign’ for F using SAT solver

⇓

Return TRUE if F is sat’, otherwise FALSE.

Figure 1.4: Algorithm for solving CSAT using
an algorithm that solves the SAT problem

The circuit is satisfiable if and only if there is an
assignment such that all the above formulas hold. Al-
ternatively, the circuit is satisfiable if and only if the
following (single) formula is satisfiable

(y1 = x1 ∧ x4) ∧ (y2 = x4) ∧ (y3 = y2 ∧ x3)

∧(y4 = x2 ∨ y1) ∧ (y5 = x2)

∧(y6 = x5) ∧ (y7 = y3 ∨ y5)

∧(y8 = y4 ∧ y7 ∧ y6) ∧ y8.

It is easy to verify that this transformation can be done
in polynomial time.

The resulting reduction is depicted in Figure 1.4.
Namely, given a solver for SAT that runs in TSAT(n),

we can solve the CSAT problem in time

TCSAT (n) ≤ O(n) + TSAT (O(n)),

where n is the size of the input circuit. Namely, if we have polynomial time algorithm that solves SAT then we
can solve CSAT in polynomial time.

Another way of looking at it, is that we believe that solving CSAT requires exponential time; namely,
TCSAT(n) ≥ 2n. Which implies by the above reduction that

2n ≤ TCSAT (n) ≤ O(n) + TSAT (O(n)).

Namely, TSAT(n) ≥ 2n/c−O(n), where c is some positive constant. Namely, if we believe that we need exponential
time to solve CSAT then we need exponential time to solve SAT.

This implies that if SAT ∈ P then CSAT ∈ P.
We just proved that SAT is as hard as CSAT. Clearly, SAT ∈ NP which implies the following theorem.

Theorem 1.2.10. SAT (formula satisfiability) is NP-Complete.

1.3. More NP-Complete problems

1.3.1. 3SAT
A boolean formula is in conjunctive normal form (CNF) if it is a conjunction (AND) of several clauses, where a
clause is the disjunction (or) of several literals, and a literal is either a variable or a negation of a variable. For
example, the following is a CNF formula:

clause︷       ︸︸       ︷
(a ∨ b ∨ c) ∧(a ∨ e) ∧ (c ∨ e).

Definition 1.3.1. 3CNF formula is a CNF formula with exactly three literals in each clause.

The problem 3SAT is formula satisfiability when the formula is restricted to be a 3CNF formula.

Theorem 1.3.2. 3SAT is NP-Complete.

Proof: First, it is easy to verify that 3SAT is in NP.
Next, we will show that 3SAT is NP-Complete by a reduction from CSAT (i.e., Circuit Satisfiability). As

such, our input is a circuit C of size n. We will transform it into a 3CNF in several steps:
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(A) Make sure every AND/OR gate has only two inputs. If (say) an AND gate have more inputs, we replace
it by cascaded tree of AND gates, each one of degree two.

(B) Write down the circuit as a formula by traversing the circuit, as was done for SAT. Let F be the resulting
formula.
A clause corresponding to a gate in F will be of the following forms: (i) a = b ∧ c if it corresponds to an
AND gate, (ii) a = b ∨ c if it corresponds to an OR gate, and (iii) a = b if it corresponds to a NOT gate.
Notice, that except for the single clause corresponding to the output of the circuit, all clauses are of this
form. The clause that corresponds to the output is a single variable.

(C) Change every gate clause into several CNF clauses.
(i) For example, an AND gate clause of the form a = b ∧ c will be translated into(

a ∨ b ∨ c
)
∧ (a ∨ b) ∧ (a ∨ c). (1.1)

Note that Eq. (1.1) is true if and only if a = b∧ c is true. Namely, we can replace the clause a = b∧ c
in F by Eq. (1.1).

(ii) Similarly, an OR gate clause the form a = b ∨ c in F will be transformed into

(a ∨ b ∨ c) ∧ (a ∨ b) ∧ (a ∨ c).

(iii) Finally, a clause a = b, corresponding to a NOT gate, will be transformed into

(a ∨ b) ∧ (a ∨ b).

(D) Make sure every clause is exactly three literals. Thus, a single variable clause a would be replaced by

(a ∨ x ∨ y) ∧ (a ∨ x ∨ y) ∧ (a ∨ x ∨ y) ∧ (a ∨ x ∨ y),

by introducing two new dummy variables x and y. And a two variable clause a ∨ b would be replaced by

(a ∨ b ∨ y) ∧ (a ∨ b ∨ y),

by introducing the dummy variable y.

This completes the reduction, and results in a new 3CNF formula G which is satisfiable if and only if the original
circuit C is satisfiable. The reduction is depicted in Figure 1.5. Namely, we generated an equivalent 3CNF to
the original circuit. We conclude that if T3SAT(n) is the time required to solve 3SAT then

TCSAT (n) ≤ O(n) + T3SAT (O(n)),

which implies that if we have a polynomial time algorithm for 3SAT, we would solve CSAT is polynomial time.
Namely, 3SAT is NP-Complete.

Input: boolean circuit
⇓ O(n)

3CNF formula
⇓

Decide if given formula is satsifiable using 3SAT solver

⇓

Return TRUE or FALSE

Figure 1.5: Reduction from CSAT to 3SAT

18



1.4. Bibliographical Notes

Cook’s theorem was proved by Stephen Cook (http://en.wikipedia.org/wiki/Stephen_Cook). It was proved
independently by Leonid Levin (http://en.wikipedia.org/wiki/Leonid_Levin) more or less in the same
time. Thus, this theorem should be referred to as the Cook-Levin theorem.

The standard text on this topic is [GJ90]. Another useful book is [ACG+99], which is a more recent and
more updated, and contain more advanced stuff.

Chapter 2

NP Completeness II

2.1. Max-Clique

Figure 2.1: A clique of size 4
inside a graph with 8 vertices.

We remind the reader, that a clique is a complete graph, where every
pair of vertices are connected by an edge. The MaxClique problem asks
what is the largest clique appearing as a subgraph of G. See Figure 2.1.

MaxClique
Instance: A graph G
Question: What is the largest number of nodes in G forming
a complete subgraph?

Note that MaxClique is an optimization problem, since the output of
the algorithm is a number and not just true/false.

The first natural question, is how to solve MaxClique. A naive algorithm
would work by enumerating all subsets S ⊆ V(G), checking for each such subset S if it induces a clique in G (i.e.,
all pairs of vertices in S are connected by an edge of G). If so, we know that GS is a clique, where GS denotes
the induced subgraph on S defined by G; that is, the graph formed by removing all the vertices are not in S
from G (in particular, only edges that have both endpoints in S appear in GS). Finally, our algorithm would
return the largest S encountered, such that GS is a clique. The running time of this algorithm is O

(
2nn2) as

can be easily verified.

TIP
Suggestion 2.1.1. When solving any algorithmic problem, always try first to find a simple (or even naive)
solution. You can try optimizing it later, but even a naive solution might give you useful insight into a problem
structure and behavior.

We will prove that MaxClique is NP-Hard. Before dwelling into that, the simple algorithm we devised for
MaxClique shade some light on why intuitively it should be NP-Hard: It does not seem like there is any way of
avoiding the brute force enumeration of all possible subsets of the vertices of G. Thus, a problem is NP-Hard
or NP-Complete, intuitively, if the only way we know how to solve the problem is to use naive brute force
enumeration of all relevant possibilities.
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How to prove that a problem X is NP-Hard? Proving that a given problem X is NP-Hard is usually
done in two steps. First, we pick a known NP-Complete problem A. Next, we show how to solve any instance
of A in polynomial time, assuming that we are given a polynomial time algorithm that solves X.

Proving that a problem X is NP-Complete requires the additional burden of showing that is in NP. Note,
that only decision problems can be NP-Complete, but optimization problems can be NP-Hard; namely, the
set of NP-Hard problems is much bigger than the set of NP-Complete problems.

Theorem 2.1.2. MaxClique is NP-Hard.

Proof: We show a reduction from 3SAT. So, consider an input to 3SAT, which is a formula F defined over n
variables (and with m clauses).

a b c

a

b

d

b

c

d

a dc

Figure 2.2: The generated
graph for the formula (a∨b∨c)∧
(b∨c∨d)∧(a∨c∨d)∧(a∨b∨d).

We build a graph from the formula F by scanning it, as follows:

(i) For every literal in the formula we generate a ver-
tex, and label the vertex with the literal it corre-
sponds to.
Note, that every clause corresponds to the three
such vertices.

(ii) We connect two vertices in the graph, if they are:
(i) in different clauses, and (ii) they are not a nega-
tion of each other.

Let G denote the resulting graph. See Figure 2.2 for a concrete example.
Note, that this reduction can be easily be done in quadratic time in the size
of the given formula.

We claim that F is satisfiable iff there exists a clique of size m in G.
=⇒ Let x1, . . . , xn be the variables appearing in F, and let v1, . . . , vn ∈ {0,1} be the satisfying assignment for

F. Namely, the formula F holds if we set xi = vi, for i = 1, . . . ,n.
For every clause C in F there must be at least one literal that evaluates to TRUE. Pick a vertex that
corresponds to such TRUE value from each clause. Let W be the resulting set of vertices. Clearly, W forms
a clique in G. The set W is of size m, since there are m clauses and each one contribute one vertex to the
clique.

⇐= Let U be the set of m vertices which form a clique in G.
We need to translate the clique GU into a satisfying assignment of F.
(i) set xi ← TRUE if there is a vertex in U labeled with xi.
(ii) set xi ← FALSE if there is a vertex in U labeled with xi.
This is a valid assignment as can be easily verified. Indeed, assume for the sake of contradiction, that
there is a variable xi such that there are two vertices u, v in U labeled with xi and xi; namely, we are
trying to assign to contradictory values of xi. But then, u and v, by construction will not be connected in
G, and as such GS is not a clique. A contradiction.
Furthermore, this is a satisfying assignment as there is at least one vertex of U in each clause. Implying,
that there is a literal evaluating to TRUE in each clause. Namely, F evaluates to TRUE.

Thus, given a polytime (i.e., polynomial time) algorithm for MaxClique,
we can solve 3SAT in polytime. We conclude that MaxClique in NP-Hard.

MaxClique is an optimization problem, but it can be easily restated as a decision problem.

Clique
Instance: A graph G, integer k
Question: Is there a clique in G of size k?
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(a) (b) (c)

Figure 2.3: (a) A clique in a graph G, (b) the complement graph is formed by all the edges not appearing in G,
and (c) the complement graph and the independent set corresponding to the clique in G.

Theorem 2.1.3. Clique is NP-Complete.

Proof: It is NP-Hard by the reduction of Theorem 2.1.2. Thus, we only need to show that it is in NP. This
is quite easy. Indeed, given a graph G having n vertices, a parameter k, and a set W of k vertices, verifying
that every pair of vertices in W form an edge in G takes O(u + k2), where u is the size of the input (i.e., number
of edges + number of vertices). Namely, verifying a positive answer to an instance of Clique can be done in
polynomial time.

Thus, Clique is NP-Complete.

2.2. Independent Set
Definition 2.2.1. A set S of nodes in a graph G = (V,E) is an independent set, if no pair of vertices in S are
connected by an edge.

Independent Set
Instance: A graph G, integer k
Question: Is there an independent set in G of size k?

Theorem 2.2.2. Independent Set is NP-Complete.

Proof: This readily follows by a reduction from Clique. Given G and k, compute the complement graph G where
we connected two vertices u, v in G iff they are independent (i.e., not connected) in G. See Figure 2.3. Clearly,
a clique in G corresponds to an independent set in G, and vice versa. Thus, Independent Set is NP-Hard, and
since it is in NP, it is NPC.

2.3. Vertex Cover
Definition 2.3.1. For a graph G, a set of vertices S ⊆ V(G) is a vertex cover if it touches every edge of G.
Namely, for every edge uv ∈ E(G) at least one of the endpoints is in S.

Vertex Cover
Instance: A graph G, integer k
Question: Is there a vertex cover in G of size k?
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Lemma 2.3.2. A set S is a vertex cover in G iff V \ S is an independent set in G.

Proof: If S is a vertex cover, then consider two vertices u, v ∈ V \ S. If uv ∈ E(G) then the edge uv is not covered
by S. A contradiction. Thus V \ S is an independent set in G.

Similarly, if V \ S is an independent set in G, then for any edge uv ∈ E(G) it must be that either u or v are
not in V \ S. Namely, S covers all the edges of G.

Theorem 2.3.3. Vertex Cover is NP-Complete.

Proof: Vertex Cover is in NP as can be easily verified. To show that it NP-Hard we will do a reduction from
Independent Set. So, we are given an instance of Independent Set which is a graph G and parameter k, and we
want to know whether there is an independent set in G of size k. By Lemma 2.3.2, G has an independent set
of k iff it has a vertex cover of size n − k. Thus, feeding G and n − k into (the supposedly given) black box that
can solves vertex cover in polynomial time, we can decide if G has an independent set of size k in polynomial
time. Thus Vertex Cover is NP-Complete.

2.4. Graph Coloring
Definition 2.4.1. A coloring, by c colors, of a graph G = (V,E) is a mapping C : V(G) → {1,2, . . . , c} such that
every vertex is assigned a color (i.e., an integer), such that no two vertices that share an edge are assigned the
same color.

Usually, we would like to color a graph with a minimum number of colors. Deciding if a graph can be colored
with two colors is equivalent to deciding if a graph is bipartite and can be done in linear time using DFS or
BFS¬.

Coloring is useful for resource allocation (used in compilers for example) and scheduling type problems.
Surprisingly, moving from two colors to three colors make the problem much harder.

3Colorable
Instance: A graph G.
Question: Is there a coloring of G using three colors?

Theorem 2.4.2. 3Colorable is NP-Complete.

Proof: Clearly, 3Colorable is in NP.
We prove that it is NP-Complete by a reduction from 3SAT. Let F be the given 3SAT instance. The

basic idea of the proof is to use gadgets to transform the formula into a graph. Intuitively, a gadget is a small
component that corresponds to some feature of the input.

X

T F

The first gadget will be the color generating gadget, which is formed by three special
vertices connected to each other, where the vertices are denoted by X, F and T , respectively. We
will consider the color used to color T to correspond to the TRUE value, and the color of the F
to correspond to the FALSE value.

¬If you do not know the algorithm for this, please read about it to fill this monstrous gap in your knowledge.
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(7) a⇐ F, b⇐ T , c⇐ T (8) a⇐ T , b⇐ F, c⇐ F

Figure 2.4: The clause a∨ b∨ c and all the three possible colorings to its literals. If all three literals are colored
by the color of the special node F, then there is no valid coloring of this component, see case (1).

y y

XFor every variable y appearing in F , we will generate a variable gadget, which is (again)
a triangle including two new vertices, denoted by y and y, and the third vertex is the auxiliary
vertex X from the color generating gadget. Note, that in a valid 3-coloring of the resulting
graph either y would be colored by T (i.e., it would be assigned the same color as the color as
the vertex T) and y would be colored by F, or the other way around. Thus, a valid coloring
could be interpreted as assigning TRUE or FALSE value to each variable y, by just inspecting the color used for
coloring the vertex y.
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Finally, for every clause we introduce a clause gadget. See the figure on the
right – for how the gadget looks like for the clause a ∨ b ∨ c. Note, that the vertices
marked by a, b and c are the corresponding vertices from the corresponding variable
gadget. We introduce five new variables for every such gadget. The claim is that this
gadget can be colored by three colors if and only if the clause is satisfied. This can
be done by brute force checking all 8 possibilities, and we demonstrate it only for two cases. The reader should
verify that it works also for the other cases.
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T

Indeed, if all three vertices (i.e., three variables in a clause) on the left side of a
variable clause are assigned the F color (in a valid coloring of the resulting graph),
then the vertices u and v must be either be assigned X and T or T and X, respectively,
in any valid 3-coloring of this gadget (see figure on the left). As such, the vertex w

must be assigned the color F. But then, the vertex r must be assigned the X color.
But then, the vertex s has three neighbors with all three different colors, and there
is no valid coloring for s.
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Figure 2.5: The formula (a ∨ b ∨ c) ∧ (b ∨ c ∨ d) ∧ (a ∨ c ∨ d) ∧ (a ∨ b ∨ d) reduces to the depicted graph.
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As another example, consider the case when one of the variables on the left
is assigned the T color. Then the clause gadget can be colored in a valid way,
as demonstrated on the figure on the right.

This concludes the reduction. Clearly, the generated graph can be computed
in polynomial time. By the above argumentation, if there is a valid 3-coloring
of the resulting graph G, then there is a satisfying assignment for F . Similarly,
if there is a satisfying assignment for F then the G be colored in a valid way using three colors. For how the
resulting graph looks like, see Figure 2.5.

This implies that 3Colorable is NP-Complete.

Here is an interesting related problem. You are given a graph G as input, and you know that it is 3-colorable.
In polynomial time, what is the minimum number of colors you can use to color this graph legally? Currently,
the best polynomial time algorithm for coloring such graphs, uses O

(
n3/14) colors.

Chapter 3

NP Completeness III

3.1. Hamiltonian Cycle
Definition 3.1.1. A Hamiltonian cycle is a cycle in the graph that visits every vertex exactly once.

Definition 3.1.2. An Eulerian cycle is a cycle in a graph that uses every edge exactly once.

Finding Eulerian cycle can be done in linear time. Surprisingly, finding a Hamiltonian cycle is much harder.
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Hamiltonian Cycle
Instance: A graph G.
Question: Is there a Hamiltonian cycle in G?

Theorem 3.1.3. Hamiltonian Cycle is NP-Complete.

Proof: Hamiltonian Cycle is clearly in NP.

a

b

c

d

e

We will show a reduction from Vertex Cover. Given a
graph G and integer k we redraw G in the following way:
We turn every vertex into a horizontal line segment, all of
the same length. Next, we turn an edge in the original graph
G into a gate, which is a vertical segment connecting the two
relevant vertices.

Note, that there is a Vertex Cover in G of size k if and only if there are k horizontal lines that stabs all the
gates in the resulting graph H (a line stabs a gate if one of the endpoints of the gate lies on the line).

a

b

c

d

e

Thus, computing a vertex cover in G is equivalent to computing k disjoints
paths through the graph G that visits all the gates. However, there is a technical
problem: a path might change venues or even go back. See figure on the right.

(u,v,1) (u,v,6)(u,v,2) (u,v,3) (u,v,4) (u,v,5)

(v,u,1) (v,u,2) (v,u,3) (v,u,4) (v,u,5) (v,u,6)

v

u
To overcome this problem, we will replace each gate with a component that

guarantees, that if you visit all its vertices, you have to go forward and can
NOT go back (or change “lanes”). The new component is depicted on the left.

There only three possible ways to visit all the vertices of the components by
paths that do not start/end inside the component, and they are the following:

The proof that this is the only three possibilities is by brute force. De-
picted on the right is one impossible path, that tries to backtrack by entering
on the top and leaving on the bottom. Observe, that there are vertices left
unvisited. Which means that not all the vertices in the graph are going to be
visited, because we add the constraint, that the paths start/end outside the
gate-component (this condition would be enforced naturally by our final construction).

The resulting graph H1 for the example graph we started with is depicted
on the right. There exists a Vertex Cover in the original graph iff there exists k
paths that start on the left side and end on the right side, in this weird graph.
And these k paths visits all the vertices.
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e
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The final stroke is to add connection from the left side to the right side, such that once
you arrive to the right side, you can go back to the left side. However, we want connection
that allow you to travel exactly k times. This is done by adding to the above graph a
“routing box” component H2 depicted on the right, with k new middle vertices. The ith
vertex on the left of the routing component is the left most vertex of the ith horizontal line
in the graph, and the ith vertex on the right of the component is the right most vertex of
the ith horizontal line in the graph.

It is now easy (but tedious) to verify that the resulting graph H1 ∪ H2 has a Hamiltonian path iff H1has k
paths going from left to right, which happens, iff the original graph has a Vertex Cover of size k. It is easy to
verify that this reduction can be done in polynomial time.
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3.2. Traveling Salesman Problem
A traveling salesman tour, is a Hamiltonian cycle in a graph, which its price is the price of all the edges it uses.

TSP
Instance: G = (V,E) a complete graph - n vertices, c(e): Integer cost function over the edges of G,
and k an integer.
Question: Is there a traveling-salesman tour with cost at most k?

Theorem 3.2.1. TSP is NP-Complete.

Proof: Reduction from Hamiltonian cycle. Consider a graph G = (V,E), and let H be the complete graph
defined over V . Let

c(e) =

{
1 e ∈ E(G)
2 e < E(G).

Clearly, the cheapest TSP in H with cost function equal to n iff G is Hamiltonian. Indeed, if G is not
Hamiltonian, then the TSP must use one edge that does not belong to G, and then, its price would be at least
n + 1.

3.3. Subset Sum
We would like to prove that the following problem, Subset Sum is NPC.

Subset Sum
Instance: S - set of positive integers,t: - an integer number (Target)
Question: Is there a subset X ⊆ S such that

∑
x∈X x = t?

How does one prove that a problem is NP-Complete? First, one has to choose an appropriate NPC to
reduce from. In this case, we will use 3SAT. Namely, we are given a 3CNF formula with n variables and m
clauses. The second stage, is to “play” with the problem and understand what kind of constraints can be
encoded in an instance of a given problem and understand the general structure of the problem.

The first observation is that we can use very long numbers as input to Subset Sum. The numbers can be of
polynomial length in the size of the input 3SAT formula F.

The second observation is that in fact, instead of thinking about Subset Sum as adding numbers, we can
think about it as a problem where we are given vectors with k components each, and the sum of the vectors
(coordinate by coordinate, must match. For example, the input might be the vectors (1,2), (3,4), (5,6) and the
target vector might be (6,8). Clearly, (1,2)+ (5,6) give the required target vector. Lets refer to this new problem
as Vec Subset Sum.

Vec Subset Sum
Instance: S - set of n vectors of dimension k, each vector has non-negative numbers for its coordinates,
and a target vector −→t .
Question: Is there a subset X ⊆ S such that

∑
−→x ∈X
−→x = −→t ?

Given an instance of Vec Subset Sum, we can covert it into an instance of Subset Sum as follows: We
compute the largest number in the given instance, multiply it by n2 · k · 100, and compute how many digits are
required to write this number down. Let U be this number of digits. Now, we take every vector in the given
instance and we write it down using U digits, padding it with zeroes as necessary. Clearly, each vector is now
converted into a huge integer number. The property is now that a sub of numbers in a specific column of the
given instance can not spill into digits allocated for a different column since there are enough zeroes separating
the digits corresponding to two different columns.
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Target ?? ?? 01 ???
a1 ?? ?? 01 ??
a2 ?? ?? 01 ??

Next, let us observe that we can force the solution (if it exists) for Vec
Subset Sum to include exactly one vector out of two vectors. To this end, we
will introduce a new coordinate (i.e., a new column in the table on the right)
for all the vectors. The two vectors a1 and a2 will have 1 in this coordinate,
and all other vectors will have zero in this coordinate. Finally, we set this coordinate in the target vector to
be 1. Clearly, a solution is a subset of vectors that in this coordinate add up to 1. Namely, we have to choose
either a1 or a2 into our solution.

In particular, for each variable x appearing in F, we will introduce two rows, denoted by x and x and
introduce the above mechanism to force choosing either x or x to the optimal solution. If x (resp. x) is chosen
into the solution, we will interpret it as the solution to F assigns TRUE (resp. FALSE) to x.

numbers ... C ≡ a ∨ b ∨ c ...
a ... 01 ...
a ... 00 ...
b ... 01 ...
b ... 00 ...
c ... 00 ...
c ... 01 ...

C fix-up 1 000 07 000
C fix-up 2 000 08 000
C fix-up 3 000 09 000
TARGET 10

Next, consider a clause C ≡ a ∨ b∨ c.appearing in F. This clause
requires that we choose at least one row from the rows corresponding
to a, b to c. This can be enforced by introducing a new coordinate
for the clauses C, and setting 1 for each row that if it is picked then
the clauses is satisfied. The question now is what do we set the target
to be? Since a valid solution might have any number between 1 to
3 as a sum of this coordinate. To overcome this, we introduce three
new dummy rows, that store in this coordinate, the numbers 7, 8
and 9, and we set this coordinate in the target to be 10. Clearly, if
we pick to dummy rows into the optimal solution then sum in this
coordinate would exceed 10. Similarly, if we do not pick one of these
three dummy rows to the optimal solution, the maximum sum in this
coordinate would be 1+1+1 = 3, which is smaller than 10. Thus, the only possibility is to pick one dummy row,
and some subset of the rows such that the sum is 10. Notice, this “gadget” can accommodate any (non-empty)
subset of the three rows chosen for a, b and c.

We repeat this process for each clause of F. We end up with a set U of 2n+3m vectors with n+m coordinate,
and the question if there is a subset of these vectors that add up to the target vector. There is such a subset
if and only if the original formula F is satisfiable, as can be easily verified. Furthermore, this reduction can be
done in polynomial time.

Finally, we convert these vectors into an instance of Subset Sum. Clearly, this instance of Subset Sum has a
solution if and only if the original instance of 3SAT had a solution. Since Subset Sum is in NP as an be easily
verified, we conclude that that Subset Sum is NP-Complete.

Theorem 3.3.1. Subset Sum is NP-Complete.

For a concrete example of the reduction, see Figure 3.1.

3.4. 3 dimensional Matching (3DM)

3DM
Instance: X,Y, Z sets of n elements, and T a set of triples, such that (a, b, c) ∈ T ⊆ X × Y × Z.
Question: Is there a subset S ⊆ T of n disjoint triples, s.t. every element of X ∪ Y ∪ Z is covered
exactly once.?

Theorem 3.4.1. 3DM is NP-Complete.

The proof is long and tedious and is omitted.
BTW, 2DM is polynomial (later in the course?).
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numbers a ∨ a b ∨ b c ∨ c d ∨ d D ≡ b ∨ c ∨ d C ≡ a ∨ b ∨ c

a 1 0 0 0 00 01
a 1 0 0 0 00 00
b 0 1 0 0 00 01
b 0 1 0 0 01 00
c 0 0 1 0 01 00
c 0 0 1 0 00 01
d 0 0 0 1 00 00
d 0 0 0 1 01 01

C fix-up 1 0 0 0 0 00 07
C fix-up 2 0 0 0 0 00 08
C fix-up 3 0 0 0 0 00 09
D fix-up 1 0 0 0 0 07 00
D fix-up 2 0 0 0 0 08 00
D fix-up 3 0 0 0 0 09 00
TARGET 1 1 1 1 10 10

numbers
010000000001
010000000000
000100000001
000100000100
000001000100
000001000001
000000010000
000000010101
000000000007
000000000008
000000000009
000000000700
000000000800
000000000900
010101011010

Figure 3.1: The Vec Subset Sum instance generated for the 3SAT formula F =
(
b ∨ c ∨ d

)
∧ (a ∨ b ∨ c) is shown

on the left. On the right side is the resulting instance of Subset Sum.

3.5. Partition

Partition
Instance: A set S of n numbers.
Question: Is there a subset T ⊆ S s.t.

∑
t∈T t =

∑
s∈S\T s.?

Theorem 3.5.1. Partition is NP-Complete.

Proof: Partition is in NP, as we can easily verify that such a partition is valid.
Reduction from Subset Sum. Let the given instance be n numbers a1, . . . ,an and a target number t. Let

S =
∑n

i= ai, and set an+1 = 3S − t and an+2 = 3S − (S − t) = 2S + t. It is easy to verify that there is a solution to
the given instance of subset sum, iff there is a solution to the following instance of partition:

a1, . . . ,an,an+1,an+2.

Clearly, Partition is in NP and thus it is NP-Complete.

3.6. Some other problems
It is not hard to show that the following problems are NP-Complete:

SET COVER
Instance: (S,F, k):

S: A set of n elements
F: A family of subsets of S, s.t.

⋃
X∈F X = S.

k: A positive integer.
Question: Are there k sets S1, . . . ,Sk ∈ F that cover S. Formally,

⋃
i Si = S?
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Part II
Dynamic programming

Chapter 4

Dynamic programming

The events of 8 September prompted Foch to draft the later legendary signal: “My centre is giving way, my right is
in retreat, situation excellent. I attack.” It was probably never sent.

– – The first world war, John Keegan..

4.1. Basic Idea - Partition Number
Definition 4.1.1. For a positive integer n, the partition number of n, denoted by p(n), is the number of different
ways to represent n as a decreasing sum of positive integers.

6 = 6
6=5+1
6=4+2 6=4+1+1

6 = 3 + 3 6 = 3 + 2 + 1 6+3+1+1+1
6=2+2+2 6=2+2+1+1 6=2+1+1+1+1

6=1+1+1+1+1+1

The different number of partitions of 6 are shown
on the right.

It is natural to ask how to compute p(n). The
“trick” is to think about a recursive solution and ob-
serve that once we decide what is the leading num-
ber d, we can solve the problem recursively on the
remaining budget n−d under the constraint that no
number exceeds d..

TIPSuggestion 4.1.2. Recursive algorithms are one of the main tools in developing algorithms (and writing pro-
grams). If you do not feel comfortable with recursive algorithms you should spend time playing with recursive
algorithms till you feel comfortable using them. Without the ability to think recursively, this class would be a
long and painful torture to you. Speak with me if you need guidance on this topic.
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PartitionsI(num, d) //d-max digit
if (num ≤ 1) or (d = 1)

return 1
if d > num

d ← num
res← 0
for i ← d down to 1

res = res + PartitionsI(num − i,i)
return res

Partitions(n)
return PartitionsI(n,n)

The resulting algorithm is depicted on the right. We
are interested in analyzing its running time. To this end,
draw the recursion tree of Partitions and observe that
the amount of work spend at each node, is proportional
to the number of children it has. Thus, the overall time
spend by the algorithm is proportional to the size of
the recurrence tree, which is proportional (since every
node is either a leaf or has at least two children) to the
number of leafs in the tree, which is Θ(p(n)).

This is not very exciting, since it is easy verify that
3
√
n/4 ≤ p(n) ≤ nn.

Exercise 4.1.3. Prove the above bounds on p(n) (or better bounds).

TIP
Suggestion 4.1.4. Exercises in the class notes are a natural easy questions for inclusions in exams. You probably
want to spend time doing them.

Hardy and Ramanujan (in 1918) showed that p(n) ≈
eπ
√

2n/3

4n
√

3
(which I am sure was your first guess).

It is natural to ask, if there is a faster algorithm. Or more specifically, why is the algorithm Partitions
so slowwwwwwwwwwwwwwwwww? The answer is that during the computation of Partitions(n) the function
PartitionsI(num,max_digit) is called a lot of times with the same parameters.

PartitionsI_C(num,max_digit)
if (num ≤ 1) or (max_digit = 1)

return 1
if max_digit > num

d ← num
if 〈num,max_digit〉 in cache

return cache(〈num,max_digit〉)
res← 0
for i ← max_digit down to 1 do

res += PartitionsI_C(num − i,i)
cache(〈num,max_digit〉) ← res
return res

PartitionS_C(n)
return PartitionsI_C(n,n)

An easy way to overcome this problem is cache the
results of PartitionsI using a hash table.¬ Whenever
PartitionsI is being called, it checks in a cache table if
it already computed the value of the function for this
parameters, and if so it returns the result. Otherwise, it
computes the value of the function and before returning
the value, it stores it in the cache. This simple (but
powerful) idea is known as memoization.

What is the running time of PartitionS_C? Analyz-
ing recursive algorithm that have been transformed by
memoization are usually analyzed as follows: (i) bound
the number of values stored in the hash table, and (ii)
bound the amount of work involved in storing one value
into the hash table (ignoring recursive calls).

Here is the argument in this case:
(A) If a call to PartitionsI_C takes (by itself) more than constant time, then this call performs a store in the

cache.
(B) Number of store operations in the cache is O(n2), since this is the number of different entries stored in the

cache. Indeed, for PartitionsI_C(num,max_digit), the parameters num and max_digit are both integers
in the range 1, . . . ,n.

(C) We charge the work in the loop to the resulting store. The work in the loop is at most O(n) time (since
max_digit ≤ n).

(D) As such, the overall running time of PartitionS_C(n) is O
(
n2) ×O(n) = O

(
n3).

Note, that this analysis is naive but it would be sufficient
for our purposes (verify that the bound of O(n3) on the
running time is tight in this case).

¬Throughout the course, we will assume that a hash table operation can be done in constant time. This is a reasonable
assumption using randomization and perfect hashing.
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4.1.1. A Short sermon on memoization

This idea of memoization is generic and nevertheless very useful. To recap, it works by taking a recursive
function and caching the results as the computations goes on. Before trying to compute a value, check if it was
already computed and if it is already stored in the cache. If so, return result from the cache. If it is not in the
cache, compute it and store it in the cache (for the time being, you can think about the cache as being a hash
table).

• When does it work: There is a lot of inefficiency in the computation of the recursive function because
the same call is being performed repeatedly.
• When it does NOT work:

(A) The number of different recursive function calls (i.e., the different values of the parameters in the
recursive call) is “large”.

(B) When the function has side effects.

tidbitTidbit 4.1.5. Some functional programming languages allow one to take a recursive function f (·) that you already
implemented and give you a memorized version f ′(·) of this function without the programmer doing any extra
work. For a nice description of how to implement it in Scheme see [ASS96].

It is natural to ask if we can do better than just using caching? As usual in life – more pain, more gain.
Indeed, in a lot of cases we can analyze the recursive calls, and store them directly in an (sometime multi-
dimensional) array. This gets rid of the recursion (which used to be an important thing long time ago when
memory, used by the stack, was a truly limited resource, but it is less important nowadays) which usually yields
a slight improvement in performance in the real world.

This technique is known as dynamic programming. We can sometime save space and improve running
time in dynamic programming over memoization.

Dynamic programming made easy:
(A) Solve the problem using recursion - easy (?).
(B) Modify the recursive program so that it caches the results.
(C) Dynamic programming: Modify the cache into an array.

4.2. Example – Fibonacci numbers
Let us revisit the classical problem of computing Fibonacci numbers.

4.2.1. Why, where, and when?

To remind the reader, in the Fibonacci sequence, the first two numbers F0 = 0 and F1 = 1, and Fi = Fi−1 + Fi−2,
for i > 1. This sequence was discovered independently in several places and times. From Wikipedia:

“The Fibonacci sequence appears in Indian mathematics, in connection with Sanskrit prosody.
In the Sanskrit oral tradition, there was much emphasis on how long (L) syllables mix with the
short (S), and counting the different patterns of L and S within a given fixed length results in the
Fibonacci numbers; the number of patterns that are m short syllables long is the Fibonacci number
Fm+1.”

(To see that, imagine that a long syllable is equivalent in length to two short syllables.) Surprisingly, the credit
for this formalization goes back more than 2000 years (!)

As usual in life, it is not dynamic, it is not programming, and its hardly a technique. To overcome this, most texts find creative
ways to present this topic in the most opaque way possible.
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FibDP(n)
if n ≤ 1

return 1
if F[n] initialized

return F[n]
F[n] ⇐=FibDP(n − 1)+FibDP(n − 2)
return F[n]

Figure 4.1

Fibonacci was a decent mathematician (1170—1250 AD), and his most significant and lasting contribution
was spreading the Hindu-Arabic numerical system (i.e., zero) in Europe. He was the son of a rich merchant that
spend much time growing up in Algiers, where he learned the decimal notation system. He traveled throughout
the Mediterranean world to study mathematics. When he came back to Italy he published a sequence of books
(the first one “Liber Abaci” contained the description of the decimal notations system). In this book, he also
posed the following problem:

Consider a rabbit population, assuming that: A newly born pair of rabbits, one male, one female,
are put in a field; rabbits are able to mate at the age of one month so that at the end of its second
month a female can produce another pair of rabbits; rabbits never die and a mating pair always
produces one new pair (one male, one female) every month from the second month on. The puzzle
that Fibonacci posed was: how many pairs will there be in one year?

(The above is largely based on Wikipedia.)

4.2.2. Computing Fibonacci numbers

FibR(n)
if n = 0

return 1
if n = 1

return 1
return FibR(n − 1) + FibR(n − 2)

The recursive function for computing Fibonacci numbers
is depicted on the right. As before, the running time of
FibR(n) is proportional to O(Fn), where Fn is the nth Fi-
bonacci number. It is known that

Fn =
1
√

5

[ (
1 +
√

5
2

)n
+

(
1 −
√

5
2

)n]
= Θ(φn),

where φ = 1+
√

5
2 .

We can now use memoization, and with a bit of care, it is easy enough to come up with the dynamic
programming version of this procedure, see FibDP in Figure 4.1. Clearly, the running time of FibDP(n) is
linear (i.e., O(n)).

A careful inspection of FibDP exposes the fact that it fills the array F[...] from left to right. In particular,
it only requires the last two numbers in the array.

FibI(n)
prev ← 0, curr ← 1
for i = 1 to n do

next ← curr + prev
prev ← curr
curr ← next

return curr

As such, we can get rid of the array all together, and reduce space needed
to O(1): This is a phenomena that is quite common in dynamic programming:
By carefully inspecting the way the array/table is being filled, sometime one
can save space by being careful about the implementation.

The running time of FibI is identical to the running time of FibDP. Can
we do better?

Surprisingly, the answer is yes, to this end observe that(
y

x + y

)
=

(
0 1
1 1

) (
x
y

)
.
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h a r – p e l e d
s h a r p <space> e y e d
1 0 0 0 1 0 1 0 1 0 0

Insert:
s

delete:
–

replace:
l
y

(still) insert:
<space>

ignore:
e
e

Figure 4.2: Interpreting edit-distance as a alignment task. Aligning identical characters to each other is free of
cost. The price in the above example is 4. There are other ways to get the same edit-distance in this case.

As such, (
Fn−1
Fn

)
=

(
0 1
1 1

) (
Fn−2
Fn−1

)
=

(
0 1
1 1

)2 ( Fn−3
Fn−2

)
=

(
0 1
1 1

)n−3 ( F2
F1

)
.

Thus, computing the nth Fibonacci number can be done by computing(
0 1
1 1

)n−3
.

FastExp(a,n)
if n = 0 then

return 1
if n = 1 then

return a
if n is even then

return (FastE xp(a,n/2))2
else

return a ∗
(
FastExp

(
a, n−1

2
) )2

How to this quickly? Well, we know that a∗b∗c = (a∗b)∗c =
a∗(b∗c)®, as such one can compute an by repeated squaring,
see pseudo-code on the right. The running time of FastExp
is O(log n) as can be easily verified. Thus, we can compute in
Fn in O(log n) time.

But, something is very strange. Observe that Fn has ≈
log10 1.68...n = Θ(n) digits. How can we compute a number
that is that large in logarithmic time? Well, we assumed
that the time to handle a number is O(1) independent of its
size. This is not true in practice if the numbers are large.
Naturally, one has to be very careful with such assumptions.

4.3. Edit Distance
We are given two strings A and B, and we want to know how close the two strings are too each other. Namely,
how many edit operations one has to make to turn the string A into B?

We allow the following operations: (i) insert a character, (ii) delete a character, and (iii) replace a character
by a different character. Price of each operation is one unit.

For example, consider the strings A =“har-peled” and B =“sharp eyed”. Their edit distance is 4, as can be
easily seen.

®Associativity of multiplication...
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ed(A[1..m],B[1..n])
if m = 0 return n
if n = 0 return m
pinsert = ed(A[1..m], B[1..(n − 1)]) + 1
pdelete = ed(A[1..(m − 1)], B[1..n]) + 1
pr/i = ed(A[1..(m − 1)], B[1..(n − 1)] )

+
[
A[m] , B[n]

]
return min

(
pinsert, pdelete, preplace/ignore

)

But how do we compute the edit-distance (min
# of edit operations needed)?

The idea is to list the edit operations from left to
right. Then edit distance turns into a an alignment
problem. See Figure 4.2.

In particular, the idea of the recursive algorithm
is to inspect the last character and decide which of
the categories it falls into: insert, delete or ignore.
See pseudo-code on the right.

The running time of ed(...)? Clearly exponential, and roughly 2n+m, where n + m is the size of the input.
So how many different recursive calls ed performs? Only:O(m ∗ n) different calls, since the only parameters

that matter are n and m.

edM(A[1..m],B[1..n])
if m = 0 return n
if n = 0 return m
if T[m,n] is initialized then return T[m,n]
pinsert = edM(A[1..m],B[1..(n − 1)]) + 1
pdelete = edM(A[1..(m − 1)], B[1..n]) + 1
pr/i = edM(A[1..(m − 1)],B[1..(n − 1)]) +

[
A[m] , B[n]

]
T[m,n] ← min

(
pinsert, pdelete, preplace/ignore

)
return T[m,n]

So the natural thing is to introduce
memoization. The resulting algorithm edM
is depicted on the right. The running
time of edM(n,m) when executed on two
strings of length n and m respective is
O(nm), since there are O(nm) store opera-
tions in the cache, and each store requires
O(1) time (by charging one for each recur-
sive call). Looking on the entry T[i, j] in
the table, we realize that it depends only
on T[i − 1, j], T[i, j − 1] and T[i − 1, j − 1]. Thus, instead of recursive algorithm, we can fill the table T row by
row, from left to right.

edDP(A[1..m],B[1..n])
for i = 1 to m do T[i,0] ← i
for j = 1 to n do T[0, j] ← j
for i ← 1 to m do

for j ← 1 to n do
pinsert = T[i, j − 1] + 1
pdelete = T[i − 1, j] + 1
pr/ignore = T[i − 1. j − 1] +

[
A[i] , B[ j]

]
T[i, j] ← min

(
pinsert, pdelete, pr/ignore

)
return T[m,n]

The dynamic programming version that
uses a two dimensional array is pretty sim-
ple now to derive and is depicted on the
left. Clearly, it requires O(nm) time, and
O(nm) space. See the pseudo-code of the
resulting algorithm edDP on the left.

It is enlightening to think about the
algorithm as computing for each T[i, j] the
cell it got the value from. What you get is
a tree encoded in the table. See Figure 4.3.
It is now easy to extract from the table the

sequence of edit operations that realizes the minimum edit distance between A and B. Indeed, we start a walk
on this graph from the node corresponding to T[n,m]. Every time we walk left, it corresponds to a deletion,
every time we go up, it corresponds to an insertion, and going sideways corresponds to either replace/ignore.

Note, that when computing the ith row of T[i, j], we only need to know the value of the cell to the left of
the current cell, and two cells in the row above the current cell. It is thus easy to verify that the algorithm
needs only the remember the current and previous row to compute the edit distance. We conclude:

Theorem 4.3.1. Given two strings A and B of length n and m, respectively, one can compute their edit distance
in O(nm). This uses O(nm) space if we want to extract the sequence of edit operations, and O(n+m) space if we
only want to output the price of the edit distance.

Exercise 4.3.2. Show how to compute the sequence of edit-distance operations realizing the edit distance using
only O(n + m) space and O(nm) running time. (Hint: Use a recursive algorithm, and argue that the recursive
call is always on a matrix which is of size, roughly, half of the input matrix.)
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A L G O R I T H M
0 ← 1 ← 2 ← 3 ← 4 ← 5 ← 6 ← 7 ← 8 ← 9
↑ v

A 1 0 ← 1 ← 2 ← 3 ← 4 ← 5 ← 6 ← 7 ← 8
↑ ↑ v

L 2 1 0 ← 1 ← 2 ← 3 ← 4 ← 5 ← 6 ← 7
↑ ↑ ↑ v ↖

T 3 2 1 1 ← 2 ← 3 ← 4 4 ← 5 ← 6
↑ ↑ ↑ ↑ v ↖

R 4 3 2 2 2 2 ← 3 ← 4 ← 5 ← 6
↑ ↑ ↑ ↖ ↖ v ↖

U 5 4 3 3 3 3 3 ← 4 ← 5 ← 6
↑ ↑ ↑ ↖ ↖ ↖ v

I 6 5 4 4 4 4 3 ← 4 ← 5 ← 6
↑ ↑ ↑ ↑ ↑ ↑ ⇑

S 7 6 5 5 5 5 4 ← 4 ← 5 ← 6
↑ ↑ ↑ ↑ ↑ ↑ ↑ v

T 8 7 6 6 6 6 5 4 ← 5 ← 6
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ v

I 9 8 7 7 7 7 6 5 5 ← 6
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ v

C 10 9 8 8 8 8 7 6 6 6

Figure 4.3: Extracting the edit operations from the table.

4.3.1. Shortest path in a DAG and dynamic programming

Given a dynamic programming problem and its associated recursive program, one can consider all the different
possible recursive calls, as configurations. We can create graph, every configuration is a node, and an edge is
introduced between two configurations if one configuration is computed from another configuration, and we put
the additional price that might be involved in moving between the two configurations on the edge connecting
them. As such, for the edit distance, we have directed edges from the vertex (i, j) to (i, j − 1) and (i − 1, j) both
with weight 1 on them. Also, we have an edge between (i, j) to (i − 1, j − 1) which is of weight 0 if A[i] = B[ j]
and 1 otherwise. Clearly, in the resulting graph, we are asking for the shortest path between (n,m) and (0,0).

And here are where things gets interesting. The resulting graph G is a DAG (directed acyclic graph¯).
DAG can be interpreted as a partial ordering of the vertices, and by topological sort on the graph (which takes
linear time), one can get a full ordering of the vertices which agrees with the DAG. Using this ordering, one can
compute the shortest path in a DAG in linear time (in the size of the DAG). For edit-distance the DAG size is
O(nm), and as such this algorithm takes O(nm) time.

This interpretation of dynamic programming as a shortest path problem in a DAG is a useful way of thinking
about it, and works for many dynamic programming problems.

More surprisingly, one can also compute the longest path in a DAG in linear time. Even for negative weighted
edges. This is also sometime a problem that solving it is equivalent to dynamic programming.

¯No cycles in the graph – its a miracle!
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Chapter 5

Dynamic programming II - The Recursion
Strikes Back

“No, mademoiselle, I don’t capture elephants. I content myself with living among them. I like them. I like looking at
them, listening to them, watching them on the horizon. To tell you the truth, I’d give anything to become an elephant
myself. That’ll convince you that I’ve nothing against the Germans in particular: they’re just men to me, and that’s
enough.”

– – The roots of heaven, Romain Gary.

5.1. Optimal search trees
Given a binary search tree T, the time to search for an element x, that is stored in T, is O(1 + depth(T, x)),
where depth(T, x) denotes the depth of x in T (i.e., this is the length of the path connecting x with the root of
T).

12

4 32

21 45 4 21

12

32

45

Two possible search trees for the set
A = [4,12,21,32,45].

Problem 5.1.1. Given a set of n (sorted) keys A[1 . . . n], build the
best binary search tree for the elements of A.

Note, that we store the values in the internal node of the binary
trees. The figure on the right shows two possible search trees for the
same set of numbers. Clearly, if we are accessing the number 12 all
the time, the tree on the left would be better to use than the tree on
the right.

Usually, we just build a balanced binary tree, and this is good
enough. But assume that we have additional information about what is the frequency in which we access the
element A[i], for i = 1, . . . ,n. Namely, we know that A[i] is going be accessed f [i] times, for i = 1, . . . ,n.

In this case, we know that the total search time for a tree T is S(T) =
n∑
i=1
(depth(T, i) + 1)f [i], where depth(T, i)

is the depth of the node in T storing the value A[i]. Assume that A[r] is the value stored in the root of the tree
T. Clearly, all the values smaller than A[r] are in the subtree leftT, and all values larger than r are in rightT.
Thus, the total search time, in this case, is

S(T) =
r−1∑
i=1
(depth(leftT, i) + 1)f [i] +

price of access to root︷  ︸︸  ︷
n∑
i=1

f [i] +

n∑
i=r+1
(depth(rightT, i) + 1)f [i].

Observe, that if T is the optimal search tree for the access frequencies f [1], . . . , f [n], then the subtree leftT
must be optimal for the elements accessing it (i.e., A[1 . . . r − 1] where r is the root).

Thus, the price of T is

S(T) = S(leftT ) + S(rightT ) +
n∑
i=1

f [i],

where S(Q) is the price of searching in Q for the frequency of elements stored in Q.
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Figure 5.1: A polygon and two possible triangulations of the polygon.

CompBestTreeI (A[i . . . j], f [i . . . j] )
for r = i . . . j do

Tle f t ← CompBestTreeI(A[i . . . r − 1], f [i . . . r − 1])
Tright ← CompBestTreeI(A[r + 1 . . . j], f [r + 1 . . . j])
Tr ← Tree

(
Tle f t , A[r] , Tright

)
Pr ← S(Tr )

return cheapest tree out of Ti, . . . ,Tj .

CompBestTree (A[1 . . . n], f [1 . . . n] )
return CompBestTreeI( A[1 . . . n], f [1 . . . n])

This recursive formula naturally gives rise
to a recursive algorithm, which is depicted on
the right. The naive implementation requires
O(n2) time (ignoring the recursive call). But
in fact, by a more careful implementation, to-
gether with the tree T, we can also return the
price of searching on this tree with the given fre-
quencies. Thus, this modified algorithm. Thus,
the running time for this function takes O(n)
time (ignoring recursive calls). The running
time of the resulting algorithm is

α(n) = O(n) +
n−1∑
i=0
(α(i) + α(n − i − 1)),

and the solution of this recurrence is O(n3n).
We can, of course, improve the running time using memoization. There are only O(n2) different recursive

calls, and as such, the running time of CompBestTreeMemoize is O(n2) · O(n) = O(n3).

Theorem 5.1.2. One can compute the optimal binary search tree in O
(
n3) time using O

(
n2) space.

A further improvement raises from the fact that the root location is “monotone”. Formally, if R[i, j] denotes
the location of the element stored in the root for the elements A[i . . . j] then it holds that R[i, j − 1] ≤ R[i, j] ≤
R[i, j+1]. This limits the search space, and we can be more efficient in the search. This leads to O

(
n2) algorithm.

Details are in Jeff Erickson class notes.

5.2. Optimal Triangulations
Given a convex polygon P in the plane, we would like to find the triangulation of P of minimum total length.
Namely, the total length of the diagonals of the triangulation of P, plus the (length of the) perimeter of P are
minimized. See Figure 5.1.

Definition 5.2.1. A set S ⊆ Rd is convex if for any to x, y ∈ S, the segment xy is contained in S.
A convex polygon is a closed cycle of segments, with no vertex pointing inward. Formally, it is a simple

closed polygonal curve which encloses a convex set.
A diagonal is a line segment connecting two vertices of a polygon which are not adjacent. A triangulation

is a partition of a convex polygon into (interior) disjoint triangles using diagonals.

Observation 5.2.2. Any triangulation of a convex polygon with n vertices is made out of exactly n−2 triangles.
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Our purpose is to find the triangulation of P that has the minimum
total length. Namely, the total length of diagonals used in the triangu-
lation is minimized. We would like to compute the optimal triangulation
using divide and conquer. As the figure on the right demonstrate, there
is always a triangle in the triangulation, that breaks the polygon into
two polygons. Thus, we can try and guess such a triangle in the optimal
triangulation, and recurse on the two polygons such created. The only
difficulty, is to do this in such a way that the recursive subproblems can
be described in succinct way.

1

2

3

4
5

6

7

8

To this end, we assume that the polygon is specified as list of vertices 1 . . . n
in a clockwise ordering. Namely, the input is a list of the vertices of the polygon,
for every vertex, the two coordinates are specified. The key observation, is that
in any triangulation of P, there exist a triangle that uses the edge between
vertex 1 and n (red edge in figure on the left).

In particular, removing the triangle using the edge 1 − n leaves us with two
polygons which their vertices are consecutive along the original polygon.

Let M[i, j] denote the price of triangulating a polygon starting at vertex i
and ending at vertex j, where every diagonal used contributes its length twice

to this quantity, and the perimeter edges contribute their length exactly once. We have the following “natural”
recurrence:

M[i, j] =


0 j ≤ i
0 j = i + 1
mini<k< j(∆(i, j, k) + M[i, k] + M[k, j]) Otherwise

.

Where Dist(i, j) =
√
(x[i] − x[ j])2 + (y[i] − y[ j])2 and ∆(i, j, k) = Dist(i, j) + Dist( j, k) + Dist(i, k), where the ith

point has coordinates (x[i], y[i]), for i = 1, . . . ,n. Note, that the quantity we are interested in is M[1,n], since it
the triangulation of P with minimum total weight.

Using dynamic programming (or just memoization), we get an algorithm that computes optimal triangula-
tion in O(n3) time using O(n2) space.

5.3. Matrix Multiplication

We are given two matrix: (i) A is a matrix with dimensions p × q (i.e., p rows and q columns) and (ii) B is a
matrix of size q × r. The product matrix AB, with dimensions p× r, can be computed in O(pqr) time using the
standard algorithm.

A 1000 × 2
B 2 × 1000
C 1000 × 2

Things becomes considerably more interesting when we have to multiply a chain for matri-
ces. Consider for example the three matrices A,B and C with dimensions as listed on the left.
Computing the matrix ABC = A(BC) requires 2 ·1000 ·2+1000 ·2 ·2 = 8,000 operations. On the
other hand, computing the same matrix using (AB)C requires 1000 · 2 · 1000+ 1000 · 1000 · 2 =

4,000,000. Note, that matrix multiplication is associative, and as such (AB)C = A(BC).
Thus, given a chain of matrices that we need to multiply, the exact ordering in which we do the multiplication

matters as far to multiply the order is important as far as efficiency.

Problem 5.3.1. The input is n matrices M1, . . . ,Mn such that Mi is of size D[i − 1] × D[i] (i.e., Mi has D[i − 1]
rows and D[i] columns), where D[0 . . . n] is array specifying the sizes. Find the ordering of multiplications to
compute M1 · M2 · · ·Mn−1 · Mn most efficiently.
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Again, let us define a recurrence for this problem, where M[i, j] is the amount of work involved in computing
the product of the matrices Mi · · ·Mj . We have

M[i, j] =


0 j = i
D[i − 1] · D[i] · D[i + 1] j = i + 1
mini≤k< j(M[i, k] + M[k + 1, j] + D[i − 1] · D[k] · D[ j]) j > i + 1.

Again, using memoization (or dynamic programming), one can compute M[1,n], in O(n3) time, using O(n2)
space.

5.4. Longest Ascending Subsequence
Given an array of numbers A[1 . . . n] we are interested in finding the longest ascending subsequence. For
example, if A = [6,3,2,5,1,12] the longest ascending subsequence is 2,5,12. To this end, let M[i] denote longest
increasing subsequence having A[i] as the last element in the subsequence. The recurrence on the maximum
possible length, is

M[n] =


1 n = 1
1 + max

1≤k<n,A[k]<A[n]
M[k] otherwise.

The length of the longest increasing subsequence is maxn
i=1 M[i]. Again, using dynamic programming, we

get an algorithm with running time O(n2) for this problem. It is also not hard to modify the algorithm so that
it outputs this sequence (you should figure out the details of this modification). A better O(n log n) solution is
possible using some data-structure magic.

5.5. Pattern Matching

tidbit
Tidbit 5.5.1. Magna Carta or Magna Charta - the great charter that King John of England was forced by the
English barons to grant at Runnymede, June 15, 1215, traditionally interpreted as guaranteeing certain civil
and political liberties.

Assume you have a string S = ”Magna Carta” and a pattern P = ”?ag ∗ at ∗ a ∗ ” where “?” can match a
single character, and “*” can match any substring. You would like to decide if the pattern matches the string.

We are interested in solving this problem using dynamic programming. This is not too hard since this is
similar to the edit-distance problem that was already covered.

IsMatch(S[1 . . . n],P[1 . . .m])
if m = 0 and n = 0 then return TRUE.
if m = 0 then return FALSE.
if n = 0 then

if P[1 . . .m] is all stars then return TRUE
else return FALSE

if (P[m] = ’?’) then
return IsMatch(S[1 . . . n − 1],P[1 . . .m − 1])

if (P[m] , ’*’) then
if P[m] , S[n] then return FALSE
else return IsMatch(S[1 . . . n − 1],P[1 . . .m − 1])

for i = 0 to n do
if IsMatch(S[1 . . . i],P[1 . . .m − 1]) then

return TRUE
return FALSE

The resulting code is depicted on the left,
and as you can see this is pretty tedious.
Now, use memoization together with this
recursive code, and you get an algorithm
with running time O

(
mn2) and space O(nm),

where the input string of length n, and m is
the length of the pattern.
Being slightly more clever, one can get a
faster algorithm with running time O(nm).
BTW, one can do even better. A O(m + n)
time is possible but it requires Knuth-Morris-
Pratt algorithm, which is a fast string match-
ing algorithm.
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Figure 5.2: A drawing of the Mona Lisa by solving a TSP instance. The figure on the right is the TSP in the
eyes region.

Figure 5.3: A certain country and its optimal TSP tour.

5.6. Slightly faster TSP algorithm via dynamic programming

TSP: Traveling Salesperson Problem
Instance: A graph G = (V,E) with non-negative edge costs/lengths. Cost c(e) for each edge e ∈ E.
Question: Find a tour of minimum cost that visits each node.

No polynomial time algorithm known for TSP– the problem is NP-Hard.
Even an exponential Time algorithm requires some work. Indeed, there are n! potential TSP tours. Clearly,

n! ≤ nn = exp(n ln n) and n! ≥ (n/2)n/2 = exp((n/2) ln(n/2)). Using Stirling’s formula, we have n! '
√

n(n/e)n,
which gives us a somewhat tighter estimate n! = Θ(2cn log n) for some constant c > 1.

So, naively, any running time algorithm would have running time (at least) Ω(n!). Can we do better? Can
we get a ≈ 2O(n) running time algorithm in this case?

Towards a Recursive Solution.
(A) Order the vertices of V in some arbitrary order: v1, v2, . . . , vn.
(B) opt(S): optimum TSP tour for the vertices S ⊆ V in the graph restricted to S. We would like to compute

opt(V).
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Can we compute opt(S) recursively?
(A) Say v ∈ S. What are the two neighbors of v in optimum tour in S?
(B) If u,w are neighbors of v in an optimum tour of S then removing v gives an optimum path from u to w

visiting all nodes in S − {v}.
Path from u to w is not a recursive subproblem! Need to find a more general problem to allow recursion.

We start with a more general problem: TSP Path.

TSP Path
Instance: A graph G = (V,E) with non-negative edge costs/lengths(c(e) for edge e) and two nodes
s, t.
Question: Find a path from s to t of minimum cost that visits each node exactly once.

We can solve the regular TSP problem using this problem.
We define a recursive problem for the optimum TSP Path problem, as follows:

opt(u, v,S) : optimum TSP Path from u to v in the graph restricted to S s.t. u, v ∈ S.

(A) What is the next node in the optimum path from u to v?
(B) Suppose it is w. Then what is opt(u, v,S)?
(C) opt(u, v,S) = c(u,w) + opt(w, v,S − {u})
(D) We do not know w! So try all possibilities for w.

A Recursive Solution.
(A) opt(u, v,S) = minw∈S,w,u,v(c(u,w) + opt(w, v,S − {u}))
(B) What are the subproblems for the original problem opt(s, t,V)? For every subset S ⊆ V, we have the

subproblem opt(u, v,S) for u, v ∈ S.

As usual, we need to bound the number subproblems in the recursion:

(A) number of distinct subsets S of V is at most 2n
(B) number of pairs of nodes in a set S is at most n2

(C) hence number of subproblems is O(n22n)

Exercise 5.6.1. Show that one can compute TSP using above dynamic program in O(n32n) time and O(n22n)
space.

Lemma 5.6.2. Given a graph G with n vertices, one can solve TSP in O(n32n) time.

The disadvantage of dynamic programming solution is that it uses a lot of memory.
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Part III
Approximation algorithms

Chapter 6

Approximation algorithms

6.1. Greedy algorithms and approximation algorithms
A natural tendency in solving algorithmic problems is to locally do whats seems to be the right thing. This is
usually referred to as greedy algorithms. The problem is that usually these kind of algorithms do not really
work. For example, consider the following optimization version of Vertex Cover:

VertexCoverMin
Instance: A graph G, and integer k.
Question: Return the smallest subset S ⊆ V(G), s.t. S touches all the edges of G.

Figure 6.1: Example.

For this problem, the greedy algorithm will always take the vertex with the high-
est degree (i.e., the one covering the largest number of edges), add it to the cover set,
remove it from the graph, and repeat. We will refer to this algorithm as GreedyVer-
texCover.

It is not too hard to see that this algorithm does not output the optimal vertex-
cover. Indeed, consider the graph depicted on the right. Clearly, the optimal solution
is the black vertices, but the greedy algorithm would pick the four white vertices.

This of course still leaves open the possibility that, while we do not get the optimal
vertex cover, what we get is a vertex cover which is “relatively good” (or “good enough”).

Definition 6.1.1. A minimization problem is an optimization problem, where we look for a valid solution that
minimizes a certain target function.

Example 6.1.2. In the VertexCoverMin problem the (minimization) target function is the size of the cover. For-
mally Opt(G) = minS⊆V (G),S cover of G |S |.

The VertexCover(G) is just the set S realizing this minimum.

Definition 6.1.3. Let Opt(G) denote the value of the target function for the optimal solution.
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Intuitively, a vertex-cover of size “close” to the optimal solution would be considered to be good.

Definition 6.1.4. Algorithm Alg for a minimization problem Min achieves an approximation factor α ≥ 1 if for
all inputs G, we have:

Alg(G)
Opt(G) ≤ α.

We will refer to Alg as an α-approximation algorithm for Min.

As a concrete example, an algorithm is a 2-approximation for Vertex-
CoverMin, if it outputs a vertex-cover which is at most twice the size of the
optimal solution for vertex cover.

So, how good (or bad) is the GreedyVertexCover algorithm described
above? Well, the graph in Figure 6.1 shows that the approximation factor
of GreedyVertexCover is at least 4/3.

It turns out that GreedyVertexCover performance is considerably worse.
To this end, consider the following bipartite graph: Gn = (L∪R,E), where L
is a set of n vertices. Next, for i = 2, . . . ,n, we add a set Ri of bn/ic vertices,
to R, each one of them of degree i, such that all of them (i.e., all vertices
of degree i at L) are connected to distinct vertices in R. The execution of
GreedyVertexCover on such a graph is shown on the right.

Clearly, in Gn all the vertices in L have degree at most n − 1, since
they are connected to (at most) one vertex of Ri, for i = 2, . . . ,n. On the
other hand, there is a vertex of degree n at R (i.e., the single vertex of
Rn). Thus, GreedyVertexCover will first remove this vertex. We claim, that
GreedyVertexCover will remove all the vertices of R2, . . . ,Rn and put them
into the vertex-cover. To see that, observe that if R2, . . . ,Ri are still active,
then all the nodes of Ri have degree i, all the vertices of L have degree at
most i−1, and all the vertices of R2, . . . ,Ri−1 have degree strictly smaller than i. As such, the greedy algorithms
will use the vertices of Ri. Easy induction now implies that all the vertices of R are going to be picked by
GreedyVertexCover. This implies the following lemma.

Lemma 6.1.5. The algorithm GreedyVertexCover is Ω(log n) approximation to the optimal solution to Vertex-
CoverMin.

Proof: Consider the graph Gn above. The optimal solution is to pick all the vertices of L to the vertex cover,
which results in a cover of size n. On the other hand, the greedy algorithm picks the set R. We have that

|R| =
n∑
i=2
|Ri | =

n∑
i=2

⌊n
i

⌋
≥

n∑
i=2

(n
i
− 1

)
≥ n

n∑
i=1

1
i
− 2n = n(Hn − 2).

Here, Hn =
∑n

i=1 1/i = lg n+Θ(1) is the nth harmonic number. As such, the approximation ratio for GreedyVer-

texCover is ≥ |R|
|L |
=

n(Hn − 2)
n

= Ω(log n).

Theorem 6.1.6. The greedy algorithm for VertexCover achieves Θ(log n) approximation, where n is the number
of vertices in the graph. Its running time is O(mn2).

Proof: The lower bound follows from Lemma 6.1.5. The upper bound follows from the analysis of the greedy
of Set Cover, which will be done shortly.

As for the running time, each iteration of the algorithm takes O(mn) time, and there are at most n iterations.
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6.1.1. Alternative algorithm – two for the price of one

One can still do much better than the greedy algorithm in this case. In particular, let ApproxVertexCover
be the algorithm that chooses an edge from G, add both endpoints to the vertex cover, and removes the two
vertices (and all the edges adjacent to these two vertices) from G. This process is repeated till G has no edges.
Clearly, the resulting set of vertices is a vertex-cover, since the algorithm removes an edge only if it is being
covered by the generated cover.

Theorem 6.1.7. ApproxVertexCover is a 2-approximation algorithm for VertexCoverMin that runs in O(n2)
time.

Proof: Every edge picked by the algorithm contains at least one vertex of the optimal solution. As such, the
cover generated is at most twice larger than the optimal.

6.2. Fixed parameter tractability, approximation, and fast exponential time
algorithms (to say nothing of the dog)

6.2.1. A silly brute force algorithm for vertex cover

So given a graph G = (V,E) with n vertices, we can approximate VertexCoverMin up to a factor of two in
polynomial time. Let K be this approximation – we know that any vertex cover in G must be of size at least
K/2, and we have a cover of size K. Imagine the case that K is truly small – can we compute the optimal
vertex-cover in this case quickly? Well, of course, we could just try all possible subsets of vertices size at most
K, and check for each one whether it is a cover or not. Checking if a specific set of vertices is a cover takes
O(m) = O(n2) time, where m = |E|. So, the running time of this algorithm is

K∑
i=1

(
n
i

)
O

(
n2

)
≤

K∑
i=1

O
(
ni · n2

)
= O

(
nK+2

)
,

where
(n
i

)
is the number of subsets of the vertices of G of size exactly i. Observe that we do not require to know

K – the algorithm can just try all sizes of subsets, till it finds a solution. We thus get the following (not very
interesting result).

Lemma 6.2.1. Given a graph G = (V,E) with n vertices, one can solve VertexCoverMin in O
(
nα+2) time, where

α is the size the minimum vertex cover.

6.2.2. A fixed parameter tractable algorithm

As before, our input is a graph G = (V,E), for which we want to compute a vertex-cover of minimum size. We
need the following definition:

Definition 6.2.2. Let G = (V,E) be a graph. For a subset S ⊆ V, let GS be the induced subgraph over S.
Namely, it is a graph with the set of vertices being S. For any pair of vertices x, y ∈ V, we have that the edge
xy ∈ E(GS) if and only if xy ∈ E(G), and x, y ∈ S.

Also, in the following, for a vertex v, let NG(v) denote the set of vertices of G that are adjacent to v.
Consider an edge e = uv in G. We know that either u or v (or both) must be in any vertex cover of G, so

consider the brute force algorithm for VertexCoverMin that tries all these possibilities. The resulting algorithm
algFPVertexCover is depicted in Figure 6.2.

Lemma 6.2.3. The algorithm algFPVertexCover (depicted in Figure 6.2) returns the optimal solution to the
given instance of VertexCoverMin.
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fpVertexCoverInner (X, β)
// Computes minimum vertex cover for the induced graph GX

// β: size of VC computed so far.
if X = ∅ or GX has no edges then return β

e← any edge uv of GX .
β1 = f pVertexCover Inner(X \ {u, v} , β + 2)
// Only take u to the cover, but then we must also take
// all the vertices that are neighbors of v,
// to cover their edges with v

β2 = f pVertexCover Inner
(
X \

(
{u} ∪ NGX (v)

)
, β +

��NGX (v)
��)

// Only take v to the cover...
β3 = f pVertexCover Inner

(
X \

(
{v} ∪ NGX (u)

)
, β +

��NGX (u)
��)

return min(β1, β2, β3).

algFPVertexCover (G = (V,E))
return fpVertexCoverInner (V,0)

Figure 6.2: Fixed parameter tractable algorithm for VertexCoverMin.

Proof: It is easy to verify, that if the algorithm returns β then it found a vertex cover of size β. Since the depth
of the recursion is at most n, it follows that this algorithm always terminates.

Consider the optimal solution Y ⊆ V, and run the algorithm, where every stage of the recursion always pick
the option that complies with the optimal solution. Clearly, since in every level of the recursion at least one
vertex of Y is being found, then after O(|Y |) recursive calls, the remaining graph would have no edges, and it
would return |Y | as one of the candidate solution. Furthermore, since the algorithm always returns the minimum
solution encountered, it follows that it would return the optimal solution.

Lemma 6.2.4. The depth of the recursion of algFPVertexCover(G) is at most α, where α is the minimum size
vertex cover in G.

Proof: The idea is to consider all the vertices that can be added to the vertex cover being computed without
covering any new edge. In particular, in the case the algorithm takes both u and v to the cover, then one of
these vertices must be in the optimal solution, and this can happen at most α times.

The more interesting case, is when the algorithm picks NGX (v) (i.e., β2) to the vertex cover. We can add
v to the vertex cover in this case without getting any new edges being covered (again, we are doing this only
conceptually – the vertex cover computed by the algorithm would not contain v [only its neighbors]). We do
the same thing for the case of β3.

Now, observe that in any of these cases, the hypothetical set cover being constructed (which has more vertices
than what the algorithm computes, but covers exactly the same set of edges in the original graph) contains one
vertex of the optimal solution picked into itself in each level of the recursion. Clearly, the algorithm is done
once we pick all the vertices of the optimal solution into the hypothetical vertex cover. It follows that the depth
the recursion is ≤ α.

Theorem 6.2.5. Let G be a graph with n vertices, and with the minimal vertex cover being of size α. Then,
the algorithm algFPVertexCover (depicted in Figure 6.2) returns the optimal vertex cover for G and the running
time of this algorithm is O

(
3αn2).

Proof: By Lemma 6.2.4, the recursion tree has depth α. As such, it contains at most 2 · 3α nodes. Each node
in the recursion requires O

(
n2) work (ignoring the recursive calls), if implemented naively. Thus, the bound on

the running time follows.
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Algorithms where the running time is of the form O(nc f (α)), where α is some parameter that depends on
the problem are fixed parameter tractable algorithms for the given problem.

6.2.2.1. Remarks

Currently, the fastest algorithm known for this problem has running time O(1.2738α + αn) [CKX10]. This
algorithm uses similar ideas, but is considerably more complicated.

It is known that no better approximation than 1.3606 is possible for VertexCoverMin, unless P = NP. The
currently best approximation known is 2 − Θ

(
1/

√
log n

)
. If the Unique Games Conjecture is true, then no

better constant approximation is possible in polynomial time.

6.3. Approximating maximum matching
Definition 6.3.1. Consider an undirected graph G = (V,E). The graph might have a weight function ω(e),
specifying a positive value on the edges of G (if no weights are specified, treat every edge as having weight 1).
• A subset M ⊆ E is a matching if no pair of edges of M share endpoints.
• A perfect matching is a matching that covers all the vertices of G.
• A min-weight perfect matching, is the minimum weight matching among all perfect matching, where
the weight of a matching is

ω(M) =
∑
e∈M

ω(e).

• Themaximum-weight matching (or justmaximum matching is the matching with maximum weight
among all matchings.
• A matching M is maximal if no edge can be added to it. That is, for every edge e ∈ E, we have that the
edges of M contains at least one endpoint of e.

Note the subtle difference between maximal and maximum – the first, is a local maximum, while the other one
is the global maximum.

Lemma 6.3.2. Lemma ??Given an undirected unweighted graph G with n vertices and m edges, one can compute
a matching M in G, such that |M | ≥ |opt| /2, where opt is the maximum size (i.e., cardinality) matching in G.
The running time is O(n + m).

Proof: The algorithm is shockingly simple – repeatedly pick an edge of G, remove it and the edges adjacent to
it, and repeat till there are no edges left in the graph. Let M be the resulting matching.

To see why this is a two approximation (i.e., 2|M | ≥ |opt|, observe that every edge of M is adjacent to at
most two edges of opt. As such, each edge of M pays for two edges of opt, which implies the claim.

One way to see that is to imagine that we start with the matching opt and let M = {m1, . . . ,mt } – at each
iteration, we insert mi into the current matching, and remove any old edges that intersect it. As such, we moved
from the matching of M to the matching of opt. In each step, we deleted at most two edges, and inserted one
edges. As such, |opt| ≤ 2|M |.

Lemma 6.3.3. Given an undirected weighted graph G with n vertices and m edges, one can compute a matching
M in G, such that ω(M) ≥ ω(opt)/2, where opt is the maximum weight matching in G. The running time is
O(n log n + m).

Proof: We run the algorithm for the unweighted case, with the modification that we always pick the heaviest
edge still available. The same argument as in Lemma ?? implies that that this is a two approximation. As for
the running time – we need a min-heap for m elements, that performs at most n deletions, and as such, the
running time is O(n log n + m) by using a Fibonacci heap.
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Remark 6.3.4. Note, that maximum matching (and all the variants mentioned above) are solvable in polynomial
time. The main thing is that the above algorithm is both simple and give us a decent starting point which can
be used in the exact algorithm.

6.4. Graph diameter
FILL IN.

6.5. Traveling Salesman Person
We remind the reader that the optimization variant of the TSP problem is the following.

TSP-Min
Instance: G = (V,E) a complete graph, and ω(e) a cost function on edges of G.
Question: The cheapest tour that visits all the vertices of G exactly once.

Theorem 6.5.1. TSP-Min can not be approximated within any factor unless NP = P.

Proof: Consider the reduction from Hamiltonian Cycle into TSP. Given a graph G, which is the input for the
Hamiltonian cycle, we transform it into an instance of TSP-Min. Specifically, we set the weight of every edge to
1 if it was present in the instance of the Hamiltonian cycle, and 2 otherwise. In the resulting complete graph,
if there is a tour price n then there is a Hamiltonian cycle in the original graph. If on the other hand, there
was no cycle in G then the cheapest TSP is of price n + 1.

Instead of 2, let us assign the missing edges in H a weight of cn, for c an arbitrary number. Let H denote
the resulting graph. Clearly, if G does not contain any Hamiltonian cycle in the original graph, then the price
of the TSP-Min in H is at least cn + 1.

Note, that the prices of tours of H are either (i) equal to n if there is a Hamiltonian cycle in G, or (ii) larger
than cn+ 1 if there is no Hamiltonian cycle in G. As such, if one can do a c-approximation, in polynomial time,
to TSP-Min, then using it on H would yield a tour of price ≤ cn if a tour of price n exists. But a tour of price
≤ cn exists if and only if G has a Hamiltonian cycle.

Namely, such an approximation algorithm would solve a NP-Complete problem (i.e., Hamiltonian Cycle)
in polynomial time.

Note, that Theorem 6.5.1 implies that TSP-Min can not be approximated to within any factor. However, once
we add some assumptions to the problem, it becomes much more manageable (at least as far as approximation).

What the above reduction did, was to take a problem and reduce it into an instance where this is a huge gap,
between the optimal solution, and the second cheapest solution. Next, we argued that if had an approximation
algorithm that has ratio better than the ratio between the two endpoints of this empty interval, then the
approximation algorithm, would in polynomial time would be able to decide if there is an optimal solution.

6.5.1. TSP with the triangle inequality

6.5.1.1. A 2-approximation

Consider the following special case of TSP:

TSP4,-Min
Instance: G = (V,E) is a complete graph. There is also a cost function ω(·) defined over the edges of
G, that complies with the triangle inequality.
Question: The cheapest tour that visits all the vertices of G exactly once.
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We remind the reader that the triangle inequality holds for ω(·) if

∀u, v,w ∈ V(G), ω(u, v) ≤ ω(u,w) + ω(w, v).

The triangle inequality implies that if we have a path σ in G, that starts at s and ends at t, then ω(st) ≤ ω(σ).
Namely, shortcutting, that is going directly from s to t, is always beneficial if the triangle inequality holds
(assuming that we do not have any reason to visit the other vertices of σ).

Definition 6.5.2. A cycle in a graph G is Eulerian if it visits every edge of G exactly once.

Unlike Hamiltonian cycle, which has to visit every vertex exactly once, an Eulerian cycle might visit a vertex
an arbitrary number of times. We need the following classical result:

Lemma 6.5.3. A graph G has a cycle that visits every edge of G exactly once (i.e., an Eulerian cycle) if and
only if G is connected, and all the vertices have even degree. Such a cycle can be computed in O(n + m) time,
where n and m are the number of vertices and edges of G, respectively.

Our purpose is to come up with a 2-approximation algorithm for TSP4,-Min. To this end, let Copt denote
the optimal TSP tour in G. Observe that Copt is a spanning graph of G, and as such we have that

ω
(
Copt

)
≥ weight

(
cheapest spanning graph of G

)
.

But the cheapest spanning graph of G, is the minimum spanning tree (MST) of G, and as such ω
(
Copt

)
≥

ω(MST(G)). The MST can be computed in O(n log n +m) = O(n2) time, where n is the number of vertices of G,
and m =

(n
2
)
is the number of edges (since G is the complete graph). Let T denote the MST of G, and covert

T into a tour by duplicating every edge twice. Let H denote the new graph. We have that H is a connected
graph, every vertex of H has even degree, and as such H has an Eulerian tour (i.e., a tour that visits every edge
of H exactly once).

As such, let C denote the Eulerian cycle in H. Observe that

ω(C) = ω(H) = 2ω(T) = 2ω(MST(G)) ≤ 2ω
(
Copt

)
.

Next, we traverse C starting from any vertex v ∈ V(C). As we traverse C, we skip vertices that we already
visited, and in particular, the new tour we extract from C will visit the vertices of V(G) in the order they first
appear in C. Let π denote the new tour of G. Clearly, since we are performing shortcutting, and the triangle
inequality holds, we have that ω(π) ≤ ω(C). The resulting algorithm is depicted in Figure 6.3.

It is easy to verify, that all the steps of our algorithm can be done in polynomial time. As such, we have
the following result.

Theorem 6.5.4. Given an instance of TSP with the triangle inequality (TSP4,-Min) (namely, a graph G with
n vertices and

(n
2
)
edges, and a cost function ω(·) on the edges that comply with the triangle inequality), one

can compute a tour of G of length ≤ 2ω
(
Copt

)
, where Copt is the minimum cost TSP tour of G. The running

time of the algorithm is O
(
n2).

6.5.1.2. A 3/2-approximation to TSP4,-Min

The following is a known result, and we will see a somewhat weaker version of it in class.

Theorem 6.5.5. Given a graph G and weights on the edges, one can compute the min-weight perfect matching
of G in polynomial time.

Lemma 6.5.6. Let G = (V,E) be a complete graph, S a subset of the vertices of V of even size, and ω(·) a
weight function over the edges. Then, the weight of the min-weight perfect matching in GS is ≤ ω(TSP(G))/2.

48



(a) (b) (c) (d)

Figure 6.3: The TSP approximation algorithm: (a) the input, (b) the duplicated graph, (c) the extracted
Eulerian tour, and (d) the resulting shortcut path.

Proof: Let π be the cycle realizing the TSP in G. Let σ be the cycle
resulting from shortcutting π so that it uses only the vertices of S. Clearly,
ω(σ) ≤ ω(π). Now, let Me and Mo be the sets of even and odd edges of σ
respectively. Clearly, both Mo and Me are perfect matching in GS, and

ω(Mo) + ω(Me) = ω(σ).

We conclude, that min(w(Mo),w(Me)) ≤ ω(TSP(G))/2.

σ

πS
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3
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We now have a creature that has the weight of half of the TSP, and
we can compute it in polynomial time. How to use it to approximate the
TSP? The idea is that we can make the MST of G into an Eulerian graph
by being more careful. To this end, consider the tree on the right. Clearly,
it is almost Eulerian, except for these pesky odd degree vertices. Indeed, if
all the vertices of the spanning tree had even degree, then the graph would be Eulerian (see Lemma 6.5.3).

In particular, in the depicted tree, the “problematic” vertices are 1,4,2,7, since they are all the odd degree
vertices in the MST T .

Lemma 6.5.7. The number of odd degree vertices in any graph G′ is even.

Proof: Observe that µ =
∑

v∈V (G′) d(v) = 2|E(G′)|, where d(v) denotes the degree of v. Let U =
∑

v∈V (G′),d(v) is even d(v),
and observe that U is even as it is the sum of even numbers.

Thus, ignoring vertices of even degree, we have

α =
∑

v∈V ,d(v) is odd
d(v) = µ −U = even number,

since µ and U are both even. Thus, the number of elements in the above sum of all odd numbers must be even,
since the total sum is even.
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So, we have an even number of problematic vertices in T . The idea
now is to compute a minimum-weight perfect matching M on the prob-
lematic vertices, and add the edges of the matching to the tree. The
resulting graph, for our running example, is depicted on the right. Let
H = (V,E(M) ∪ E(T)) denote this graph, which is the result of adding M
to T .

We observe that H is Eulerian, as all the vertices now have even degree, and the graph is connected. We
also have

ω(H) = ω(MST(G)) + ω(M) ≤ ω(TSP(G)) + ω(TSP(G))/2 = (3/2)ω(TSP(G)),

by Lemma 6.5.6. Now, H is Eulerian, and one can compute the Euler cycle for H, shortcut it, and get a tour
of the vertices of G of weight ≤ (3/2)ω(TSP(G)).

Theorem 6.5.8. Given an instance of TSP with the triangle inequality, one can compute in polynomial time,
a (3/2)-approximation to the optimal TSP.

6.6. Biographical Notes

The 3/2-approximation for TSP with the triangle inequality is due to Christofides [Chr76].

Chapter 7

Approximation algorithms II

7.1. Max Exact 3SAT
We remind the reader that an instance of 3SAT is a boolean formula, for example F = (x1+ x2+ x3)(x4+ x1+ x2),
and the decision problem is to decide if the formula has a satisfiable assignment. Interestingly, we can turn this
into an optimization problem.

Max 3SAT
Instance: A collection of clauses: C1, . . . ,Cm.

Question: Find the assignment to x1, ..., xn that satisfies the maximum number of clauses.

Clearly, since 3SAT is NP-Complete it implies that Max 3SAT is NP-Hard. In particular, the formula F
becomes the following set of two clauses:

x1 + x2 + x3 and x4 + x1 + x2.

Note, that Max 3SAT is a maximization problem.
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Definition 7.1.1. Algorithm Alg for a maximization problem achieves an approximation factor α if for all inputs,
we have:

Alg(G)
Opt(G) ≥ α.

In the following, we present a randomized algorithm – it is allowed to consult with a source of random
numbers in making decisions. A key property we need about random variables, is the linearity of expectation
property, which is easy to derive directly from the definition of expectation.
Definition 7.1.2 (Linearity of expectations.). Given two random variables X,Y (not necessarily independent, we
have that E

[
X + Y

]
= E

[
X
]
+ E

[
Y
]
.

Theorem 7.1.3. One can achieve (in expectation) (7/8)-approximation to Max 3SAT in polynomial time.
Namely, if the instance has m clauses, then the generated assignment satisfies (7/8)m clauses in expectation.

Proof: Let x1, . . . , xn be the n variables used in the given instance. The algorithm works by randomly assigning
values to x1, . . . , xn, independently, and equal probability, to 0 or 1, for each one of the variables.

Let Yi be the indicator variables which is 1 if (and only if) the ith clause is satisfied by the generated random
assignment and 0 otherwise, for i = 1, . . . ,m. Formally, we have

Yi =

{
1 Ci is satisfied by the generated assignment,
0 otherwise.

Now, the number of clauses satisfied by the given assignment is Y =
∑m

i=1 Yi. We claim that E[Y ] = (7/8)m,
where m is the number of clauses in the input. Indeed, we have

E
[
Y
]
= E

[ m∑
i=1

Yi
]
=

m∑
i=1
E
[
Yi

]
by linearity of expectation. Now, what is the probability that Yi = 0? This is the probability that all three
literals appear in the clause Ci are evaluated to FALSE. Since the three literals are instance of three distinct
variable, these three events are independent, and as such the probability for this happening is

P
[
Yi = 0

]
=

1
2 ∗

1
2 ∗

1
2 =

1
8 .

(Another way to see this, is to observe that since Ci has exactly three literals, there is only one possible
assignment to the three variables appearing in it, such that the clause evaluates to FALSE. Now, there are eight
(8) possible assignments to this clause, and thus the probability of picking a FALSE assignment is 1/8.) Thus,

P
[
Yi = 1

]
= 1 − P

[
Yi = 0

]
=

7
8,

and
E
[
Yi

]
= P

[
Yi = 0

]
∗ 0 + P

[
Yi = 1

]
∗ 1 = 7

8 .

Namely, E[# of clauses sat] = E[Y ] =
∑m

i=1 E[Yi] = (7/8)m. Since the optimal solution satisfies at most m clauses,
the claim follows.

Curiously, Theorem 7.1.3 is stronger than what one usually would be able to get for an approximation
algorithm. Here, the approximation quality is independent of how well the optimal solution does (the optimal
can satisfy at most m clauses, as such we get a (7/8)-approximation. Curiouser and curiouser¬, the algorithm
does not even look on the input when generating the random assignment.

Håstad [Hås01a] proved that one can do no better; that is, for any constant ε > 0, one can not approximate
3SAT in polynomial time (unless P = NP) to within a factor of 7/8 + ε. It is pretty amazing that a trivial
algorithm like the above is essentially optimal.

¬“Curiouser and curiouser!” Cried Alice (she was so much surprised, that for the moment she quite forgot how to speak good
English). – Alice in wonderland, Lewis Carol
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7.2. Approximation Algorithms for Set Cover

7.2.1. Guarding an Art Gallery

You are given the floor plan of an art gallery, which is a two dimensional
simple polygon. You would like to place guards that see the whole polygon. A
guard is a point, which can see all points around it, but it can not see through
walls. Formally, a point p can see a point q, if the segment pq is contained
inside the polygon. See figure on the right, for an illustration of how the input
looks like.

p

A visibility polygon at p (depicted as the yellow polygon on the left) is
the region inside the polygon that p can see. We would like to find the minimal
number of guards needed to guard the given art-gallery? That is, all the points
in the art gallery should be visible from at least one guard we place.

The art-gallery problem is a set-cover problem. We have a ground set (the
polygon), and family of sets (the set of all visibility polygons), and the target
is to find a minimal number of sets covering the whole polygon.

It is known that finding the minimum number of guards needed is NP-Hard. No approximation is currently
known. It is also known that a polygon with n corners, can be guarded using n/3 + 1 guards. Note, that
this problem is harder than the classical set-cover problem because the number of subsets is infinite and the
underlining base set is also infinite.

An interesting open problem is to find a polynomial time approximation algorithm, such that given P, it
computes a set of guards, such that #guards ≤

√
nkopt , where n is the number of vertices of the input polygon

P, and kopt is the number of guards used by the optimal solution.

7.2.2. Set Cover

The optimization version of Set Cover, is the following:

Set Cover
Instance: (S,F):

S - a set of n elements
F - a family of subsets of S, s.t.

⋃
X∈F X = S.

Question: The set X ⊆ F such that X contains as few sets as possible, and X covers S. Formally,⋃
X∈X X = S.

The set S is sometime called the ground set, and a pair (S,F) is either called a set system or a hypergraph.
Note, that Set Cover is a minimization problem which is also NP-Hard.

Example 7.2.1. Consider the set S = {1,2,3,4,5} and the following family of subsets

F = {{1,2,3}, {2,5}, {1,4}, {4,5}} .

Clearly, the smallest cover of S is Xopt = {{1,2,3}, {4,5}}.

The greedy algorithm GreedySetCover for this problem is depicted in Figure 7.1. Here, the algorithm always
picks the set in the family that covers the largest number of elements not covered yet. Clearly, the algorithm
is polynomial in the input size. Indeed, we are given a set S of n elements, and m subsets. As such, the input
size is at least Ω(m + n) (and at most of size O(mn)), and the algorithm takes time polynomial in m and n. Let
Xopt = {V1, . . . ,Vk} be the optimal solution.

Let Ti denote the elements not covered in the beginning ith iteration of GreedySetCover, where T1 = S. Let
Ui be the set added to the cover in the ith iteration, and αi = |Ui ∩ Ti | be the number of new elements being
covered in the ith iteration.
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GreedySetCover(S,F)
X← ∅; T ← S
while T is not empty do

U ← set in F covering largest
# of elements in T

X← X ∪ {U}
T ← T \U

return X.

Figure 7.1

Claim 7.2.2. We have α1 ≥ α2 ≥ . . . ≥ αk ≥ . . . ≥ αm.

Proof: If αi < αi+1 then Ui+1 covers more elements than Ui and we can exchange between them, as we found
a set that in the ith iteration covers more elements that the set used by GreedySetCover. Namely, in the ith
iteration we would use Ui+1 instead of Ui. This contradicts the greediness of GreedySetCover of choosing the
set covering the largest number of elements not covered yet. A contradiction.

Claim 7.2.3. We have αi ≥ |Ti | /k. Namely, |Ti+1 | ≤ (1 − 1/k) |Ti |.

Proof: Consider the optimal solution. It is made out of k sets and it covers S, and as such it covers Ti ⊆ S.
This implies that one of the subsets in the optimal solution cover at least 1/k fraction of the elements of Ti.
Finally, the greedy algorithm picks the set that covers the largest number of elements of Ti. Thus, Ui covers at
least αi ≥ |Ti |/k elements.

As for the second claim, we have that |Ti+1 | = |Ti | − αi ≤ (1 − 1/k) |Ti |.

Theorem 7.2.4. The algorithm GreedySetCover generates a cover of S using at most O(k log n) sets of F, where
k is the size of the cover in the optimal solution.

Proof: We have that |Ti | ≤ (1− 1/k) |Ti−1 | ≤ (1− 1/k)i |T0 | = (1− 1/k)in. In particular, for M = d2k ln ne we have

|TM | ≤

(
1 − 1

k

)M
n ≤ exp

(
−

1
k

M
)
n = exp

(
−
d2k ln ne

k

)
n ≤

1
n
< 1,

since 1 − x ≤ e−x, for x ≥ 0. Namely, |TM | = 0. As such, the algorithm terminates before reaching the Mth
iteration, and as such it outputs a cover of size O(k log n), as claimed.

7.2.3. Lower bound

The lower bound example is depicted in the following figure.

Y4

Z4

X1 X2 X3 X4

We provide a more formal description of this lower bound next, and prove that it shows Ω(log n) approxi-
mation to GreedySetCover.
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We want to show here that the greedy algorithm analysis is tight. To this end, consider the set system
Λi = (Si,Fi), where Si = Yi ∪ Zi, Yi = {y1, . . . , y2i−1} and Zi = {z1, . . . , z2i−1}. The family of sets Fi contains the
following sets

Xj = {y2 j−1, . . . , y2 j−1, z2 j−1, . . . , z2 j−1} ,

for j = 1, . . . , i. Furthermore, Fi also contains the two special sets Yi and Zi. Clearly, minimum set cover for Λi

is the two sets Yi and Zi.
However, sets Yi and Zi have size 2i − 1. But, the set Xi has size

|Xi | = 2
(
2i − 1 − 2i−1 + 1

)
= 2i,

and this is the largest set in Λi. As such, the greedy algorithm GreedySetCover would pick Xi as first set to its
cover. However, once you remove Xi from Λi (and from its ground set), you remain with the set system Λi−1.
We conclude that GreedySetCover would pick the sets Xi,Xi−1, . . . ,X1 to the cover, while the optimal cover is
by two sets. We conclude:

Lemma 7.2.5. Let n = 2i+1 − 2. There exists an instance of Set Cover of n elements, for which the optimal
cover is by two sets, but GreedySetCover would use i = blg nc sets for the cover. That is, GreedySetCover is a
Θ(log n) approximation to SetCover.

7.2.4. Just for fun – weighted set cover

Weighted Set Cover
Instance: (S,F, ρ):

S: a set of n elements
F: a family of subsets of S, s.t.

⋃
X∈F X = S.

ρ(·): A price function assigning price to each set in F.
Question: The set X ⊆ F, such that X covers S. Formally,

⋃
X∈X X = S, and ρ(X) =

∑
X∈X ρ(X) is

minimized.

The greedy algorithm in this case, WGreedySetCover, repeatedly picks the set that pays the least cover
each element it cover. Specifically, if a set X ∈ F covered t new elements, then the average price it pays per
element it cover is α(X) = ρ(X)/t. WGreedySetCover as such, picks the set with the lowest average price. Our
purpose here to prove that this greedy algorithm provides O(log n) approximation.

7.2.4.1. Analysis

Let Ui be the set of elements that are not covered yet in the end of the ith iteration. As such, U0 = S. At the
beginning of the ith iteration, the average optimal cost is αi = ρ(opt)/ni, where opt is the optimal solution
and ni = |Ui−1 | is the number of uncovered elements.

Lemma 7.2.6. We have that:
(A) α1 ≤ α2 ≤ · · · .
(B) For i < j, we have 2αi ≤ αj only if nj ≤ ni/2.

Proof: (A) is hopefully obvious – as the number of elements not covered decreases, the average price to cover
the remaining elements using the optimal solution goes up.

(B) 2αi ≤ αj implies that 2ρ(opt)/ni ≤ ρ(opt)/nj , which implies in turn that 2nj ≤ ni.

So, let k be the first iteration such that nk ≤ n/2. The basic idea is that total price that WGreedySetCover
paid during these iterations is at most 2ρ(opt). This immediately implies O(log n) iteration, since this can
happen at most O(log n) times till the ground set is fully covered.

To this end, we need the following technical lemma.
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Lemma 7.2.7. Let Ui−1 be the set of elements not yet covered in the beginning of the ith iteration, and let
αi = ρ(opt)/ni be the average optimal cost per element. Then, there exists a set X in the optimal solution, with
lower average cost; that is, ρ(X)/|Ui−1 ∩ X | ≤ αi.

Proof: Let X1, . . . ,Xm be the sets used in the optimal solution. Let sj =
��Ui−1 ∩ Xj

��, for j = 1, . . . ,m, be the
number of new elements covered by each one of these sets. Similarly, let ρj = ρ

(
Xj

)
, for j = 1, . . . ,m. The

average cost of the jth set is ρj/sj (it is +∞ if sj = 0). It is easy to verify that

m
min
j=1

ρj

sj
≤

∑m
j=1 ρj∑m
j=1 sj

=
ρ(opt)∑m
j=1 sj

≤
ρ(opt)
|Ui−1 |

= αi .

The first inequality follows as a/b ≤ c/d (all positive numbers), then a
b
≤

a + c
b + d

≤
c
d
. In particular, for any such

numbers min
(a

b
,

c
d

)
≤

a + c
b + d

, and applying this repeatedly implies this inequality. The second inequality follows
as

∑m
j=1 sj ≥ |Ui−1 |. This implies that the optimal solution must contain a set with an average cost smaller than

the average optimal cost.

Lemma 7.2.8. Let k be the first iteration such that nk ≤ n/2. The total price of the sets picked in iteration 1
to k − 1, is at most 2ρ(opt).

Proof: By Lemma 7.2.7, at each iteration the algorithm picks a set with average cost that is smaller than the
optimal average cost (which goes up in each iteration). However, the optimal average cost iterations, 1 to k − 1,
is at most twice the starting cost, since the number of elements not covered is at least half the total number
of elements. It follows, that the for each element covered, the greedy algorithm paid at most twice the initial
optimal average cost. So, if the number of elements covered by the beginning of the kth iteration is β ≥ n/2,
then the total price paid is 2α1β = 2(ρ(opt)/n)β ≤ 2ρ(opt), implying the claim.

Theorem 7.2.9. WGreedySetCover computes a O(log n) approximation to the optimal weighted set cover solu-
tion.

Proof: WGreedySetCover paid at most twice the optimal solution to cover half the elements, by Lemma 7.2.8.
Now, you can repeat the argument on the remaining uncovered elements. Clearly, after O(log n) such halving
steps, all the sets would be covered. In each halving step, WGreedySetCover paid at most twice the optimal
cost.

7.3. Biographical Notes
The Max 3SAT remains hard in the “easier” variant of MAX 2SAT version, where every clause has 2 variables.
It is known to be NP-Hard and approximable within 1.0741 [FG95], and is not approximable within 1.0476
[Hås01a]. Notice, that the fact that MAX 2SAT is hard to approximate is surprising as 2SAT can be solved in
polynomial time (!).
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Chapter 8

Approximation algorithms III

8.1. Clustering
Consider the problem of unsupervised learning. We are given a set of examples, and we would like to partition
them into classes of similar examples. For example, given a webpage X about “The reality dysfunction”, one
would like to find all webpages on this topic (or closely related topics). Similarly, a webpage about “All quiet
on the western front” should be in the same group as webpage as “Storm of steel” (since both are about soldier
experiences in World War I).

The hope is that all such webpages of interest would be in the same cluster as X, if the clustering is good.
More formally, the input is a set of examples, usually interpreted as points in high dimensions. For example,

given a webpage W , we represent it as a point in high dimensions, by setting the ith coordinate to 1 if the word
wi appears somewhere in the document, where we have a prespecified list of 10,000 words that we care about.
Thus, the webpage W can be interpreted as a point of the {0,1}10,000 hypercube; namely, a point in 10,000
dimensions.

Let X be the resulting set of n points in d dimensions.
To be able to partition points into similar clusters, we need to define a notion of similarity. Such a similarity

measure can be any distance function between points. For example, consider the “regular” Euclidean distance
between points, where

‖p − q‖ =

√√√
d∑
i=1
(pi − qi)2,

where p = (p1, . . . , pd) and q = (q1, . . . ,qd).
As another motivating example, consider the facility location problem. We are given a set X of n cities

and distances between them, and we would like to build k hospitals, so that the maximum distance of a city
from its closest hospital is minimized. (So that the maximum time it would take a patient to get to the its
closest hospital is bounded.)

Intuitively, what we are interested in is selecting good representatives for the input point-set X. Namely,
we would like to find k points in X such that they represent X “well”.

Formally, consider a subset S of k points of X, and a p a point of X. The distance of p from the set S is

d(p,S) = min
q∈S
‖p − q‖ ;

namely, d(p,S) is the minimum distance of a point of S to p. If we interpret S as a set of centers then d(p,S) is
the distance of p to its closest center.

Now, the price of clustering X by the set S is

ν(X,S) = max
p∈X

d(p,S).

This is the maximum distance of a point of X from its closest center in S.
It is somewhat illuminating to consider the problem in the plane. We have

a set P of n points in the plane, we would like to find k smallest discs centered
at input points, such that they cover all the points of P. Consider the example
on the right.
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Figure 8.1: The marked point
is the bottleneck point.

In this example, assume that we would like to cover it by 3 disks. One
possible solution is being shown in Figure 8.1. The quality of the solution
is the radius r of the largest disk. As such, the clustering problem here can
be interpreted as the problem of computing an optimal cover of the input
point set by k discs/balls of minimum radius. This is known as the k-center
problem.

It is known that k-center clustering is NP-Hard, even to approximate
within a factor of (roughly) 1.8. Interestingly, there is a simple and elegant
2-approximation algorithm. Namely, one can compute in polynomial time,
k centers, such that they induce balls of radius at most twice the optimal
radius.

Here is the formal definition of the k-center clustering problem.

k-center clustering
Instance: A set P a of n points, a distance function d(p,q), for p,q ∈ P, with triangle inequality
holding for d(·, ·), and a parameter k.
Question: A subset S that realizes ropt (P, k) = min

S⊆P, |S |=k
DS(P), where DS(P) = maxx∈X d(x,S) and

d(x,S) = mins∈S d(s, x).

8.1.1. The approximation algorithm for k-center clustering

To come up with the idea behind the algorithm, imagine that we already
have a solution with m = 3 centers. We would like to pick the next m + 1
center. Inspecting the examples above, one realizes that the solution is being
determined by a bottleneck point; see Figure 8.1. That is, there is a single point
which determine the quality of the clustering, which is the point furthest away
from the set of centers. As such, the natural step is to find a new center that
would better serve this bottleneck point. And, what can be a better service for
this point, than make it the next center? (The resulting clustering using the
new center for the example is depicted on the right.)

Namely, we always pick the bottleneck point, which is furthest away for the current set of centers, as the
next center to be added to the solution.

The resulting approximation algorithm is depicted on the
right. Observe, that the quantity ri+1 denotes the (minimum)
radius of the i balls centered at u1, . . . ,ui such that they cover
P (where all these balls have the same radius). (Namely, there
is a point p ∈ P such that d(p, {u1, . . . ,ui}) = ri+1.

It would be convenient, for the sake analysis, to imagine
that we run AprxKCenter one additional iteration, so that
the quantity rk+1 is well defined.

Observe, that the running time of the algorithm AprxK-
Center is O(nk) as can be easily verified.

Lemma 8.1.1. We have that r2 ≥ . . . ≥ rk ≥ rk+1.

AprxKCenter(P, k)
P = {p1, . . . , pn}
S = {p1}, u1 ← p1
while |S | < k do

i ← |S |
for j = 1 . . . n do

dj ← min
(
dj,d

(
pj,ui

) )
ri+1 ← max(d1, . . . , dn)
ui+1 ←point of P realizing ri
S ← S ∪ {ui+1}

return S

Proof: At each iteration the algorithm adds one new center, and as such the distance of a point to the closest
center can not increase. In particular, the distance of the furthest point to the centers does not increase.
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Observation 8.1.2. The radius of the clustering generated by AprxKCenter is rk+1.

Lemma 8.1.3. We have that rk+1 ≤ 2ropt (P, k), where ropt (P, k) is the radius of the optimal solution using k
balls.

Proof: Consider the k balls forming the optimal solution: D1, . . . ,Dk and consider the k center points contained
in the solution S computed by AprxKCenter.

If every disk Di contain at least one point of S, then we are done, since every point of P is
in distance at most 2ropt (P, k) from one of the points of S. Indeed, if the ball Di, centered at
q, contains the point u ∈ S, then for any point p ∈ P ∩ Di, we have that

d(p,u) ≤ d(p,q) + d(q,u) ≤ 2ropt .

q

ropt

x y

Otherwise, there must be two points x and y of S contained in the same ball Di of the
optimal solution. Let Di be centered at a point q.

We claim distance between x and y is at least rk+1. Indeed, imagine that x was added
at the αth iteration (that is, uα = x), and y was added in a later βth iteration (that is,
uβ = y), where α < β. Then,

rβ = d
(
y,

{
u1, . . . ,uβ−1

})
≤ d(x, y),

since x = uα and y = uβ. But rβ ≥ rk+1, by Lemma 8.1.1. Applying the triangle inequality again, we have that
rk+1 ≤ rβ ≤ d(x, y) ≤ d(x,q) + d(q, y) ≤ 2ropt , implying the claim.

Theorem 8.1.4. One can approximate the k-center clustering up to a factor of two, in time O(nk).

Proof: The approximation algorithm is AprxKCenter. The approximation quality guarantee follows from
Lemma 8.1.3, since the furthest point of P from the k-centers computed is rk+1, which is guaranteed to be
at most 2ropt .

8.2. Subset Sum

Subset Sum
Instance: X = {x1, . . . , xn} – n integer positive numbers, t - target number
Question: Is there a subset of X such the sum of its elements is t?

SolveSubsetSum (X, t, M)
b[0 . . . Mn] - boolean array init to FALSE.

// b[x] is TRUE if x can be realized by
a subset of X.

b[0] ← TRUE.
for i = 1, . . . ,n do
for j = Mn down to xi do

b[ j] ← B[ j − xi] ∨ B[ j]

return B[t]

Subset Sum is (of course) NPC, as we already proved. It
can be solved in polynomial time if the numbers of X are
small. In particular, if xi ≤ M, for i = 1, . . . ,n, then t ≤ Mn
(otherwise, there is no solution). Its reasonably easy to solve
in this case, as the algorithm on the right shows. The running
time of the resulting algorithm is O(Mn2).

Note, that M might be prohibitly large, and as such, this
algorithm is not polynomial in n. In particular, if M = 2n then
this algorithm is prohibitly slow. Since the relevant decision
problem is NPC, it is unlikely that an efficient algorithm exist
for this problem. But still, we would like to be able to solve it quickly and efficiently. So, if we want an efficient
solution, we would have to change the problem slightly. As a first step, lets turn it into an optimization problem.
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Subset Sum Optimization
Instance: (X, t): A set X of n positive integers, and a target number t.
Question: The largest number γopt one can represent as a subset sum of X which is smaller or equal
to t.

Intuitively, we would like to find a subset of X such that it sum is smaller than t but very close to t.
Next, we turn problem into an approximation problem.

Subset Sum Approx
Instance: (X, t, ε): A set X of n positive integers, a target number t, and parameter ε > 0.
Question: A number z that one can represent as a subset sum of X, such that (1 − ε)γopt ≤ z ≤
γopt ≤ t.

The challenge is to solve this approximation problem efficiently. To demonstrate that there is hope that can
be done, consider the following simple approximation algorithm, that achieves a constant factor approximation.

Lemma 8.2.1. Let (X, t) be an instance of Subset Sum. Let γopt be optimal solution to given instance. Then
one can compute a subset sum that adds up to at least γopt/2 in O(n log n) time.

Proof: Add the numbers from largest to smallest, whenever adding a number will make the sum exceed t, we
throw it away. We claim that the generated sum s has the property that γopt/2 ≤ s ≤ t. Clearly, if the total
sum of the numbers is smaller than t, then no number is being rejected and s = γopt.

Otherwise, let u be the first number being rejected, and let s′ be the partial subset sum, just before u is
being rejected. Clearly, s′ > u > 0, s′ < t, and s′ + u > t. This implies t < s′ + u < s′ + s′ = 2s′, which implies
that s′ ≥ t/2. Namely, the subset sum output is larger than t/2.

8.2.1. On the complexity of ε-approximation algorithms

Definition 8.2.2 (PTAS). For a maximization problem PROB, an algorithm A(I, ε) (i.e., A receives as input an
instance of PROB, and an approximation parameter ε > 0) is a polynomial time approximation scheme
(PTAS) if for any instance I we have

(1 − ε)
��opt(I)�� ≤ ��A(I, ε)�� ≤ ��opt(I)�� ,

where |opt(I)| denote the price of the optimal solution for I, and |A(I, ε)| denotes the price of the solution
outputted by A. Furthermore, the running time of the algorithm A is polynomial in n (the input size), when ε
is fixed.

For a minimization problem, the condition is that |opt(I)| ≤ |A(I, ε)| ≤ (1 + ε)|opt(I)|.

Example 8.2.3. An approximation algorithm with running time O(n1/ε) is a PTAS, while an algorithm with
running time O(1/εn) is not.

Definition 8.2.4 (FPTAS.). An approximation algorithm is fully polynomial time approximation scheme
(FPTAS) if it is a PTAS, and its running time is polynomial both in n and 1/ε.

Example 8.2.5. A PTAS with running time O(n1/ε) is not a FPTAS, while a PTAS with running time O(n2/ε3)
is a FPTAS.

8.2.2. Approximating subset-sum
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ExactSubsetSum(S, t)
n← |S |
P0 ← {0}
for i = 1 . . . n do

Pi ← Pi−1 ∪ (Pi−1 + xi)
Remove from Pi all elements > t

return largest element in Pn

Let S = {a1, . . . ,an} be a set of numbers. For a num-
ber x, let x + S denote the translation of S by x; namely,
x + S = {a1 + x,a2 + x, . . . an + x}. Our first step in deriving
an approximation algorithm for Subset Sum is to come up with
a slightly different algorithm for solving the problem exactly.
The algorithm is depicted on the right.

Note, that while ExactSubsetSum performs only n itera-
tions, the lists Pi that it constructs might have exponential
size.

Trim(L ′, δ)
// L ′: inc. sorted list of #s
L = 〈y1 . . . ym〉

// yi ≤ yi+1, for i = 1, . . . ,n − 1.
curr ← y1
Lout ← {y1}
for i = 2 . . .m do
if yi > curr · (1 + δ)

Append yi to Lout

curr ← yi
return Lout

Thus, if we would like to turn ExactSubsetSum into a faster
algorithm, we need to somehow to make the lists Ll smaller.
This would be done by removing numbers which are very close
together.

Definition 8.2.6. For two positive real numbers z ≤ y,
the number y is a δ-approximation to z if y

1 + δ ≤ z ≤ y.

The procedure Trim that trims a list L ′ so that it removes
close numbers is depicted on the left.

Observation 8.2.7. If x ∈ L ′ then there exists a number y ∈ Lout such that y ≤ x ≤ y(1 + δ), where Lout ←

Trim(L ′, δ).

ApproxSubsetSum(S, t)
//Assume S = {x1, . . . , xn}, where
// x1 ≤ x2 ≤ . . . ≤ xn
n← |S |, L0 ← {0}, δ = ε/2n
for i = 1 . . . n do

Ei ← Li−1 ∪ (Li−1 + xi)
Li ← Trim(Ei, δ)

Remove from Li all elements > t.

return largest element in Ln

We can now modify ExactSubsetSum to use Trim to
keep the candidate list shorter. The resulting algorithm
ApproxSubsetSum is depicted on the right. Note, that com-
puting Ei requires merging two sorted lists, which can be
done in linear time in the size of the lists (i.e., we can keep
all the lists sorted, without sorting the lists repeatedly).

Let Ei be the list generated by the algorithm in the ith
iteration, and Pi be the list of numbers without any trim-
ming (i.e., the set generated by ExactSubsetSum algorithm)
in the ith iteration.

Claim 8.2.8. For any x ∈ Pi there exists y ∈ Li such that y ≤ x ≤ (1 + δ)iy.

Proof: If x ∈ P1 the claim follows by Observation 8.2.7 above. Otherwise, if x ∈ Pi−1, then, by induction,
there is y′ ∈ Li−1 such that y′ ≤ x ≤ (1 + δ)i−1y′. Observation 8.2.7 implies that there exists y ∈ Li such that
y ≤ y′ ≤ (1 + δ)y, As such,

y ≤ y′ ≤ x ≤ (1 + δ)i−1y′ ≤ (1 + δ)iy
as required.

The other possibility is that x ∈ Pi \ Pi−1. But then x = α + xi, for some α ∈ Pi−1. By induction, there exists
α′ ∈ Li−1 such that

α′ ≤ α ≤ (1 + δ)i−1α′.

Thus, α′ + xi ∈ Ei and by Observation 8.2.7, there is a x ′ ∈ Li such that

x ′ ≤ α′ + xi ≤ (1 + δ)x ′.
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Thus,
x ′ ≤ α′ + xi ≤ α + xi = x ≤ (1 + δ)i−1α′ + xi ≤ (1 + δ)i−1(α′ + xi) ≤ (1 + δ)ix ′.

Namely, for any x ∈ Pi \ Pi−1, there exists x ′ ∈ Li, such that x ′ ≤ x ≤ (1 + δ)ix ′.

8.2.2.1. Bounding the running time of ApproxSubsetSum

We need the following two easy technical lemmas. We include their proofs here only for the sake of completeness.

Lemma 8.2.9. For x ∈ [0,1], it holds exp(x/2) ≤ (1 + x).

Proof: Let f (x) = exp(x/2) and g(x) = 1 + x. We have f ′(x) = exp(x/2)/2 and g′(x) = 1. As such,

f ′(x) =
exp(x/2)

2 ≤
exp(1/2)

2 ≤ 1 = g′(x), for x ∈ [0,1].

Now, f (0) = g(0) = 1, which immediately implies the claim.

Lemma 8.2.10. For 0 < δ < 1, and x ≥ 1, we have log1+δ x ≤
2 ln x
δ
= O

(
ln x
δ

)
.

Proof: We have, by Lemma 8.2.9, that log1+δ x =
ln x

ln(1 + δ) ≤
ln x

ln exp(δ/2) =
2 ln x
δ

.

Observation 8.2.11. In a list generated by Trim, for any number x, there are no two numbers in the trimmed
list between x and (1 + δ)x.

Lemma 8.2.12. We have |Li | = O
(

n2

ε
log n

)
, for i = 1, . . . ,n.

Proof: The set Li−1 + xi is a set of numbers between xi and ixi, because xi is larger than x1 . . . xi−1 and Li−1
contains subset sums of at most i − 1 numbers, each one of them smaller than xi. As such, the number of
different values in this range, stored in the list Li, after trimming is at most

log1+δ
ixi
xi
= O

(
ln i
δ

)
= O

(
ln n
δ

)
,

by Lemma 8.2.10. Thus, as δ = ε/2n, we have

|Li | ≤ |Li−1 | +O
(
ln n
δ

)
≤ |Li−1 | +O

(
n ln n
ε

)
= O

(
n2 log n

ε

)
.

Lemma 8.2.13. The running time of ApproxSubsetSum is O
(
n3

ε log2 n
)
.

Proof: Clearly, the running time of ApproxSubsetSum is dominated by the total length of the lists L1, . . . , Ln it

creates. Lemma 8.2.12 implies that
∑
i

|Li | = O
(

n3

ε
log n

)
. The running time of Trim is proportional to the size

of the lists, implying the claimed running time.
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8.2.2.2. The result

Theorem 8.2.14. ApproxSubsetSum returns a number u ≤ t, such that
γopt

1 + ε ≤ u ≤ γopt ≤ t,

where γopt is the optimal solution (i.e., largest realizable subset sum smaller than t).
The running time of ApproxSubsetSum is O

(
(n3/ε) log n

)
.

Proof: The running time bound is by Lemma 8.2.13.
As for the other claim, consider the optimal solution opt ∈ Pn. By Claim 8.2.8, there exists z ∈ Ln such that

z ≤ opt ≤ (1 + δ)nz. However,
(1 + δ)n = (1 + ε/2n)n ≤ exp

(ε
2

)
≤ 1 + ε,

since 1 + x ≤ ex for x ≥ 0. Thus, opt/(1 + ε) ≤ z ≤ opt ≤ t, implying that the output of ApproxSubsetSum is
within the required range.

8.3. Approximate Bin Packing
Consider the following problem.

Min Bin Packing
Instance: s1 . . . sn – n numbers in [0,1]
Question: Q: What is the minimum number of unit bins do you need to use to store all the numbers
in S?

Bin Packing is NP-Complete because you can reduce Partition to it. Its natural to ask how one can
approximate the optimal solution to Bin Packing.

One such algorithm is next fit. Here, we go over the numbers one by one, and put a number in the current
bin if that bin can contain it. Otherwise, we create a new bin and put the number in this bin. Clearly, we need
at least

dSe bins where S =
n∑
i=1

si .

Every two consecutive bins contain numbers that add up to more than 1, since otherwise we would have not
created the second bin. As such, the number of bins used is ≤ 2 dSe. As such, the next fit algorithm for bin
packing achieves a ≤ 2 dSe /dSe = 2 approximation.

A better strategy, is to sort the numbers from largest to smallest and insert them in this order, where in
each stage, we scan all current bins, and see if can insert the current number into one of those bins. If we can
not, we create a new bin for this number. This is known as first fit decreasing. We state the approximation
ratio for this algorithm without proof.

Theorem 8.3.1 ([DLHT13]). Decreasing first fit is a 11/9-approximation to Min Bin Packing. More pre-
cisely, for any instance I of the problem, one has

FFD(I) ≤ 11
9 opt(I) + 2

3,

and this is tight in the worst case. Here FFD(I) and opt(I) are the number of bins used by the first-fit decreasing
algorithm and optimal solution, respectively.

Remark 8.3.2. Note that if opt(I) = 2, then the above bound is FFD(I) ≤ 11
9 2 + 2

3 =
28
9 = 31

9, Which means that
in this case this approach could yield a solution with three bins, which is not exciting.
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The above paper is almost 50 pages long, and is not easy. The coefficient 11/9 was proved by David S.
Johnson in his PhD thesis in 1973 (who also authored [GJ90]), but the exact value of the additive constant was
only settled by [DLHT13].

Remark 8.3.3. Note, that the above algorithm is not a multiplicative approximation (note the +2/3 term). In
particular, getting a 3/2-approximation is hard because of the reduction from Partition – there the decision
boils down to whether the instance generated from partition requires two bins or three bins. As such, any
multiplicative approximation better than 3/2 is impossible unless P = NP.

8.4. Bibliographical notes
One can do 2-approximation for the k-center clustering in low dimensional Euclidean space can be done in
Θ(n log k) time [FG88]. In fact, it can be solved in linear time [Har04].
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Part IV
Randomized algorithms

Chapter 9

Randomized Algorithms

9.1. Some Probability

Definition 9.1.1. (Informal.) A random variable is a measurable function from a probability space to (usually)
real numbers. It associates a value with each possible atomic event in the probability space.

Definition 9.1.2. The conditional probability of X given Y is

P[X = x |Y = y ] =
P
[
(X = x) ∩ (Y = y)

]
P
[
Y = y

] .

An equivalent and useful restatement of this is that

P[(X = x) ∩ (Y = y)] = P
[
X = x

���Y = y
]
∗ P[Y = y].

Definition 9.1.3. Two events X and Y are independent, if P[X = x ∩ Y = y] = P[X = x] · P[Y = y]. In particular,
if X and Y are independent, then

P
[
X = x

���Y = y
]
= P[X = x].

Definition 9.1.4. The expectation of a random variable X is the average value of this random variable. Formally,
if X has a finite (or countable) set of values, it is

E[X] =
∑
x

x · P[X = x],

where the summation goes over all the possible values of X.

One of the most powerful properties of expectations is that an expectation of a sum is the sum of expectations.

Lemma 9.1.5 (Linearity of expectation.). For any two random variables X and Y , we have E
[
X + Y

]
=

E
[
X
]
+ E

[
Y
]
.
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Proof: For the simplicity of exposition, assume that X and Y receive only integer values. We have that

E[X + Y ] =
∑
x

∑
y

(x + y)P[(X = x) ∩ (Y = y)]

=
∑
x

∑
y

x ∗ P[(X = x) ∩ (Y = y)] +
∑
x

∑
y

y ∗ P[(X = x) ∩ (Y = y)]

=
∑
x

x ∗
∑
y

P[(X = x) ∩ (Y = y)] +
∑
y

y ∗
∑
x

P[(X = x) ∩ (Y = y)]

=
∑
x

x ∗ P[X = x] +
∑
y

y ∗ P[Y = y]

= E[X] + E[Y ] .

Another interesting function is the conditional expectation – that is, it is the expectation of a random
variable given some additional information.

Definition 9.1.6. Given random variables X and Y , the conditional expectation of X given Y , is the quantity
E
[
X

���Y ]
. Specifically, you are given the value y of the random variable Y , and the E

[
X

���Y ]
= E

[
X

���Y = y
]
=∑

x x ∗ P
[
X = x

���Y = y
]
.

Note, that for a random variable X, the expectation E[X] is a number. On the other hand, the conditional
probability f (y) = E

[
X

���Y = y
]
is a function. The key insight why conditional probability is the following.

Lemma 9.1.7. For any two random variables X and Y (not necessarily independent), we have that E[X] =
E
[
E
[
X

���Y ] ]
.

Proof: We use the definitions carefully:

E
[
E
[
X

���Y ] ]
= E

y

[
E
[
X

���Y = y
] ]
= E

y

[∑
x

x ∗ P
[
X = x

���Y = y
] ]

=
∑
y

P[Y = y] ∗

(∑
x

x ∗ P
[
X = x

���Y = y
] )

=
∑
y

P[Y = y] ∗

(∑
x

x ∗
P[(X = x) ∩ (Y = y)]

P[Y = y]

)
=

∑
y

∑
x

x ∗ P[(X = x) ∩ (Y = y)] =
∑
x

∑
y

x ∗ P[(X = x) ∩ (Y = y)]

=
∑
x

x ∗

(∑
y

P[(X = x) ∩ (Y = y)]

)
=

∑
x

x ∗ P[X = x] = E[X] .

9.2. Sorting Nuts and Bolts
Problem 9.2.1 (Sorting Nuts and Bolts). You are given a set of n nuts and n bolts. Every nut have a matching
bolt, and all the n pairs of nuts and bolts have different sizes. Unfortunately, you get the nuts and bolts
separated from each other and you have to match the nuts to the bolts. Furthermore, given a nut and a bolt,
all you can do is to try and match one bolt against a nut (i.e., you can not compare two nuts to each other, or
two bolts to each other).
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When comparing a nut to a bolt, either they match, or one is smaller than other (and you known the
relationship after the comparison).

How to match the n nuts to the n bolts quickly? Namely, while performing a small number of comparisons.

MatchNutsAndBolts(N: nuts, B: bolts)
Pick a random nut npivot from N
Find its matching bolt bpivot in B
BL ← All bolts in B smaller than npivot

NL ← All nuts in N smaller than bpivot

BR ← All bolts in B larger than npivot

NR ← All nuts in N larger than bpivot

MatchNutsAndBolts(NR,BR)
MatchNutsAndBolts(NL,BL)

The naive algorithm is of course to compare each nut to
each bolt, and match them together. This would require a
quadratic number of comparisons. Another option is to sort
the nuts by size, and the bolts by size and then “merge” the
two ordered sets, matching them by size. The only problem is
that we can not sorts only the nuts, or only the bolts, since we
can not compare them to each other. Indeed, we sort the two
sets simultaneously, by simulating QuickSort. The resulting
algorithm is depicted on the right.

9.2.1. Running time analysis

Definition 9.2.2. Let RT denote the random variable which is the running time of the algorithm. Note, that the
running time is a random variable as it might be different between different executions on the same input.

Definition 9.2.3. For a randomized algorithm, we can speak about the expected running time. Namely, we are
interested in bounding the quantity E[RT] for the worst input.

Definition 9.2.4. The expected running-time of a randomized algorithm for input of size n is

T(n) = max
U is an input of size n

E
[
RT(U)

]
,

where RT(U) is the running time of the algorithm for the input U.

Definition 9.2.5. The rank of an element x in a set S, denoted by rank(x), is the number of elements in S of size
smaller or equal to x. Namely, it is the location of x in the sorted list of the elements of S.

Theorem 9.2.6. The expected running time of MatchNutsAndBolts (and thus also of QuickSort) is T(n) =
O(n log n), where n is the number of nuts and bolts. The worst case running time of this algorithm is O(n2).

Proof: Clearly, we have that P
[
rank(npivot ) = k

]
= 1

n . Furthermore, if the rank of the pivot is k then

T(n) = E
k=rank(npivot )

[O(n) + T(k − 1) + T(n − k)] = O(n) + E
k
[T(k − 1) + T(n − k)]

= T(n) = O(n) +
n∑

k=1
P[Rank(Pivot) = k] ∗ (T(k − 1) + T(n − k))

= O(n) +
n∑

k=1

1
n
· (T(k − 1) + T(n − k)),

by the definition of expectation. It is not easy to verify that the solution to the recurrence T(n) = O(n)+
∑n

k=1
1
n ·

(T(k − 1) + T(n − k)) is O(n log n).
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9.2.1.1. Alternative incorrect solution

The algorithm MatchNutsAndBolts is lucky if n
4 ≤ rank(npivot ) ≤

3
4 n. Thus, P[“lucky”] = 1/2. Intuitively, for

the algorithm to be fast, we want the split to be as balanced as possible. The less balanced the cut is, the worst
the expected running time. As such, the “Worst” lucky position is when rank(npivot ) = n/4 and we have that

T(n) ≤ O(n) + P[“lucky”] ∗ (T(n/4) + T(3n/4)) + P[“unlucky”] ∗ T(n).

Namely, T(n) = O(n)+ 1
2 ∗

(
T(n4 ) + T(34 n)

)
+ 1

2T(n). Rewriting, we get the recurrence T(n) = O(n)+T(n/4)+T((3/4)n),
and its solution is O(n log n).

While this is a very intuitive and elegant solution that bounds the running time of QuickSort, it is also
incomplete. The interested reader should try and make this argument complete. After completion the argument
is as involved as the previous argument. Nevertheless, this argumentation gives a good back of the envelope
analysis for randomized algorithms which can be applied in a lot of cases.

9.2.2. What are randomized algorithms?

Randomized algorithms are algorithms that use random numbers (retrieved usually from some unbiased source
of randomness [say a library function that returns the result of a random coin flip]) to make decisions during
the executions of the algorithm. The running time becomes a random variable. Analyzing the algorithm would
now boil down to analyzing the behavior of the random variable RT(n), where n denotes the size of the input.In
particular, the expected running time E[RT(n)] is a quantity that we would be interested in.

It is useful to compare the expected running time of a randomized algorithm, which is

T(n) = max
U is an input of size n

E[RT(U)] ,

to the worst case running time of a deterministic (i.e., not randomized) algorithm, which is

T(n) = max
U is an input of size n

RT(U),

FlipCoins
while RandBit= 1 do

nothing;

Caveat Emptor:¬Note, that a randomized algorithm might have exponen-
tial running time in the worst case (or even unbounded) while having good
expected running time. For example, consider the algorithm FlipCoins de-
picted on the right. The expected running time of FlipCoins is a geometric
random variable with probability 1/2, as such we have that E[RT(FlipCoins)] = O(2). However, FlipCoins can
run forever if it always gets 1 from the RandBit function.

This is of course a ludicrous argument. Indeed, the probability that FlipCoins runs for long decreases very
quickly as the number of steps increases. It can happen that it runs for long, but it is extremely unlikely.

Definition 9.2.7. The running time of a randomized algorithm Alg is O( f (n)) with high probability if

P[RT(Alg(n)) ≥ c · f (n)] = o(1).

Namely, the probability of the algorithm to take more than O( f (n)) time decreases to 0 as n goes to infinity. In
our discussion, we would use the following (considerably more restrictive definition), that requires that

P[RT(Alg(n)) ≥ c · f (n)] ≤
1

nd
,

where c and d are appropriate constants. For technical reasons, we also require that E[RT(Alg(n))] = O( f (n)).
¬Caveat Emptor - let the buyer beware (i.e., one buys at one’s own risk)
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9.3. Analyzing QuickSort
The previous analysis works also for QuickSort. However, there is an alternative analysis which is also very
interesting and elegant. Let a1, ...,an be the n given numbers (in sorted order – as they appear in the output).

It is enough to bound the number of comparisons performed by QuickSort to bound its running time, as
can be easily verified. Observe, that two specific elements are compared to each other by QuickSort at most
once, because QuickSort performs only comparisons against the pivot, and after the comparison happen, the
pivot does not being passed to the two recursive subproblems.

Let Xi j be an indicator variable if QuickSort compared ai to aj in the current execution, and zero otherwise.
The number of comparisons performed by QuickSort is exactly Z =

∑
i< j Xi j .

Observation 9.3.1. The element ai is compared to aj iff one of them is picked to be the pivot and they are
still in the same subproblem.

Also, we have that µ = E
[
Xi j

]
= P

[
Xi j = 1

]
. To quantify this probability, observe that if the pivot is smaller

than ai or larger than aj then the subproblem still contains the block of elements ai, . . . ,aj . Thus, we have that

µ = P
[
ai or aj is first pivot ∈ ai, . . . ,aj

]
=

2
j − i + 1 .

Another (and hopefully more intuitive) explanation for the above phenomena is the following: Imagine, that
before running QuickSort we choose for every element a random priority, which is a real number in the range
[0,1]. Now, we reimplement QuickSort such that it always pick the element with the lowest random priority (in
the given subproblem) to be the pivot. One can verify that this variant and the standard implementation have
the same running time. Now, ai gets compares to aj if and only if all the elements ai+1, . . . ,aj−1 have random
priority larger than both the random priority of ai and the random priority of aj . But the probability that one
of two elements would have the lowest random-priority out of j − i + 1 elements is 2 ∗ 1/( j − i + 1), as claimed.

Thus, the running time of QuickSort is

E
[
RT(n)

]
= E

[∑
i< j

Xi j

]
=

∑
i< j

E
[
Xi j

]
=

∑
i< j

2
j − i + 1 = 2

n−1∑
i=1

n∑
j=i+1

1
j − i + 1

= 2
n−1∑
i=1

n−i+1∑
∆=2

1
∆
≤ 2

n−1∑
i=1

n∑
∆=1

1
∆
≤ 2

n−1∑
i=1

Hn = 2nHn.

by linearity of expectations, where Hn =
∑n

i=1
1
i
≤ ln n + 1 is the nth harmonic number,

As we will see in the near future, the running time of QuickSort is O(n log n) with high-probability. We need
some more tools before we can show that.

9.4. QuickSelect – median selection in linear time
Consider the problem of given a set X of n numbers, and a parameter k, to output the kth smallest number
(which is the number with rank k in X). This can be easily be done by modifying QuickSort only to perform
one recursive call. See Figure 9.1 for a pseud-code of the resulting algorithm.

Intuitively, at each iteration of QuickSelect the input size shrinks by a constant factor, leading to a linear
time algorithm.

Theorem 9.4.1. Given a set X of n numbers, and any integer k, the expected running time of QuickSelect(X,n)
is O(n).
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QuickSelect(X, k)
// Input: X = {x1, . . . , xn} numbers, k.
// Assume x1, . . . , xn are all distinct.
// Task: Return kth smallest number in X.
y ← random element of X.
r ← rank of y in X.
if r = k then return y

X< = all elements in X < than y

X> = all elements in X > than y

// By assumption |X< | + |X> | + 1 = |X |.
if r < k then
return QuickSelect( X>, k − r )

else
return QuickSelect( X≤, k )

Figure 9.1: QuickSelect pseudo-code.

Proof: Let X1 = X, and Xi be the set of numbers in the ith level of the recursion. Let yi and ri be the random
element and its rank in Xi, respectively, in the ith iteration of the algorithm. Finally, let ni = |Xi |. Observe
that the probability that the pivot yi is in the “middle” of its subproblem is

α = P

[
ni
4 ≤ ri ≤

3
4ni

]
≥

1
2,

and if this happens then

ni+1 ≤ max(ri − 1,ni − ri) ≤
3
4ni .

We conclude that

E
[
ni+1

��� ni ] ≤ P[yi in the middle]34ni + P[yi not in the middle]ni

≤ α
3
4ni + (1 − α)ni = ni(1 − α/4) ≤ ni(1 − (1/2)/4) = (7/8)ni .

Now, we have that

mi+1 = E[ni+1] = E
[
E
[
ni+1

��� ni ] ] ≤ E[(7/8)ni] = (7/8)E[ni] = (7/8)mi

= (7/8)im0 = (7/8)in,

since for any two random variables we have that E[X] = E
[
E
[
X

���Y ] ]
. In particular, the expected running time

of QuickSelect is proportional to

E

[∑
i

ni

]
=

∑
i

E[ni] ≤
∑
i

mi =
∑
i

(7/8)in = O(n),

as desired.
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Chapter 10

Randomized Algorithms II

10.1. QuickSort and Treaps with High Probability
You must be asking yourself what are treaps. For the answer, see Section 10.3p75.

One can think about QuickSort as playing a game in rounds. Every round, QuickSort picks a pivot, splits
the problem into two subproblems, and continue playing the game recursively on both subproblems.

If we track a single element in the input, we see a sequence of rounds that involve this element. The game
ends, when this element find itself alone in the round (i.e., the subproblem is to sort a single element).

Thus, to show that QuickSort takes O(n log n) time, it is enough to show, that every element in the input,
participates in at most 32 ln n rounds with high enough probability.

Indeed, let Xi be the event that the ith element participates in more than 32 ln n rounds.
Let CQS be the number of comparisons performed by QuickSort. A comparison between a pivot and an

element will be always charged to the element. And as such, the number of comparisons overall performed by
QuickSort is bounded by

∑
i ri, where ri is the number of rounds the ith element participated in (the last round

where it was a pivot is ignored). We have that

α = P
[
CQS ≥ 32n ln n

]
≤ P

[⋃
i

Xi

]
≤

n∑
i=1
P[Xi].

Here, we used the union bound¬, that states that for any two events A and B, we have that P[A ∪ B] ≤
P[A] + P[B]. Assume, for the time being, that P[Xi] ≤ 1/n3. This implies that

α ≤

n∑
i=1
P[Xi] ≤

n∑
i=1

1
n3 =

1
n2 .

Namely, QuickSort performs at most 32n ln n comparisons with high probability. It follows, that QuickSort
runs in O(n log n) time, with high probability, since the running time of QuickSort is proportional to the number
of comparisons it performs.

To this end, we need to prove that P[Xi] ≤ 1/n3.

10.1.1. Proving that an element participates in small number of rounds

Consider a run of QuickSort for an input made out of n numbers. Consider a specific element x in this input,
and let S1,S2, . . . be the subsets of the input that are in the recursive calls that include the element x. Here Sj

is the set of numbers in the jth round (i.e., this is the recursive call at depth j which includes x among the
numbers it needs to sort).

The element x would be considered to be lucky, in the jth iteration, if the call to the QuickSort, splits the
current set Sj into two parts, where both parts contains at most (3/4)

��Sj

�� of the elements.
Let Yj be an indicator variable which is 1 if and only if x is lucky in jth round. Formally, Yj = 1 if and only

if
��Sj

�� /4 ≤ ��Sj+1
�� ≤ 3

��Sj

�� /4. By definition, we have that

P
[
Yj

]
=

1
2 .

¬Also known as Boole’s inequality.
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Furthermore, Y1,Y2, . . . ,Ym are all independent variables.
Note, that x can participate in at most

ρ = log4/3 n ≤ 3.5 ln n (10.1)

rounds, since at each successful round, the number of elements in the subproblem shrinks by at least a factor
3/4, and |S1 | = n. As such, if there are ρ successful rounds in the first k rounds, then |Sk | ≤ (3/4)ρn ≤ 1.

Thus, the question of how many rounds x participates in, boils down to how many coin flips one need to
perform till one gets ρ heads. Of course, in expectation, we need to do this 2ρ times. But what if we want a
bound that holds with high probability, how many rounds are needed then?

In the following, we require the following lemma, which we will prove in Section 10.2.

Lemma 10.1.1. In a sequence of M coin flips, the probability that the number of ones is smaller than L ≤ M/4
is at most exp(−M/8).

To use Lemma 10.1.1, we set

M = 32 ln n ≥ 8ρ,

see Eq. (10.1). Let Yj be the variable which is one if x is lucky in the jth level of recursion, and zero otherwise.
We have that P

[
Yj = 0

]
= P

[
Yj = 1

]
= 1/2 and that Y1,Y2, . . . ,YM are independent. By Lemma 10.1.1, we have

that the probability that there are only ρ ≤ M/4 ones in Y1, . . . ,YM , is smaller than

exp
(
−

M
8

)
≤ exp(−ρ) ≤ 1

n3 .

We have that the probability that x participates in M recursive calls of QuickSort to be at most 1/n3.
There are n input elements. Thus, the probability that depth of the recursion in QuickSort exceeds 32 ln n

is smaller than (1/n3) ∗ n = 1/n2. We thus established the following result.

Theorem 10.1.2. With high probability (i.e., 1 − 1/n2) the depth of the recursion of QuickSort is ≤ 32 ln n.
Thus, with high probability, the running time of QuickSort is O(n log n).

More generally, for any constant c, there exist a constant d, such that the probability that QuickSort recursion
depth for any element exceeds d ln n is smaller than 1/nc.

Specifically, for any t ≥ 1, we have that probability that the recursion depth for any element exceeds t · d ln n
is smaller than 1/nt ·c.

Proof: Let us do the last part (but the reader is encouraged to skip this on first reading). Setting M = 32t ln n,
we get that the probability that an element has depth exceeds M, requires that in M coin flips we get at most
h = 4 ln n heads. That is, if Y is the sum of the coin flips, where we get +1 for head, and −1 for tails, then Y needs
to be smaller than −(M − h)+ h = −M + 2h. By symmetry, this is equal to the probability that Y ≥ ∆ = M − 2h.
By Theorem 10.2.3 below, the probability for that is

P[Y ≥ ∆] ≤ exp
(
−∆2/2M

)
= exp

(
−
(M − 2h)2

2M

)
= exp

(
−
(32t − 8)2 ln2 n

128t ln n

)
= exp

(
−
(4t − 1)2 ln n

2t

)
≤ exp

(
−

3t2 ln n
t

)
≤

1
n3t .

Of course, the same result holds for the algorithm MatchNutsAndBolts for matching nuts and bolts.
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10.1.2. An alternative proof of the high probability of QuickSort

Consider a set T of the n items to be sorted, and consider a specific element t ∈ T . Let Xi be the size of the
input in the ith level of recursion that contains t. We know that X0 = n, and

E
[
Xi

��� Xi−1
]
≤

1
2

3
4 Xi−1 +

1
2 Xi−1 ≤

7
8 Xi−1.

Indeed, with probability 1/2 the pivot is the middle of the subproblem; that is, its rank is between Xi−1/4 and
(3/4)Xi−1 (and then the subproblem has size ≤ Xi−1(3/4)), and with probability 1/2 the subproblem might has
not shrank significantly (i.e., we pretend it did not shrink at all).

Now, observe that for any two random variables we have that E
[
X
]
= Ey

[
E
[
X

��Y = y
] ]
, see Lemma 9.1.7p65..

As such, we have that

E[Xi] = E
y

[
E
[
Xi

��� Xi−1 = y
] ]
≤ E

Xi−1=y

[
7
8 y

]
=

7
8 E[Xi−1] ≤

(
7
8

) i
E[X0] =

(
7
8

) i
n.

In particular, consider M = 8 log8/7 n. We have that

µ = E[XM ] ≤

(
7
8

)M
n ≤

1
n8 n =

1
n7 .

Of course, t participates in more than M recursive calls, if and only if XM ≥ 1. However, by Markov’s
inequality (Theorem 10.2.1), we have that

P

[
element t participates

in more than M recursive calls

]
≤ P[XM ≥ 1] ≤ E[XM ]

1 ≤
1
n7 ,

as desired. That is, we proved that the probability that any element of the input T participates in more than
M recursive calls is at most n(1/n7) ≤ 1/n6.

10.2. Chernoff inequality

10.2.1. Preliminaries

Theorem 10.2.1 (Markov’s Inequality.). For a non-negative variable X, and t > 0, we have:

P[X ≥ t] ≤
E[X]

t
.

Proof: Assume that this is false, and there exists t0 > 0 such that P[X ≥ t0] >
E[X]

t0
. However,

E[X] =
∑
x

x · P[X = x] =
∑
x<t0

x · P[X = x] +
∑
x≥t0

x · P[X = x]

≥ 0 + t0 · P[X ≥ t0] > 0 + t0 ·
E[X]

t0
= E[X] ,

a contradiction.

We remind the reader that two random variables X and Y are independent if for all x, y we have that

P[(X = x) ∩ (Y = y)] = P[X = x] · P[Y = y].

The following claim is easy to verify, and we omit the easy proof.

Claim 10.2.2. If X and Y are independent, then E[XY ] = E[X]E[Y ].
If X and Y are independent then Z = eX and W = eY are also independent variables.
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10.2.2. Chernoff inequality

Theorem 10.2.3 (Chernoff inequality). Let X1, . . . ,Xn be n independent random variables, such that P[Xi = 1] =
P[Xi = −1] = 1

2 , for i = 1, . . . ,n. Let Y =
∑n

i=1 Xi. Then, for any ∆ > 0, we have

P[Y ≥ ∆] ≤ exp
(
−∆2/2n

)
.

Proof: Clearly, for an arbitrary t, to be specified shortly, we have

P[Y ≥ ∆] = P
[
tY ≥ t∆

]
= P

[
exp(tY ) ≥ exp(t∆)

]
≤
E
[
exp(tY )

]
exp(t∆) , (10.2)

where the first part follows since exp(·) preserve ordering, and the second part follows by Markov’s inequality
(Theorem 10.2.1).

Observe that, by the definition of E[·] and by the Taylor expansion of exp(·), we have

E
[
exp(tXi)

]
=

1
2et +

1
2e−t =

et + e−t

2

=
1
2

(
1 + t

1! +
t2

2! +
t3

3! + · · ·
)

+
1
2

(
1 − t

1! +
t2

2! −
t3

3! + · · ·
)

=

(
1 + t2

2! + + · · · +
t2k

(2k)! + · · ·
)
.

Now, (2k)! = k!(k + 1)(k + 2) · · · 2k ≥ k!2k , and thus

E
[
exp(tXi)

]
=

∞∑
i=0

t2i

(2i)! ≤
∞∑
i=0

t2i

2i(i!)
=

∞∑
i=0

1
i!

(
t2

2

) i
= exp

(
t2

2

)
,

again, by the Taylor expansion of exp(·). Next, by the independence of the Xis, we have

E
[
exp(tY )

]
= E

[
exp

(∑
i

tXi

)]
= E

[∏
i

exp(tXi)

]
=

n∏
i=1
E
[
exp(tXi)

]
≤

n∏
i=1

exp
(
t2

2

)
= exp

(
nt2

2

)
.

We have, by Eq. (10.2), that

P[Y ≥ ∆] ≤
E
[
exp(tY )

]
exp(t∆) ≤

exp
(
nt2

2

)
exp(t∆) = exp

(
nt2

2 − t∆
)
.

Next, we select the value of t that minimizes the right term in the above inequality. Easy calculation shows
that the right value is t = ∆/n. We conclude that

P[Y ≥ ∆] ≤ exp
(

n
2

(
∆

n

)2
−
∆

n
∆

)
= exp

(
−
∆2

2n

)
.

Note, the above theorem states that

P[Y ≥ ∆] =
n∑

i=∆

P[Y = i] =
n∑

i=n/2+∆/2

(n
i

)
2n ≤ exp

(
−
∆2

2n

)
,

since Y = ∆ means that we got n/2 + ∆/2 times +1s and n/2 − ∆/2 times (−1)s.
By the symmetry of Y , we get the following corollary.
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Corollary 10.2.4. Let X1, . . . ,Xn be n independent random variables, such that P[Xi = 1] = P[Xi = −1] = 1
2 , for

i = 1, . . . ,n. Let Y =
∑n

i=1 Xi. Then, for any ∆ > 0, we have

P[|Y | ≥ ∆] ≤ 2 exp
(
−
∆2

2n

)
.

By easy manipulation, we get the following result.
Corollary 10.2.5. Let X1, . . . ,Xn be n independent coin flips, such that P[Xi = 1] = P[Xi = 0] = 1

2 , for i =
1, . . . ,n. Let Y =

∑n
i=1 Xi. Then, for any ∆ > 0, we have

P
[ n

2 − Y ≥ ∆
]
≤ exp

(
−

2∆2

n

)
and P

[
Y −

n
2 ≥ ∆

]
≤ exp

(
−

2∆2

n

)
.

In particular, we have P
[���Y − n

2

��� ≥ ∆] ≤ 2 exp
(
−

2∆2

n

)
.

Proof: Transform Xi into the random variable Zi = 2Xi − 1, and now use Theorem 10.2.3 on the new random
variables Z1, . . . , Zn.

Lemma 10.1.1 (Restatement.) In a sequence of M coin flips, the probability that the number of ones is smaller
than L ≤ M/4 is at most exp(−M/8).

Proof: Let Y =
∑m

i=1 Xi the sum of the M coin flips. By the above corollary, we have:

P[Y ≤ L] = P
[

M
2 − Y ≥

M
2 − L

]
= P

[
M
2 − Y ≥ ∆

]
,

where ∆ = M/2 − L ≥ M/4. Using the above Chernoff inequality, we get

P[Y ≤ L] ≤ exp
(
−

2∆2

M

)
≤ exp(−M/8).

10.2.2.1. The Chernoff Bound — General Case

Here we present the Chernoff bound in a more general settings.
Problem 10.2.6. Let X1, . . . Xn be n independent Bernoulli trials, where

P[Xi = 1] = pi and P[Xi = 0] = 1 − pi,

and let denote

Y =
∑
i

Xi µ = E[Y ] .

Question: what is the probability that Y ≥ (1 + δ)µ.

Theorem 10.2.7 (Chernoff inequality). For any δ > 0,

P[Y > (1 + δ)µ] <
(

eδ

(1 + δ)1+δ

)µ
.

Or in a more simplified form, for any δ ≤ 2e − 1,

P[Y > (1 + δ)µ] < exp
(
−µδ2/4

)
, (10.3)

and

P[Y > (1 + δ)µ] < 2−µ(1+δ),

for δ ≥ 2e − 1.
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Theorem 10.2.8. Under the same assumptions as the theorem above, we have

P[Y < (1 − δ)µ] ≤ exp
(
−µ

δ2

2

)
.

The proofs of those more general form, follows the proofs shown above, and are omitted. The interested
reader can get the proofs from:

http://www.uiuc.edu/~sariel/teach/2002/a/notes/07_chernoff.ps

10.3. Treaps
Anybody that ever implemented a balanced binary tree, knows that it can be very painful. A natural question,
is whether we can use randomization to get a simpler data-structure with good performance.

10.3.1. Construction

The key observation is that many of data-structures that offer good performance for balanced binary search
trees, do so by storing additional information to help in how to balance the tree. As such, the key Idea is that
for every element x inserted into the data-structure, randomly choose a priority p(x); that is, p(x) is chosen
uniformly and randomly in the range [0,1].

So, for the set of elements X = {x1, . . . , xn}, with (random) priorities p(x1), . . . , p(xn), our purpose is to build
a binary tree which is “balanced”. So, let us pick the element xk with the lowest priority in X, and make it the
root of the tree. Now, we partition X in the natural way:

(A) L: set of all the numbers smaller than xk in X, and
(B) R: set of all the numbers larger than xk in X.

p(xk)

xk

TL TR

We can now build recursively the trees for L and R, and let denote them by
TL and TR. We build the natural tree, by creating a node for xk , having TL its
left child, and TR as its right child.

We call the resulting tree a treap. As it is a tree over the elements, and a
heap over the priorities; that is, treap = tree + heap.

Lemma 10.3.1. Given n elements, the expected depth of a treap T defined over those elements is O(log(n)).
Furthermore, this holds with high probability; namely, the probability that the depth of the treap would exceed
c log n is smaller than δ = n−d, where d is an arbitrary constant, and c is a constant that depends on d.

Furthermore, the probability that T has depth larger than ct log(n), for any t ≥ 1, is smaller than n−dt .

Proof: Observe, that every element has equal probability to be in the root of the treap. Thus, the structure
of a treap, is identical to the recursive tree of QuickSort. Indeed, imagine that instead of picking the pivot
uniformly at random, we instead pick the pivot to be the element with the lowest (random) priority. Clearly,
these two ways of choosing pivots are equivalent. As such, the claim follows immediately from our analysis of
the depth of the recursion tree of QuickSort, see Theorem 10.1.2p71.

10.3.2. Operations

The following innocent observation is going to be the key insight in implementing operations on treaps:

Observation 10.3.2. Given n distinct elements, and their (distinct) priorities, the treap storing them is
uniquely defined.

That is, if we want to decrease the probability of failure, that is δ, we need to increase c.
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10.3.2.1. Insertion

Given an element x to be inserted into an existing treap T, insert it in the usual way into T (i.e., treat it a
regular search binary tree). This takes O(height(T)). Now, x is a leaf in the treap. Set x priority p(x) to some
random number [0,1]. Now, while the new tree is a valid search tree, it is not necessarily still a valid treap, as
x’s priority might be smaller than its parent. So, we need to fix the tree around x, so that the priority property
holds.

RotateUp(x)
y ← parent(x)
while p(y) > p(x) do

if y.left_child = x then
RotateRight(y)

else
RotateLeft(y)

y ← parent(x)

We call RotateUp(x) to do so. Specifically, if x parent is y, and p(x) <
p(y), we will rotate x up so that it becomes the parent of y. We repeatedly
do it till x has a larger priority than its parent. The rotation operation
takes constant time and plays around with priorities, and importantly, it
preserves the binary search tree order. Here is a rotate right operation
RotateRight(D):

0.2
x

0.6
A

0.5
C

E
0.4

D
0.3

=⇒
E
0.4

0.2
x

0.6
A

0.5
C

D
0.3

RotateLeft is the same tree rewriting operation done in the other direction.
In the end of this process, both the ordering property and the priority property holds. That is, we have a

valid treap that includes all the old elements, and the new element. By Observation 10.3.2, since the treap is
uniquely defined, we have updated the treap correctly. Since every time we do a rotation the distance of x from
the root decrease by one, it follows that insertions takes O(height(T)).

10.3.2.2. Deletion

Deletion is just an insertion done in reverse. Specifically, to delete an element x from a treap T, set its priority
to +∞, and rotate it down it becomes a leaf. The only tricky observation is that you should rotate always so
that the child with the lower priority becomes the new parent. Once x becomes a leaf deleting it is trivial - just
set the pointer pointing to it in the tree to null.

10.3.2.3. Split

Given an element x stored in a treap T, we would like to split T into two treaps – one treap T≤ for all the
elements smaller or equal to x, and the other treap T> for all the elements larger than x. To this end, we set
x priority to −∞, fix the priorities by rotating x up so it becomes the root of the treap. The right child of x
is the treap T>, and we disconnect it from T by setting x right child pointer to null. Next, we restore x to its
real priority, and rotate it down to its natural location. The resulting treap is T≤. This again takes time that
is proportional to the depth of the treap.

10.3.2.4. Meld

Given two treaps TL and TR such that all the elements in TL are smaller than all the elements in TR, we would
like to merge them into a single treap. Find the largest element x stored in TL (this is just the element stored
in the path going only right from the root of the tree). Set x priority to −∞, and rotate it up the treap so that
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it becomes the root. Now, x being the largest element in TL has no right child. Attach TR as the right child of
x. Now, restore x priority to its original priority, and rotate it back so the priorities properties hold.

10.3.3. Summery

Theorem 10.3.3. Let T be a treap, initialized to an empty treap, and undergoing a sequence of m = nc inser-
tions, where c is some constant. The probability that the depth of the treap in any point in time would exceed
d log n is ≤ 1/n f , where d is an arbitrary constant, and f is a constant that depends only c and d.

In particular, a treap can handle insertion/deletion in O(log n) time with high probability.

Proof: Since the first part of the theorem implies that with high probability all these treaps have logarithmic
depth, then this implies that all operations takes logarithmic time, as an operation on a treap takes at most
the depth of the treap.

As for the first part, let T1, . . . ,Tm be the sequence of treaps, where Ti is the treap after the ith operation.
Similarly, let Xi be the set of elements stored in Ti. By Lemma 10.3.1, the probability that Ti has large depth
is tiny. Specifically, we have that

αi = P[depth(Ti) > tc′ log nc] = P
[
depth(Ti) > c′t

(
log nc

log |Ti |

)
· log |Ti |

]
≤

1
nt ·c

,

as a tedious and boring but straightforward calculation shows. Picking t to be sufficiently large, we have that
the probability that the ith treap is too deep is smaller than 1/n f+c. By the union bound, since there are nc

treaps in this sequence of operations, it follows that the probability of any of these treaps to be too deep is at
most 1/n f , as desired.

10.4. Bibliographical Notes
Chernoff inequality was a rediscovery of Bernstein inequality, which was published in 1924 by Sergei Bernstein.
Treaps were invented by Siedel and Aragon [SA96]. Experimental evidence suggests that Treaps performs
reasonably well in practice, despite their simplicity, see for example the comparison carried out by Cho and
Sahni [CS00]. Implementations of treaps are readily available. An old implementation I wrote in C is available
here: http://valis.cs.uiuc.edu/blog/?p=6060.

Chapter 11

Hashing

“I tried to read this book, Huckleberry Finn, to my grandchildren, but I couldn’t get past page six because the book is
fraught with the ‘n-word.’ And although they are the deepest-thinking, combat-ready eight- and ten-year-olds I know, I
knew my babies weren’t ready to comprehend Huckleberry Finn on its own merits. That’s why I took the liberty to rewrite
Mark Twain’s masterpiece. Where the repugnant ‘n-word’ occurs, I replaced it with ‘warrior’ and the word ‘slave’ with
‘dark-skinned volunteer.”’

Paul Beatty, The Sellout
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Figure 11.1: Open hashing.

11.1. Introduction
We are interested here in dictionary data structure. The settings for such a data-structure:
(A) U: universe of keys with total order: numbers, strings, etc.
(B) Data structure to store a subset S ⊆ U
(C) Operations:

(A) search/lookup: given x ∈ U is x ∈ S?
(B) insert: given x < S add x to S.
(C) delete: given x ∈ S delete x from S

(D) Static structure: S given in advance or changes very infrequently, main operations are lookups.
(E) Dynamic structure: S changes rapidly so inserts and deletes as important as lookups.

Common constructions for such data-structures, include using a static sorted array, where the lookup is a
binary search. Alternatively, one might use a balanced search tree (i.e., red-black tree). The time to perform
an operation like lookup, insert, delete take O(log |S |) time (comparisons).

Naturally, the above are potently an “overkill”, in the sense that sorting is unnecessary. In particular, the
universe U may not be (naturally) totally ordered. The keys correspond to large objects (images, graphs etc)
for which comparisons are expensive. Finally, we would like to improve “average” performance of lookups to
O(1) time, even at cost of extra space or errors with small probability: many applications for fast lookups in
networking, security, etc.

Hashing and Hash Tables. The hash-table data structure has an associated (hash) table/array T of size m
(the table size). A hash function h : U → {0, . . . ,m − 1}. An item x ∈ U hashes to slot h(x) in T .

Given a set S ⊆ U, in a perfect ideal situation, each element x ∈ S hashes to a distinct slot in T , and we
store x in the slot h(x). The Lookup for an item y ∈ U, is to check if T[h(y)] = y. This takes constant time.

Unfortunately, collisions are unavoidable, and several different techniques to handle them. Formally, two
items x , y collide if h(x) = h(y).

A standard technique to handle collisions is to use chaining (aka open hashing). Here, we handle collisions
as follows:
(A) For each slot i store all items hashed to slot i in a linked list. T[i] points to the linked list.
(B) Lookup: to find if y ∈ U is in T , check the linked list at T[h(y)]. Time proportion to size of linked list.

Other techniques for handling collisions include associating a list of locations where an element can be (in
certain order), and check these locations in this order. Another useful technique is cuckoo hashing which we
will discuss later on: Every value has two possible locations. When inserting, insert in one of the locations,
otherwise, kick out the stored value to its other location. Repeat till stable. if no stability then rebuild table.

The relevant questions when designing a hashing scheme, include: (I) Does hashing give O(1) time per
operation for dictionaries? (II) Complexity of evaluating h on a given element? (III) Relative sizes of the
universe U and the set to be stored S. (IV) Size of table relative to size of S. (V) Worst-case vs average-case
vs randomized (expected) time? (VI) How do we choose h?

The load factor of the array T is the ratio n/t where n = |S | is the number of elements being stored and
m = |T | is the size of the array being used. Typically n/t is a small constant smaller than 1.
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In the following, we assume that U (the universe the keys are taken from) is large – specifically, N = |U| �
m2, where m is the size of the table. Consider a hash function h : U → {0, . . . ,m − 1}. If hash N items to the m
slots, then by the pigeon hole principle, there is some i ∈ {0, . . . ,m − 1} such that N/m ≥ m elements of U get
hashed to i. In particular, this implies that there is set S ⊆ U, where |S | = m such that all of S hashes to same
slot. Oops.

Namely, for every hash function there is a bad set with many collisions.

Observation 11.1.1. Let H be the set of all functions from U = {1, . . . ,U} to {1, . . . ,m}. The number of
functions in H is mU . As such, specifying a function in H would require log2 |H | = O(U log m).

As such, picking a truely random hash function requires many random bits, and furthermore, it is not even
clear how to evaluate it efficiently (which is the whole point of hashing).

Picking a hash function. Picking a good hash function in practice is a dark art involving many non-trivial
considerations and ideas. For parameters N = |U|, m = |T |, and n = |S |, we require the following:
(A) H is a family of hash functions: each function h ∈ H should be efficient to evaluate (that is, to compute

h(x)).
(B) h is chosen randomly from H (typically uniformly at random). Implicitly assumes that H allows an

efficient sampling.
(C) Require that for any fixed set S ⊆ U, of size m, the expected number of collisions for a function chosen

from H should be “small”. Here the expectation is over the randomness in choice of h.

11.2. Universal Hashing
We would like the hash function to have the following property – For any element x ∈ U, and a random h ∈ H ,
then h(x) should have a uniform distribution. That is Pr[h(x) = i] = 1/m, for every 0 ≤ i < m. A somewhat
stronger property is that for any two distinct elements x, y ∈ U, for a random h ∈ H , the probability of a
collision between x and y should be at most 1/m. P[h(x) = h(y)] = 1/m.

Definition 11.2.1. A familyH of hash functions is 2-universal if for all distinct x, y ∈ U, we have P[h(x) = h(y)] ≤
1/m.

Applying a 2-universal family hash function to a set of distinct numbers, results in a 2-wise independent
sequence of numbers.

Lemma 11.2.2. Let S be a set of n elements stored using open hashing in a hash table of size m, using open
hashing, where the hash function is picked from a 2-universal family. Then, the expected lookup time, for any
element x ∈ U is O(n/m).

Proof: The number of elements colliding with x is `(x) =
∑

y∈S Dy, where Dy = 1 ⇐⇒ x and y collide under
the hash function h. As such, we have

E[`(x)] =
∑
y∈S

E
[
Dy

]
=

∑
y∈S

P[h(x) = h(y)] =
∑
y∈S

1
m
= |S |/m = n/m.

Remark 11.2.3. The above analysis holds even if we perform a sequence of O(n) insertions/deletions operations.
Indeed, just repeat the analysis with the set of elements being all elements encountered during these operations.

The worst-case bound is of course much worse – it is not hard to show that in the worst case, the load of a
single hash table entry might be Ω(log n/log log n) (as we seen in the occupancy problem).
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Rehashing, amortization, etc. The above assumed that the set S is fixed. If items are inserted and deleted,
then the hash table might become much worse. In particular, |S | grows to more than cm, for some constant c,
then hash table performance start degrading. Furthermore, if many insertions and deletions happen then the
initial random hash function is no longer random enough, and the above analysis no longer holds.

A standard solution is to rebuild the hash table periodically. We choose a new table size based on current
number of elements in table, and a new random hash function, and rehash the elements. And then discard the
old table and hash function. In particular, if |S | grows to more than twice current table size, then rebuild new
hash table (choose a new random hash function) with double the current number of elements. One can do a
similar shrinking operation if the set size falls below quarter the current hash table size.

If the working |S | stays roughly the same but more than c |S | operations on table for some chosen constant
c (say 10), rebuild.

The amortize cost of rebuilding to previously performed operations. Rebuilding ensures O(1) expected
analysis holds even when S changes. Hence O(1) expected look up/insert/delete time dynamic data dictionary
data structure!

11.2.1. How to build a 2-universal family

11.2.1.1. On working modulo prime

Definition 11.2.4. For a number p, let ZZn =
{
0, . . . ,n − 1

}
.

For two integer numbers x and y, the quotient of x/y is x div y = bx/yc. The remainder of x/y is
x mod y = x− y bx/yc. If the x mod y = 0, than y divides x, denoted by y | x. We use α ≡ β (mod p) or α ≡p β
to denote that α and β are congruent modulo p; that is α mod p = β mod p – equivalently, p | (α − β).

Lemma 11.2.5. Let p be a prime number.
(A) For any α, β ∈ {1, . . . , p − 1}, we have that αβ . 0 (mod p).
(B) For any α, β, i ∈ {1, . . . , p − 1}, such that α , β, we have that αi . βi (mod p).
(C) For any x ∈ {1, . . . , p − 1} there exists a unique y such that xy ≡ 1 (mod p). The number y is the inverse

of x, and is denoted by x−1 or 1/x.

Proof: (A) If αβ ≡ 0 (mod p), then p must divide αβ, as it divides 0. But α, β are smaller than p, and p is
prime. This implies that either p | α or p | β, which is impossible.

(B) Assume that α > β. Furthermore, for the sake of contradiction, assume that αi ≡ βi (mod p). But then,
(α − β)i ≡ 0 (mod p), which is impossible, by (A).

(C) For any α ∈ {1, . . . , p − 1}, consider the set Lα = {α ∗ 1 mod p, α ∗ 2 mod p, . . . , α ∗ (p − 1) mod p}. By
(A), zero is not in Lα, and by (B), Lα must contain p − 1 distinct values. It follows that Lα = {1,2, . . . , p − 1}.
As such, there exists exactly one number y ∈ {1, . . . , p − 1}, such that αy ≡ 1 (mod p).

Lemma 11.2.6. Consider a prime p, and any numbers x, y ∈ ZZp. If x , y then, for any a, b ∈ Zp, such that
a , 0, we have ax + b . ay + b (mod p).

Proof: Assume y > x (the other case is handled similarly). If ax + b ≡ ay + b (mod p) then a(x − y) (mod p) = 0
and a , 0 and (x − y) , 0. However, a and x − y cannot divide p since p is prime and a < p and 0 < x − y < p.

Lemma 11.2.7. Consider a prime p, and any numbers x, y ∈ ZZp. If x , y then, for each pair of numbers
r, s ∈ ZZp = {0,1, . . . , p − 1}, such that r , s, there is exactly one unique choice of numbers a, b ∈ ZZp such that
ax + b (mod p) = r and ay + b (mod p) = s.

Proof: Solve the system of equations

ax + b ≡ r (mod p) and ay + b ≡ s (mod p).

We get a = r−s
x−y (mod p) and b = r − ax (mod p).
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11.2.1.2. Constructing a family of 2-universal hash functions

For parameters N = |U|, m = |T |, n = |S |. Choose a prime number p ≥ N. Let

H =
{
ha,b

�� a, b ∈ ZZp and a , 0
}
,

where ha,b(x) = ((ax + b) (mod p)) (mod m). Note that |H | = p(p − 1).

11.2.1.3. Analysis

Once we fix a and b, and we are given a value x, we compute the hash value of x in two stages:
(A) Compute: r ← (ax + b) (mod p).
(B) Fold: r ′← r (mod m)

Lemma 11.2.8. Assume that p is a prime, and 1 < m < p. The number of pairs (r, s) ∈ ZZp × ZZp, such that
r , s, that are folded to the same number is ≤ p(p − 1)/m. Formally, the set of bad pairs

B =
{
(r, s) ∈ ZZp × ZZp

�� r ≡m s
}

is of size at most p(p − 1)/m.

Proof: Consider a pair (x, y) ∈ {0,1, . . . , p − 1}2, such that x , y. For a fixed x, there are at most dp/me values
of y that fold into x. Indeed, x ≡m y if and only if

y ∈ L(x) = {x + im | i is an integer} ∩ ZZp .

The size of L(x) is maximized when x = 0, The number of such elements is at most dp/me (note, that since p is
a prime, p/m is fractional). One of the numbers in O(x) is x itself. As such, we have that

|B| ≤ p
(
|L(x)| − 1

)
≤ p

(
dp/me − 1

)
≤ p

(
p − 1

)
/m,

since dp/me − 1 ≤ (p − 1)/m ⇐⇒ m dp/me − m ≤ p − 1 ⇐⇒ m bp/mc ≤ p − 1 ⇐⇒ m bp/mc < p, which is true
since p is a prime, and 1 < m < p.

Claim 11.2.9. For two distinct numbers x, y ∈ U, a pair a, b is bad if ha,b(x) = ha,b(y). The number of bad
pairs is ≤ p(p − 1)/m.

Proof: Let a, b ∈ Zp such that a , 0 and ha,b(x) = ha,b(y). Let

r = (ax + b) mod p and s = (ay + b) mod p.

By Lemma 11.2.6, we have that r , s. As such, a collision happens if r ≡ s (mod m). By Lemma 11.2.8, the
number of such pairs (r, s) is at most p(p − 1)/m. By Lemma 11.2.7, for each such pair (r, s), there is a unique
choice of a, b that maps x and y to r and s, respectively. As such, there are at most p(p − 1)/m bad pairs.

Theorem 11.2.10. The hash family H is a 2-universal hash family.

Proof: Fix two distinct numbers x, y ∈ U. We are interested in the probability they collide if h is picked
randomly from H . By Claim 11.2.9 there are M ≤ p(p − 1)/m bad pairs that causes such a collision, and since
H contains N = p(p − 1) functions, it follows the probability for collision is M/N ≤ 1/m, which implies that H
is 2-universal.
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(A) (B) (C)

Figure 11.2: Explanation of the hashing scheme via figures.

11.2.1.4. Explanation via pictures

Consider a pair (x, y) ∈ ZZ2
p, such that x , y. This pair (x, y) corresponds to a cell in the natural “grid” ZZ2

p that
is off the main diagonal. See Figure 11.2

The mapping fa,b(x) = (ax + b) mod p, takes the pair (x, y), and maps it randomly and uniformly, to some
other pair x ′ = fa,b(x) and y′ = fa,b(y) (where x ′, y′ are again off the main diagonal).

Now consider the smaller grid ZZm × ZZm. The main diagonal of this subgrid is bad – it corresponds to a
collision. One can think about the last step, of computing ha,b(x) = fa,b(x) mod m, as tiling the larger grid, by
the smaller grid. in the natural way. Any diagonal that is in distance mi from the main diagonal get marked as
bad. At most 1/m fraction of the off diagonal cells get marked as bad. See Figure 11.2.

As such, the random mapping of (x, y) to (x ′, y′) causes a collision only if we map the pair to a badly marked
pair, and the probability for that ≤ 1/m.

11.3. Perfect hashing
An interesting special case of hashing is the static case – given a set S of elements, we want to hash S so that
we can answer membership queries efficiently (i.e., dictionary data-structures with no insertions). it is easy to
come up with a hashing scheme that is optimal as far as space.

11.3.1. Some easy calculations

The first observation is that if the hash table is quadraticly large, then there is a good (constant) probability
to have no collisions (this is also the threshold for the birthday paradox).

Lemma 11.3.1. Let S ⊆ U be a set of n elements, and let H be a 2-universal family of hash functions, into a
table of size m ≥ n2. Then with probability ≤ 1/2, there is a pair of elements of S that collide under a random
hash function h ∈ H .

Proof: For a pair x, y ∈ S, the probability they collide is at most ≤ 1/m, by definition. As such, by the union
bound, the probability of any collusion is

(n
2
)
/m = n(n − 1)/2m ≤ 1/2.

We now need a second moment bound on the sizes of the buckets.

Lemma 11.3.2. Let S ⊆ U be a set of n elements, and let H be a 2-universal family of hash functions,
into a table of size m ≥ cn, where c is an arbitrary constant. Let h ∈ H be a random hash function, and
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let Xi be the number of elements of S mapped to the ith bucket by h, for i = 0, . . . ,m − 1. Then, we have
E
[∑m−1

j=0 X2
j

]
≤ (1 + 2/c)n.

Proof: Let s1, . . . , sn be the n items in S, and let Zi, j = 1 if h(si) = h(sj), for i < j. Observe that E
[
Zi, j

]
=

P
[
h(si) = h(sj)

]
≤ 1/m (this is the only place we use the property that H is 2-universal). In particular, let Z(α)

be all the variables Zi, j , for i < j, such that Zi, j = 1 and h(si) = h(sj) = α.
If for some α we have that Xα = k, then there are k indices `1 < `2 < . . . < `k , such that h(s`1) = · · · =

h(s`k ) = i. As such, z(α) = |Z(α)| =
(k
2
)
. In particular, we have

X2
α = k2 = 2

(
k
2

)
+ k = 2z(α) + Xα

This implies that
m−1∑
α=0

X2
α =

m−1∑
α=0

(
2z(α) + Xα

)
= 2

m−1∑
α=0

z(α) +
m−1∑
α=0

Xα = 2
m−1∑
iα=0

z(α) +
m−1∑
α=0

Xα = n + 2
n−1∑
i=1

n∑
j=i+1

Zi j

Now, by linearity of expectations, we have

E
[m−1∑
α=0

X2
α

]
= E

[
n + 2

n−1∑
i=1

n∑
j=i+1

Zi j

]
= n + 2

n−1∑
i=1

n∑
j=i+1

E
[
Zi j

]
≤ n + 2

n−1∑
i=1

n∑
j=i+1

1
m
≤ n

(
1 + 2 n

m

)
≤ n

(
1 + 2

c

)
since m ≥ cn.

11.3.2. Construction of perfect hashing

Given a set S of n elements, we build a open hash table T of size, say, 2n. We use a random hash function
h that is 2-universal for this hash table, see Theorem 11.2.10. Next, we map the elements of S into the hash
table. Let Sj be the list of all the elements of S mapped to the jth bucket, and let Xj =

��Lj

��, for j = 0, . . . ,n − 1.
We compute Y =

∑
i=1 X2

j . If Y > 6n, then we reject h, and resample a hash function h. We repeat this
process till success.

In the second stage, we build secondary hash tables for each bucket. Specifically, for j = 0, . . . ,2n − 1, if
the jth bucket contains Xj > 0 elements, then we construct a secondary hash table Hj to store the elements of
Sj , and this secondary hash table has size X2

j , and again we use a random 2-universal hash function hj for the
hashing of Sj into Hj . If any pair of elements of Sj collide under hj , then we resample the hash function hj , and
try again till success.

11.3.2.1. Analysis

Theorem 11.3.3. Given a (static) set S ⊆ U of n elements, the above scheme, constructs, in expected linear
time, a two level hash-table that can perform search queries in O(1) time. The resulting data-structure uses O(n)
space.

Proof: Given an element x ∈ U, we first compute j = h(x), and then k = hj(x), and we can check whether the
element stored in the secondary hash table Hj at the entry k is indeed x. As such, the search time is O(1).

The more interesting issue is the construction time. Let Xj be the number of elements mapped to the jth
bucket, and let Y =

∑n
i=1 X2

i . Observe, that E[Y ] = (1 + 2/2)n = 2n, by Lemma 11.3.2 (here, m = 2n and c = 2).
As such, by Markov’s inequality, P[X > 6n] ≤ 1/2. In particular, picking a good top level hash function requires
in expectation 1/(1/2) = 2 iterations. Thus the first stage takes O(n) time, in expectation.

For the jth bucket, with Xj entries, by Lemma 11.3.1, the construction succeeds with probability ≥ 1/2. As
before, the expected number of iterations till success is at most 2. As such, the expected construction time of
the secondary hash table for the jth bucket is O(X2

j ).
We conclude that the overall expected construction time is O(n +

∑
j X2

j ) = O(n).
As for the space used, observe that it is O(n +

∑
j X2

j ) = O(n).
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11.4. Bloom filters
Consider an application where we have a set S ⊆ U of n elements, and we want to be able to decide for a query
x ∈ U, whether or not x ∈ S. Naturally, we can use hashing. However, here we are interested in more efficient
data-structure as far as space. We allow the data-structure to make a mistake (i.e., say that an element is in,
when it is not in).

First try. So, let start silly. Let B[0 . . . ,m] be an array of bits, and pick a random hash function h : U → ZZm.
Initialize B to 0. Next, for every element s ∈ S, set B[h(s)] to 1. Now, given a query, return B[h(x)] as an answer
whether or not x ∈ S. Note, that B is an array of bits, and as such it can be bit-packed and stored efficiently.

For the sake of simplicity of exposition, assume that the hash functions picked is truly random. As such,
we have that the probability for a false positive (i.e., a mistake) for a fixed x ∈ U is n/m. Since we want the
size of the table m to be close to n, this is not satisfying.

Using k hash functions. Instead of using a single hash function, let us use k independent hash functions
h1, . . . hk . For an element s ∈ S, we set B[hi(s)] to 1, for i = 1, . . . , k. Given an query x ∈ U, if B[hi(x)] is zero,
for any i = 1, . . . , k, then x < S. Otherwise, if all these k bits are on, the data-structure returns that x is in S.

Clearly, if the data-structure returns that x is not in S, then it is correct. The data-structure might make
a mistake (i.e., a false positive), if it returns that x is in S (when is not in S).

We interpret the storing of the elements of S in B, as an experiment of throwing kn balls into m bins. The
probability of a bin to be empty is

p = p(m,n) = (1 − 1/m)kn ≈ exp(−k(n/m)).

Since the number of empty bins is a martingale, we know the number of empty bins is strongly concentrated
around the expectation pm, and we can treat p as the true probability of a bin to be empty.

The probability of a mistake is
f (k,m,n) = (1 − p)k .

In particular, for k = (m/n) ln n, we have that p = p(m,n) ≈ 1/2, and f (k,m,n) ≈ 1/2(m/n) ln 2 ≈ 0.618m/n.

Example 11.4.1. Of course, the above is fictional, as k has to be an integer. But motivated by these calculations,
let m = 3n, and k = 4. We get that p(m,n) = exp(−4/3) ≈ 0.26359, and f (4,3n,n) ≈ (1− 0.265)4 ≈ 0.294078. This
is better than the naive k = 1 scheme, where the probability of false positive is 1/3.

Note, that this scheme gets exponentially better over the naive scheme as m/n grows.

Example 11.4.2. Consider the setting m = 8n – this is when we allocate a byte for each element stored (the
element of course might be significantly bigger). The above implies we should take k = d(m/n) ln 2e = 6. We
then get p(8n,n) = exp(−6/8) ≈ 0.5352, and f (6,8n,n) ≈ 0.0215. Here, the naive scheme with k = 1, would give
probability of false positive of 1/8 = 0.125. So this is a significant improvement.

Remark 11.4.3. It is important to remember that Bloom filters are competing with direct hashing of the whole
elements. Even if one allocates 8 bits per item, as in the example above, the space it uses is significantly smaller
than regular hashing. A situation when such a Bloom filter makes sense is for a cache – we might want to
decide if an element is in a slow external cache (say SSD drive). Retrieving item from the cache is slow, but
not so slow we are not willing to have a small overhead because of false positives.

11.5. Bibliographical notes
Practical Issues Hashing used typically for integers, vectors, strings etc.
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• Universal hashing is defined for integers. To implement it for other objects, one needs to map objects in
some fashion to integers.

• Practical methods for various important cases such as vectors, strings are studied extensively. See http:
//en.wikipedia.org/wiki/Universal_hashing for some pointers.

• Recent important paper bridging theory and practice of hashing. “The power of simple tabulation hash-
ing” by Mikkel Thorup and Mihai Patrascu, 2011. See http://en.wikipedia.org/wiki/Tabulation_
hashing
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Chapter 12

Min Cut

To acknowledge the corn - This purely American expression means to admit the losing of an argument, especially in
regard to a detail; to retract; to admit defeat. It is over a hundred years old. Andrew Stewart, a member of Congress, is said
to have mentioned it in a speech in 1828. He said that haystacks and cornfields were sent by Indiana, Ohio and Kentucky to
Philadelphia and New York. Charles A. Wickliffe, a member from Kentucky questioned the statement by commenting that
haystacks and cornfields could not walk. Stewart then pointed out that he did not mean literal haystacks and cornfields, but
the horses, mules, and hogs for which the hay and corn were raised. Wickliffe then rose to his feet, and said, “Mr. Speaker,
I acknowledge the corn”.

Funk, Earle, A Hog on Ice and Other Curious Expressions

12.1. Branching processes – Galton-Watson Process

12.1.1. The problem

In the 19th century, Victorians were worried that aristocratic surnames were disappearing, as family names
passed on only through the male children. As such, a family with no male children had its family name disappear.
So, imagine the number of male children of a person is an independent random variable X ∈ {0,1,2, . . .}. Starting
with a single person, its family (as far as male children are concerned) is a random tree with the degree of a
node being distributed according to X. We continue recursively in constructing this tree, again, sampling the
number of children for each current leaf according to the distribution of X. It is not hard to see that a family
disappears if E[X] ≤ 1, and it has a constant probability of surviving if E[X] > 1.

Francis Galton asked the question of what is the probability of such a blue-blood family name to survive,
and this question was answered by Henry William Watson [WG75]. The Victorians were worried about strange
things, see [Gre69] for a provocatively titled article from the period, and [Ste12] for a more recent take on this
issue.

Of course, since infant mortality is dramatically down (as is the number of aristocrat males dying to maintain
the British empire), the probability of family names to disappear is now much lower than it was in the 19th
century (not to mention that many women keep their original family name). Interestingly, countries with family
names that were introduced long time ago have very few surnames (i.e., Korean have 250 surnames, and three
surnames form 45% of the population). On the other hand, countries that introduced surnames more recently
have dramatically more surnames (for example, the Dutch have surnames only for the last 200 years, and there
are 68,000 different family names).

Here we are going to look on a very specific variant of this problem. Imagine that starting with a single male.
A male has exactly two children, and each one of them is a male with probability half. As such, the natural
question is what is the probability that h generations down, there is a male decedent that all his ancestors are
male.

12.1.2. On coloring trees

Let Th be a complete binary tree of height h. We randomly color its edges by black and white. Namely, for each
edge we independently choose its color to be either black or white, with equal probability (say, black indicates
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the child is male). We are interested in the event that there exists a path from the root of Th to one of its leafs,
that is all black. Let Eh denote this event, and let ρh = P[Eh]. Observe that ρ0 = 1 and ρ1 = 3/4 (see below).

To bound this probability, consider the root u of Th and its two children ul and ur . The probability that
there is a black path from ul to one of its children is ρh−1, and as such, the probability that there is a black
path from u through ul to a leaf of the subtree of ul is P

[
the edge uul is colored black

]
· ρh−1 = ρh−1/2. As such,

the probability that there is no black path through ul is 1 − ρh−1/2. As such, the probability of not having a
black path from u to a leaf (through either children) is (1− ρh−1/2)2. In particular, there desired probability, is
the complement; that is

ρh = 1 −
(
1 − ρh−1

2

)2
=
ρh−1

2

(
2 − ρh−1

2

)
= ρh−1 −

ρ2
h−1
4 = f

(
ρh−1

)
for f (x) = x − x2/4.

The starting values are ρ0 = 1, and ρ1 = 3/4. Formally, we have the sequence:

ρ0 = 1, ρ1 = 3/4, ρh = ρh−1 −
ρ2
h−1
4 .

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f(x)=x - x2/4

Figure 12.1: A graph of the function f (x) = x − x2/4.

Lemma 12.1.1. We have that ρh ≥ 1/(h + 1).

Proof: The proof is by induction. For h = 1, we have ρ1 = 3/4 ≥ 1/(1 + 1).
Observe that ρh = f (ρh−1) for f (x) = x − x2/4, and f ′(x) = 1− x/2. As such, f ′(x) > 0 for x ∈ [0,1] and f (x)

is increasing in the range [0,1]. As such, by induction, we have that ρh = f (ρh−1) ≥ f
(

1
(h − 1) + 1

)
=

1
h
−

1
4h2 .

We need to prove that ρh ≥ 1/(h + 1), which is implied by the above if

1
h
−

1
4h2 ≥

1
h + 1 ⇔ 4h(h + 1) − (h + 1) ≥ 4h2 ⇔ 4h2 + 4h − h − 1 ≥ 4h2 ⇔ 3h ≥ 1,

which trivially holds.

One can also prove an upper bound on this probability, showing that ρh = Θ(1/h). We provide the proof
here for the sake of completeness, but the reader is encouraged to skip reading its proof, as we do not need this
result.

Lemma 12.1.2. We have that ρh = O(1/h).

Proof: The claim trivially holds for small values of h. For any j > 0, let hj be the minimal index such that
ρh j ≤ 1/2j . It is easy to verify that ρh j ≥ 1/2j+1. We claim (mysteriously) that hj+1 − hj ≤

ρh j − ρh j+1

(ρh j+1)
2/4

Indeed,

ρk+1 is the number resulting from removing ρ2
k
/4 from ρk . Namely, the sequence ρ1, ρ2, . . . is a monotonically

decreasing sequence of numbers in the interval [0,1], where the gaps between consecutive numbers decreases.
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In particular, to get from ρh j to ρh j+1 , the gaps used were of size at least ∆ =
(
ρh j+1

)2, which means that there
are at least (ρh j − ρh j+1)/∆ − 1 numbers in the series between these two elements. As such, we have

hj+1 − hj ≤
ρh j − ρh j+1

(ρh j+1)
2/4
≤

1/2j − 1/2j+2

1/22(j+2)+2 = 2j+6 + 2j+4 = O
(
2j

)
.

Arguing similarly, we have

hj+2 − hj ≥
ρh j − ρh j+2

(ρh j )
2/4

≥
1/2j+1 − 1/2j+2

1/22j+2 = 2j+1 + 2j = Ω
(
2j

)
.

We conclude that hj = (hj − hj−2) + (hj−2 − hj−4) + · · · = 2j−1 −O(1), implying the claim.

12.2. Min Cut

12.2.1. Problem Definition

Let G = (V,E) be an undirected graph with n vertices and m edges. We are interested in cuts in G.

Definition 12.2.1. A cut in G is a partition of the vertices of V into two sets S and V \ S,
where the edges of the cut are

(S,V \ S) =
{
uv ∈ E

�� u ∈ S, v ∈ V \ S
}
,

where S , ∅ and V \ S , ∅. The number of edges in the cut (S,V \ S) is the size of the
cut. For an example of a cut, see figure on the right.

V \ SS

We are interested in the problem of computing the minimum cut (i.e., mincut), that is, the cut in the
graph with minimum cardinality. Specifically, we would like to find the set S ⊆ V such that (S,V \ S) is as small
as possible, and S is neither empty nor V \ S is empty.

12.2.2. Some Definitions

We remind the reader of the following concepts. The conditional probability of X given Y is P
[
X = x

�� Y = y
]
=

P[(X = x) ∩ (Y = y)]/P[Y = y]. An equivalent, useful restatement of this is that

P
[
(X = x) ∩ (Y = y)

]
= P

[
X = x

�� Y = y
]
· P[Y = y]. (12.1)

The following is easy to prove by induction using Eq. (12.1).

Lemma 12.2.2. Let E1, . . . ,En be n events which are not necessarily independent. Then,

P
[
∩ni=1Ei

]
= P

[
E1

]
∗ P

[
E2

�� E1
]
∗ P

[
E3

�� E1 ∩ E2
]
∗ . . . ∗ P

[
En

�� E1 ∩ . . . ∩ En−1
]
.

12.3. The Algorithm

The basic operation used by the algorithm is edge con-
traction, depicted in Figure 12.2. We take an edge e = xy
in G and merge the two vertices into a single vertex. The
new resulting graph is denoted by G/xy. Note, that we re-
move self loops created by the contraction. However, since
the resulting graph is no longer a regular graph, it has par-
allel edges – namely, it is a multi-graph. We represent a
multi-graph, as a regular graph with multiplicities on the
edges. See Figure 12.3.

x y {x, y}

(a) (b)

Figure 12.2: (a) A contraction of the edge xy.
(b) The resulting graph.
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Figure 12.4: (a) Original graph. (b)–(j) a sequence of contractions in the graph, and (h) the cut in the original
graph, corresponding to the single edge in (h). Note that the cut of (h) is not a mincut in the original graph.

The edge contraction operation can be implemented in
O(n) time for a graph with n vertices. This is done by merg-
ing the adjacency lists of the two vertices being contracted,
and then using hashing to do the fix-ups (i.e., we need to
fix the adjacency list of the vertices that are connected to
the two vertices).

Note, that the cut is now computed counting multiplic-
ities (i.e., if e is in the cut and it has weight w, then the
contribution of e to the cut weight is w).

2

2

2

2

Figure 12.3: On the left a multi-graph, and on
the right a minimum cut in the resulting multi-
graph.

Observation 12.3.1. A set of vertices in G/xy corresponds to a set of vertices in the graph G. Thus a cut
in G/xy always corresponds to a valid cut in G. However, there are cuts in G that do not exist in G/xy. For
example, the cut S = {x}, does not exist in G/xy. As such, the size of the minimum cut in G/xy is at least
as large as the minimum cut in G (as long as G/xy has at least one edge). Since any cut in G/xy has a
corresponding cut of the same cardinality in G.

Our algorithm works by repeatedly performing edge contractions. This is beneficial as this shrinks the
underlying graph, and we would compute the cut in the resulting (smaller) graph. An “extreme” example of
this, is shown in Figure 12.4, where we contract the graph into a single edge, which (in turn) corresponds to
a cut in the original graph. (It might help the reader to think about each vertex in the contracted graph, as
corresponding to a connected component in the original graph.)

Figure 12.4 also demonstrates the problem with taking this approach. Indeed, the resulting cut is not the
minimum cut in the graph.

So, why did the algorithm fail to find the minimum cut in this case?¬ The failure occurs because of the
contraction at Figure 12.4 (e), as we had contracted an edge in the minimum cut. In the new graph, depicted

¬Naturally, if the algorithm had succeeded in finding the minimum cut, this would have been our success.
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Algorithm MinCut(G)
G0 ← G
i = 0
while Gi has more than two vertices do

Pick randomly an edge ei from the edges of Gi

Gi+1 ← Gi/ei
i ← i + 1

Let (S,V \ S) be the cut in the original graph
corresponding to the single edge in Gi

return (S,V \ S).

Figure 12.5: The minimum cut algorithm.

in Figure 12.4 (f), there is no longer a cut of size 3, and all cuts are of size 4 or more. Specifically, the algorithm
succeeds only if it does not contract an edge in the minimum cut.

Observation 12.3.2. Let e1, . . . , en−2 be a sequence of edges in G, such that none of them is in the minimum
cut, and such that G′ = G/{e1, . . . , en−2} is a single multi-edge. Then, this multi-edge corresponds to a minimum
cut in G.

Note, that the claim in the above observation is only in one direction. We might be able to still compute
a minimum cut, even if we contract an edge in a minimum cut, the reason being that a minimum cut is not
unique. In particular, another minimum cut might survived the sequence of contractions that destroyed other
minimum cuts.

Using Observation 12.3.2 in an algorithm is problematic, since the argumentation is circular, how can we
find a sequence of edges that are not in the cut without knowing what the cut is? The way to slice the Gordian
knot here, is to randomly select an edge at each stage, and contract this random edge.

See Figure 12.5 for the resulting algorithm MinCut.

12.3.1. Analysis

12.3.1.1. The probability of success

Naturally, if we are extremely lucky, the algorithm would never pick an edge in the mincut, and the algorithm
would succeed. The ultimate question here is what is the probability of success. If it is relatively “large” then
this algorithm is useful since we can run it several times, and return the best result computed. If on the other
hand, this probability is tiny, then we are working in vain since this approach would not work.

Lemma 12.3.3. If a graph G has a minimum cut of size k and G has n vertices, then |E(G)| ≥ kn/2.

Proof: Each vertex degree is at least k, otherwise the vertex itself would form a minimum cut of size smaller
than k. As such, there are at least

∑
v∈V degree(v)/2 ≥ nk/2 edges in the graph.

Lemma 12.3.4. If we pick in random an edge e from a graph G, then with probability at most 2/n it belong to
the minimum cut.

Proof: There are at least nk/2 edges in the graph and exactly k edges in the minimum cut. Thus, the probability
of picking an edge from the minimum cut is smaller then k/(nk/2) = 2/n.

The following lemma shows (surprisingly) that MinCut succeeds with reasonable probability.

Lemma 12.3.5. MinCut outputs the mincut with probability ≥ 2
n(n − 1) .
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Proof: Let Ei be the event that ei is not in the minimum cut of Gi. By Observation 12.3.2, MinCut outputs
the minimum cut if the events E0, . . . ,En−3 all happen (namely, all edges picked are outside the minimum cut).

By Lemma 12.3.4, it holds P
[
Ei

���E0 ∩ E1 ∩ . . . ∩ Ei−1
]
≥ 1 − 2

|V(Gi)|
= 1 − 2

n − i
. Implying that

∆ = P
[
E0 ∩ . . . ∩ En−3

]
= P

[
E0

]
· P

[
E1

�� E0
]
· P

[
E2

�� E0 ∩ E1
]
· . . . · P

[
En−3

�� E0 ∩ . . . ∩ En−4
]
.

As such, we have

∆ ≥

n−3∏
i=0

(
1 − 2

n − i

)
=

n−3∏
i=0

n − i − 2
n − i

=
n − 2

n
·

n − 3
n − 1 ·

n − 4
n − 2 · . . . ·

2
4 ·

1
3 =

2
n(n − 1) .

12.3.1.2. Running time analysis.

Observation 12.3.6. MinCut runs in O(n2) time.

Observation 12.3.7. The algorithm always outputs a cut, and the cut is not smaller than the minimum cut.

Informally, amplification is the process of running an experiment again and again till the things we want
to happen, with good probability, do happen.

Let MinCutRep be the algorithm that runs MinCut n(n − 1) times and return the minimum cut computed
in all those independent executions of MinCut.

Lemma 12.3.8. The probability that MinCutRep fails to return the minimum cut is < 0.14.

Proof: The probability of failure of MinCut to output the mincut in each execution is at most 1 − 2
n(n−1) , by

Lemma 12.3.5. Now, MinCutRep fails, only if all the n(n − 1) executions of MinCut fail. But these executions
are independent, as such, the probability to this happen is at most(

1 − 2
n(n − 1)

)n(n−1)
≤ exp

(
−

2
n(n − 1) · n(n − 1)

)
= exp(−2) < 0.14,

since 1 − x ≤ e−x for 0 ≤ x ≤ 1.

Theorem 12.3.9. One can compute the minimum cut in O(n4) time with constant probability to get a correct
result. In O

(
n4 log n

)
time the minimum cut is returned with high probability.

12.4. A faster algorithm
The algorithm presented in the previous section is extremely simple. Which raises the question of whether we
can get a faster algorithm?

So, why MinCutRep needs so many executions? Well, the probability of success in the first ν iterations is

P
[
E0 ∩ . . . ∩ Eν−1

]
≥

ν−1∏
i=0

(
1 − 2

n − i

)
=

ν−1∏
i=0

n − i − 2
n − i

=
n − 2

n
·

n − 3
n − 1 ·

n − 4
n − 2 . . . =

(n − ν)(n − ν − 1)
n · (n − 1) . (12.2)

Namely, this probability deteriorates very quickly toward the end of the execution, when the graph becomes
small enough. (To see this, observe that for ν = n/2, the probability of success is roughly 1/4, but for ν = n−

√
n

the probability of success is roughly 1/n.)
So, the key observation is that as the graph get smaller the probability to make a bad choice increases. So,

instead of doing the amplification from the outside of the algorithm, we will run the new algorithm more times
when the graph is smaller. Namely, we put the amplification directly into the algorithm.

The basic new operation we use is Contract, depicted in Figure 12.6, which also depict the new algorithm
FastCut.

This would require a more involved algorithm, thats life.
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Contract ( G, t )
begin
while |V(G)| > t do

Pick a random edge e in G.
G← G/e

return G
end

FastCut(G = (V,E))
G – multi-graph

begin
n← |V(G)|
if n ≤ 6 then

Compute (via brute force) minimum cut
of G and return cut.

t ←
⌈
1 + n/

√
2
⌉

H1 ← Contract(G, t)
H2 ← Contract(G, t)
/* Contract is randomized!!! */
X1 ← FastCut(H1),
X2 ← FastCut(H2)
return minimum cut out of X1 and X2.

end

Figure 12.6: Contract(G, t) shrinks G till it has only t vertices. FastCut computes the minimum cut using
Contract.

Lemma 12.4.1. The running time of FastCut(G) is O
(
n2 log n

)
, where n = |V(G)|.

Proof: Well, we perform two calls to Contract(G, t) which takes O(n2) time. And then we perform two recursive
calls on the resulting graphs. We have

T(n) = O(n2) + 2T
(
n/
√

2
)
.

The solution to this recurrence is O
(
n2 log n

)
as one can easily (and should) verify.

Exercise 12.4.2. Show that one can modify FastCut so that it uses only O(n2) space.

Lemma 12.4.3. The probability that Contract
(
G,n/
√

2
)
had not contracted the minimum cut is at least 1/2.

Namely, the probability that the minimum cut in the contracted graph is still a minimum cut in the original
graph is at least 1/2.

Proof: Just plug in ν = n − t = n −
⌈
1 + n/

√
2
⌉
into Eq. (12.2). We have

P
[
E0 ∩ . . . ∩ En−t

]
≥

t(t − 1)
n · (n − 1) =

⌈
1 + n/

√
2
⌉ (⌈

1 + n/
√

2
⌉
− 1

)
n(n − 1) ≥

1
2 .

The following lemma bounds the probability of success.

Lemma 12.4.4. FastCut finds the minimum cut with probability larger than Ω(1/log n).

Proof: Let Th be the recursion tree of the algorithm of depth h = Θ(log n). Color an edge of recursion tree by
black if the contraction succeeded. Clearly, the algorithm succeeds if there is a path from the root to a leaf that
is all black. This is exactly the settings of Lemma 12.1.1, and we conclude that the probability of success is at
least 1/(h + 1) = Θ(1/log n), as desired.

Exercise 12.4.5. Prove, that running FastCut repeatedly c · log2 n times, guarantee that the algorithm outputs
the minimum cut with probability ≥ 1 − 1/n2, say, for c a constant large enough.
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Theorem 12.4.6. One can compute the minimum cut in a graph G with n vertices in O(n2 log3 n) time. The
algorithm succeeds with probability ≥ 1 − 1/n2.

Proof: We do amplification on FastCut by running it O(log2 n) times. The running time bound follows from
Lemma 12.4.1. The bound on the probability follows from Lemma 12.4.4, and using the amplification analysis
as done in Lemma 12.3.8 for MinCutRep.

12.5. Bibliographical Notes
The MinCut algorithm was developed by David Karger during his PhD thesis in Stanford. The fast algorithm
is a joint work with Clifford Stein. The basic algorithm of the mincut is described in [MR95, pages 7–9], the
faster algorithm is described in [MR95, pages 289–295].

Galton-Watson process. The idea of using coloring of the edges of a tree to analyze FastCut might be new
(i.e., Section 12.1.2).
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Part V
Network flow

Chapter 13

Network Flow

13.1. Network Flow
We would like to transfer as much “merchandise” as possible from one point to another. For example, we have
a wireless network, and one would like to transfer a large file from s to t. The network have limited capacity,
and one would like to compute the maximum amount of information one can transfer.

s

13

4
10

14

t
7

4

12
20

9

16
u v

w x

Figure 13.1: A network flow.

Specifically, there is a network and capacities associated with each
connection in the network. The question is how much “flow” can you
transfer from a source s into a sink t. Note, that here we think about
the flow as being splitable, so that it can travel from the source to the
sink along several parallel paths simultaneously. So, think about our
network as being a network of pipe moving water from the source the
sink (the capacities are how much water can a pipe transfer in a given
unit of time). On the other hand, in the internet traffic is packet based
and splitting is less easy to do.

Definition 13.1.1. Let G = (V,E) be a directed graph. For every edge (u, v) ∈ E(G) we have an associated edge
capacity c(u, v), which is a non-negative number. If the edge (u, v) < G then c(u, v) = 0. In addition, there is a
source vertex s and a target sink vertex t.

The entities G, s, t and c(·) together form a flow network or simply a network. An example of such a
flow network is depicted in Figure 13.1.
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We would like to transfer as much flow from the source s to the sink t.
Specifically, all the flow starts from the source vertex, and ends up in the
sink. The flow on an edge is a non-negative quantity that can not exceed
the capacity constraint for this edge. One possible flow is depicted on
the left figure, where the numbers a/b on an edge denote a flow of a units
on an edge with capacity at most b.

We next formalize our notation of a flow.
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Definition 13.1.2 (flow). A flow in a network is a function f (·, ·) on the edges of G such that:
(A) Bounded by capacity: For any edge (u, v) ∈ E, we have f (u, v) ≤ c(u, v).

Specifically, the amount of flow between u and v on the edge (u, v) never exceeds its capacity c(u, v).
(B) Anti symmetry: For any u, v we have f (u, v) = − f (v,u).
(C) There are two special vertices: (i) the source vertex s (all flow starts from the source), and the sink

vertex t (all the flow ends in the sink).
(D) Conservation of flow: For any vertex u ∈ V \ {s, t}, we have

∑
v

f (u, v) = 0.¬ Namely, for any internal

node, all the flow that flows into a vertex leaves this vertex.

The amount of flow (or simply flow) of f , called the value of f , is | f | =
∑
v∈V

f (s, v).

Note, that a flow on an edge can be negative (i.e., there is a positive flow flowing on this edge in the other
direction).

Problem 13.1.3 (Maximum flow). Given a network G find the maximum flow in G. Namely, compute a legal
flow f such that | f | is maximized.

13.2. Some properties of flows and residual networks

For two sets X,Y ⊆ V, let f (X,Y ) =
∑

x∈X ,y∈Y f (x, y). We will slightly abuse the notations and refer to f
(
{v} ,S

)
by f (v,S), where v ∈ V(G).

Observation 13.2.1. By definition, we have | f | = f (s,V).

Lemma 13.2.2. For a flow f , the following properties holds:
(i) ∀u ∈ V(G) we have f (u,u) = 0,
(ii) ∀X ⊆ V we have f (X,X) = 0,
(iii) ∀X,Y ⊆ V we have f (X,Y ) = − f (Y,X),
(iv) ∀X,Y, Z ⊆ V such that X∩Y = ∅ we have that f (X∪Y, Z) = f (X, Z)+ f (Y, Z) and f (Z,X∪Y ) = f (Z,X)+ f (Z,Y ).
(v) For all u ∈ V \ {s, t}, we have f (u,V) = f (V,u) = 0.

Proof: Property (i) holds since (u,u) it not an edge in the graph, and as such its flow is zero. As for property
(ii), we have

f (X,X) =
∑

{u,v }⊆X ,u,v

( f (u, v) + f (v,u)) +
∑
u∈X

f (u,u) =
∑

{u,v }⊆X ,u,v

( f (u, v) − f (u, v)) +
∑
u∈X

0 = 0,

by the anti-symmetry property of flow (Definition 13.1.2 (B)).
Property (iii) holds immediately by the anti-symmetry of flow, as

f (X,Y ) =
∑

x∈X ,y∈Y

f (x, y) = −
∑

x∈X ,y∈Y

f (y, x) = − f (Y,X).

(iv) This case follows immediately from definition.
Finally (v) is a restatement of the conservation of flow property.

Claim 13.2.3. | f | = f (V, t).
¬This law for electric circuits is known as Kirchhoff’s Current Law.
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Figure 13.2: (i) A flow network, and (ii) the resulting residual network. Note, that f (u,w) = − f (w,u) = −1 and
as such cf (u,w) = 10 − (−1) = 11.

Proof: We have:

| f | = f (s,V) = f
(
V \ (V \ {s}),V

)
= f (V,V) − f (V \ {s} ,V)
= − f (V \ {s} ,V) = f (V,V \ {s})
= f (V, t) + f (V,V \ {s, t})

= f (V, t) +
∑

u∈V\{s,t }
f (V,u)

= f (V, t) +
∑

u∈V\{s,t }
0

= f (V, t),

since f (V,V) = 0 by Lemma 13.2.2 (i) and f (V,u) = 0 by Lemma 13.2.2 (iv).

Definition 13.2.4. Given capacity c and flow f , the residual capacity of an edge (u, v) is

cf (u, v) = c(u, v) − f (u, v).

Intuitively, the residual capacity cf (u, v) on an edge (u, v) is the amount of unused capacity on (u, v). We can
next construct a graph with all edges that are not being fully used by f , and as such can serve to improve f .

Definition 13.2.5. Given f , G = (V,E) and c, as above, the residual graph (or residual network) of G and f
is the graph G f =

(
V,E f

)
where

E f =
{
(u, v) ∈ V × V

�� cf (u, v) > 0
}
.

Note, that by the definition of E f , it might be that an edge (u, v) that appears in E might induce two
edges in E f . Indeed, consider an edge (u, v) such that f (u, v) < c(u, v) and (v,u) is not an edge of G. Clearly,
cf (u, v) = c(u, v) − f (u, v) > 0 and (u, v) ∈ E f . Also,

cf (v,u) = c(v,u) − f (v,u) = 0 − (− f (u, v)) = f (u, v),

since c(v,u) = 0 as (v,u) is not an edge of G. As such, (v,u) ∈ E f . This states that we can always reduce the
flow on the edge (u, v) and this is interpreted as pushing flow on the edge (v,u). See Figure 13.2 for an example
of a residual network.

Since every edge of G induces at most two edges in G f , it follows that G f has at most twice the number of
edges of G; formally,

��E f

�� ≤ 2 |E |.

Lemma 13.2.6. Given a flow f defined over a network G, then the residual network G f together with cf form
a flow network.

96



Proof: One need to verify that cf (·) is always a non-negative function, which is true by the definition of E f .

The following lemma testifies that we can improve a flow f on G by finding a any legal flow h in the residual
network G f .

Lemma 13.2.7. Given a flow network G = (V,E), a flow f in G, and a flow h in G f , where G f is the residual
network of f . Then f + h is a (legal) flow in G and its capacity is | f + h| = | f | + |h|.

Proof: By definition, we have ( f + h)(u, v) = f (u, v) + h(u, v) and thus ( f + h)(X,Y ) = f (X,Y ) + h(X,Y ). We need
to verify that f + h is a legal flow, by verifying the properties required to it by Definition 13.1.2.

Anti symmetry holds since ( f + h)(u, v) = f (u, v) + h(u, v) = − f (v,u) − h(v,u) = −( f + h)(v,u).
Next, we verify that the flow f + h is bounded by capacity. Indeed,

( f + h)(u, v) ≤ f (u, v) + h(u, v) ≤ f (u, v) + cf (u, v) = f (u, v) + (c(u, v) − f (u, v)) = c(u, v).

For u ∈ V − s − t we have ( f + h)(u,V) = f (u,V) + h(u,V) = 0 + 0 = 0 and as such f + h comply with the
conservation of flow requirement.

Finally, the total flow is

| f + h| = ( f + h)(s,V) = f (s,V) + h(s,V) = | f | + |h| .
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Figure 13.3: An augmenting path for
the flow of Figure 13.2.

Definition 13.2.8. For G and a flow f , a path π in G f between s and
t is an augmenting path.

Note, that all the edges of π has positive capacity in G f , since
otherwise (by definition) they would not appear in E f . As such, given
a flow f and an augmenting path π, we can improve f by pushing a
positive amount of flow along the augmenting path π. An augmenting
path is depicted on the right, for the network flow of Figure 13.2.

Definition 13.2.9. For an augmenting path π let cf (π) be the max-
imum amount of flow we can push through π. We call cf (π) the
residual capacity of π. Formally,

cf (π) = min
(u,v)∈π

cf (u, v).
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Figure 13.4: The flow resulting from applying the
residual flow fp of the path p of Figure 13.3 to the
flow of Figure 13.2.

We can now define a flow that realizes the flow along
π. Indeed:

fπ(u, v) =


cf (π) if (u, v) is in π

−cf (π) if (v,u) is in π

0 otherwise.

Lemma 13.2.10. For an augmenting path π, the flow
fπ is a flow in G f and | fπ | = cf (π) > 0.

We can now use such a path to get a larger flow.

Lemma 13.2.11. Let f be a flow, and let π be an augmenting path for f . Then f + fπ is a “better” flow.
Namely, | f + fπ | = | f | + | fπ | > | f |.
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Namely, f + fπ is flow with larger value than f . Consider the flow in Figure 13.4.

Can we continue improving it? Well, if you inspect the residual network of
this flow, depicted on the right. Observe that s is disconnected from t in
this residual network. So, we are unable to push any more flow. Namely, we
found a solution which is a local maximum solution for network flow. But
is that a global maximum? Is this the maximum flow we are looking for?
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13.3. The Ford-Fulkerson method

mtdFordFulkerson(G, c)
begin

f ← Zero flow on G
while (G f has augmenting

path p) do
(* Recompute G f for
this check *)

f ← f + fp
return f

end

Given a network G with capacity constraints c, the above discus-
sion suggest a simple and natural method to compute a maximum
flow. This is known as the Ford-Fulkerson method for comput-
ing maximum flow, and is depicted on the left, we will refer to it
as the mtdFordFulkerson method.
It is unclear that this method (and the reason we do not refer to
it as an algorithm) terminates and reaches the global maximum
flow. We address these problems shortly.

13.4. On maximum flows
We need several natural concepts.

Definition 13.4.1. A directed cut (S,T) in a flow network G = (V,E) is a partition of V into S and T = V \ S,
such that s ∈ S and t ∈ T . We usually will refer to a directed cut as being a cut.

The net flow of f across a cut (S,T) is f (S,T) =
∑

s∈S,t∈T f (s, t).
The capacity of (S,T) is c(S,T) =

∑
s∈S,t∈T c(s, t).

The minimum cut is the cut in G with the minimum capacity.

Lemma 13.4.2. Let G, f ,s,t be as above, and let (S,T) be a cut of G. Then f (S,T) = | f |.

Proof: We have

f (S,T) = f (S,V) − f (S,S) = f (S,V) = f (s,V) + f (S − s,V) = f (s,V) = | f | ,

since T = V \ S, and f (S − s,V) =
∑

u∈S−s f (u,V) = 0 by Lemma 13.2.2 (v) (note that u can not be t as t ∈ T).

Claim 13.4.3. The flow in a network is upper bounded by the capacity of any cut (S,T) in G.

Proof: Consider a cut (S,T). We have | f | = f (S,T) =
∑

u∈S,v∈T f (u, v) ≤
∑

u∈S,v∈T c(u, v) = c(S,T).

In particular, the maximum flow is bounded by the capacity of the minimum cut. Surprisingly, the maximum
flow is exactly the value of the minimum cut.

Theorem 13.4.4 (Max-flow min-cut theorem). If f is a flow in a flow network G = (V,E) with source s
and sink t, then the following conditions are equivalent:
(A) f is a maximum flow in G.
(B) The residual network G f contains no augmenting paths.
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(C) | f | = c(S,T) for some cut (S,T) of G. And (S,T) is a minimum cut in G.

Proof: (A) ⇒ (B): By contradiction. If there was an augmenting path p then cf (p) > 0, and we can generate a
new flow f + fp, such that

�� f + fp
�� = | f | + cf (p) > | f | . A contradiction as f is a maximum flow.

(B) ⇒ (C): Well, it must be that s and t are disconnected in G f . Let

S =
{
v

���Exists a path between s and v in G f

}
and T = V \ S. We have that s ∈ S, t ∈ T , and for any u ∈ S and v ∈ T we have f (u, v) = c(u, v). Indeed, if
there were u ∈ S and v ∈ T such that f (u, v) < c(u, v) then (u, v) ∈ E f , and v would be reachable from s in G f ,
contradicting the construction of T .

This implies that | f | = f (S,T) = c(S,T). The cut (S,T) must be a minimum cut, because otherwise there
would be cut (S′,T ′) with smaller capacity c(S′,T ′) < c(S,T) = f (S,T) = | f |, On the other hand, by Lemma 13.4.3,
we have | f | = f (S′,T ′) ≤ c(S′,T ′). A contradiction.

(C) ⇒ (A) Well, for any cut (U,V), we know that | f | ≤ c(U,V). This implies that if | f | = c(S,T) then the
flow can not be any larger, and it is thus a maximum flow.

The above max-flow min-cut theorem implies that if mtdFordFulkerson terminates, then it had computed
the maximum flow. What is still allusive is showing that the mtdFordFulkerson method always terminates.
This turns out to be correct only if we are careful about the way we pick the augmenting path.

Chapter 14

Network Flow II - The Vengeance

14.1. Accountability

Figure 14.1: http://www.cs.berkeley.edu/~jrs/

The comic in Figure 14.1 is by Jonathan Shewchuk
and is referring to the Calvin and Hobbes comics.

People that do not know maximum flows: es-
sentially everybody.

Average salary on earth < $5,000
People that know maximum flow - most of them

work in programming related jobs and make at
least $10,000 a year.

Salary of people that learned maximum flows:
> $10,000

Salary of people that did not learn maximum
flows: < $5,000

Salary of people that know Latin: 0 (unem-
ployed).
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Thus, by just learning maximum flows (and not knowing Latin) you can double your future
salary!

14.2. The Ford-Fulkerson Method
The mtdFordFulkerson method is depicted on the right.

Lemma 14.2.1. If the capacities on the edges of G are in-
tegers, then mtdFordFulkerson runs in O(m | f ∗ |) time, where
| f ∗ | is the amount of flow in the maximum flow and m =
|E(G)|.

mtdFordFulkerson(G,s,t)
Initialize flow f to zero
while ∃ path π from s to t in G f do

cf (π) ← min
{
cf (u, v)

��� (u, v) ∈ π }
for ∀(u, v) ∈ π do

f (u, v) ← f (u, v) + cf (π)
f (v,u) ← f (v,u) − cf (π)

Proof: Observe that the mtdFordFulkerson method performs only subtraction, addition and min operations.
Thus, if it finds an augmenting path π, then cf (π) must be a positive integer number. Namely, cf (π) ≥ 1. Thus,
| f ∗ | must be an integer number (by induction), and each iteration of the algorithm improves the flow by at
least 1. It follows that after | f ∗ | iterations the algorithm stops. Each iteration takes O(m + n) = O(m) time, as
can be easily verified.

The following observation is an easy consequence of our discussion.

Observation 14.2.2 (Integrality theorem). If the capacity function c takes on only integral values, then
the maximum flow f produced by the mtdFordFulkerson method has the property that | f | is integer-valued.
Moreover, for all vertices u and v, the value of f (u, v) is also an integer.

14.3. The Edmonds-Karp algorithm
The Edmonds-Karp algorithm works by modifying the mtdFordFulkerson method so that it always returns the
shortest augmenting path in G f (i.e., path with smallest number of edges). This is implemented by finding π
using BFS in G f .

Definition 14.3.1. For a flow f , let δf (v) be the length of the shortest path from the source s to v in the residual
graph G f . Each edge is considered to be of length 1.

We will shortly prove that, for any vertex v ∈ V\{s, t}, the function δf (v), in the residual network G f , increases
monotonically with each flow augmentation. We delay proving this (key) technical fact (see Lemma 14.3.5
below), and first show its implications.

Lemma 14.3.2. During the execution of the Edmonds-Karp algorithm, an edge (u, v) might disappear (and thus
reappear) from G f at most n/2 times throughout the execution of the algorithm, where n = |V(G)|.

Proof: Consider an iteration when the edge (u, v) disappears. Clearly, in this iteration the edge (u, v) appeared in
the augmenting path π. Furthermore, this edge was fully utilized; namely, cf (π) = cf (uv), where f is the flow in
the beginning of the iteration when it disappeared. We continue running Edmonds-Karp till (u, v) “magically”
reappears. This means that in the iteration before (u, v) reappeared in the residual graph, the algorithm handled
an augmenting path σ that contained the reverse edge (v,u). Let g be the flow used to compute σ. We have,
by the monotonicity of δ(·) [i.e., Lemma 14.3.5 below], that

δg(u) = δg(v) + 1 ≥ δf (v) + 1 = δf (u) + 2

as Edmonds-Karp is always augmenting along the shortest path. Namely, the distance of s to u had increased
by 2 between its disappearance and its reappearance. Since δ0(u) ≥ 0 and the maximum value of δ?(u) is n, it
follows that (u, v) can disappear and reappear at most n/2 times during the execution of the Edmonds-Karp
algorithm.
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(i) (ii) (iii)

Figure 14.2: (i) A bipartite graph. (ii) A maximum matching in this graph. (iii) A perfect matching (in a
different graph).

Observe that δ?(u) might become infinity at some point during the algorithm execution (i.e., u is no longer
reachable from s). If so, by monotonicity, the edge (u, v) would never appear again, in the residual graph, in
any future iteration of the algorithm.

Observation 14.3.3. Every time we add an augmenting path during the execution of the Edmonds-Karp al-
gorithm, at least one edge disappears from the residual graph G?. Indeed, every edge that realizes the residual
capacity (of the augmenting path) will disappear once we push the maximum possible flow along this path.

Lemma 14.3.4. The Edmonds-Karp algorithm handles at most O(nm) augmenting paths before it stops. Its
running time is O

(
nm2), where n = |V(G)| and m = |E(G)|.

Proof: Every edge might disappear at most n/2 times during Edmonds-Karp execution, by Lemma 14.3.2. Thus,
there are at most nm/2 edge disappearances during the execution of the Edmonds-Karp algorithm. At each
iteration, we perform path augmentation, and at least one edge disappears along it from the residual graph.
Thus, the Edmonds-Karp algorithm perform at most O(mn) iterations.

Performing a single iteration of the algorithm boils down to computing an augmenting path. Computing
such a path takes O(m) time as we have to perform BFS to find the augmenting path. It follows, that the overall
running time of the algorithm is O

(
nm2).

We still need to prove the aforementioned monotonicity property. (This is the only part in our discussion
of network flow where the argument gets a bit tedious. So bear with us, after all, you are going to double your
salary here.)

Lemma 14.3.5. If the Edmonds-Karp algorithm is run on a flow network G = (V,E) with source s and sink
t, then for all vertices v ∈ V \ {s, t}, the shortest path distance δf (v) in the residual network G f increases
monotonically with each flow augmentation.

Proof: Assume, for the sake of contradiction, that this is false. Consider the flow just after the first iteration
when this claim failed. Let f denote the flow before this (fatal) iteration was performed, and let g be the flow
after.

Let v be the vertex such that δg(v) is minimal, among all vertices for which the monotonicity fails. Formally,
this is the vertex v where δg(v) is minimal and

δg(v) < δf (v). (*)

Let πg = s → · · · → u → v be the shortest path in Gg from s to v. Clearly, (u, v) ∈ E
(
Gg

)
, and thus

δg(u) = δg(v) − 1.
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πg

uv

By the choice of v it must be that δg(u) ≥ δf (u), since otherwise the monotonicity property fails for u, and
u is closer to s than v in Gg, and this, in turn, contradicts our choice of v as being the closest vertex to s that
fails the monotonicity property. There are now two possibilities:
(i) If (u, v) ∈ E

(
G f

)
then

δf (v) ≤ δf (u) + 1 ≤ δg(u) + 1 = δg(v) − 1 + 1 = δg(v).

This contradicts our assumptions that δf (v) > δg(v).

(ii) If (u, v) is not in E
(
G f

)
then the augmenting path σf used in computing g from f contains the edge (v,u).

Indeed, the edge (u, v) reappeared in the residual graph Gg (while not being present in G f ). The only
way this can happens is if the augmenting path σf pushed a flow in the other direction on the edge (u, v).
Namely, (v,u) ∈ σf .

t

s

πg

uv

σf

However, the algorithm always augment along the shortest path. We have that

δf (u) = δf (v) + 1 >︸︷︷︸
(∗)

δg(v) + 1 > δg(v) = δg(u) + 1,

by the definition of u. Thus, δf (u) > δg(u) (i.e., the monotonicity property fails for u) and δg(u) < δg(v).
A contradiction to the choice of v.

14.4. Applications and extensions for Network Flow

14.4.1. Maximum Bipartite Matching
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Figure 14.3

Definition 14.4.1. For an undirected graph G = (V,E) a matching is a subset
of edges M ⊆ E such that for all vertices v ∈ V , at most one edge of M is
incident on v.

A maximum matching is a matching M such that for any matching M ′ we
have |M | ≥ |M ′ |.

A matching is perfect if it involves all vertices. See Figure 14.2 for examples
of these definitions.

Theorem 14.4.2. One can compute maximum bipartite matching using network flow in O(nm) time, for a
bipartite graph with n vertices and m edges.

Proof: Given a bipartite graph G, we create a new graph with a new source on the left side and sink on the
right, see Figure 14.3.

Direct all edges from left to right and set the capacity of all edges to 1. Let H be the resulting flow network.
It is now easy to verify that by the Integrality theorem, a flow in H is either 0 or one on every edge, and thus
a flow of value k in H is just a collection of k vertex disjoint paths between s and t in H, which corresponds to
a matching in G of size k.

Similarly, given a matching of size k in G, it can be easily interpreted as realizing a flow in H of size k.
Thus, computing a maximum flow in H results in computing a maximum matching in G. The running time of
the algorithm is O(nm2).

14.4.2. Extension: Multiple Sources and Sinks

Given a flow network with several sources and sinks, how can we compute maximum flow on such a network?
The idea is to create a super source, that send all its flow to the old sources and similarly create a super

sink that receives all the flow. See Figure 14.4. Clearly, computing flow in both networks in equivalent.

t1

t2

s1

s2

t1

t2

s1

s2
∞

s
∞ ∞

∞

t

(i) (ii)

Figure 14.4: (i) A flow network with several sources and sinks, and (ii) an equivalent flow network with a single
source and sink.
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Chapter 15

Network Flow III - Applications

15.1. Edge disjoint paths

15.1.1. Edge-disjoint paths in a directed graphs

Question 15.1.1. Given a graph G (either directed or undirected), two vertices s and t, and a parameter k,
the task is to compute k paths from s to t in G, such that they are edge disjoint; namely, these paths do not
share an edge.

To solve this problem, we will convert G (assume G is a directed graph for the time being) into a network
flow graph J, such that every edge has capacity 1. Find the maximum flow in J (between s and t). We claim
that the value of the maximum flow in the network J, is equal to the number of edge disjoint paths in G.

Lemma 15.1.2. If there are k edge disjoint paths in G between s and t, then the maximum flow value in J is
at least k.

Proof: Given k such edge disjoint paths, push one unit of flow along each such path. The resulting flow is legal
in h and it has value k.

Definition 15.1.3 (0/1-flow). A flow f is a 0/1-flow if every edge has either no flow on it, or one unit of flow.

Lemma 15.1.4. Let f be a 0/1 flow in a network J with flow value µ. Then there are µ edge disjoint paths
between s and t in J.

Proof: By induction on the number of edges in J that has one unit of flow assigned to them by f . If µ = 0 then
there is nothing to prove.

Otherwise, start traversing the graph J from s traveling only along edges with flow 1 assigned to them by f .
We mark such an edge as used, and do not allow one to travel on such an edge again. There are two possibilities:

(i) We reached the target vertex t. In this case, we take this path, add it to the set of output paths, and
reduce the flow along the edges of the generated path π to 0. Let H ′ be the resulting flow network and f ′ the
resulting flow. We have | f ′ | = µ − 1, H ′ has less edges, and by induction, it has µ − 1 edge disjoint paths in H ′

between s and t. Together with π this forms µ such paths.
(ii) We visit a vertex v for the second time. In this case, our traversal contains a cycle C, of edges in J that

have flow 1 on them. We set the flow along the edges of C to 0 and use induction on the remaining graph (since
it has less edges with flow 1 on them). The value of the flow f did not change by removing C, and as such it
follows by induction that there are µ edge disjoint paths between s and t in J.

Since the graph G is simple, there are at most n = |V(J)| edges that leave s. As such, the maximum flow in
J is ≤ n. Thus, applying the Ford-Fulkerson algorithm, takes O(mn) time. The extraction of the paths can also
be done in linear time by applying the algorithm in the proof of Lemma 15.1.4. As such, we get:

Theorem 15.1.5. Given a directed graph G with n vertices and m edges, and two vertices s and t, one can
compute the maximum number of edge disjoint paths between s and t in G, in O(mn) time.
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As a consequence we get the following “cute” result.

Theorem 15.1.6 (Menger’s theorem). In a directed graph G with nodes s and t the maximum number of
edge disjoint s − t paths is equal to the minimum number of edges whose removal separates s from t.

Proof: Let U be a collection of edge-disjoint paths from s to t in G. If we remove a set F of edges from G
and separate s from t, then it must be that every path in U uses at least one edge of F. Thus, the number
of edge-disjoint paths is bounded by the number of edges needed to be removed to separate s and t. Namely,
|U | ≤ |F |.

As for the other direction, let F be a set of edges that its removal separates s and t. We claim that the
set F form a cut in G between s and t. Indeed, let S be the set of all vertices in G that are reachable from s
without using an edge of F. Clearly, if F is minimal then it must be all the edges of the cut (S,T) (in particular,
if F contains some edge which is not in (S,T) we can remove it and get a smaller separating set of edges). In
particular, the smallest set F with this separating property has the same size as the minimum cut between s
and t in G, which is by the max-flow mincut theorem, also the maximum flow in the graph G (where every edge
has capacity 1).

But then, by Theorem 15.1.5, there are |F | edge disjoint paths in G (since |F | is the amount of the maximum
flow).

15.1.2. Edge-disjoint paths in undirected graphs

We would like to solve the s-t disjoint path problem for an undirected graph.

Problem 15.1.7. Given undirected graph G, s and t, find the maximum number of edge-disjoint paths in G
between s and t.

The natural approach is to duplicate every edge in the undirected graph G, and get a (new) directed graph
J. Next, apply the algorithm of Section 15.1.1 to J.

So compute for J the maximum flow f (where every edge has capacity 1). The problem is the flow f might
use simultaneously the two edges (u, v) and (v,u). Observe, however, that in such case we can remove both edges
from the flow f . In the resulting flow is legal and has the same value. As such, if we repeatedly remove those
“double edges” from the flow f , the resulting flow f ′ has the same value. Next, we extract the edge disjoint
paths from the graph, and the resulting paths are now edge disjoint in the original graph.

Lemma 15.1.8. There are k edge-disjoint paths in an undirected graph G from s to t if and only if the maximum
value of an s− t flow in the directed version J of G is at least k. Furthermore, the Ford-Fulkerson algorithm can
be used to find the maximum set of disjoint s-t paths in G in O(mn) time.

15.2. Circulations with demands

15.2.1. Circulations with demands

−3

−3

2

4

3 3

2
2

2

Figure 15.1: Instance of
circulation with demands.

We next modify and extend the network flow problem. Let G = (V,E) be a
directed graph with capacities on the edges. Each vertex v has a demand dv:

• dv > 0: sink requiring dv flow into this node.

• dv < 0: source with −dv units of flow leaving it.

• dv = 0: regular node.
Let S denote all the source vertices and T denote all the sink/target vertices.
For a concrete example of an instance of circulation with demands, see figure

on the right.
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Figure 15.2: A valid circula-
tion for the instance of Fig-
ure 15.1.

Definition 15.2.1. A circulation with demands {dv} is a function f that as-
signs nonnegative real values to the edges of G, such that:

• Capacity condition: ∀e ∈ E we have f (e) ≤ c(e).

• Conservation condition: ∀v ∈ V we have f in(v) − f out (v) = dv.

Here, for a vertex v, let f in(v) denotes the flow into v and f out (v) denotes the
flow out of v.

Problem 15.2.2. Is there a circulation that comply with the demand require-
ments?

See Figure 15.1 and Figure 15.2 for an example.

Lemma 15.2.3. If there is a feasible circulation with demands {dv}, then
∑

v dv = 0.

Proof: Since it is a circulation, we have that dv = f in(v) − f out (v). Summing over all vertices:
∑

v dv =∑
v f in(v) −

∑
v f out (v). The flow on every edge is summed twice, one with positive sign, one with negative sign.

As such, ∑
v

dv =
∑
v

f in(v) −
∑
v

f out (v) = 0,

which implies the claim.

In particular, this implies that there is a feasible solution only if

D =
∑

v,dv>0
dv =

∑
v,dv<0

−dv .

15.2.1.1. The algorithm for computing a circulation

The algorithm performs the following steps:
(A) G = (V,E) - input flow network with demands on vertices.
(B) Check that D =

∑
v,dv>0 dv =

∑
v,dv<0 −dv.

(C) Create a new super source s, and connect it to all the vertices v with dv < 0. Set the capacity of the edge
(s, v) to be −dv.

(D) Create a new super target t. Connect to it all the vertices u with du > 0. Set capacity on the new edge
(u, t) to be du.

(E) On the resulting network flow network J (which is a standard instance of network flow). Compute
maximum flow on J from s to t. If it is equal to D, then there is a valid circulation, and it is the flow
restricted to the original graph. Otherwise, there is no valid circulation.

Theorem 15.2.4. There is a feasible circulation with demands {dv} in G if and only if the maximum s-t flow
in J has value D. If all capacities and demands in G are integers, and there is a feasible circulation, then there
is a feasible circulation that is integer valued.

15.3. Circulations with demands and lower bounds
Assume that in addition to specifying a circulation and demands on a network G, we also specify for each edge a
lower bound on how much flow should be on each edge. Namely, for every edge e ∈ E(G), we specify `(e) ≤ c(e),
which is a lower bound to how much flow must be on this edge. As before we assume all numbers are integers.

We need now to compute a flow f that fill all the demands on the vertices, and that for any edge e, we have
`(e) ≤ f (e) ≤ c(e). The question is how to compute such a flow?
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Let use start from the most naive flow, which transfer on every edge, exactly its lower bound. This is a
valid flow as far as capacities and lower bounds, but of course, it might violate the demands. Formally, let
f0(e) = `(e), for all e ∈ E(G). Note that f0 does not even satisfy the conservation rule:

Lv = f in0 (v) − f out0 (v) =
∑

e into v

`(e) −
∑

e out o f v

`(e).

If Lv = dv, then we are happy, since this flow satisfies the required demand. Otherwise, there is imbalance
at v, and we need to fix it.

Formally, we set a new demand d ′v = dv − Lv for every node v, and the capacity of every edge e to be
c′(e) = c(e) − `(e). Let G′ denote the new network with those capacities and demands (note, that the lower
bounds had “disappeared”). If we can find a circulation f ′ on G′ that satisfies the new demands, then clearly,
the flow f = f0 + f ′, is a legal circulation, it satisfies the demands and the lower bounds.

But finding such a circulation, is something we already know how to do, using the algorithm of Theo-
rem 15.2.4. Thus, it follows that we can compute a circulation with lower bounds.

Lemma 15.3.1. There is a feasible circulation in G if and only if there is a feasible circulation in G′.
If all demands, capacities, and lower bounds in G are integers, and there is a feasible circulation, then there

is a feasible circulation that is integer valued.

Proof: Let f ′ be a circulation in G′. Let f (e) = f0(e) + f ′(e). Clearly, f satisfies the capacity condition in G,
and the lower bounds. Furthermore,

f in(v) − f out (v) =
∑

e into v

(`(e) + f ′(e)) −
∑

e out o f v

(`(e) + f ′(e)) = Lv + (dv − Lv) = dv .

As such f satisfies the demand conditions on G.
Similarly, let f be a valid circulation in G. Then it is easy to check that f ′(e) = f (e) − `(e) is a valid

circulation for G′.

15.4. Applications

15.4.1. Survey design

We would like to design a survey of products used by consumers (i.e., “Consumer i: what did you think of
product j?”). The ith consumer agreed in advance to answer a certain number of questions in the range [ci, c′i ].
Similarly, for each product j we would like to have at least pj opinions about it, but not more than p′j . Each
consumer can be asked about a subset of the products which they consumed. In particular, we assume that
we know in advance all the products each consumer used, and the above constraints. The question is how to
assign questions to consumers, so that we get all the information we want to get, and every consumer is being
asked a valid number of questions.

The idea of our solution is to reduce the design of the survey to the problem of computing a circulation in
graph. First, we build a bipartite graph having consumers on one side, and products on the other side. Next,
we insert the edge between consumer i and product j if the product was used by this consumer. The capacity
of this edge is going to be 1. Intuitively, we are going to compute a flow in this network which is going to be
an integer number. As such, every edge would be assigned either 0 or 1, where 1 is interpreted as asking the
consumer about this product.
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The next step, is to connect a source to all the consumers, where the
edge (s, i) has lower bound ci and upper bound c′i . Similarly, we connect
all the products to the destination t, where ( j, t) has lower bound pj and
upper bound p′j . We would like to compute a flow from s to t in this
network that comply with the constraints. However, we only know how
to compute a circulation on such a network. To overcome this, we create
an edge with infinite capacity between t and s. Now, we are only looking
for a valid circulation in the resulting graph G which complies with the
aforementioned constraints. See figure on the right for an example of G.

Given a circulation f in G it is straightforward to interpret it as a
survey design (i.e., all middle edges with flow 1 are questions to be asked in the survey). Similarly, one can
verify that given a valid survey, it can be interpreted as a valid circulation in G. Thus, computing circulation
in G indeed solves our problem.

We summarize:

Lemma 15.4.1. Given n consumers and u products with their constraints c1, c′1, c2, c′2, . . . , cn, c
′
n, p1, p′1, . . . , pu, p

′
u

and a list of length m of which products where used by which consumers. An algorithm can compute a valid
survey under these constraints, if such a survey exists, in time O((n + u)m2).

Chapter 16

Network Flow IV - Applications II

16.1. Airline Scheduling
Problem 16.1.1. Given information about flights that an airline needs to provide, generate a profitable schedule.

The input is a detailed information about “legs” of flight that the airline need to serve. We denote this set
of flights by F. We would like to find the minimum number of airplanes needed to carry out this schedule. For
an example of possible input, see Figure 16.1 (i).

We can use the same airplane for two segments i and j if the destination of i is the origin of the segment j
and there is enough time in between the two flights for required maintenance. Alternatively, the airplane can
fly from dest(i) to origin( j) (assuming that the time constraints are satisfied).

Example 16.1.2. As a concrete example, consider the flights:
(A) Boston (depart 6 A.M.) - Washington D.C. (arrive 7 A.M,).
(B) Washington (depart 8 A.M.) - Los Angeles (arrive 11 A.M.)
(C) Las Vegas (depart 5 P.M.) - Seattle (arrive 6 P.M.)
This schedule can be served by a single airplane by adding the leg “Los Angeles (depart 12 noon)- Las Vegas
(1 P,M.)” to this schedule.
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1: Boston (depart 6 A.M.) - Washington DC (arrive 7 A.M,).
2: Urbana (depart 7 A.M.) - Champaign (arrive 8 A.M.)
3: Washington (depart 8 A.M.) - Los Angeles (arrive 11 A.M.)
4: Urbana (depart 11 A.M.) - San Francisco (arrive 2 P.M.)
5: San Francisco (depart 2:15 P.M.) - Seattle (arrive 3:15 P.M.)
6: Las Vegas (depart 5 P.M.) - Seattle (arrive 6 P.M.).

1

2

3

4

5

6

(i) (ii)

Figure 16.1: (i) a set F of flights that have to be served, and (ii) the corresponding graph G representing these
flights.

16.1.1. Modeling the problem

The idea is to model the feasibility constraints by a graph. Specifically, G is going to be a directed graph over
the flight legs. For i and j, two given flight legs, the edge (i, j) will be present in the graph G if the same airplane
can serve both i and j; namely, the same airplane can perform leg i and afterwards serves the leg j.

Thus, the graph G is acyclic. Indeed, since we can have an edge (i, j) only if the flight j comes after the
flight i (in time), it follows that we can not have cycles.

We need to decide if all the required legs can be served using only k airplanes?

16.1.2. Solution

The idea is to perform a reduction of this problem to the computation of circulation. Specifically, we construct
a graph J, as follows:

u1 v1

u2 v2

u3 v3

u4 v4

u5 v5

u6 v6

1, 1

1, 1

1, 1

1, 1

1, 1

1, 1

−k

s
k
t

k

Figure 16.2: The resulting graph J for the instance
of airline scheduling from Figure 16.1.

• For every leg i, we introduce two vertices ui, vi ∈ VJ.
We also add a source vertex s and a sink vertex t to J.
We set the demand at t to be k, and the demand at s
to be −k (i.e., k units of flow are leaving s and need to
arrive to t). • Each flight on the list must be served.
This is forced by introducing an edge ei = (ui, vi), for
each leg i. We also set the lower bound on ei to be
1, and the capacity on ei to be 1 (i.e., `(ei) = 1 and
c(ei) = 1). • If the same plane can perform flight i and j
(i.e., (i, j) ∈ E(G)) then add an edge

(
vi,u j

)
with capacity

1 to J (with no lower bound constraint). • Since any
airplane can start the day with flight i, we add an edge
(s,ui) with capacity 1 to J, for all flights i. • Similarly,
any airplane can end the day by serving the flight j.
Thus, we add edge

(
vj, t

)
with capacity 1 to G, for all

flights j. • If we have extra planes, we do not have to
use them. As such, we introduce a “overflow” edge (s, t)
with capacity k, that can carry over all the unneeded
airplanes from s directly to t.

Let J denote the resulting graph. See Figure 16.2 for an example.

Lemma 16.1.3. There is a way to perform all flights of F using at most k planes if and only if there is a
feasible circulation in the network J.
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(i) (ii)

Figure 16.3: The (i) input image, and (ii) a possible segmentation of the image.

Proof: Assume there is a way to perform the flights using k ′ ≤ k flights. Consider such a feasible schedule.
The schedule of an airplane in this schedule defines a path π in the network J that starts at s and ends at t,
and we send one unit of flow on each such path. We also send k − k ′ units of flow on the edge (s, t). Note,
that since the schedule is feasible, all legs are being served by some airplane. As such, all the “middle” edges
with lower-bound 1 are being satisfied. Thus, this results is a valid circulation in J that satisfies all the given
constraints.

As for the other direction, consider a feasible circulation in J. This is an integer valued circulation by the
Integrality theorem. Suppose that k ′ units of flow are sent between s and t (ignoring the flow on the edge (s, t)).
All the edges of J (except (s, t)) have capacity 1, and as such the circulation on all other edges is either zero
or one (by the Integrality theorem). We convert this into k ′ paths by repeatedly traversing from the vertex s
to the destination t, removing the edges we are using in each such path after extracting it (as we did for the k
disjoint paths problem). Since we never use an edge twice, and J is acyclic, it follows that we would extract k ′

paths. Each of those paths correspond to one airplane, and the overall schedule for the airplanes is valid, since
all required legs are being served (by the lower-bound constraint).

Extensions and limitations. There are a lot of other considerations that we ignored in the above problem:
(i) airplanes have to undergo long term maintenance treatments every once in awhile, (ii) one needs to allocate
crew to these flights, (iii) schedule differ between days, and (iv) ultimately we interested in maximizing revenue
(a much more fluffy concept and much harder to explicitly describe).

In particular, while network flow is used in practice, real world problems are complicated, and network flow
can capture only a few aspects. More than undermining the usefulness of network flow, this emphasize the
complexity of real-world problems.

16.2. Image Segmentation
In the image segmentation problem, the input is an image, and we would like to partition it into background
and foreground. For an example, see Figure 16.3.
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The input is a bitmap on a grid where every grid node represents a
pixel. We covert this grid into a directed graph G, by interpreting every
edge of the grid as two directed edges. See the figure on the right to see
how the resulting graph looks like.

Specifically, the input for out problem is as follows: • A bitmap of
size N × N, with an associated directed graph G = (V,E). • For every
pixel i, we have a value fi ≥ 0, which is an estimate of the likelihood
of this pixel to be in foreground (i.e., the larger fi is the more probable
that it is in the foreground) • For every pixel i, we have (similarly) an
estimate bi of the likelihood of pixel i to be in background.

• For every two adjacent pixels i and j we have a separation penalty
pi j , which is the “price” of separating i from j. This quantity is defined
only for adjacent pixels in the bitmap. (For the sake of simplicity of
exposition we assume that pi j = pji. Note, however, that this assumption is not necessary for our discussion.)

Problem 16.2.1. Given input as above, partition V (the set of pixels) into two disjoint subsets F and B, such
that

q(F,B) =
∑
i∈F

fi +
∑
i∈B

bi −
∑

(i, j)∈E , |F∩{i, j } |=1
pi j .

is maximized.

We can rewrite q(F,B) as:

q(F,B) =
∑
i∈F

fi +
∑
j∈B

bj −
∑

(i, j)∈E , |F∩{i, j } |=1
pi j

=
∑
i∈v

( fi + bi) −
©«
∑
i∈B

fi +
∑
j∈F

bj +
∑

(i, j)∈E , |F∩{i, j } |=1
pi j

ª®¬.
Since the term

∑
i∈v( fi + bi) is a constant, maximizing q(F,B) is equivalent to minimizing u(F,B), where

u(F,B) =
∑
i∈B

fi +
∑
j∈F

bj +
∑

(i, j)∈E , |F∩{i, j } |=1
pi j . (16.1)

How do we compute this partition. Well, the basic idea is to compute a minimum cut in a graph such that
its price would correspond to u(F,B). Before dwelling into the exact details, it is useful to play around with
some toy examples to get some intuition. Note, that we are using the max-flow algorithm as an algorithm for
computing minimum directed cut.

s i t
fi biTo begin with, consider a graph having a source s, a vertex i, and a sink t. We set the

price of (s, i) to be fi and the price of the edge (i, t) to be bi. Clearly, there are two possible
cuts in the graph, either ({s, i} , {t}) (with a price bi) or ({s} , {i, t}) (with a price fi). In particular, every path
of length 2 in the graph between s and t forces the algorithm computing the minimum-cut (via network flow)
to choose one of the edges, to the cut, where the algorithm “prefers” the edge with lower price.

s
i

t
fi

bi

j bjfj

Next, consider a bitmap with two vertices i an j that are adjacent. Clearly, minimizing
the first two terms in Eq. (16.1) is easy, by generating length two parallel paths between
s and t through i and j. See figure on the right. Clearly, the price of a cut in this graph
is exactly the price of the partition of {i, j} into background and foreground sets. However, this ignores the
separation penalty pi j .
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ifi bi

j bj
fj

tpij pij

To this end, we introduce two new edges (i, j) and ( j, i) into the graph and set
their price to be pi j . Clearly, a price of a cut in the graph can be interpreted as
the value of u(F,B) of the corresponding sets F and B, since all the edges in the
segmentation from nodes of F to nodes of B are contributing their separation price to the cut price. Thus, if
we extend this idea to the directed graph G, the minimum-cut in the resulting graph would corresponds to the
required segmentation.

Let us recap: Given the directed grid graph G = (V,E) we add two special source and sink vertices, denoted
by s and t respectively. Next, for all the pixels i ∈ V , we add an edge ei = (s, i) to the graph, setting its capacity
to be c(ei) = fi. Similarly, we add the edge e′i = ( j, t) with capacity c(e′i) = bi. Similarly, for every pair of vertices
i. j in that grid that are adjacent, we assign the cost pi j to the edges (i, j) and ( j, i). Let J denote the resulting
graph.

The following lemma, follows by the above discussion.

Lemma 16.2.2. A minimum cut (F,B) in J minimizes u(F,B).

Using the minimum-cut max-flow theorem, we have:

Theorem 16.2.3. One can solve the segmentation problem, in polynomial time, by computing the max flow in
the graph J.

16.3. Project Selection
You have a small company which can carry out some projects out of a set of projects P. Associated with each
project i ∈ P is a revenue pi, where pi > 0 is a profitable project and pi < 0 is a losing project. To make things
interesting, there is dependency between projects. Namely, one has to complete some “infrastructure” projects
before one is able to do other projects. Namely, you are provided with a graph G = (P,E) such that (i, j) ∈ E if
and only if j is a prerequisite for i.

Definition 16.3.1. A set X ⊂ P is feasible if for all i ∈ X, all the prerequisites of i are also in X. Formally, for
all i ∈ X, with an edge (i, j) ∈ E, we have j ∈ X.

The profit associated with a set of projects X ⊆ P is profit(X) =
∑

i∈X pi.

Problem 16.3.2 (Project Selection Problem). Select a feasible set of projects maximizing the overall profit.

The idea of the solution is to reduce the problem to a minimum-cut in a graph, in a similar fashion to what
we did in the image segmentation problem.

16.3.1. The reduction

The reduction works by adding two vertices s and t to the graph G, we also perform the following modifications:
• For all projects i ∈ P with positive revenue (i.e., pi > 0) add the ei = (s, i) to G and set the capacity of the
edge to be c(ei) = pi, where s is the added source vertex.
• Similarly, for all projects j ∈ P, with negative revenue (i.e., pj < 0) add the edge e′j = ( j, t) to G and set
the edge capacity to c(e′j) = −pj , where t is the added sink vertex.
• Compute a bound on the max flow (and thus also profit) in this network: C =

∑
i∈P,pi>0 pi.

• Set capacity of all other edges in G to 4C (these are the dependency edges in the project, and intuitively
they are too expensive to be “broken” by a cut).

Let J denote the resulting network.
Let X ⊆ P be a set of feasible projects, and let X ′ = X ∪ {s} and Y ′ = (P \ X) ∪ {t}. Consider the s-t cut

(X ′,Y ′) in J. Note, that no edge of E(G) is in (X ′,Y ′) since X is a feasible set (i.e., there is no u ∈ X ′ and v ∈ Y ′

such that (u, v) ∈ E(G)).
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Lemma 16.3.3. The capacity of the cut (X ′,Y ′), as defined by a feasible project set X, is c(X ′,Y ′) = C−
∑

i∈X pi =
C − profit(X).

Proof: The edges of J are either:
(i) original edges of G (conceptually, they have price +∞),
(ii) edges emanating from s, and
(iii) edges entering t.
Since X is feasible, it follows that no edges of type (i) contribute to the cut. The edges entering t contribute to
the cut the value

β =
∑

i∈X and pi<0
−pi .

The edges leaving the source s contribute

γ =
∑

i<X and pi>0
pi =

∑
i∈P,pi>0

pi −
∑

i∈X and pi>0
pi = C −

∑
i∈X and pi>0

pi,

by the definition of C.
The capacity of the cut (X ′,Y ′) is

β + γ =
∑

i∈X and pi<0
(−pi) +

©«C −
∑

i∈X and pi>0
pi

ª®¬ = C −
∑
i∈X

pi = C − profit(X),

as claimed.

Lemma 16.3.4. If (X ′,Y ′) is a cut with capacity at most C in G, then the set X = X ′ \ {s} is a feasible set of
projects.

Namely, cuts (X ′,Y ′) of capacity ≤ C in J corresponds one-to-one to feasible sets which are profitable.

Proof: Since c(X ′,Y ′) ≤ C it must not cut any of the edges of G, since the price of such an edge is 4C. As such,
X must be a feasible set.

Putting everything together, we are looking for a feasible set X that maximizes profit(X) =
∑

i∈X pi. This
corresponds to a set X ′ = X ∪ {s} of vertices in J that minimizes C −

∑
i∈X pi, which is also the cut capacity

(X ′,Y ′). Thus, computing a minimum-cut in J corresponds to computing the most profitable feasible set of
projects.

Theorem 16.3.5. If (X ′,Y ′) is a minimum cut in J then X = X ′ \ {s} is an optimum solution to the project
selection problem. In particular, using network flow the optimal solution can be computed in polynomial time.

Proof: Indeed, we use network flow to compute the minimum cut in the resulting graph J. Note, that it is quite
possible that the most profitable project is still a net loss.

16.4. Baseball elimination
There is a baseball league taking place and it is nearing the end of the season. One would like to know which
teams are still candidates to winning the season.

Example 16.4.1. There 4 teams that have the following number of wins:

New York: 92, Baltimore: 91, Toronto: 91, Boston: 90,
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and there are 5 games remaining (all pairs except New York and Boston).
We would like to decide if Boston can still win the season? Namely, can Boston finish the season with as

many point as anybody else? (We are assuming here that at every game the winning team gets one point and
the losing team gets nada.¬)

First analysis. Observe, that Boston can get at most 92 wins. In particular, if New York wins any game
then it is over since New-York would have 93 points.

Thus, to Boston to have any hope it must be that both Baltimore wins against New York and Toronto wins
against New York. At this point in time, both teams have 92 points. But now, they play against each other,
and one of them would get 93 wins. So Boston is eliminated!

Second analysis. As before, Boston can get at most 92 wins. All three other teams gets X = 92 + 91 +
91 + (5 − 2) points together by the end of the league. As such, one of these three teams will get ≥ dX/3e = 93
points, and as such Boston is eliminated.

While the analysis of the above example is very cute, it is too tedious to be done each time we want to solve
this problem. Not to mention that it is unclear how to extend these analyses to other cases.

16.4.1. Problem definition

Problem 16.4.2. The input is a set S of teams, where for every team x ∈ S, the team has wx points accumulated
so far. For every pair of teams x, y ∈ S we know that there are gxy games remaining between x and y. Given a
specific team z, we would like to decide if z is eliminated?

Alternatively, is there away such that z would get as many wins as anybody else by the end of the season?

16.4.2. Solution

First, we can assume that z wins all its remaining games, and let m be the number of points z has in this case.
Our purpose now is to build a network flow so we can verify that no other team must get more than m points.

To this end, let s be the source (i.e., the source of wins). For every remaining game, a flow of one unit would
go from s to one of the teams playing it. Every team can have at most m −wx flow from it to the target. If the
max flow in this network has value

α =
∑

x,y,z,x<y

gxy

(which is the maximum flow possible) then there is a scenario such that all other teams gets at most m points
and z can win the season. Negating this statement, we have that if the maximum flow is smaller than α then z
is eliminated, since there must be a team that gets more than m points.

Construction. Let S′ = S \ {z} be the set of teams, and let

α =
∑

{x,y }⊆S′

gxy . (16.2)

We create a network flow G. For every team x ∈ S′ we add a vertex vx to the network G. We also add the
source and sink vertices, s and t, respectively, to G. vx

vy

uxy
gxys

m−
w
x

m
− w y

∞

∞
t

For every pair of teams x, y ∈ S′, such that gxy > 0 we create a node uxy,
and add an edge

(
s,uxy

)
with capacity gxy to G. We also add the edge

(
uxy, vx

)
and

(
uxy, vy

)
with infinite capacity to G. Finally, for each team x we add the

edge (vx, t) with capacity m − wx to G. How the relevant edges look like for a
pair of teams x and y is depicted on the right.¬nada = nothing.

114



Analysis. If there is a flow of value α in G then there is a way that all teams get at most m wins. Similarly,
if there exists a scenario such that z ties or gets first place then we can translate this into a flow in G of value
α. This implies the following result.
Theorem 16.4.3. Team z has been eliminated if and only if the maximum flow in G has value strictly smaller
than α. Thus, we can test in polynomial time if z has been eliminated.

16.4.3. A compact proof of a team being eliminated

Interestingly, once z is eliminated, we can generate a compact proof of this fact.
Theorem 16.4.4. Suppose that team z has been eliminated. Then there exists a “proof” of this fact of the
following form:
(A) The team z can finish with at most m wins.
(B) There is a set of teams Ŝ ⊂ S so that

∑
s∈Ŝ

wx +
∑
{x,y }⊆Ŝ

gxy > m
���Ŝ���.

(And hence one of the teams in Ŝ must end with strictly more than m wins.)

Proof: If z is eliminated then the max flow in G has value γ, which is smaller than α, see Eq. (16.2). By the
minimum-cut max-flow theorem, there exists a minimum cut (S,T) of capacity γ in G, and let Ŝ =

{
x

��� vx ∈ S
}

Claim 16.4.5. For any two teams x and y for which the vertex uxy exists, we have that uxy ∈ S if
and only if both x and y are in Ŝ.

Proof:
(
x < Ŝ or y < Ŝ

)
=⇒ uxy < S : If x is not in Ŝ then vx is in T . But then, if uxy is in S the

edge
(
uxy, vx

)
is in the cut. However, this edge has infinite capacity, which implies this cut is not a

minimum cut (in particular, (S,T) is a cut with capacity smaller than α). As such, in such a case
uxy must be in T . This implies that if either x or y are not in Ŝ then it must be that uxy ∈ T . (And
as such uxy < S.) vx

vy

uxy
gxys

m−
w
x

m
− w y

∞

∞
t

x ∈ Ŝ and y ∈ Ŝ =⇒ uxy ∈ S : Assume that both x and y are in

Ŝ, then vx and vy are in S. We need to prove that uxy ∈ S. If uxy ∈ T
then consider the new cut formed by moving uxy to S. For the new
cut (S′,T ′) we have

c(S′,T ′) = c(S,T) − c
(
(s,uxy)

)
.

Namely, the cut (S′,T ′) has a lower capacity than the minimum cut (S,T), which is a contradiction.
See figure on the right for this impossible cut. We conclude that uxy ∈ S.

The above argumentation implies that edges of the type
(
uxy, vx

)
can not be in the cut (S,T). As such, there

are two type of edges in the cut (S,T): (i) (vx, t), for x ∈ Ŝ, and (ii) (s,uxy) where at least one of x or y is not in
Ŝ. As such, the capacity of the cut (S,T) is

c(S,T) =
∑
x∈Ŝ

(m − wx) +
∑
{x,y }1Ŝ

gxy = m
���Ŝ��� −∑

x∈Ŝ

wx +
©«α −

∑
{x,y }⊆Ŝ

gxy
ª®¬.

However, c(S,T) = γ < α, and it follows that

m
���Ŝ��� −∑

x∈Ŝ

wx −
∑
{x,y }⊆Ŝ

gxy < α − α = 0.

Namely,
∑
x∈Ŝ

wx +
∑
{x,y }⊆Ŝ

gxy > m
���Ŝ���, as claimed.
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Chapter 17

Network Flow V - Min-cost flow

17.1. Minimum Average Cost Cycle

Let G = (V,E) be a digraph (i.e., a directed graph) with n vertices and m edges, and ω : E → R be a weight
function on the edges. A directed cycle is closed walk C = (v0, v1, . . . , vt ), where vt = v0 and (vi, vi+1) ∈ E, for
i = 0, . . . , t − 1. The average cost of a directed cycle is AvgCost(C) = ω(C)/t = (

∑
e∈C ω(e))/t.

For each k = 0,1, . . ., and v ∈ V , let dk(v) denote the minimum length of a walk with exactly k edges, ending
at v (note, that the walk can start anywhere). So, for each v, we have

d0(v) = 0 and dk+1(v) = min
e=(u,v)∈E

(
dk(u) + ω(e)

)
.

Thus, we can compute di(v), for i = 0, . . . ,n and v ∈ V(G) in O(nm) time using dynamic programming.

Let

MinAvgCostCycle(G) = min
C is a cycle in G

AvgCost(C)

denote the average cost of the minimum average cost cycle in G.
The following theorem is somewhat surprising.

Theorem 17.1.1. The minimum average cost of a directed cycle in G is equal to

α = min
v∈V

n−1max
k=0

dn(v) − dk(v)
n − k

.

Namely, α = MinAvgCostCycle(G).

Proof: Note, that adding a quantity r to the weight of every edge of G increases the average cost of a cycle
AvgCost(C) by r. Similarly, α would also increase by r. In particular, we can assume that the price of the
minimum average cost cycle is zero. This implies that now all cycles have non-negative (average) cost.

Thus, from this point on we assume that MinAvgCostCycle(G) = 0, and we prove that α = 0 in this case.
This in turn would imply the theorem – indeed, given a graph where MinAvgCostCycle(G) , 0, then we will
shift the costs the edges so that it is zero, use the proof below, and then shift it back.

σ π

v

Figure 17.1: Decomposing Pn

into a path σ and a cycle π.

MinAvgCostCycle(G) = 0 =⇒ α ≥ 0: We can rewrite α as α = minu∈V β(u),
where

β(u) =
n−1max
k=0

dn(u) − dk(u)
n − k

.

Assume, that α is realized by a vertex v; that is α = β(v). Let Pn be a walk
with n edges ending at v, of length dn(v). Since there are n vertices in G, it
must be that Pn must contain a cycle. So, let us decompose Pn into a cycle
π of length n − k and a path σ of length k (k depends on the length of the
cycle in Pn). We have that

dn(v) = ω(Pn) = ω(π) + ω(σ) ≥ ω(σ) ≥ dk(v),
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since ω(π) ≥ 0 as π is a cycle (and we assumed that all cycles have zero or positive cost). As such, we have
dn(v) − dk(v) ≥ 0. As such, dn(v)−dk (v)

n−k ≥ 0. Let

β(v) =
n−1max
j=0

dn(v) − dj(v)

n − j
≥

dn(v) − dk(v)
n − k

≥ 0.

Now, α = β(v) ≥ 0, by the choice of v.

v0ξ

w
τ

ρ

C

MinAvgCostCycle(G) = 0 =⇒ α ≤ 0: Let C = (v0, v1, . . . , vt ) be the directed cycle
of weight 0 in the graph. Observe, that min∞j=0 dj(v0) must be realized (for the first
time) by an index r < n, since if it is longer, we can always shorten it by removing
cycles and improve its price (since cycles have non-negative price). Let ξ denote
this walk of length r ending at v0. Let w be a vertex on C reached by walking n− r
edges on C starting from v0, and let τ denote this walk (i.e., |τ | = n − r). We have
that

dn(w) ≤ ω
(
ξ | | τ

)
= dr (v0) + ω(τ), (17.1)

where ξ | | τ denotes the path formed by concatenating the path τ to ξ.
Similarly, let ρ be the walk formed by walking on C from w all the way back to v0. Note that τ | | ρ goes

around C several times, and as such, ω(τ | | ρ) = 0, as ω(C) = 0. Next, for any k, since the shortest path with k
edges arriving to w can be extended to a path that arrives to v0, by concatenating ρ to it, we have that

dk(w) + ω(ρ) ≥ dk+ |ρ |(v0) ≥ dr (v0) ≥ dn(w) − ω(τ),

by Eq. (17.1). Rearranging, we have that ω(ρ) ≥ dn(w) − ω(τ) − dk(w). Namely, we have

∀k 0 = ω(τ | | ρ) = ω(ρ) + ω(τ) ≥ (dn(w) − ω(τ) − dk(w)) + ω(τ) = dn(w) − dk(w).

=⇒ ∀k
dn(w) − dk(w)

n − k
≤ 0

=⇒ β(w) =
n−1max
k=0

dn(w) − dk(w)
n − k

≤ 0.

As such, α = min
v∈V (G)

β(v) ≤ β(w) ≤ 0, and we conclude that α = 0.

Finding the minimum average cost cycle is now not too hard. We compute the vertex v that realizes α in
Theorem 17.1.1. Next, we add −α to all the edges in the graph. We now know that we are looking for a cycle
with price 0. We update the values di(v) to agree with the new weights of the edges.

Now, v is the vertex realizing the quantity 0 = α = minu∈V maxn−1
k=0

dn(u)−dk (u)
n−k . Namely, we have that for the

vertex v it holds
n−1max
k=0

dn(v) − dk(v)
n − k

= 0 =⇒ ∀k ∈ {0, . . . ,n − 1} dn(v) − dk(v)
n − k

≤ 0

=⇒ ∀k ∈ {0, . . . ,n − 1} dn(v) − dk(v) ≤ 0.

This implies that dn(v) ≤ di(v), for all i. Now, we repeat the proof of Theorem 17.1.1. Let Pn be the path with
n edges realizing dn(v). We decompose it into a path π of length k and a cycle τ. We know that ω(τ) ≥ 0 (since
all cycles have non-negative weights now). Now, ω(π) ≥ dk(v). As such, ω(τ) = dn(v) −ω(π) ≤ dn(v) − dk(v) ≤ 0,
as π is a path of length k ending at v, and its cost is ≥ dk(v). Namely, the cycle τ has ω(τ) ≤ 0, and it the
required cycle and computing it required O(nm) time.

Note, that the above reweighting in fact was not necessary. All we have to do is to compute the node
realizing α, extract Pn, and compute the cycle in Pn, and we are guaranteed by the above argumentation, that
this is the cheapest average cycle.
Corollary 17.1.2. Given a direct graph G with n vertices and m edges, and a weight function ω(·) on the edges,
one can compute the cycle with minimum average cost in O(nm) time.
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17.2. Potentials
In general computing the shortest path in a graph that have negative weights is harder than just using the
Dijkstra algorithm (that works only for graphs with non-negative weights on its edges). One can use Bellman-
Ford algorithm¬ in this case, but it considerably slower (i.e., it takes O(mn) time). We next present a case
where one can still use Dijkstra algorithm, with slight modifications.

The following is only required in the analysis of the minimum-cost flow algorithm we present later in this
chapter. We describe it here in full detail since its simple and interesting.

For a directed graph G = (V,E) with weight w(·) on the edges, let dω(s, t) denote the length of the shortest
path between s and t in G under the weight function w. Note, that w might assign negative weights to edges
in G.

A potential p(·) is a function that assigns a real value to each vertex of G, such that if e = (u, v) ∈ G then
w(e) ≥ p(v) − p(u).

Lemma 17.2.1. (i) There exists a potential p(·) for G if and only if G has no negative cycles (with respect to
w(·)).

(ii) Given a potential function p(·), for an edge e = (u, v) ∈ E(G), let `(e) = w(e) − p(v) + p(u). Then `(·) is
non-negative for the edges in the graph and for any pair of vertices s, t ∈ V(G), we have that the shortest path π
realizing d`(s, t) also realizes dω(s, t).

(iii) Given G and a potential function p(·), one can compute the shortest path from s to all the vertices of
G in O(n log n + m) time, where G has n vertices and m edges

Proof: (i) Consider a cycle C, and assume there is a potential p(·) for G, and observe that

w(C) =
∑

(u,v)∈E(C)
w(e) ≥

∑
(u,v)∈E(C)

(p(v) − p(u)) = 0,

as required.
For a vertex v ∈ V(G), let p(v) denote the shortest walk that ends at v in G. We claim that p(v) is a potential.

Since G does not have negative cycles, the quantity p(v) is well defined. Observe that p(v) ≤ p(u) + w(u→ v)

since we can always continue a walk to u into v by traversing (u, v). Thus, p(v) − p(u) ≤ w(u→ v), as required.
(ii) Since `(e) = w(e) − p(v) + p(u) we have that w(e) ≥ p(v) − p(u) since p(·) is a potential function. As such

w(e) − p(v) + p(u) ≥ 0, as required.
As for the other claim, observe that for any path π in G starting at s and ending at t we have that

`(π) =
∑

e=(u,v)∈π

(w(e) − p(v) + p(u)) = w(π) + p(s) − p(t),

which implies that d`(s, t) = dω(s, t) + p(s) − p(t). Implying the claim.
(iii) Just use the Dijkstra algorithm on the distances defined by `(·). The shortest paths are preserved under

this distance by (ii), and this distance function is always positive.

17.3. Minimum cost flow
Given a network flow G = (V,E) with source s and sink t, capacities c(·) on the edges, a real number φ, and a
cost function κ(·) on the edges. The cost of a flow f is defined to be

cost(f) =
∑
e∈E

κ(e) ∗ f(e).

The minimum-cost s-t flow problem ask to find the flow f that minimizes the cost and has value φ.
¬http://en.wikipedia.org/wiki/Bellman-Ford_algorithm
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It would be easier to look on the problem of minimum-cost circulation problem. Here, we are given
instead of φ a lower-bound `(·) on the flow on every edge (and the regular upper bound c(·) on the capacities of
the edges). All the flow coming into a node must leave this node. It is easy to verify that if we can solve the
minimum-cost circulation problem, then we can solve the min-cost flow problem. Thus, we will concentrate on
the min-cost circulation problem.

An important technicality is that all the circulations we discuss here have zero demands on the vertices. As
such, a circulation can be conceptually considered to be a flow going around in cycles in the graph without ever
stopping. In particular, for these circulations, the conservation of flow property should hold for all the vertices
in the graph.

The residual graph of f is the graph Gf = (V,Ef) where

Ef =
{
e = (u, v) ∈ V × V

��� f(e) < c(e) or f
(
e−1

)
> `

(
e−1

) }
.

where e−1 = (v,u) if e = (u, v). Note, that the definition of the residual network takes into account the lower-
bound on the capacity of the edges.

Assumption 17.3.1. To simplify the exposition, we will assume that if (u, v) ∈ E(G) then (v,u) < E(G), for
all u, v ∈ V(G). This can be easily enforced by introducing a vertex in the middle of every edge of G. This is
acceptable, since we are more concerned with solving the problem at hand in polynomial time, than the exact
complexity. Note, that our discussion can be extended to handle the slightly more general case, with a bit of
care.

We extend the cost function to be anti-symmetric; namely,

∀(u, v) ∈ Ef κ
(
(u, v)

)
= −κ

(
(v,u)

)
.

Consider a directed cycle C in Gf . For an edge e = (u, v) ∈ E, we define

χC(e) =


1 e ∈ C
−1 e−1 = (v,u) ∈ C
0 otherwise;

that is, we pay 1 if e is in C and −1 if we travel e in the “wrong” direction.
The cost of a directed cycle C in Gf is defined as

κ(C) =
∑
e∈C

κ(e).

We will refer to a circulation that comply with the capacity and lower-bounds constraints as being valid.
A function that just comply with the conservation property (i.e., all incoming flow into a vertex leaves it), is
a weak circulation. In particular, a weak circulation might not comply with the capacity and lower bounds
constraints of the given instance, and as such is not a valid circulation.

We need the following easy technical lemmas.

Lemma 17.3.2. Let f and g be two valid circulations in G = (V,E). Consider the function h = g − f. Then, h
is a weak circulation, and if h(u→ v) > 0 then the edge (u, v) ∈ Gf .

Proof: The fact that h is a circulation is trivial, as it is the difference between two circulations, and as such the
same amount of flow that comes into a vertex leaves it, and thus it is a circulation. (Note, that h might not be
a valid circulation, since it might not comply with the lower-bounds on the edges.)

Observe, that if h(u→ v) is negative, then h(v → u) = −h(u→ v) by the anti-symmetry of f and g, which
implies the same property holds for h.

Consider an arbitrary edge e = (u, v) such that h(u→ v) > 0.
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There are two possibilities. First, if e = (u, v) ∈ E, and f(e) < c(e), then the claim trivially holds, since
then e ∈ Gf . Thus, consider the case when f(e) = c(e), but then h(e) = g(e) − f(e) ≤ 0. Which contradicts our
assumption that h(u→ v) > 0.

The second possibility, is that e = (u, v) < E. But then e−1 = (v,u) must be in E, and it holds 0 > h
(
e−1) =

g
(
e−1) − f (e−1). Implying that f

(
e−1) > g

(
e−1) ≥ ` (e−1). Namely, there is a flow by f in G going in the direction

of e−1 which larger than the lower bound. Since we can return this flow in the other direction, it must be that
e ∈ Gf .

Lemma 17.3.3. Let f be a circulation in a graph G. Then, f can be decomposed into at most m cycles,
C1, . . . ,Cm, such that, for any e ∈ E(G), we have

f(e) =
t∑

i=1
λi · χCi (e),

where λ1, . . . , λt > 0 and t ≤ m, where m is the number of edges in G.

Proof: Since f is a circulation, and the amount of flow into a node is equal to the amount of flow leaving the
node, it follows that as long as f not zero, one can find a cycle in f. Indeed, start with a vertex which has
non-zero amount of flow into it, and walk on an adjacent edge that has positive flow on it. Repeat this process,
till you visit a vertex that was already visited. Now, extract the cycle contained in this walk.

Let C1 be such a cycle, and observe that every edge of C1 has positive flow on it, let λ1 be the smallest
amount of flow on any edge of C1, and let e1 denote this edge. Consider the new flow g = f − λ1 · χC1 . Clearly, g
has zero flow on e1, and it is a circulation. Thus, we can remove e1 from G, and let J denote the new graph. By
induction, applied to g on J, the flow g can be decomposed into m − 1 cycles with positive coefficients. Putting
these cycles together with λ1 and C1 implies the claim.

Theorem 17.3.4. A flow f is a minimum cost feasible circulation if and only if each directed cycle of Gf has
nonnegative cost.

Proof: Let C be a negative cost cycle in Gf . Then, we can circulate more flow on C and get a flow with smaller
price. In particular, let ε > 0 be a sufficiently small constant, such that g = f+ε ∗ χC is still a feasible circulation
(observe, that since the edges of C are Gf , all of them have residual capacity that can be used to this end).
Now, we have that

cost(g) = cost(f) +
∑
e∈C

κ(e) ∗ ε = cost(f) + ε ∗
∑
e∈C

κ(e) = cost(f) + ε ∗ κ(C) < cost(f),

since κ(C) < 0, which is a contradiction to the minimality of f.
As for the other direction, assume that all the cycles in Gf have non-negative cost. Then, let g be any

feasible circulation. Consider the circulation h = g− f. By Lemma 17.3.2, all the edges used by h are in Gf , and
by Lemma 17.3.3 we can find t ≤ |E(Gf)| cycles C1, . . . ,Ct in Gf , and coefficients λ1, . . . , λt , such that

h(e) =
t∑

i=1
λi χCi (e).

We have that

cost(g) − cost(f) = cost(h) = cost
(

t∑
i=1

λi χCi

)
=

t∑
i=1

λicost
(
χCi

)
=

t∑
i=1

λiκ(Ci) ≥ 0,

as κ(Ci) ≥ 0, since there are no negative cycles in Gf . This implies that cost(g) ≥ cost(f). Namely, f is a
minimum-cost circulation.
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17.4. A Strongly Polynomial Time Algorithm for Min-Cost Flow
The algorithm would start from a feasible circulation f. We know how to compute such a flow f using the
standard max-flow algorithm. At each iteration, it would find the cycle C of minimum average cost cycle in Gf
(using the algorithm of Section 17.1). If the cost of C is non-negative, we are done since we had arrived to the
minimum cost circulation, by Theorem 17.3.4.

Otherwise, we circulate as much flow as possible along C (without violating the lower-bound constraints
and capacity constraints), and reduce the price of the flow f. By Corollary 17.1.2, we can compute such a cycle
in O(mn) time. Since the cost of the flow is monotonically decreasing the algorithm would terminate if all the
number involved are integers. But we will show that this algorithm performs a polynomial number of iterations
in n and m.

It is striking how simple is this algorithm, and the fact that it works in polynomial time. The analysis is
somewhat more painful.

17.5. Analysis of the Algorithm

f,g,h, i Flows or circulations
Gf The residual graph for f
c(e) The capacity of the flow on e
`(e) The lower-bound (i.e., demand) on the flow on e
cost(f) The overall cost of the flow f
κ(e) The cost of sending one unit of flow on e
ψ(e) The reduced cost of e

Figure 17.2: Notation used.

To analyze the above algorithm, let fi
be the flow in the beginning of the ith
iteration. Let Ci be the cycle used in
the ith iteration. For a flow f, let Cf the
minimum average-length cycle of Gf , and
let µ(f) = κ(Cf)/|Cf | denote the average
“cost” per edge of Cf .

The following lemma, states that we
are making “progress” in each iteration of
the algorithm.

Lemma 17.5.1. Let f be a flow, and let g the flow resulting from applying the cycle C = Cf to it. Then,
µ(g) ≥ µ(f).

Proof: Assume for the sake of contradiction, that µ(g) < µ(f). Namely, we have

κ(Cg)��Cg
�� <

κ(Cf)

|Cf |
. (17.2)

Now, the only difference between Gf and Gg are the edges of Cf . In particular, some edges of Cf might
disappear from Gg, as they are being used in g to their full capacity. Also, all the edges in the opposite direction
to Cf will be present in Gg.

Now, Cg must use at least one of the new edges in Gg, since otherwise this would contradict the minimality
of Cf (i.e., we could use Cg in Gf and get a cheaper average cost cycle than Cf). Let U be the set of new edges
of Gg that are being used by Cg and are not present in Gf . Let U−1 =

{
e−1

��� e ∈ U
}
. Clearly, all the edges of

U−1 appear in Cf .
Now, consider the cycle π = Cf ∪ Cg. We have that the average of π is

α =
κ(Cf) + κ(Cg)

|Cf | +
��Cg

�� < max
(
κ(Cg)��Cg

�� , κ(Cf)

|Cf |

)
= µ(f),

by Eq. (17.2). We can write π is a union of k edge-disjoint cycles σ1, . . . ,σk and some 2-cycles. A 2-cycle is
formed by a pair of edges e and e−1 where e ∈ U and e−1 ∈ U−1. Clearly, the cost of these 2-cycles is zero. Thus,
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since the cycles σ1, . . . ,σk have no edges in U, it follows that they are all contained in Gf . We have

κ(Cf) + κ
(
Cg

)
=

∑
i

κ(σi) + 0.

Thus, there is some non-negative integer constant c, such that

α =
κ(Cf) + κ(Cg)

|Cf | +
��Cg

�� = ∑
i κ(σi)

c +
∑

i |σi |
≥

∑
i κ(σi)∑
i |σi |

,

since α is negative (since α < µ(f) < 0 as otherwise the algorithm would had already terminated). Namely,
µ(f) > (

∑
i κ(σi))/(

∑
i |σi |). Which implies that there is a cycle σr , such that µ(f) > κ(σr )/|σr | and this cycle is

contained in Gf . But this is a contradiction to the minimality of µ(f).

17.5.1. Reduced cost induced by a circulation

Conceptually, consider the function µ(f) to be a potential function that increases as the algorithm progresses.
To make further progress in our analysis, it would be convenient to consider a reweighting of the edges of G, in
such a way that preserves the weights of cycles.

Given a circulation f, we are going to define a different cost function on the edges which is induced by f. To
begin with, let β(u→ v) = κ(u→ v) − µ(f). Note, that under the cost function α, the cheapest cycle has price 0
in G (since the average cost of an edge in the cheapest average cycle has price zero). Namely, G has no negative
cycles under β. Thus, for every vertex v ∈ V(G), let d(v) denote the length of the shortest walk that ends at v.
The function d(v) is a potential in G, by Lemma 17.2.1, and as such

d(v) − d(u) ≤ β(u→ v) = κ(u→ v) − µ(f). (17.3)

Next, let the reduced cost of (u, v) (in relation to f) be

ψ(u→ v) = κ(u→ v) + d(u) − d(v).

In particular, Eq. (17.3) implies that

∀(u, v) ∈ E(Gf) ψ(u→ v) = κ(u→ v) + d(u) − d(v) ≥ µ(f). (17.4)

Namely, the reduced cost of any edge (u, v) is at least µ(f).
Note that ψ(v → u) = κ(v → u)+d(v)−d(u) = −κ(u→ v)+d(v)−d(u) = −ψ(u→ v) (i.e., it is anti-symmetric).

Also, for any cycle C in G, we have that κ(C) = ψ(C), since the contribution of the potential d(·) cancels out.
The idea is that now we think about the algorithm as running with the reduced cost instead of the regular

costs. Since the costs of cycles under the original cost and the reduced costs are the same, negative cycles are
negative in both costs. The advantage is that the reduced cost is more useful for our purposes.

17.5.2. Bounding the number of iterations

Lemma 17.5.2. Let f be a flow used in the ith iteration of the algorithm, let g be the flow used in the (i +m)th
iteration, where m is the number of edges in G. Furthermore, assume that the algorithm performed at least one
more iteration on g. Then, µ(g) ≥ (1 − 1/n)µ(f).

Proof: Let C0, . . . ,Cm−1 be the m cycles used in computing g from f. Let ψ(·) be the reduced cost function
induced by f.

If a cycle has only negative reduced cost edges, then after it is applied to the flow, one of these edges
disappear from the residual graph, and the reverse edge (with positive reduced cost) appears in the residual
graph. As such, if all the edges of these cycles have negative reduced costs, then Gg has no negative reduced
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cost edge, and as such µ(g) ≥ 0. But the algorithm stops as soon as the average cost cycle becomes positive. A
contradiction to our assumption that the algorithm performs at least another iteration.

Let Ch be the first cycle in this sequence, such that it contains an edge e′, such that its reduced cost is
positive; that is ψ(e′) ≥ 0. Note, that Ch has most n edges. We have that

κ(Ch) = ψ(Ch) =
∑
e∈Ch

ψ(e) = ψ(e′) +
∑

e∈Ch ,e,e′

ψ(e) ≥ 0 + (|Ch | − 1)µ(f),

by Eq. (17.4). Namely, the average cost of Ch is

0 > µ(fh) =
κ(Ch)

|Ch |
≥
|Ch | − 1
|Ch |

µ(f) ≥
(
1 − 1

n

)
µ(f).

The claim now easily follows from Lemma 17.5.1.

To bound the running time of the algorithm, we will argue that after sufficient number of iterations edges
start disappearing from the residual network and never show up again in the residual network. Since there are
only 2m possible edges, this would imply the termination of the algorithm.

Observation 17.5.3. We have that (1 − 1/n)n ≤ (exp(−1/n))n ≤ 1/e, since 1 − x ≤ e−x, for all x ≥ 0, as can be
easily verified.

Lemma 17.5.4. Let f be the circulation maintained by the algorithm at iteration ρ. Then there exists an edge
e in the residual network Gf such that it never appears in the residual networks of circulations maintained by
the algorithm, for iterations larger than ρ + t, where t = 2nm dln ne.

Proof: Let g be the flow used by the algorithm at iteration ρ + t. We define the reduced cost over the edges of
G, as induced by the flow g. Namely,

ψ(u→ v) = κ(u→ v) + d(u) − d(v),

where d(u) is the length of the shortest walk ending at u where the weight of edge (u,w) is κ(u→ w) − µ(g).

flow in iteration
f ρ

g ρ + t
h ρ + t + τ

Now, conceptually, we are running the algorithm using this reduced cost function
over the edges, and consider the minimum average cost cycle at iteration ρ with cost
α = µ(f). There must be an edge e ∈ E(Gf), such that ψ(e) ≤ α. (Note, that α is a
negative quantity, as otherwise the algorithm would have terminated at iteration ρ.)

We have that, at iteration ρ + t, it holds

µ(g) ≥ α ∗
(
1 − 1

n

) t
≥ α ∗ exp(−2m dln ne) ≥

α

2n
, (17.5)

by Lemma 17.5.2 and Observation 17.5.3 and since α < 0. On the other hand, by Eq. (17.4), we know that
for all the edges f in E

(
Gg

)
, it holds ψ(f) ≥ µ(g) ≥ α/2n. As such, e can not be an edge of Gg since ψ(e) ≤ α.

Namely, it must be that g(e) = c(e).
So, assume that at a later iteration, say ρ + t + τ, the edge e reappeared in the residual graph. Let h be the

flow at the (ρ + t + τ)th iteration, and let Gh be the residual graph. It must be that h(e) < c(e) = g(e).
Now, consider the circulation i = g − h. It has a positive flow on the edge e, since i(e) = g(e) − h(e) > 0. In

particular, there is a directed cycle C of positive flow of i in Gi that includes e, as implied by Lemma 17.3.3.
Note, that Lemma 17.3.2 implies that C is also a cycle of Gh.

Now, the edges of C−1 are present in Gg. To see that, observe that for every edge g ∈ C, we have that
0 < i(g) = g(g) − h(g) ≤ g(g) − `(g). Namely, g(g) > `(g) and as such g−1 ∈ E

(
Gg

)
. As such, by Eq. (17.4), we

have ψ
(
g−1) ≥ µ(g). This implies

∀g ∈ C ψ(g) = −ψ
(
g−1

)
≤ −µ(g) ≤ − α2n

,
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by Eq. (17.5). Since C is a cycle of Gh, we have

κ(C) = ψ(C) = ψ(e) + ψ(C \ {e}) ≤ α + (|C| − 1) ·
(
−
α

2n

)
<
α

2 .

Namely, the average cost of the cycle C, which is present in Gh, is κ(C)/|C| < α/(2n).
On the other hand, the minimum average cost cycle in Gh has average price µ(h) ≥ µ(g) ≥ α

2n , by
Lemma 17.5.1. A contradiction, since we found a cycle C in Gh which is cheaper.

We are now ready for the “kill” – since one edge disappears forever every O(mn log n) iterations, it follows that
after O(m2n log n) iterations the algorithm terminates. Every iteration takes O(mn) time, by Corollary 17.1.2.
Putting everything together, we get the following.

Theorem 17.5.5. Given a digraph G with n vertices and m edges, lower bound and upper bound on the flow of
each edge, and a cost associated with each edge, then one can compute a valid circulation of minimum-cost in
O(m3n2 log n) time.

17.6. Bibliographical Notes

The minimum average cost cycle algorithm, of Section 17.1, is due to Karp [Kar78].
The description here follows very roughly the description of [Sch04]. The first strongly polynomial time

algorithm for minimum-cost circulation is due to Éva Tardos [Tar85]. The algorithm we show is an improved
version due to Andrew Goldberg and Robert Tarjan [GT89]. Initial research on this problem can be traced
back to the 1940s, so it took almost fifty years to find a satisfactory solution to this problem.

Chapter 18

Network Flow VI - Min-Cost Flow Applica-
tions

18.1. Efficient Flow
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t

u

v

w

A flow f would be considered to be efficient if it con-
tains no cycles in it. Surprisingly, even the Ford-Fulkerson
algorithm might generate flows with cycles in them. As a
concrete example consider the picture on the right. A disc in
the middle of edges indicate that we split the edge into mul-
tiple edges by introducing a vertex at this point. All edges
have capacity one. For this graph, Ford-Fulkerson would first
augment along s → w → u → t. Next, it would augment
along s → u → v → t, and finally it would augment along
s→ v → w → t. But now, there is a cycle in the flow; namely,
u→ v → w → u.

One easy way to avoid such cycles is to first compute
the max flow in G. Let α be the value of this flow. Next,
we compute the min-cost flow in this network from s to t
with flow α, where every edge has cost one. Clearly, the flow
computed by the min-cost flow would not contain any such
cycles. If it did contain cycles, then we can remove them by
pushing flow against the cycle (i.e., reducing the flow along
the cycle), resulting in a cheaper flow with the same value, which would be a contradiction. We got the following
result.

Theorem 18.1.1. Computing an efficient (i.e., acyclic) max-flow can be done in polynomial time.

(BTW, this can also be achieved directly by removing cycles directly in the flow. Naturally, this flow might
be less efficient than the min-cost flow computed.)

18.2. Efficient Flow with Lower Bounds

Consider the problem AFWLB (acyclic flow with lower-bounds) of computing efficient flow, where we have lower
bounds on the edges. Here, we require that the returned flow would be integral, if all the numbers involved
are integers. Surprisingly, this problem which looks like very similar to the problems we know how to solve
efficiently is NP-Complete. Indeed, consider the following problem.

Hamiltonian Path
Instance: A directed graph G and two vertices s and t.
Question: Is there a Hamiltonian path (i.e., a path visiting every vertex exactly once) in G starting
at s and ending at t?

It is easy to verify that Hamiltonian Path is NP-Complete¬. We reduce this problem to AFWLB by
replacing each vertex of G with two vertices and a direct edge in between them (except for the source vertex s
and the sink vertex t). We set the lower-bound and capacity of each such edge to 1. Let J denote the resulting
graph.

Consider now acyclic flow in J of capacity 1 from s to t which is integral. Its 0/1-flow, and as such it defines
a path that visits all the special edges we created. In particular, it corresponds to a path in the original graph
that starts at s, visits all the vertices of G and ends up at t. Namely, if we can compute an integral acyclic
flow with lower-bounds in J in polynomial time, then we can solve Hamiltonian path in polynomial time. Thus,
AFWLB is NP-Hard.

¬Verify that you know to do this — its a natural question for the exam.
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Theorem 18.2.1. Computing an efficient (i.e., acyclic) max-flow with lower-bounds is NP-Hard (where the
flow must be integral). The related decision problem (of whether such a flow exist) is NP-Complete.

By this point you might be as confused as I am. We can model an acyclic max-flow problem with lower
bounds as min-cost flow, and solve it, no? Well, not quite. The solution returned from the min-cost flow might
have cycles and we can not remove them by canceling the cycles. That was only possible when there was no
lower bounds on the edge capacities. Namely, the min-cost flow algorithm would return us a solution with
cycles in it if there are lower bounds on the edges.

18.3. Shortest Edge-Disjoint Paths
Let G be a directed graph. We would like to compute k-edge disjoint paths between vertices s and t in the
graph. We know how to do it using network flow. Interestingly, we can find the shortest k-edge disjoint paths
using min-cost flow. Here, we assign cost 1 for every edge, and capacity 1 for every edge. Clearly, the min-cost
flow in this graph with value k, corresponds to a set of k edge disjoint paths, such that their total length is
minimized.

18.4. Covering by Cycles
Given a direct graph G, we would like to cover all its vertices by a set of cycles which are vertex disjoint. This
can be done again using min-cost flow. Indeed, replace every vertex u in G by an edge (u′,u′′). Where all the
incoming edges to u are connected to u′ and all the outgoing edges from u are now starting from u′′. Let J
denote the resulting graph. All the new edges in the graph have a lower bound and capacity 1, and all the other
edges have no lower bound, but their capacity is 1. We compute the minimum cost circulation in J. Clearly,
this corresponds to a collection of cycles in G covering all the vertices of minimum cost.

Theorem 18.4.1. Given a directed graph G and costs on the edges, one can compute a cover of G by a collection
of vertex disjoint cycles, such that the total cost of the cycles is minimized.

18.5. Minimum weight bipartite matching

ts

1

1

1

1

Given an undirected bipartite graph G, we would like to find the
maximum cardinality matching in G that has minimum cost. The idea
is to reduce this to network flow as we did in the unweighted case, and
compute the maximum flow – the graph constructed is depicted on the
right. Here, any edge has capacity 1. This gives us the size φ of the
maximum matching in G. Next, we compute the min-cost flow in G
with this value φ, where the edges connected to the source or the sing
has cost zero, and the other edges are assigned their original cost in
G. Clearly, the min-cost flow in this graph corresponds to a maximum
cardinality min-cost flow in the original graph.

Here, we are using the fact that the flow computed is integral, and
as such, it is a 0/1-flow.

Theorem 18.5.1. Given a bipartite graph G and costs on the edges, one can compute the maximum cardinality
minimum cost matching in polynomial time.
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18.6. The transportation problem
In the transportation problem, we are given m facilities f1, . . . , fm. The facility fi contains xi units of some
commodity, for i = 1, . . . ,m. Similarly, there are u1, . . . ,un customers that would like to buy this commodity.
In particular, ui would like to by di units, for i = 1, . . . ,n. To make things interesting, it costs ci j to send one
unit of commodity from facility i to costumer j. The natural question is how to supply the demands while
minimizing the total cost.

To this end, we create a bipartite graph with f1, . . . , fm on one side, and u1, . . . ,un on the other side. There
is an edge from

(
fi,u j

)
with costs ci j , for i = 1, . . . ,m and j = 1, . . . ,n. Next, we create a source vertex that

is connected to fi with capacity xi, for i = 1, . . . ,m. Similarly, we create an edges from u j to the sink t, with
capacity di, for j = 1, . . . n. We compute the min-cost flow in this network that pushes φ =

∑
j dk units from the

source to the sink. Clearly, the solution encodes the required optimal solution to the transportation problem.

Theorem 18.6.1. The transportation problem can be solved in polynomial time.
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Part VI
Linear Programming

Chapter 19

Linear Programming in Low Dimensions

At the sight of the still intact city, he remembered his great international precursors and set the whole place on fire with his
artillery in order that those who came after him might work off their excess energies in rebuilding.

The tin drum, Gunter Grass

In this chapter, we shortly describe (and analyze) a simple randomized algorithm for linear programming in low
dimensions. Next, we show how to extend this algorithm to solve linear programming with violations. Finally,
we will show how one can efficiently approximate the number constraints that one needs to violate to make
a linear program feasible. This serves as a fruitful ground to demonstrate some of the techniques we visited
already. Our discussion is going to be somewhat intuitive – it can be made more formal with more work.

19.1. Some geometry first
We first prove Radon’s and Helly’s theorems.

Definition 19.1.1. The convex hull of a set P ⊆ Rd is the set of all convex combinations of points of P; that is,

CH(P) =
{∑m

i=0
αisi

��� ∀i si ∈ P, αi ≥ 0, and
∑m

j=1
αi = 1

}
.

Claim 19.1.2. Let P = {p1, . . . ,pd+2} be a set of d + 2 points in Rd. There are real numbers β1, . . . , βd+2, not
all of them zero, such that

∑
i βipi = 0 and

∑
i βi = 0.

Proof: Indeed, set qi = (pi,1), for i = 1, . . . , d + 2. Now, the points q1, . . . ,qd+2 ∈ R
d+1 are linearly dependent,

and there are coefficients β1, . . . , βd+2, not all of them zero, such that
∑d+2

i=1 βiqi = 0. Considering only the first
d coordinates of these points implies that

∑d+2
i=1 βipi = 0. Similarly, by considering only the (d + 1)st coordinate

of these points, we have that
∑d+2

i=1 βi = 0.

Theorem 19.1.3 (Radon’s theorem). Let P = {p1, . . . ,pd+2} be a set of d+2 points in Rd. Then, there exist
two disjoint subsets C and D of P, such that CH(C) ∩ CH(D) , ∅ and C ∪ D = P.
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Proof: By Claim 19.1.2 there are real numbers β1, . . . , βd+2, not all of them zero, such that
∑

i βipi = 0 and∑
i βi = 0.
Assume, for the sake of simplicity of exposition, that β1, . . . , βk ≥ 0 and βk+1, . . ., βd+2 < 0. Furthermore, let

µ =
∑k

i=1 βi = −
∑d+2

i=k+1 βi. We have that
k∑
i=1

βipi = −
d+2∑
i=k+1

βipi .

In particular, v =
∑k

i=1(βi/µ)pi is a point in CH({p1, . . . ,pk}). Furthermore, for the same point v we have
v =

∑d+2
i=k+1 −(βi/µ)pi ∈ CH({pk+1, . . . ,pd+2}). We conclude that v is in the intersection of the two convex hulls,

as required.

Theorem 19.1.4 (Helly’s theorem). Let F be a set of n convex sets in Rd. The intersection of all the sets
of F is non-empty if and only if any d + 1 of them has non-empty intersection.

Proof: This theorem is the “dual” to Radon’s theorem.
If the intersection of all sets in F is non-empty, then any intersection of d + 1 of them is non-empty. As for

the other direction, assume for the sake of contradiction that F is the minimal set of convex sets for which the
claim fails. Namely, for m = |F | > d + 1, any subset of m − 1 sets of F has non-empty intersection, and yet the
intersection of all the sets of F is empty.

As such, for X ∈ F, let pX be a point in the intersection of all sets of F excluding X. Let P =
{
pX

��� X ∈ F
}
.

Here |P| = |F | > d + 1. By Radon’s theorem, there is a partition of P into two disjoint sets R and Q such that
CH(R) ∩ CH(Q) , ∅. Let s be any point inside this non-empty intersection.

Let U(R) = {X | pX ∈ R} and U(Q) = {X | pX ∈ Q} be the two subsets of F corresponding to R and Q,
respectively. By definition, for X ∈ U(R), we have that

pX ∈
⋂

Y ∈F,Y,X

Y ⊆
⋂

Y ∈F\U(R)
Y =

⋂
Y ∈U(Q)

Y,

since U(Q) ∪U(R) = F and U(Q) ∩U(R) = ∅. As such, R ⊆
⋂

Y ∈U(Q)Y and Q ⊆
⋂

Y ∈U(R)Y . Now, by the convexity
of the sets of F, we have CH(R) ⊆

⋂
Y ∈U(Q)Y and CH(Q) ⊆

⋂
Y ∈U(R)Y . Namely, we have

s ∈ CH(R) ∩ CH(Q) ⊆
( ⋂
Y ∈U(Q)

Y
)
∩

( ⋂
Y ∈U(R)

Y
)
=

⋂
Y ∈F

Y .

Namely, the intersection of all the sets of F is not empty, a contradiction.

19.2. Linear programming
Assume we are given a set of n linear inequalities of the form a1x1 + · · · + adxd ≤ b, where a1, . . . ,ad, b are
constants and x1, . . . , xd are the variables. In the linear programming (LP) problem, one has to find a
feasible solution, that is, a point (x1, . . . , xd) for which all the linear inequalities hold. In the following, we
use the shorthand LPI to stand for linear programming instance. Usually we would like to find a feasible
point that maximizes a linear expression (referred to as the target function of the given LPI) of the form
c1x1 + · · · + cdxd, where c1, . . . , cd are prespecified constants.

3y + 2x ≤ 6

3y + 2x = 6

The set of points complying with a linear inequality a1x1 + · · · + adxd ≤ b is
a halfspace of Rd having the hyperplane a1x1+ · · ·+adxd = b as a boundary; see
the figure on the right. As such, the feasible region of a LPI is the intersection of
n halfspaces; that is, it is a polyhedron. If the polyhedron is bounded, then it
is a polytope. The linear target function is no more than specifying a direction,
such that we need to find the point inside the polyhedron which is extreme in
this direction. If the polyhedron is unbounded in this direction, the optimal solution is unbounded.
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Feasible region
For the sake of simplicity of exposition, it will be easier to think of the

direction for which one has to optimize as the negative xd-axis direction. This
can be easily realized by rotating the space such that the required direction is
pointing downward. Since the feasible region is the intersection of convex sets
(i.e., halfspaces), it is convex. As such, one can imagine the boundary of the
feasible region as a vessel (with a convex interior). Next, we release a ball at
the top of the vessel, and the ball rolls down (by “gravity” in the direction of
the negative xd-axis) till it reaches the lowest point in the vessel and gets “stuck”. This point is the optimal
solution to the LPI that we are interested in computing.

In the following, we will assume that the given LPI is in general position. Namely, if we intersect k hy-
perplanes, induced by k inequalities in the given LPI (the hyperplanes are the result of taking each of this
inequalities as an equality), then their intersection is a (d − k)-dimensional affine subspace. In particular, the
intersection of d of them is a point (referred to as a vertex). Similarly, the intersection of any d + 1 of them is
empty.

A polyhedron defined by an LPI with n constraints might have O
(
n bd/2c

)
vertices on its boundary (this is

known as the upper-bound theorem [Grü03]). As we argue below, the optimal solution is a vertex. As such,
a naive algorithm would enumerate all relevant vertices (this is a non-trivial undertaking) and return the best
possible vertex. Surprisingly, in low dimension, one can do much better and get an algorithm with linear running
time.

We are interested in the best vertex of the feasible region, while this polyhedron is defined implicitly as the
intersection of halfspaces, and this hints to the quandary that we are in: We are looking for an optimal vertex
in a large graph that is defined implicitly. Intuitively, this is why proving the correctness of the algorithms we
present here is a non-trivial undertaking (as already mentioned, we will prove correctness in the next chapter).

19.2.1. A solution and how to verify it

Observe that an optimal solution of an LPI is either a vertex or unbounded. Indeed, if the optimal solution
p lies in the middle of a segment s, such that s is feasible, then either one of its endpoints provides a better
solution (i.e., one of them is lower in the xd-direction than p) or both endpoints of s have the same target
value. But then, we can move the solution to one of the endpoints of s. In particular, if the solution lies on a
k-dimensional facet F of the boundary of the feasible polyhedron (i.e., formally F is a set with affine dimension
k formed by the intersection of the boundary of the polyhedron with a hyperplane), we can move it so that it
lies on a (k − 1)-dimensional facet F ′ of the feasible polyhedron, using the proceeding argumentation. Using it
repeatedly, one ends up in a vertex of the polyhedron or in an unbounded solution.

Thus, given an instance of LPI, the LP solver should output one of the following answers.

(A) Finite. The optimal solution is finite, and the solver would provide a vertex which realizes the optimal
solution.

(B) Unbounded. The given LPI has an unbounded solution. In this case, the LP solver would output a ray
ζ , such that the ζ lies inside the feasible region and it points down the negative xd-axis direction.

(C) Infeasible. The given LPI does not have any point which complies with all the given inequalities. In this
case the solver would output d + 1 constraints which are infeasible on their own.

Lemma 19.2.1. Given a set of d linear inequalities in Rd, one can compute the vertex induced by the inter-
section of their boundaries in O

(
d3) time.

Proof: Write down the system of equalities that the vertex must fulfill. It is a system of d equalities in d
variables and it can be solved in O

(
d3) time using Gaussian elimination.
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A cone is the intersection of d constraints, where its apex is the vertex associated with this set of constraints.
A set of such d constraints is a basis. An intersection of d − 1 of the hyperplanes of a basis forms a line and
intersecting this line with the cone of the basis forms a ray. Clipping the same line to the feasible region would
yield either a segment, referred to as an edge of the polyhedron, or a ray (if the feasible region is an unbounded
polyhedron). An edge of the polyhedron connects two vertices of the polyhedron.

ray

vertex

coneAs such, one can think about the boundary of the feasible region as inducing a
graph – its vertices and edges are the vertices and edges of the polyhedron, respec-
tively. Since every vertex has d hyperplanes defining it (its basis) and an adjacent
edge is defined by d−1 of these hyperplanes, it follows that each vertex has

( d
d−1

)
= d

edges adjacent to it.
The following lemma tells us when we have an optimal vertex. While it is intu-

itively clear, its proof requires a systematic understanding of what the feasible region
of a linear program looks like, and we delegate it to the next chapter.

Lemma 19.2.2. Let L be a given LPI, and let P denote its feasible region. Let v be a vertex of P, such that
all the d rays emanating from v are in the upward xd-axis direction (i.e., the direction vectors of all these d
rays have positive xd-coordinate). Then v is the lowest (in the xd-axis direction) point in P and it is thus the
optimal solution to L.

Interestingly, when we are at a vertex v of the feasible region, it is easy to find the adjacent vertices. Indeed,
compute the d rays emanating from v. For such a ray, intersect it with all the constraints of the LPI. The closest
intersection point along this ray is the vertex u of the feasible region adjacent to v. Doing this naively takes
O

(
dn + dO(1)) time.
Lemma 19.2.2 offers a simple algorithm for computing the optimal solution for an LPI. Start from a feasible

vertex of the LPI. As long as this vertex has at least one ray that points downward, follow this ray to an adjacent
vertex on the feasible polytope that is lower than the current vertex (i.e., compute the d rays emanating from
the current vertex, and follow one of the rays that points downward, till you hit a new vertex). Repeat this till
the current vertex has all rays pointing upward, by Lemma 19.2.2 this is the optimal solution. Up to tedious
(and non-trivial) details this is the simplex algorithm.

We need the following lemma, whose proof is also delegated to the next chapter.

Lemma 19.2.3. If L is an LPI in d dimensions which is not feasible, then there exist d + 1 inequalities in L
which are infeasible on their own.

Note that given a set of d + 1 inequalities, it is easy to verify (in polynomial time in d) if they are feasible
or not. Indeed, compute the

(d+1
d

)
vertices formed by this set of constraints, and check whether any of these

vertices are feasible (for these d + 1 constraints). If all of them are infeasible, then this set of constraints is
infeasible.

19.3. Low-dimensional linear programming

19.3.1. An algorithm for a restricted case

There are a lot of tedious details that one has to take care of to make things work with linear programming.
As such, we will first describe the algorithm for a special case and then provide the envelope required so that
one can use it to solve the general case.

A vertex v is acceptable if all the d rays associated with it point upward (note that the vertex might not
be feasible). The optimal solution (if it is finite) must be located at an acceptable vertex.

Input for the restricted case. The input for the restricted case is an LPI L, which is defined by a set of n
linear inequalities in Rd, and a basis B = {h1, . . . , hd} of an acceptable vertex.
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Let hd+1, . . . , hm be a random permutation of the remaining constraints of the LPI L.
We are looking for the lowest point in Rd which is feasible for L. Our algorithm is randomized incremental.

At the ith step, for i > d, it will maintain the optimal solution for the first i constraints. As such, in the ith
step, the algorithm checks whether the optimal solution vi−1 of the previous iteration is still feasible with the
new constraint hi (namely, the algorithm checks if vi−1 is inside the halfspace defined by hi). If vi−1 is still
feasible, then it is still the optimal solution, and we set vi ← vi−1.

The more interesting case is when vi−1 < hi. First, we check if the basis of vi−1 together with hi forms a set
of constraints which is infeasible. If so, the given LPI is infeasible, and we output B(vi−1) ∪ {hi} as the proof of
infeasibility.

hi∂hi

feasible region
h1 ∩ . . . ∩ hi−1

vi
vi−1

Otherwise, the new optimal solution must lie on the hyperplane associated
with hi. As such, we recursively compute the lowest vertex in the (d − 1)-
dimensional polyhedron (∂hi) ∩

⋂i−1
j=1 hj , where ∂hi denotes the hyperplane

which is the boundary of the halfspace hi. This is a linear program involving
i−1 constraints, and it involves d−1 variables since the LPI lies on the (d−1)-
dimensional hyperplane ∂hi. The solution found, vi, is defined by a basis of
d − 1 constraints in the (d − 1)-dimensional subspace ∂hi, and adding hi to it
results in an acceptable vertex that is feasible in the original d-dimensional
space. We continue to the next iteration.

Clearly, the vertex vn is the required optimal solution.

19.3.1.1. Running time analysis

Every set of d constraints is feasible and computing the vertex formed by this constraint takes O(d3) time, by
Lemma 19.2.1.

Let Xi be an indicator variable that is 1 if and only if the vertex vi is recomputed in the ith iteration (by
performing a recursive call). This happens only if hi is one of the d constraints in the basis of vi. Since there
are most d constraints that define the basis and there are at least i − d constraints that are being randomly
ordered (as the first d slots are fixed), we have that the probability that vi , vi−1 is

αi = P[Xi = 1] ≤ min
(

d
i − d

, 1
)
≤

2d
i
,

for i ≥ d + 1, as can be easily verified.¬ So, let T(m, d) be the expected time to solve an LPI with m constraints
in d dimensions. We have that T(d, d) = O(d3) by the above. Now, in every iteration, we need to check if the
current solution lies inside the new constraint, which takes O(d) time per iteration and O(dm) time overall.

Now, if Xi = 1, then we need to update each of the i − 1 constraints to lie on the hyperplane hi. The
hyperplane hi defines a linear equality, which we can use to eliminate one of the variables. This takes O(di)
time, and we have to do the recursive call. The probability that this happens is αi. As such, we have

T(m, d) = E

[
O(md) +

m∑
i=d+1

Xi(di + T(i − 1, d − 1))
]

= O(md) +
m∑

i=d+1
αi(di + T(i − 1, d − 1))

= O(md) +
m∑

i=d+1

2d
i
(di + T(i − 1, d − 1))

= O
(
md2

)
+

m∑
i=d+1

2d
i

T(i − 1, d − 1).

¬Indeed, (d)+d
(i−d)+d

lies between d
i−d and d

d = 1.
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feasible
region

h

empty intersection
on h

v

(a) (b) (c)

Figure 19.1: Demonstrating the algorithm for the general case: (a) given constraints and feasible region, (b)
constraints moved to pass through the origin, and (c) the resulting acceptable vertex v.

Guessing that T(m, d) ≤ cdm, we have that

T(m, d) ≤ ĉ1md2 +
m∑

i=d+1

2d
i
cd−1(i − 1) ≤ ĉ1md2 +

m∑
i=d+1

2dcd−1 =
(
ĉ1d2 + 2dcd−1

)
m,

where ĉ1 is some absolute constant. We need that ĉ1d2 + 2cd−1d ≤ cd, which holds for cd = O
(
(3d)d

)
and

T(m, d) = O
(
(3d)dm

)
.

Lemma 19.3.1. Given an LPI with n constraints in d dimensions and an acceptable vertex for this LPI, then
can compute the optimal solution in expected O

(
(3d)dn

)
time.

19.3.2. The algorithm for the general case

Let L be the given LPI, and let L ′ be the instance formed by translating all the constraints so that they pass
through the origin. Next, let h be the hyperplane xd = −1. Consider a solution to the LP L ′ when restricted to
h. This is a (d − 1)-dimensional instance of linear programming, and it can be solved recursively.

If the recursive call on L ′ ∩ h returned no solution, then the d constraints that prove that the LP L ′ is
infeasible on h corresponds to a basis in L of a vertex v which is acceptable in the original LPI. Indeed, as
we move these d constraints to the origin, their intersection on h is empty (i.e., the “quadrant” that their
intersection forms is unbounded only in the upward direction). As such, we can now apply the algorithm of
Lemma 19.3.1 to solve the given LPI. See Figure 19.1.

If there is a solution to L ′ ∩ h, then it is a vertex v on h which is feasible. Thus, consider the original set
of d − 1 constraints in L that corresponds to the basis B of v. Let ` be the line formed by the intersection of
the hyperplanes of B. It is now easy to verify that the intersection of the feasible region with this line is an
unbounded ray, and the algorithm returns this unbounded (downward oriented) ray, as a proof that the LPI is
unbounded.

Theorem 19.3.2. Given an LP instance with n constraints defined over d variables, it can be solved in expected
O

(
(3d)dn

)
time.

Proof: The expected running time is

S(n, d) = O(nd) + S(n, d − 1) + T(m, d),
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where T(m, d) is the time to solve an LP in the restricted case of Section 19.3.1. Indeed, we first solve the problem
on the (d − 1)-dimensional subspace h ≡ xd = −1. This takes O(dn) + S(n, d − 1) time (we need to rewrite the
constraints for the lower-dimensional instance, and that takes O(dn) time). If the solution on h is feasible, then
the original LPI has an unbounded solution, and we return it. Otherwise, we obtained an acceptable vertex,
and we can use the special case algorithm on the original LPI. Now, the solution to this recurrence is O

(
(3d)dn

)
;

see Lemma 19.3.1.

Chapter 20

Linear Programming

20.1. Introduction and Motivation

In the VCR/guns/nuclear-bombs/napkins/star-wars/professors/butter/mice problem, the benevolent dictator,
Biga Piguinus, of Penguina (a country in south Antarctica having 24 million penguins under its control) has
to decide how to allocate her empire resources to the maximal benefit of her penguins. In particular, she has
to decide how to allocate the money for the next year budget. For example, buying a nuclear bomb has a
tremendous positive effect on security (the ability to destruct yourself completely together with your enemy
induces a peaceful serenity feeling in most people). Guns, on the other hand, have a weaker effect. Penguina
(the state) has to supply a certain level of security. Thus, the allocation should be such that:

xgun + 1000 ∗ xnuclear−bomb ≥ 1000,

where xguns is the number of guns constructed, and xnuclear−bomb is the number of nuclear-bombs constructed.
On the other hand,

100 ∗ xgun + 1000000 ∗ xnuclear−bomb ≤ xsecurity

where xsecurity is the total Penguina is willing to spend on security, and 100 is the price of producing a single
gun, and 1,000,000 is the price of manufacturing one nuclear bomb. There are a lot of other constrains of this
type, and Biga Piguinus would like to solve them, while minimizing the total money allocated for such spending
(the less spent on budget, the larger the tax cut).

a11x1 + . . . + a1nxn ≤ b1
a21x1 + . . . + a2nxn ≤ b2

...

am1x1 + . . . + amnxn ≤ bm
max c1x1 + . . . + cnxn.

More formally, we have a (potentially large) number of variables: x1, . . . ,
xn and a (potentially large) system of linear inequalities. We will refer to
such an inequality as a constraint. We would like to decide if there is an
assignment of values to x1, . . . , xn where all these inequalities are satisfied.
Since there might be infinite number of such solutions, we want the solution
that maximizes some linear quantity. See the instance on the right.

The linear target function we are trying to maximize is known as the objective function of the linear
program. Such a problem is an instance of linear programming. We refer to linear programming as LP.

20.1.1. History

Linear programming can be traced back to the early 19th century. It started in earnest in 1939 when L. V.
Kantorovich noticed the importance of certain type of Linear Programming problems. Unfortunately, for several
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∀(u, v) ∈ E 0 ≤ xu→v

xu→v ≤ c(u→ v)

∀v ∈ V \ {s, t}
∑
(u,v)∈E

xu→v −
∑
(v,w)∈E

xv→w ≤ 0∑
(u,v)∈E

xu→v −
∑
(v,w)∈E

xv→w ≥ 0

maximizing
∑
(s,u)∈E xs→u

Figure 20.1

max
n∑
j=1

cj xj

subject to
n∑
j=1

ai j xj ≤ bi

for i = 1,2, . . . ,m.

Figure 20.2

years, Kantorovich work was unknown in the west and unnoticed in the east.
Dantzig, in 1947, invented the simplex method for solving LP problems for the US Air force planning

problems.
T. C. Koopmans, in 1947, showed that LP provide the right model for the analysis of classical economic

theories.
In 1975, both Koopmans and Kantorovich got the Nobel prize of economics. Dantzig probably did not get it

because his work was too mathematical. That is how it goes. Kantorovich was the only the Russian economist
that got the Nobel prize¬.

20.1.2. Network flow via linear programming

To see the impressive expressive power of linear programming, we next show that network flow can be solved
using linear programming. Thus, we are given an instance of max flow; namely, a network flow G = (V,E) with
source s and sink t, and capacities c(·) on the edges. We would like to compute the maximum flow in G.

To this end, for an edge (u, v) ∈ E, let xu→v be a variable which is the amount of flow assign to (u, v) in
the maximum flow. We demand that 0 ≤ xu→v and xu→v ≤ c(u→ v) (flow is non negative on edges, and it
comply with the capacity constraints). Next, for any vertex v which is not the source or the sink, we require
that

∑
(u,v)∈E xu→v =

∑
(v,w)∈E xv→w (this is conservation of flow). Note, that an equality constraint a = b can

be rewritten as two inequality constraints a ≤ b and b ≤ a. Finally, under all these constraints, we are interest
in the maximum flow. Namely, we would like to maximize the quantity

∑
(s,u)∈E xs→u. Clearly, putting all these

constraints together, we get the linear program depicted in Figure 20.1.
It is not too hard to write down min-cost network flow using linear programming.
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20.2. The Simplex Algorithm

20.2.1. Linear program where all the variables are positive

We are given a LP, depicted in Figure 20.2, where a variable can have any real value. As a first step to solving it,
we would like to rewrite it, such that every variable is non-negative. This is easy to do, by replacing a variable
xi by two new variables x ′i and x ′′i , where xi = x ′i − x ′′i , x ′i ≥ 0 and x ′′i ≥ 0. For example, the (trivial) linear
program containing the single constraint 2x+y ≥ 5 would be replaced by the following LP: 2x ′−2x ′′+y′−y′′ ≥ 5,
x ′ ≥ 0, y′ ≥ 0, x ′′ ≥ 0 and y′′ ≥ 0.

Lemma 20.2.1. Given an instance I of LP, one can rewrite it into an equivalent LP, such that all the variables
must be non-negative. This takes linear time in the size of I.

20.2.2. Standard form

Using Lemma 20.2.1, we can now require a LP to be specified using only positive variables. This is known as
standard form.

A linear program in standard form.

max
n∑
j=1

cj xj

subject to
n∑
j=1

ai j xj ≤ bi for i = 1,2, . . . ,m

xj ≥ 0 for j = 1, . . . ,n.

A linear program in standard form.
(Matrix notation.)

max cT x

subject to Ax ≤ b.

x ≥ 0.

Here the matrix notation rises, by setting

c =
©«

c1
...

cn

ª®®¬, b =
©«

b1
...

bm

ª®®¬, A =
©«

a11 a12 . . . a1(n−1) a1n
a21 a22 . . . a2(n−1) a2n
... . . . . . . . . .

...

a(m−1)1 a(m−1)2 . . . a(m−1)(n−1) a(m−1)n
am1 am2 . . . am(n−1) amn

ª®®®®®®¬
, and x =

©«

x1
x2
...

xn−1
xn

ª®®®®®®¬
.

Note, that c, b and A are prespecified, and x is the vector of unknowns that we have to solve the LP for.
In the following in order to solve the LP, we are going to do a long sequence of rewritings till we reach the

optimal solution.

20.2.3. Slack Form

We next rewrite the LP into slack form. It is a more convenient form for describing the Simplex algorithm
for solving LP.

max cT x

subject to Ax = b.

x ≥ 0.

Specifically, one can rewrite a LP, so that every inequality becomes equality,
and all variables must be positive; namely, the new LP will have a form depicted on
the right (using matrix notation). To this end, we introduce new variables (slack
variables) rewriting the inequality

n∑
i=1

aixi ≤ b

¬There were other economists that were born in Russia, but lived in the west that got the Nobel prize – Leonid Hurwicz for
example.

The word convenience is used here in the most liberal interpretation possible.

136



as

xn+1 = b −
n∑
i=1

aixi

xn+1 ≥ 0.

Intuitively, the value of the slack variable xn+1 encodes how far is the original inequality for holding with
equality.

Now, we have a special variable for each inequality in the LP (this is xn+1 in the above example). These
variables are special, and would be called basic variables. All the other variables on the right side are
nonbasic variables (original isn’t it?). A LP in this form is in slack form.

The slack form is defined by a tuple (N,B, A, b, c, v).

Linear program in slack form.

max z = v +
∑
j∈N

cj xj,

s.t. xi = bi −
∑
j∈N

ai j xj f or i ∈ B,

xi ≥ 0, ∀i = 1, . . . ,n + m.

B - Set of indices of basic variables
N - Set of indices of nonbasic variables
n = |N | - number of original variables
b, c - two vectors of constants
m = |B| - number of basic variables

(i.e., number of inequalities)
A =

{
ai j

}
- The matrix of coefficients

N ∪ B = {1, . . . ,n + m}
v - objective function constant.

Exercise 20.2.2. Show that any linear program can be transformed into equivalent slack form.

Example 20.2.3. Consider the following LP which is in slack form, and its translation into the tuple (N,B, A, b, c, v).

max z = 29 − 1
9 x3 −

1
9 x5 −

2
9 x6

x1 = 8 + 1
6 x3 +

1
6 x5 −

1
3 x6

x2 = 4 − 8
3 x3 −

2
3 x5 +

1
3 x6

x4 = 18 − 1
2 x3 +

1
2 x5

B = {1,2,4} ,N = {3,5,6}

A = ©«
a13 a15 a16
a23 a25 a26
a43 a45 a46

ª®¬ = ©«
−1/6 −1/6 1/3
8/3 2/3 −1/3
1/2 −1/2 0

ª®¬
b = ©«

b1
b2
b4

ª®¬ = ©«
8
4
18

ª®¬ c = ©«
c3
c5
c6

ª®¬ = ©«
−1/9
−1/9
−2/9

ª®¬
v = 29.

Note that indices depend on the sets N and B, and also that the entries in A are negation of what they appear
in the slack form.

20.2.4. The Simplex algorithm by example

Before describing the Simplex algorithm in detail, it would be beneficial to derive it on an example. So, consider
the following LP.

max 5x1 + 4x2 + 3x3

s.t . 2x1 + 3x2 + x3 ≤ 5
4x1 + x2 + 2x3 ≤ 11
3x1 + 4x2 + 2x3 ≤ 8
x1, x2,x3 ≥ 0
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Next, we introduce slack variables, for example, rewriting 2x1 + 3x2 + x3 ≤ 5 as the constraints: w1 ≥ 0 and
w1 = 5 − 2x1 − 3x2 − x3. The resulting LP in slack form is

max z = 5x1 + 4x2 + 3x3

s.t . w1 = 5 − 2x1 − 3x2 − x3

w2 = 11 − 4x1 − x2 − 2x3

w3 = 8 − 3x1 − 4x2 − 2x3

x1, x2,x3,w1,w2,w3 ≥ 0

Here w1,w2,w3 are the slack variables. Note also that they are currently also the basic variables. Consider the
slack representation trivial solution, where all the non-basic variables are assigned zero; namely, x1 = x2 = x3 = 0.
We then have that w1 = 5, w2 = 11 and w3 = 8. Fortunately for us, this is a feasible solution, and the associated
objective value is z = 0.

We are interested in further improving the value of the objective function (i.e., z), while still having a feasible
solution. Inspecting carefully the above LP, we realize that all the basic variables w1 = 5, w2 = 11 and w3 = 8
have values which are strictly larger than zero. Clearly, if we change the value of one non-basic variable a bit,
all the basic variables would remain positive (we are thinking about the above system as being function of the
nonbasic variables x1, x2 and x3). So, consider the objective function z = 5x1 + 4x2 + 3x3. Clearly, if we increase
the value of x1, from its current zero value, then the value of the objective function would go up, since the
coefficient of x1 for z is a positive number (5 in our example).

Deciding how much to increase the value of x1 is non-trivial. Indeed, as we increase the value of x1, the the
solution might stop being feasible (although the objective function values goes up, which is a good thing). So,
let us increase x1 as much as possible without violating any constraint. In particular, for x2 = x3 = 0 we have
that

w1 = 5 − 2x1 − 3x2 − x3 = 5 − 2x1

w2 = 11 − 4x1 − x2 − 2x3 = 11 − 4x1

w3 = 8 − 3x1 − 4x2 − 2x3 = 8 − 3x1.

We want to increase x1 as much as possible, as long as w1,w2,w3 are non-negative. Formally, the constraints
are that

w1 = 5 − 2x1 ≥ 0,
w2 = 11 − 4x1 ≥ 0,

and w3 = 8 − 3x1 ≥ 0.

This implies that whatever value we pick for x1 it must comply with the inequalities x1 ≤ 2.5, x1 ≤ 11/4 = 2.75
and x1 ≤ 8/3 = 2.66. We select as the value of x1 the largest value that still comply with all these conditions.
Namely, x1 = 2.5. Putting it into the system, we now have a solution which is

x1 = 2.5, x2 = 0, x3 = 0, w1 = 0, w2 = 1, w3 = 0.5 ⇒ z = 5x1 + 4x2 + 3x3 = 12.5.

As such, all the variables are non-negative and this solution is feasible. Furthermore, this is a better solution
than the previous one, since the old solution had (the objective function) value z = 0.

What really happened? One zero nonbasic variable (i.e., x1) became non-zero, and one basic variable became
zero (i.e., w1). It is natural now to want to exchange between the nonbasic variable x1 (since it is no longer
zero) and the basic variable w1. This way, we will preserve the invariant, that the current solution we maintain
is the one where all the nonbasic variables are assigned zero.

So, consider the equality in the LP that involves w1, that is w1 = 5 − 2x1 − 3x2 − x3. We can rewrite this
equation, so that x1 is on the left side:

x1 = 2.5 − 0.5w1 − 1.5x2 − 0.5 x3. (20.1)
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The problem is that x1 still appears in the right size of the equations for w2 and w3 in the LP. We observe,
however, that any appearance of x1 can be replaced by substituting it by the expression on the right side of
Eq. (20.1). Collecting similar terms, we get the following equivalent LP:

max z = 12.5 − 2.5w1 − 3.5x2 + 0.5x3

x1 = 2.5 − 0.5w1 − 1.5x2 − 0.5x3

w2 = 1 + 2w1 + 5x2

w3 = 0.5 + 1.5w1 + 0.5x2 − 0.5x3.

Note, that the nonbasic variables are now {w1, x2, x3} and the basic variables are {x1,w2,w3}. In particular, the
trivial solution, of assigning zero to all the nonbasic variables is still feasible; namely we set w1 = x2 = x3 = 0.
Furthermore, the value of this solution is 12.5.

This rewriting step, we just did, is called pivoting. And the variable we pivoted on is x1, as x1 was transfered
from being a nonbasic variable into a basic variable.

We would like to continue pivoting till we reach an optimal solution. We observe, that we can not pivot on
w1, since if we increase the value of w1 then the objective function value goes down, since the coefficient of w1
is −2.5. Similarly, we can not pivot on x2 since its coefficient in the objective function is −3.5. Thus, we can
only pivot on x3 since its coefficient in the objective function is 0.5, which is a positive number.

Checking carefully, it follows that the maximum we can increase x3 is to 1, since then w3 becomes zero.
Thus, rewriting the equality for w3 in the LP; that is,

w3 = 0.5 + 1.5w1 + 0.5x2 − 0.5x3,

for x3, we have
x3 = 1 + 3w1 + x2 − 2w3,

Substituting this into the LP, we get the following LP.

max z = 13 − w1 − 3x2 − w3

s.t . x1 = 2 − 2w1 − 2x2 + w3

w2 = 1 + 2w1 + 5x2

x3 = 1 + 3w1 + x2 − 2w3

Can we further improve the current (trivial) solution that assigns zero to all the nonbasic variables? (Here
the nonbasic variables are {w1, x2,w3}.)

The resounding answer is no. We had reached the optimal solution. Indeed, all the coefficients in the
objective function are negative (or zero). As such, the trivial solution (all nonbasic variables get zero) is
maximal, as they must all be non-negative, and increasing their value decreases the value of the objective
function. So we better stop.

Intuition. The crucial observation underlining our reasoning is that at each stage we had to replace the LP
by a completely equivalent LP. In particular, any feasible solution to the original LP would be feasible for the
final LP (and vice versa). Furthermore, they would have exactly the same objective function value. However,
in the final LP, we get an objective function that can not be improved for any feasible point, an we stopped.
Thus, we found the optimal solution to the linear program.

This gives a somewhat informal description of the simplex algorithm. At each step we pivot on a nonbasic
variable that improves our objective function till we reach the optimal solution. There is a problem with our
description, as we assumed that the starting (trivial) solution of assigning zero to the nonbasic variables is
feasible. This is of course might be false. Before providing a formal (and somewhat tedious) description of the
above algorithm, we show how to resolve this problem.
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20.2.4.1. Starting somewhere

max z = v +
∑
j∈N

cj xj,

s.t. xi = bi −
∑
j∈N

ai j xj for i ∈ B,

xi ≥ 0, ∀i = 1, . . . ,n + m.

We had transformed a linear programming problem into
slack form. Intuitively, what the Simplex algorithm is going
to do, is to start from a feasible solution and start walking
around in the feasible region till it reaches the best possible
point as far as the objective function is concerned. But
maybe the linear program L is not feasible at all (i.e., no

solution exists.). Let L be a linear program (in slack form depicted on the left. Clearly, if we set all xi = 0 if
i ∈ N then this determines the values of the basic variables. If they are all positive, we are done, as we found a
feasible solution. The problem is that they might be negative.

min x0

s.t. xi = x0 + bi −
∑
j∈N

ai j xj for i ∈ B,

xi ≥ 0, ∀i = 1, . . . ,n + m.

We generate a new LP problem L ′ from L. This
LP L ′ = Feasible(L) is depicted on the right. Clearly,
if we pick xj = 0 for all j ∈ N (all the nonbasic
variables), and a value large enough for x0 then all
the basic variables would be non-negatives, and as
such, we have found a feasible solution for L ′. Let LPStartSolution(L ′) denote this easily computable feasible
solution.

We can now use the Simplex algorithm we described to find this optimal solution to L ′ (because we have a
feasible solution to start from!).

Lemma 20.2.4. The LP L is feasible if and only if the optimal objective value of LP L ′ is zero.

Proof: A feasible solution to L is immediately an optimal solution to L ′ with x0 = 0, and vice versa. Namely,
given a solution to L ′ with x0 = 0 we can transform it to a feasible solution to L by removing x0.

One technicality that is ignored above, is that the starting solution we have for L ′, generated by LPStartSolution(L)
is not legal as far as the slack form is concerned, because the non-basic variable x0 is assigned a non-zero value.
However, this can be easily resolved by immediately pivoting on x0 when we run the Simplex algorithm. Namely,
we first try to decrease x0 as much as possible.

Chapter 21

Linear Programming II

21.1. The Simplex Algorithm in Detail
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B - Set of indices of basic variables
N - Set of indices of nonbasic variables
n = |N | - number of original variables
b, c - two vectors of constants
m = |B| - number of basic variables (i.e., number
of inequalities)
A =

{
ai j

}
- The matrix of coefficients

N ∪ B = {1, . . . ,n + m}
v - objective function constant.

max z = v +
∑
j∈N

cj xj,

s.t. xi = bi −
∑
j∈N

ai j xj for i ∈ B,

xi ≥ 0, ∀i = 1, . . . ,n + m.

(i) (ii)

Figure 21.2: A linear program in slack form is specified by a tuple (N,B, A, b, c, v).

Simplex( L̂ a LP )
Transform L̂ into slack form.
Let L be the resulting slack form.
L ′← Feasible(L)
x ← LPStartSolution(L ′)
x ′← SimplexInner(L ′, x) (*)
z ← objective function value of x ′

if z > 0 then
return “No solution”

x ′′← SimplexInner(L, x ′)
return x ′′

Figure 21.1: The Simplex algorithm.

The Simplex algorithm is presented on the right.
We assume that we are given SimplexInner, a black
box that solves a LP if the trivial solution of assigning
zero to all the nonbasic variables is feasible. We re-
mind the reader that L ′ = Feasible(L) returns a new
LP for which we have an easy feasible solution. This
is done by introducing a new variable x0 into the LP,
where the original LP L̂ is feasible if and only if the
new LP L has a feasible solution with x0 = 0. As such,
we set the target function in L to be minimizing x0.

We now apply SimplexInner to L ′ and the easy
solution computed for L ′ by LPStartSolution(L ′). If
x0 > 0 in the optimal solution for L ′ then there is no
feasible solution for L, and we exit. Otherwise, we
found a feasible solution to L, and we use it as the starting point for SimplexInner when it is applied to L.

Thus, in the following, we have to describe SimplexInner - a procedure to solve an LP in slack form, when
we start from a feasible solution defined by the nonbasic variables assigned value zero.

One technicality that is ignored above, is that the starting solution we have for L ′, generated by LPStart-
Solution(L) is not legal as far as the slack form is concerned, because the non-basic variable x0 is assigned
a non-zero value. However, this can be easily resolve by immediately pivot on x0 when we execute (*) in
Figure 21.1. Namely, we first try to decrease x0 as much as possible.

21.2. The SimplexInner Algorithm
We next describe the SimplexInner algorithm.

We remind the reader that the LP is given to us in slack form, see Figure 21.2. Furthermore, we assume
that the trivial solution x = τ, which is assigning all nonbasic variables zero, is feasible. In particular, we
immediately get the objective value for this solution from the notation which is v.

Assume, that we have a nonbasic variable xe that appears in the objective function, and furthermore its
coefficient ce is positive in (the objective function), which is z = v +

∑
j∈N cj xj . Formally, we pick e to be one of

the indices of {
j
��� cj > 0, j ∈ N

}
.

The variable xe is the entering variable variable (since it is going to join the set of basic variables).
Clearly, if we increase the value of xe (from the current value of 0 in τ) then one of the basic variables is

going to vanish (i.e., become zero). Let xl be this basic variable. We increase the value of xe (the entering
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variable) till xl (the leaving variable) becomes zero.
Setting all nonbasic variables to zero, and letting xe grow, implies that xi = bi − aiexe, for all i ∈ B.
All those variables must be non-negative, and thus we require that ∀i ∈ B it holds xi = bi − aiexe ≥ 0.

Namely, xe ≤ (bi/aie) or alternatively, 1
xe
≥

aie
bi

. Namely, 1
xe
≥ max

i∈B

aie
bi

and, the largest value of xe which is
still feasible is

U =
(
max
i∈B

aie
bi

)−1
.

We pick l (the index of the leaving variable) from the set all basic variables that vanish to zero when xe = U.
Namely, l is from the set {

j
���� aje

bj
= U where j ∈ B

}
.

Now, we know xe and xl. We rewrite the equation for xl in the LP so that it has xe on the left size. Formally,
we do

xl = bl −
∑
j∈N

al j xj ⇒ xe =
bl
ale
−

∑
j∈N∪{l }

al j
ale

xj, where all = 1.

We need to remove all the appearances on the right side of the LP of xe. This can be done by substituting
xe into the other equalities, using the above equality. Alternatively, we do beforehand Gaussian elimination, to
remove any appearance of xe on the right side of the equalities in the LP (and also from the objective function)
replaced by appearances of xl on the left side, which we then transfer to the right side.

In the end of this process, we have a new equivalent LP where the basic variables are B′ = (B \ {l}) ∪ {e}
and the non-basic variables are N ′ = (N \ {e}) ∪ {l}.

In end of this pivoting stage the LP objective function value had increased, and as such, we made progress.
Note, that the linear system is completely defined by which variables are basic, and which are non-basic.
Furthermore, pivoting never returns to a combination (of basic/non-basic variable) that was already visited.
Indeed, we improve the value of the objective function in each pivoting stage. Thus, we can do at most(

n + m
n

)
≤

(n + m
n
· e

)n
pivoting steps. And this is close to tight in the worst case (there are examples where 2n pivoting steps are
needed).

Each pivoting step takes polynomial time in n and m. Thus, the overall running time of Simplex is exponential
in the worst case. However, in practice, Simplex is extremely fast.

21.2.1. Degeneracies

If you inspect carefully the Simplex algorithm, you would notice that it might get stuck if one of the bis is zero.
This corresponds to a case where > m hyperplanes passes through the same point. This might cause the effect
that you might not be able to make any progress at all in pivoting.

There are several solutions, the simplest one is to add tiny random noise to each coefficient. You can even
do this symbolically. Intuitively, the degeneracy, being a local phenomena on the polytope disappears with high
probability.

The larger danger, is that you would get into cycling; namely, a sequence of pivoting operations that do not
improve the objective function, and the bases you get are cyclic (i.e., infinite loop).

There is a simple scheme based on using the symbolic perturbation, that avoids cycling, by carefully choosing
what is the leaving variable. This is described in detail in Section 21.6.

There is an alternative approach, called Bland’s rule, which always choose the lowest index variable for
entering and leaving out of the possible candidates. We will not prove the correctness of this approach here.
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21.2.2. Correctness of linear programming

Definition 21.2.1. A solution to an LP is a basic solution if it the result of setting all the nonbasic variables
to zero.

Note that the Simplex algorithm deals only with basic solutions. In particular we get the following.

Theorem 21.2.2 (Fundamental theorem of Linear Programming.). For an arbitrary linear program,
the following statements are true:
(A) If there is no optimal solution, the problem is either infeasible or unbounded.
(B) If a feasible solution exists, then a basic feasible solution exists.
(C) If an optimal solution exists, then a basic optimal solution exists.

Proof: Proof is constructive by running the simplex algorithm.

21.2.3. On the ellipsoid method and interior point methods

The Simplex algorithm has exponential running time in the worst case.
The ellipsoid method is weakly polynomial (namely, it is polynomial in the number of bits of the input).

Khachian in 1979 came up with it. It turned out to be completely useless in practice.
In 1984, Karmakar came up with a different method, called the interior-point method which is also weakly

polynomial. However, it turned out to be quite useful in practice, resulting in an arm race between the interior-
point method and the simplex method.

The question of whether there is a strongly polynomial time algorithm for linear programming, is one of the
major open questions in computer science.

21.3. Duality and Linear Programming
Every linear program L has a dual linear program L ′. Solving the dual problem is essentially equivalent to
solving the primal linear program (i.e., the original) LP.

21.3.1. Duality by Example

max z = 4x1 + x2 + 3x3

s.t. x1 + 4x2 ≤ 1
3x1 − x2 + x3 ≤ 3
x1, x2, x3 ≥ 0

Figure 21.3: The linear pro-
gram L.

Consider the linear program L depicted on the right (Figure 21.3). Note,
that any feasible solution, gives us a lower bound on the maximal value of the
target function, denoted by η. In particular, the solution x1 = 1, x2 = x3 = 0
is feasible, and implies z = 4 and thus η ≥ 4.

Similarly, x1 = x2 = 0, x3 = 3 is feasible and implies that η ≥ z = 9.
We might be wondering how close is this solution to the optimal solution?

In particular, if this solution is very close to the optimal solution, we might
be willing to stop and be satisfied with it.

Let us add the first inequality (multiplied by 2) to the second inequality (multiplied by 3). Namely, we add
the two inequalities:

2( x1 + 4x2 ) ≤ 2(1)
+3(3x1 − x2 + x3) ≤ 3(3).

The resulting inequality is

11x1 + 5x2 + 3x3 ≤ 11. (21.1)
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Note, that this inequality must hold for any feasible solution of L. Now, the objective function is z = 4x1+x2+3x3
and x1,x2 and x3 are all non-negative, and the inequality of Eq. (21.1) has larger coefficients that all the
coefficients of the target function, for the corresponding variables. It thus follows, that for any feasible solution,
we have

z = 4x1 + x2 + 3x3 ≤ 11x1 + 5x2 + 3x3 ≤ 11,

since all the variables are non-negative. As such, the optimal value of the LP L is somewhere between 9 and 11.
We can extend this argument. Let us multiply the first inequality by y1 and second inequality by y2 and

add them up. We get:

y1(x1 + 4x2 ) ≤ y1(1)
+ y2(3x1 - x2 + x3 ) ≤ y2(3)
(y1 + 3y2)x1 + (4y1 − y2)x2 + y2x3 ≤ y1 + 3y2.

(21.2)

Compare this to the target function z = 4x1 + x2 + 3x3. If this expression is bigger than the target function
in each variable, namely

min y1 + 3y2

s.t. y1 + 3y2 ≥ 4
4y1 − y2 ≥ 1
y2 ≥ 3
y1, y2 ≥ 0.

Figure 21.4: The dual LP L̂.
The primal LP is depicted in
Figure 21.3.

4 ≤ y1 + 3y2

1 ≤ 4y1 − y2

3 ≤ y2,

then, z = 4x1 + x2 + 3x3 ≤ (y1 + 3y2)x1 + (4y1 − y2)x2 + y2x3 ≤ y1 + 3y2, the last
step follows by Eq. (21.2).

Thus, if we want the best upper bound on η (the maximal value of z) then
we want to solve the LP L̂ depicted in Figure 21.4. This is the dual program
to L and its optimal solution is an upper bound to the optimal solution for L.

21.3.2. The Dual Problem

Given a linear programming problem (i.e., primal problem, seen in Figure 21.5 (a), its associated dual linear
program is in Figure 21.5 (b). The standard form of the dual LP is depicted in Figure 21.5 (c). Interestingly, you
can just compute the dual LP to the given dual LP. What you get back is the original LP. This is demonstrated
in Figure 21.6.

We just proved the following result.

Lemma 21.3.1. Let L be an LP, and let L ′ be its dual. Let L ′′ be the dual to L ′. Then L and L ′′ are the same
LP.

21.3.3. The Weak Duality Theorem

Theorem 21.3.2. If (x1, x2, . . . , xn) is feasible for the primal LP and (y1, y2, . . . , ym) is feasible for the dual LP,
then ∑

j

cj xj ≤
∑
i

biyi .

Namely, all the feasible solutions of the dual bound all the feasible solutions of the primal.

Proof: By substitution from the dual form, and since the two solutions are feasible, we know that∑
j

cj xj ≤
∑
j

(
m∑
i=1

yiai j

)
xj ≤

∑
i

(∑
j

ai j xj

)
yi ≤

∑
i

biyi .
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max
n∑
j=1

cj xj

s.t.
n∑
j=1

ai j xj ≤ bi,

for i = 1, . . . ,m,
xj ≥ 0,

for j = 1, . . . ,n.

min
m∑
i=1

biyi

s.t.
m∑
i=1

ai j yi ≥ cj,

for j = 1, . . . ,n,
yi ≥ 0,

for i = 1, . . . ,m.

max
m∑
i=1
(−bi)yi

s.t.
m∑
i=1
(−ai j)yi ≤ −cj,

for j = 1, . . . ,n,
yi ≥ 0,

fori = 1, . . . ,m.

(a) primal program (b) dual program (c) dual program in standard
form

Figure 21.5: Dual linear programs.

max
m∑
i=1
(−bi)yi

s.t.
m∑
i=1
(−ai j)yi ≤ −cj,

for j = 1, . . . ,n,
yi ≥ 0,

for i = 1, . . . ,m.

min
n∑
j=1
−cj xj

s.t.
n∑
j=1
(−ai j)xj ≥ −bi,

for i = 1, . . . ,m,
xj ≥ 0,

for j = 1, . . . ,n.

max
n∑
j=1

cj xj

s.t.
n∑
j=1

ai j xj ≤ bi,

for i = 1, . . . ,m,
xj ≥ 0,

for j = 1, . . . ,n.

(a) dual program (b) the dual program to the dual
program (c) ... which is the original LP.

Figure 21.6: The dual to the dual linear program. Computing the dual of (a) can be done mechanically by
following Figure 21.5 (a) and (b). Note, that (c) is just a rewriting of (b).

Interestingly, if we apply the weak duality theorem on the dual program (namely, Figure 21.6 (a) and (b)),

we get the inequality
m∑
i=1
(−bi)yi ≤

n∑
j=1
−cj xj , which is the original inequality in the weak duality theorem. Thus,

the weak duality theorem does not imply the strong duality theorem which will be discussed next.

21.4. The strong duality theorem
The strong duality theorem states the following.

Theorem 21.4.1. If the primal LP problem has an optimal solution x∗ =
(
x∗1, . . . , x

∗
n

)
then the dual also has an

optimal solution, y∗ =
(
y∗1, . . . , y

∗
m

)
, such that ∑

j

cj x∗j =
∑
i

biy∗i .

Its proof is somewhat tedious and not very insightful, the basic idea to prove this theorem is to run the
simplex algorithm simultaneously on both the primal and the dual LP making steps in sync. When the two
stop, they must be equal of they are feasible. We omit the tedious proof.
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21.5. Some duality examples

21.5.1. Shortest path

You are given a graph G = (V,E), with source s and target t. We have weights ω(u, v) on each edge (u, v) ∈ E, and
we are interested in the shortest path in this graph from s to t. To simplify the exposition assume that there
are no incoming edges in s and no edges leave t. To this end, let dx be a variable that is the distance between
s and x, for any x ∈ V. Clearly, we must have for any edge (u, v) ∈ E, that du + ω(u, v) ≥ dv. We also know that
ds = 0. Clearly, a trivial solution to this constraints is to set all the variables to zero. So, we are trying to find
the assignment that maximizes dt, such that all the constraints are filled. As such, the LP for computing the
shortest path from s to t is the following LP.

max dt
s.t. ds ≤ 0

du + ω(u, v) ≥ dv ∀(u, v) ∈ E,
dx ≥ 0 ∀x ∈ V.

Equivalently, we get

max dt
s.t. ds ≤ 0

dv − du ≤ ω(u, v) ∀(u, v) ∈ E,
dx ≥ 0 ∀x ∈ V.

Let use compute the dual. To this end, let yuv be the dual variable for the edge (u, v), and let ys be the dual
variable for the ds ≤ 0 inequality. We get the following dual LP.

min
∑
(u,v)∈E

yuvω(u, v)

s.t. ys −
∑
(s,u)∈E

ysu ≥ 0 (∗)∑
(u,x)∈E

yux −
∑
(x,v)∈E

yxv ≥ 0 ∀x ∈ V \ {s, t} (∗∗)∑
(u,t)∈E

yut ≥ 1 (∗ ∗ ∗)

yuv ≥ 0 ∀(u, v) ∈ E,
ys ≥ 0.

Look carefully at this LP. The trick is to think about the yuv as a flow on the edge yuv. (Also, we assume
here that the weights are positive.) Then, this LP is the min cost flow of sending one unit of flow from the
source s to t. Indeed, if the weights are positive, then (**) can be assumed to be hold with equality in the
optimal solution, and this is conservation of flow. Equation (***) implies that one unit of flow arrives to the
sink t. Finally, (*) implies that at least ys units of flow leaves the source. The remaining of the LP implies that
ys ≥ 1. Of course, this min-cost flow version, is without capacities on the edges.
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21.5.2. Set Cover and Packing

Consider an instance of Set Cover with (S,F), where S = {u1, . . . ,un} and F = {F1, . . . ,Fm}, where Fi ⊆ S. The
natural LP to solve this problem is

min
∑
Fj ∈F

xj

s.t.
∑
Fj ∈F,
ui ∈Fj

xj ≥ 1 ∀ui ∈ S,

xj ≥ 0 ∀Fj ∈ F.

The dual LP is

max
∑
ui ∈S

yi

s.t.
∑
ui ∈Fj

yi ≤ 1 ∀Fj ∈ F,

yi ≥ 0 ∀ui ∈ S.

This is a packing LP. We are trying to pick as many vertices as possible, such that no set has more than one
vertex we pick. If the sets in F are pairs (i.e., the set system is a graph), then the problem is known as edge
cover , and the dual problem is the familiar independent set problem. Of course, these are all the fractional
versions – getting an integral solution for these problems is completely non-trivial, and in all these cases is
impossible in polynomial time since the problems are NP-Complete.

As an exercise, write the LP for Set Cover for the case where every set has a price associated with it, and
you are trying to minimize the total cost of the cover.

21.5.3. Network flow

(We do the following in excruciating details – hopefully its make the presentation clearer.)
Let assume we are given an instance of network flow G, with source s, and sink t. As usual, let us assume

there are no incoming edges into the source, no outgoing edges from the sink, and the two are not connected
by an edge. The LP for this network flow is the following.

max
∑
(s,v)∈E

xs→v

xu→v ≤ c(u→ v) ∀(u, v) ∈ E∑
(u,v)∈E

xu→v −
∑
(v,w)∈E

xv→w ≤ 0 ∀v ∈ V \ {s, t}

−
∑
(u,v)∈E

xu→v +
∑
(v,w)∈E

xv→w ≤ 0 ∀v ∈ V \ {s, t}

0 ≤ xu→v ∀(u, v) ∈ E.
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To perform the duality transform, we define a dual variable for each inequality. We get the following dual LP:

max
∑
(s,v)∈E

xs→v

xu→v ≤ c(u→ v) ∗ yu→v ∀(u, v) ∈ E∑
(u,v)∈E

xu→v −
∑
(v,w)∈E

xv→w ≤ 0 ∗ yv ∀v ∈ V \ {s, t}

−
∑
(u,v)∈E

xu→v +
∑
(v,w)∈E

xv→w ≤ 0 ∗ y′v ∀v ∈ V \ {s, t}

0 ≤ xu→v ∀(u, v) ∈ E.

Now, we generate the inequalities on the coefficients of the variables of the target functions. We need to carefully
account for the edges, and we observe that there are three kinds of edges: source edges, regular edges, and sink
edges. Doing the duality transformation carefully, we get the following:

min
∑
(u,v)∈E

c(u→ v) yu→v

1 ≤ ys→v + yv − y′v ∀(s, v) ∈ E
0 ≤ yu→v + yv − y′v − yu + y′u ∀(u, v) ∈ E(G \ {s, t})
0 ≤ yv→t − yv + y′v ∀(v, t) ∈ E
yu→v ≥ 0 ∀(u, v) ∈ E
yv ≥ 0 ∀v ∈ V
y′v ≥ 0 ∀v ∈ V

To understand what is going on, let us rewrite the LP, introducing the variable dv = yv − y
′
v, for each v ∈ V¬.

We get the following modified LP:

min
∑
(u,v)∈E

c(u→ v) yu→v

1 ≤ ys→v + dv ∀(s, v) ∈ E
0 ≤ yu→v + dv − du ∀(u, v) ∈ E(G \ {s, t})
0 ≤ yv→t − dv ∀(v, t) ∈ E
yu→v ≥ 0 ∀(u, v) ∈ E

Adding the two variables for t and s, and setting their values as follows dt = 0 and ds = 1, we get the following
LP:

min
∑
(u,v)∈E

c(u→ v) yu→v

0 ≤ ys→v + dv − ds ∀(s, v) ∈ E
0 ≤ yu→v + dv − du ∀(u, v) ∈ E(G \ {s, t})
0 ≤ yv→t + dt − dv ∀(v, t) ∈ E
yu→v ≥ 0 ∀(u, v) ∈ E
ds = 1, dt = 0

¬We could have done this directly, treating the two inequalities as equality, and multiplying it by a single variable that can be
both positive and negative – however, it is useful to see why this is correct at least once.
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Which simplifies to the following LP:

min
∑
(u,v)∈E

c(u→ v) yu→v

du − dv ≤ yu→v ∀(u, v) ∈ E
yu→v ≥ 0 ∀(u, v) ∈ E
ds = 1, dt = 0.

The above LP can be interpreted as follows: We are assigning weights to the edges (i.e., y(u,v)). Given such
an assignment, it is easy to verify that setting du (for all u) to be the shortest path distance under this weighting
to the sink t, complies with all inequalities, the assignment ds = 1 implies that we require that the shortest path
distance from the source to the sink has length exactly one.

We are next going to argue that the optimal solution to this LP is a min-cut. Lets us first start with the
other direction, given a cut (S,T) with s ∈ S and t ∈ T , observe that setting

du = 1 ∀u ∈ S

du = 0 ∀u ∈ T

yu→v = 1 ∀(u, v) ∈ (S,T)

yu→v = 0 ∀(u, v) ∈ E \ (S,T)

is a valid solution for the LP.
As for the other direction, consider the optimal solution for the LP, and let its target function value be

α∗ =
∑
(u,v)∈E

c(u→ v) y∗u→v

(we use (*) notation to the denote the values of the variables in the optimal LP solution). Consider generating
a cut as follows, we pick a random value uniformly in z ∈ [0,1], and we set S =

{
u

��� d∗u ≥ z
}
and T =

{
u

��� d∗u < z
}
.

This is a valid cut, as s ∈ S (as d∗s = 1) and t ∈ T (as d∗t = 0). Furthermore, an edge (u, v) is in the cut, only if
d∗u > d∗v (otherwise, it is not possible to cut this edge using this approach).

In particular, the probability of u ∈ S and v ∈ T , is exactly d∗u − d∗v! Indeed, it is the probability that z falls
inside the interval [d∗v, d∗u]. As such, (u, v) is in the cut with probability d∗u − d∗v (again, only if d∗u > d∗v), which
is bounded by y∗

(u,v)
(by the inequality du − dv ≤ yu→v in the LP).

So, let Xu→v be an indicator variable which is one if the edge is in the generated cu. We just argued that
E[Xu→v] = P[Xu→v = 1] ≤ y∗

(u,v)
. We thus have that the expected cost of this random cut is

E


∑
(u,v)∈E

Xu→v c(u→ v)

 =
∑
(u,v)∈E

c(u→ v)E[Xu→v ] ≤
∑
(u,v)∈E

c(u→ v)y∗u→v = α
∗.

That is, the expected cost of a random cut here is at most the value of the LP optimal solution. In particular,
there must be a cut that has cost at most α∗, see Remark 21.5.2 below. However, we argued that α∗ is no larger
than the cost of any cut. We conclude that α∗ is the cost of the min cut.

We are now ready for the kill, the optimal value of the original max-flow LP; that is, the max-flow (which is
a finite number because all the capacities are bounded numbers), is equal by the strong duality theorem, to the
optimal value of the dual LP (i.e., α∗). We just argued that α∗ is the cost of the min cut in the given network.
As such, we proved the following.

Lemma 21.5.1. The Min-Cut Max-Flow Theorem follows from the strong duality Theorem for Linear Pro-
gramming.
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Remark 21.5.2. In the above, we used the following “trivial” but powerful argument. Assume you have a random
variable Z, and consider its expectation µ = E[Z]. The expectation µ is the weighted average value of the values
the random variable Z might have, and in particular, there must be a value z that might be assigned to Z (with
non-zero probability), such that z ≤ µ. Putting it differently, the weighted average of a set of numbers is bigger
(formally, no smaller) than some number in this set.

This argument is one of the standard tools in the probabilistic method – a technique to prove the existence
of entities by considering expectations and probabilities.

21.6. Solving LPs without ever getting into a loop - symbolic perturbations

21.6.1. The problem and the basic idea

Consider the following LP:

max z = v +
∑
j∈N

cj xj,

s.t. xi = bi −
∑
j∈N

ai j xj for i = 1, . . . ,n,

xi ≥ 0, ∀i = 1, . . . ,n + m.

(Here B = {1, . . . ,n} and N = {n + 1, . . . ,n + m}.) The Simplex algorithm might get stuck in a loop of pivoting
steps, if one of the constants bi becomes zero during the algorithm execution. To avoid this, we are going to add
tiny infinitesimals to all the equations. Specifically, let ε > 0 be an arbitrarily small constant, and let εi = εi.
The quantities ε1, . . . , εn are infinitesimals of different scales. We slightly perturb the above LP by adding them
to each equation. We get the following modified LP:

max z = v +
∑
j∈N

cj xj,

s.t. xi = εi + bi −
∑
j∈N

ai j xj for i = 1, . . . ,n,

xi ≥ 0, ∀i = 1, . . . ,n + m.

Importantly, any feasible solution to the original LP translates into a valid solution of this LP (we made things
better by adding these symbolic constants).

The rule of the game is now that we treat ε1, . . . , εn as symbolic constants. Of course, when we do pivoting,
we need to be able to compare two numbers and decide which one is bigger. Formally, given two numbers

α = α0 + α1ε1 + · · · + αnεn and β = β0 + β1ε1 + · · · + βnεn, (21.3)

then α > β if and only if there is an index i such that α0 = β0, α1 = β1, . . . , αi−1 = βi−1 and αi > βi. That is,
α > β if the vector (α0, α1, . . . , αn) is lexicographically larger than (β0, β1, . . . , βn).

Significantly, but not obviously at this stage, the simplex algorithm would never divide an εi by an εj , so
we are good to go – we can perform all the needed arithmetic operations of the Simplex using these symbolic
constants, and we claim that now the constant term (which is a number of the form of Eq. (21.3)) is now never
zero. This implies immediately that the Simplex algorithm always makes progress, and it does terminates. We
still need to address the two issues:
(A) How are the symbolic perturbations are updated at each iteration?
(B) Why the constants can never be zero?
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21.6.2. Pivoting as a Gauss elimination step

Consider the LP equations

xi +
∑
j∈N

ai j xj = bi, for i ∈ B,

where B = {1, . . . ,n} and N = {n + 1, . . . ,n + m}. We can write these equations down in matrix form

x1 x2 . . . xn xn+1 xn+2 . . . xj . . . xn+m const
1 0 . . . 0 a1,n+1 a1,n+2 . . . a1, j . . . a1,n+m b1
0 1 . . . 0 a2,n+1 a2,n+2 . . . a2, j . . . a2,n+m b2
...

...
...

...
...

...
...

...
...

...
...

0 0 . . . 0 1 0 . . . 0 ak ,n+1 ak ,n+2 . . . ak , j
... ak ,n+m bk

...
...

...
...

...
...

...
...

...
...

...

0 . . . 0 1 an,n+1 an,n+2 . . . an, j . . . an,n+m bn

Assume that now we do a pivoting step with xj entering the basic variables, and xk leaving. To this end, let us
multiply the kth row (i.e., the kth equation) by 1/ak , j , this result in the kth row having 1 instead of ak , j . Let
this resulting row be denoted by r. Now, add ai, jr to the ith row of the matrix, for all i. Clearly, in the resulting
row/equation, the coefficient of xj is going to be zero, in all rows except the kth one, where it is 1. Note, that
on the matrix on the left side, all the columns are the same, except for the kth column, which might now have
various numbers in this column. The final step is to exchange the kth column on the left, with the jth column
on the right. And that is one pivoting step, when working on the LP using a matrix. It is very similar to one
step of the Gauss elimination in matrices, if you are familiar with that.

21.6.2.1. Back to the perturbation scheme

We now add a new matrix to the above representations on the right side, that keeps track of the εs. This looks
initially as follows.

x1 x2 . . . xn xn+1 . . . xj . . . xn+m const ε1 ε2 . . . εn

1 0 . . . 0 a1,n+1 . . . a1, j . . . a1,n+m b1 1 0 . . . 0
0 1 . . . 0 a2,n+1 . . . a2, j . . . a2,n+m b2 0 1 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 . . . 0 1 0 . . . 0 ak ,n+1 . . . ak , j
... ak ,n+m

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 . . . 0 1 an,n+1 . . . an, j . . . an,n+m bn 0 0 . . . 1

Now, we run the algorithm as described above, using the εs to resolve which variables are entering and
leaving. The critical observation is that throughout the algorithm execution we are adding rows, and multiplying
them by non-zero constants. The matrix on the right has initially full rank, and throughout the execution of
the algorithm its rank remains the same (because the linear operation we do on the rows can not change the
rank of the matrix). In particular, it is impossible that a row on the right side of the matrix is all zero, or equal
to another row, or equal to another row if multiplied by a constant. Namely, the symbolic constant encoded by
the εs as we run the Simplex algorithm can never be zero. And furthermore, these constants are never equal for
two different equations. We conclude that the Simplex algorithm now always make progress in each pivoting
step.
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21.6.2.2. The overall algorithm

We run the Simplex algorithm with the above described symbolic perturbation. The final stroke is that each
basic variable xi in the computed solution now equal to a number of the form xi = α0 +

∑
i αiεi. We interpret

this as xi = α0, by setting all the εs to be zero.

Chapter 22

Approximation Algorithms using Linear Pro-
gramming

22.1. Weighted vertex cover
Consider the Weighted Vertex Cover problem. Here, we have a graph G = (V,E), and each vertex v ∈ V has an
associated cost cv. We would like to compute a vertex cover of minimum cost – a subset of the vertices of G
with minimum total cost so that each edge has at least one of its endpoints in the cover. This problem is (of
course) NP-Hard, since the decision problem where all the weights are 1, is the Vertex Cover problem, which
we had shown to be NPC.

Let us first state this optimization problem is an integer programming. Indeed, for any v ∈ V, let define a
variable xv which is 1 if we decide to pick v to the vertex cover, and zero otherwise. The restriction that xv is
either 0 or 1, is written formally as xv ∈ {0,1}. Next, its required that every edge vu ∈ E is covered. Namely,
we require that xv ∨ xu to be TRUE. For reasons that would be come clearer shortly, we prefer to write this
condition as a linear inequality; namely, we require that xv + xu ≥ 1. Finally, minimize the total cost of the
vertices picked for the cover – namely, minimize

∑
v∈V xvcv. Putting it together, we get the following integer

programming instance:

min
∑
v∈V

cvxv

such that xv ∈ {0,1} ∀v ∈ V (22.1)
xv + xu ≥ 1 ∀vu ∈ E.

Naturally, solving this integer programming efficiently is NP-Hard, so instead let us try to relax this
optimization problem to be a LP (which we can solve efficiently, at least in practice¬). To do this, we need to
relax the integer program. We will do it by allowing the variables xv to get real values between 0 and 1. This
is done by replacing the condition that xv ∈ {0,1} by the constraint 0 ≤ xv ≤ 1. The resulting LP is

min
∑
v∈V

cvxv

such that 0 ≤ xv ∀v ∈ V,
xv ≤ 1 ∀v ∈ V, (22.2)
xv + xu ≥ 1 ∀vu ∈ E.

¬And also in theory if the costs are integers, using more advanced algorithms than the Simplex algorithm.
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So, consider the optimal solution to this LP, assigning value x̂v to the variable Xv, for all v ∈ V. As such, the
optimal value of the LP solution is

α̂ =
∑
v∈V

cv x̂v.

Similarly, let the optimal integer solution to integer program (IP) Eq. (22.1) denoted by xI
v , for all v ∈ V and

αI , respectively. Note, that any feasible solution for the IP of Eq. (22.1), is a feasible solution for the LP of
Eq. (22.2). As such, we must have that

α̂ ≤ αI ,

where αI is the value of the optimal solution.
So, what happened? We solved the relaxed optimization problem, and got a fractional solution (i.e., values

of x̂v can be fractions). On the other hand, the cost of this fractional solution is better than the optimal cost.
So, the natural question is how to turn this fractional solution into a (valid!) integer solution. This process is
known as rounding.

To this end, it is beneficial to consider a vertex v and its fractional value x̂v. If x̂v = 1 then we definitely
want to put it into our solution. If x̂v = 0 then the LP consider this vertex to be useless, and we really do not
want to use it. Similarly, if x̂v = 0.9, then the LP considers this vertex to be very useful (0.9 useful to be precise,
whatever this “means”). Intuitively, since the LP puts its money where its belief is (i.e., α̂ value is a function of
this “belief” generated by the LP), we should trust the LP values as a guidance to which vertices are useful and
which are not. Which brings to forefront the following idea: Lets pick all the vertices that are above a certain
threshold of usefulness according to the LP solution. Formally, let

S =
{
v
�� x̂v ≥ 1/2

}
.

We claim that S is a valid vertex cover, and its cost is low.
Indeed, let us verify that the solution is valid. We know that for any edge vu, it holds

x̂v + x̂u ≥ 1.

Since 0 ≤ x̂v ≤ 1 and 0 ≤ x̂u ≤ 1, it must be either x̂v ≥ 1/2 or x̂u ≥ 1/2. Namely, either v ∈ S or u ∈ S, or both
of them are in S, implying that indeed S covers all the edges of G.

As for the cost of S, we have

cS =
∑
v∈S

cv =
∑
v∈S

1 · cv ≤
∑
v∈S

2x̂v · cv ≤ 2
∑
v∈V

x̂vcv = 2α̂ ≤ 2αI ,

since x̂v ≥ 1/2 as v ∈ S.
Since αI is the cost of the optimal solution, we got the following result.

Theorem 22.1.1. The Weighted Vertex Cover problem can be 2-approximated by solving a single LP. Assuming
computing the LP takes polynomial time, the resulting approximation algorithm takes polynomial time.

What lessons can we take from this example? First, this example might be simple, but the resulting
approximation algorithm is non-trivial. In particular, I am not aware of any other 2-approximation algorithm
for the weighted problem that does not use LP. Secondly, the relaxation of an optimization problem into a
LP provides us with a way to get some insight into the problem in hand. It also hints that in interpreting the
values returned by the LP, and how to use them to do the rounding, we have to be creative.
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22.2. Revisiting Set Cover
In this section, we are going to revisit the Set Cover problem, and provide an approximation algorithm for this
problem. This approximation algorithm would not be better than the greedy algorithm we already saw, but it
would expose us to a new technique that we would use shortly for a different problem.

Set Cover
Instance: (S,F )

S - a set of n elements
F - a family of subsets of S, s.t.

⋃
X∈F X = S.

Question: The set X ⊆ F such that X contains as few sets as possible, and X covers S.

As before, we will first define an IP for this problem. In the following IP, the second condition just states
that any s ∈ s, must be covered by some set.

min α =
∑
U∈F

xU,

s.t. xU ∈ {0,1} ∀U ∈ F,∑
U∈F,s∈U

xU ≥ 1 ∀s ∈ S.

Next, we relax this IP into the following LP.

min α =
∑
U∈F

xU,

0 ≤ xU ≤ 1 ∀U ∈ F,∑
U∈F,s∈U

xU ≥ 1 ∀s ∈ S.

As before, consider the optimal solution to the LP: ∀U ∈ F, x̂U , and α̂. Similarly, let the optimal solution
to the IP (and thus for the problem) be: ∀U ∈ F, xI

U , and αI . As before, we would try to use the LP solution
to guide us in the rounding process. As before, if x̂U is close to 1 then we should pick U to the cover and if x̂U
is close to 0 we should not. As such, its natural to pick U ∈ F into the cover by randomly choosing it into the
cover with probability x̂U . Consider the resulting family of sets G. Let ZS be an indicator variable which is
one if S ∈ G. We have that the cost of G is

∑
S∈F ZS, and the expected cost is

E
[
cost of G

]
= E

[∑
S∈F

ZS

]
=

∑
S∈F

E
[
ZS

]
=

∑
S∈F

P
[
S ∈ G

]
=

∑
S∈F

x̂S = α̂ ≤ αI . (22.3)

As such, in expectation, G is not too expensive. The problem, of course, is that G might fail to cover some
element s ∈ S. To this end, we repeat this algorithm

m = 10 dlg ne = O(log n)

times, where n = |S |. Let Gi be the random cover computed in the ith iteration, and let H = ∪iGi. We return
H as the required cover.
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The solution H covers S. For an element s ∈ S, we have that∑
U∈F,s∈U

x̂U ≥ 1, (22.4)

and consider the probability that s is not covered by Gi, where Gi is the family computed in the ith iteration of
the algorithm. Since deciding if the include each set U into Gi is done independently for each set, we have that
the probability that s is not covered is

P[s not covered by Gi] = P
[
none of U ∈ F, such that s ∈ U were picked into Gi

]
=

∏
U∈F,s∈U

P
[
U was not picked into Gi

]
=

∏
U∈F,s∈U

(1 − x̂U )

≤
∏

U∈F,s∈U

exp(−x̂U ) = exp
(
−

∑
U∈F,s∈U

x̂U

)
≤ exp(−1) ≤ 1

2,

by Eq. (22.4). As such, the probability that s is not covered in all m iterations is at most(
1
2

)m
<

1
n10 ,

since m = O(log n). In particular, the probability that one of the n elements of S is not covered by H is at most
n(1/n10) = 1/n9.

Cost. By Eq. (22.3), in each iteration the expected cost of the cover computed is at most the cost of the
optimal solution (i.e., αI ). As such the expected cost of the solution computed is

cH ≤
∑
i

cBi ≤ mαI = O
(
αI log n

)
.

. Putting everything together, we get the following result.

Theorem 22.2.1. By solving an LP one can get an O(log n)-approximation to set cover by a randomized algo-
rithm. The algorithm succeeds with high probability.

22.3. Minimizing congestion
Let G be a graph with n vertices, and let πi and σi be two paths with the same endpoints vi,ui ∈ V(G), for
i = 1, . . . , t. Imagine that we need to send one unit of flow from vi to ui, and we need to choose whether to use
the path πi or σi. We would like to do it in such a way that no edge in the graph is being used too much.

Definition 22.3.1. Given a set X of paths in a graph G, the congestion of X is the maximum number of paths
in X that use the same edge.

Consider the following linear program:

min w

s.t. xi ≥ 0 i = 1, . . . , t,
xi ≤ 1 i = 1, . . . , t,∑
e∈πi

xi +
∑
e∈σi

(1 − xi) ≤ w ∀e ∈ E .
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Let x̂i be the value of xi in the optimal solution of this LP, and let ŵ be the value of w in this solution.
Clearly, the optimal congestion must be bigger than ŵ.

Let Xi be a random variable which is one with probability x̂i, and zero otherwise. If Xi = 1 then we use π
to route from vi to ui, otherwise we use σi. Clearly, the congestion of e is

Ye =
∑
e∈πi

Xi +
∑
e∈σi

(1 − Xi).

And in expectation

αe = E[Ye] = E

[∑
e∈πi

Xi +
∑
e∈σi

(1 − Xi)

]
=

∑
e∈πi
E[Xi] +

∑
e∈σi

E[(1 − Xi)]

=
∑
e∈πi

x̂i +
∑
e∈σi

(1 − x̂i) ≤ ŵ.

Using the Chernoff inequality, we have that

P
[
Ye ≥ (1 + δ)αe

]
≤ exp

(
−
αeδ

2

4

)
≤ exp

(
−
ŵδ2

4

)
.

(Note, that this works only if δ < 2e − 1, see Theorem 10.2.7). Let δ =
√

400
ŵ

ln t. We have that

P[Ye ≥ (1 + δ)αe] ≤ exp
(
−
δ2ŵ

4

)
≤

1
t100 ,

which is very small. In particular, if t ≥ n1/50 then all the edges in the graph do not have congestion larger than
(1 + δ)ŵ.

To see what this result means, let us play with the numbers. Let assume that t = n, and ŵ ≥
√

n. Then, the
solution has congestion larger than the optimal solution by a factor of

1 + δ = 1 +
√

20
ŵ

ln t ≤ 1 +
√

20 ln n
n1/4 ,

which is of course extremely close to 1, if n is sufficiently large.

Theorem 22.3.2. Given a graph with n vertices, and t pairs of vertices, such that for every pair (si, ti) there
are two possible paths to connect si to ti. Then one can choose for each pair which path to use, such that the
most congested edge, would have at most (1 + δ)opt, where opt is the congestion of the optimal solution, and
δ =

√
20
ŵ

ln t.

When the congestion is low. Assume that ŵ is a constant. In this case, we can get a better bound by
using the Chernoff inequality in its more general form, see Theorem 10.2.7. Indeed, set δ = c ln t/ln ln t, where
c is a constant. For µ = αe, we have that

P[Ye ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
= exp

(
µ
(
δ − (1 + δ) ln(1 + δ)

) )
= exp

(
−µc′ ln t

)
≤

1
tO(1)

,

where c′ is a constant that depends on c and grows if c grows. We thus proved that if the optimal congestion
is O(1), then the algorithm outputs a solution with congestion O(log t/log log t), and this holds with high
probability.
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Part VII
Miscellaneous topics

Chapter 23

Fast Fourier Transform
“But now, reflecting further, there begins to creep into his breast a touch of fellow-feeling for his imitators. For it seems to
him now that there are but a handful of stories in the world; and if the young are to be forbidden to prey upon the old then
they must sit for ever in silence.”

– J.M. Coetzee,

23.1. Introduction
In this chapter, we will address the problem of multiplying two polynomials quickly.

Definition 23.1.1. A polynomial p(x) of degree n is a function of the form p(x) =
∑n

j=0 aj x j = a0 + x(a1 + x(a2 +
. . . + xan)).

Note, that given x0, the polynomial can be evaluated at x0 in O(n) time.
There is a “dual” (and equivalent) representation of a polynomial. We sample its value in enough points,

and store the values of the polynomial at those points. The following theorem states this formally. We omit
the proof as you should have seen it already at some earlier math class.

Theorem 23.1.2. For any set
{
(x0, y0), (x1, y1), . . . , (xn−1, yn−1)

}
of n point-value pairs such that all the xk

values are distinct, there is a unique polynomial p(x) of degree n − 1, such that yk = p(xk), for k = 0, . . . ,n − 1.

An explicit formula for p(x) as a function of those point-value pairs is

p(x) =
n−1∑
i=0

yi

∏
j,i(x − xj)∏
j,i(xi − xj)

.

Note, that the ith term in this summation is zero for X = x1, . . . , xi−1, xi+1, . . . , xn−1, and is equal to yi for x = xi.
It is easy to verify that given n point-value pairs, we can compute p(x) in O(n2) time (using the above

formula).
The point-value pairs representation has the advantage that we can multiply two polynomials quickly.

Indeed, if we have two polynomials p and q of degree n − 1, both represented by 2n (we are using more points
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than we need) point-value pairs{
(x0, y0), (x1, y1), . . . , (x2n−1, y2n−1)

}
for p(x),

and
{
(x0, y

′
0), (x1, y

′
1), . . . , (x2n−1, y

′
2n−1)

}
for q(x).

Let r(x) = p(x)q(x) be the product of these two polynomials. Computing r(x) directly requires O(n2) using the
naive algorithm. However, in the point-value representation we have, that the representation of r(x) is{

(x0,r(x0)), . . . , (x2n−1,r(x2n−1))
}
=

{
(x0, p(x0)q(x0)), . . . , (x2n−1, p(x2n−1)q(x2n−1))

}
=

{
(x0, y0y

′
0), . . . , (x2n−1, y2n−1y

′
2n−1)

}
.

Namely, once we computed the representation of p(x) and q(x) using point-value pairs, we can multiply the
two polynomials in linear time. Furthermore, we can compute the standard representation of r(x) from this
representation.

Thus, if could translate quickly (i.e., O(n log n) time) from the standard representation of a polynomial to
point-value pairs representation, and back (to the regular representation) then we could compute the product
of two polynomials in O(n log n) time. The Fast Fourier Transform is a method for doing exactly this. It is
based on the idea of choosing the xi values carefully and using divide and conquer.

23.2. Computing a polynomial quickly on n values

In the following, we are going to assume that the polynomial we work on has degree n− 1, where n = 2k . If this
is not true, we can pad the polynomial with terms having zero coefficients.

Assume that we magically were able to find a set of numbers Ψ = {x1, . . . , xn}, so that it has the following
property: |SQ(Ψ)| = n/2, where SQ(Ψ) =

{
x2

��� x ∈ Ψ
}
. Namely, when we square the numbers of Ψ, we remain

with only n/2 distinct values, although we started with n values. It is quite easy to find such a set.
What is much harder is to find a set that have this property repeatedly. Namely, SQ(SQ(Ψ)) would have

n/4 distinct values, SQ(SQ(SQ(Ψ))) would have n/8 values, and SQi(Ψ) would have n/2i distinct values.
Predictably, maybe, it is easy to show that there is no such set of real numbers (verify...). But let us for

the time being ignore this technicality, and fly, for a moment, into the land of fantasy, and assume that we do
have such a set of numbers, so that |SQi(Ψ)| = n/2i numbers, for i = 0, . . . , k. Let us call such a set of numbers
collapsible.

Given a set of numbers X = {x0, . . . , xn} and a polynomial p(x), let

p(X) =
〈
(x0, p(x0)), . . . ,

(
xn, p(xn)

)〉
.

Furthermore, let us rewrite p(x) =
∑n−1

i=0 aixi as p(x) = u(x2) + x · v(x2), where

u(y) =
n/2−1∑
i=0

a2iy
i and v(y) =

n/2−1∑
i=0

a1+2iy
i .

Namely, we put all the even degree terms of p(x) into u(·), and all the odd degree terms into v(·). The maximum
degree of the two polynomials u(y) and v(y) is n/2.

We are now ready for the kill: To compute p(Ψ) for Ψ, which is a collapsible set, we have to compute
u(SQ(Ψ)), v(SQ(Ψ)). Namely, once we have the value-point pairs of u(SQ(A)), v(SQ(A)) we can, in linear time,
compute p(Ψ). But, SQ(Ψ) have n/2 values because we assumed that Ψ is collapsible. Namely, to compute n
point-value pairs of p(·), we have to compute n/2 point-value pairs of two polynomials of degree n/2 over a set
of n/2 numbers.

Namely, we reduce a problem of size n into two problems of size n/2. The resulting algorithm is depicted in
Figure 23.1.
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FFTAlg(p, X)
input: p(x): A polynomial of degree n: p(x) =

∑n−1
i=0 aixi

X: A collapsible set of n elements.
output: p(X)

begin
u(y) =

∑n/2−1
i=0 a2iy

i

v(y) =
∑n/2−1

i=0 a1+2iy
i.

Y = SQ(X) =
{
x2

��� x ∈ X
}
.

U = FFT Alg(u,Y ) /* U = u(Y ) */
V = FFT Alg(v, Y) /* V = v(Y ) */

Out ← ∅
for x ∈ A do

/* p(x) = u(x2) + x ∗ v(x2) */
/* U[x2] is the value u(x2) */
(x, p(x)) ←

(
x,U[x2] + x · V[x2]

)
Out ← Out ∪ {(x, p(x))}

return Out
end

Figure 23.1: The FFT algorithm.

What is the running time of FFTAlg? Well, clearly, all the operations except the recursive calls takes O(n)
time (assume, for the time being, that we can fetch U[x2] in O(1) time). As for the recursion, we call recursively
on a polynomial of degree n/2 with n/2 values (Ψ is collapsible!). Thus, the running time is T(n) = 2T(n/2)+O(n),
which is O(n log n) – exactly what we wanted.

23.2.1. Generating Collapsible Sets

Nice! But how do we resolve this “technicality” of not having collapsible set? It turns out that if we work over
the complex numbers (instead of over the real numbers), then generating collapsible sets is quite easy. Describing
complex numbers is outside the scope of this writeup, and we assume that you already have encountered them
before. Nevertheless a quick reminder is provided in Section 23.4.1. Everything you can do over the real
numbers you can do over the complex numbers, and much more (complex numbers are your friend).

In particular, let γ denote a nth root of unity. There are n such roots, and let γj(n) denote the jth root, see
Figure 23.2p161. In particular, let

γj(n) = cos((2π j)/n) + i sin((2π j)/n) = γ j .

Let A(n) = {γ0(n), . . . , γn−1(n)}. It is easy to verify that |SQ(A(n))| has exactly n/2 elements. In fact, SQ(A(n)) =
A(n/2), as can be easily verified. Namely, if we pick n to be a power of 2, then A(n) is the required collapsible
set.

Theorem 23.2.1. Given polynomial p(x) of degree n, where n is a power of two, then we can compute p(X)
in O(n log n) time, where X = A(n) is the set of n different powers of the nth root of unity over the complex
numbers.

We can now multiply two polynomials quickly by transforming them to the point-value pairs representation
over the nth root of unity, but we still have to transform this representation back to the regular representation.
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23.3. Recovering the polynomial
This part of the writeup is somewhat more technical. Putting it shortly, we are going to apply the FFTAlg
algorithm once again to recover the original polynomial. The details follow.

It turns out that we can interpret the FFT as a matrix multiplication operator. Indeed, if we have p(x) =∑n−1
i=0 aixi then evaluating p(·) on A(n) is equivalent to:

©«

y0
y1
y2
...

yn−1

ª®®®®®®¬
=

©«

1 γ0 γ2
0 γ3

0 · · · γn−1
0

1 γ1 γ2
1 γ3

1 · · · γn−1
1

1 γ2 γ2
2 γ3

2 · · · γn−1
2

1 γ3 γ2
3 γ3

3 · · · γn−1
3

...
...

...
... · · ·

...

1 γn−1 γ2
n−1 γ3

n−1 · · · γn−1
n−1

ª®®®®®®®®¬︸                                          ︷︷                                          ︸
the matrix V

©«

a0
a1
a2
a3
...

an−1

ª®®®®®®®®¬
,

where γj = γj(n) = (γ1(n))j is the jth power of the nth root of unity, and yj = p(γj).
This matrix V is very interesting, and is called the Vandermonde matrix. Let V−1 be the inverse matrix

of this Vandermonde matrix. And let multiply the above formula from the left. We get:

©«

a0
a1
a2
a3
...

an−1

ª®®®®®®®®¬
= V−1

©«

y0
y1
y2
...

yn−1

ª®®®®®®¬
.

Namely, we can recover the polynomial p(x) from the point-value pairs{
(γ0, p(γ0)), (γ1, p(γ1)), . . . , (γn−1, p(γn−1))

}
by doing a single matrix multiplication of V−1 by the vector [y0, y1, . . . , yn−1]. However, multiplying a vector
with n entries with a matrix of size n × n takes O(n2) time. Thus, we had not benefit ted anything so far.

However, since the Vandermonde matrix is so well behaved¬, it is not too hard to figure out the inverse
matrix.

Claim 23.3.1.

V−1 =
1
n

©«

1 β0 β2
0 β3

0 · · · βn−1
0

1 β1 β2
1 β3

1 · · · βn−1
1

1 β2 β2
2 β3

2 · · · βn−1
2

1 β3 β2
3 β3

3 · · · βn−1
3

...
...

...
... · · ·

...

1 βn−1 β2
n−1 β3

n−1 · · · βn−1
n−1

ª®®®®®®®®¬
,

where βj = (γj(n))−1.

Proof: Consider the (u, v) entry in the matrix C = V−1V . We have

Cu,v =

n−1∑
j=0

(βu)
j(γj)

v

n
.

¬Not to mention famous, beautiful and well known – in short a celebrity matrix.
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1

γ1(8) = β7(8)

γ2(8) = β6(8) = i

γ3(8) = β5(8)

γ
4
(8
)
=

β
4
(8
)
=

−
1

γ5(8) = β3(8)

γ6(8) = β2(8) = −i

γ7(8) = β1(8)

1

γ1(4) = β3(4) = i

γ
2
(4
)
=

β
2
(4
)
=

−
1

γ3(4) = β1(4) = −i

(A) (B) (C)

Figure 23.2: (A) The 16 roots of unity. (B) The 8 roots of unity. (C) The 4 roots of unity.

We need to use the fact here that γj = (γ1)
j as can be easily verified. Thus,

Cu,v =

n−1∑
j=0

(βu)
j((γ1)

j)v

n
=

n−1∑
j=0

(βu)
j((γ1)

v)j

n
=

n−1∑
j=0

(βuγv)
j

n
.

Clearly, if u = v then

Cu,u =
1
n

n−1∑
j=0
(βuγu)

j =
1
n

n−1∑
j=0
(1)j = n

n
= 1.

If u , v then,

βuγv = (γu)
−1γv = (γ1)

−uγv1 = (γ1)
v−u = γv−u .

And

Cu,v =
1
n

n−1∑
j=0
(γv−u)

j =
1
n
·
γnv−u − 1
γv−u − 1 =

1
n
·

1 − 1
γv−u − 1 = 0,

this follows by the formula for the sum of a geometric series, and as γv−u is an nth root of unity, and as such if
we raise it to power n we get 1.

We just proved that the matrix C have ones on the diagonal and zero everywhere else. Namely, it is the
identity matrix, establishing our claim that the given matrix is indeed the inverse matrix to the Vandermonde
matrix.

Let us recap, given n point-value pairs {(γ0, y0), . . . , (γn−1, yn−1)} of a polynomial p(x) =
∑n−1

i=0 aixi over the
set of nth roots of unity, then we can recover the coefficients of the polynomial by multiplying the vector
[y0, y1, . . . , yn] by the matrix V−1. Namely,

©«

a0
a1
a2
...

an−1

ª®®®®®®¬
=

1
n

©«

1 β0 β2
0 β3

0 · · · βn−1
0

1 β1 β2
1 β3

1 · · · βn−1
1

1 β2 β2
2 β3

2 · · · βn−1
2

1 β3 β2
3 β3

3 · · · βn−1
3

...
...

...
... · · ·

...

1 βn−1 β2
n−1 β3

n−1 · · · βn−1
n−1

ª®®®®®®®®¬︸                                              ︷︷                                              ︸
V−1

©«

y0
y1
y2
y3
...

yn−1

ª®®®®®®®®¬
.
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Let us write a polynomial W(x) =
n−1∑
i=0
(yi/n)xi. It is clear that ai = W(βi). That is to recover the coefficients of

p(·), we have to compute a polynomial W(·) on n values: β0, . . . , βn−1.
The final stroke, is to observe that {β0, . . . , βn−1} = {γ0, . . . , γn−1}; indeed βni = (γ

−1
i )

n = (γni )
−1 = 1−1 = 1.

Namely, we can apply the FFTAlg algorithm on W(x) to compute a0, . . . ,an−1.
We conclude:

Theorem 23.3.2. Given n point-value pairs of a polynomial p(x) of degree n− 1 over the set of n powers of the
nth roots of unity, we can recover the polynomial p(x) in O(n log n) time.

Theorem 23.3.3. Given two polynomials of degree n, they can be multiplied in O(n log n) time.

23.4. The Convolution Theorem
Given two vectors: A = [a0,a1, . . . ,an] and B = [b0, . . . , bn], their dot product is the quantity

A · B = 〈A,B〉 =
n∑
i=0

aibi .

Let Ar denote the shifting of A by n−r locations to the left (we pad it with zeros; namely, aj = 0 for j < {0, . . . ,n}).

Ar =
[
an−r,an+1−r,an+2−r, . . . ,a2n−r

]
where aj = 0 if j <

[
0, . . . ,n

]
.

Observation 23.4.1. An = A.

Example 23.4.2. For A = [3,7,9,15], n = 3
A2 = [7,9,15,0],
A5 = [0,0,3,7].

Definition 23.4.3. Let ci = Ai · B =
∑2n−i

j=n−i ajbj−n+i, for i = 0, . . . ,2n. The vector [c0, . . . , c2n] is the convolution of
A and B.

Question 23.4.4. How to compute the convolution of two vectors of length n?

Definition 23.4.5. The resulting vector [c0, . . . , c2n] is the convolution of A and B.

Let p(x) =
∑n

i=0 αix
i, and q(x) =

∑n
i=0 βix

i. The coefficient of xi in r(x) = p(x)q(x) is

di =
i∑

j=0
αj βi−j .

On the other hand, we would like to compute ci = Ai · B =
∑2n−i

j=n−i ajbj−n+i, which seems to be a very similar
expression. Indeed, setting αi = ai and βl = bn−l−1 we get what we want.

To understand whats going on, observe that the coefficient of x2 in the product of the two respective
polynomials p(x) = a0 + a1x + a2x2 + a3x3 and q(x) = b0 + b1x + b2x2 + b3x3 is the sum of the entries on the anti
diagonal in the following matrix, where the entry in the ith row and jth column is aibj .

a0+ a1x +a2x2 +a3x3

b0 a2b0x2

+b1x a1b1x2

+b2x2 a0b2x2

+b3x3
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Theorem 23.4.6. Given two vectors A = [a0,a1, . . . ,an], B = [b0, . . . , bn] one can compute their convolution in
O(n log n) time.

Proof: Let p(x) =
∑n

i=0 an−ixi and let q(x) =
∑n

i=0 bixi. Compute r(x) = p(x)q(x) in O(n log n) time using the
convolution theorem. Let c0, . . . , c2n be the coefficients of r(x). It is easy to verify, as described above, that
[c0, . . . , c2n] is the convolution of A and B.

23.4.1. Complex numbers – a quick reminder

A complex number is a pair of real numbers x and y, written as τ = x + iy, where x is the real part and y is
the imaginary part. Here i is of course the root of −1. In polar form, we can write τ = r cos φ + ir sin φ =
r(cos φ + i sin φ) = reiφ, where r =

√
x2 + y2 and φ = arcsin(y/x). To see the last part, define the following

functions by their Taylor expansion

sin x = x −
x3

3! +
x5

5! −
x7

7! + · · · ,

cos x = 1 − x2

2! +
x4

4! −
x6

6! + · · · ,

and ex = 1 + x
1! +

x2

2! +
x3

3! + · · · .

Since i2 = −1, we have that

eix = 1 + i x
1! −

x2

2! − i x3

3! +
x4

4! + i x5

5! −
x6

6! · · · = cos x + i sin x.

The nice thing about polar form, is that given two complex numbers τ = reiφ and τ′ = r ′eiφ′, multiplying
them is now straightforward. Indeed, τ · τ′ = reiφ · r ′eiφ′ = rr ′ei(φ+φ′). Observe that the function eiφ is 2π
periodic (i.e., eiφ = ei(φ+2π)), and 1 = ei0. As such, an nth root of 1, is a complex number τ = reiφ such that
τn = rneinφ = ei0. Clearly, this implies that r = 1, and there must be an integer j, such that

nφ = 0 + 2π j =⇒ φ = j(2π/n).

These are all distinct values for j = 0, . . . ,n − 1, which are the n distinct roots of unity.

Chapter 24

Sorting Networks

The world is what it is; men who are nothing, who allow themselves to become nothing, have no place in it.

A bend in the river, V. S. Naipul
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24.1. Model of Computation
It is natural to ask if one can perform a computational task considerably faster by using a different architecture
(i.e., a different computational model).

The answer to this question is a resounding yes. A cute example is the Macaroni sort algorithm. We
are given a set S = {s1, . . . , sn} of n real numbers in the range (say) [1,2]. We get a lot of Macaroni (this are
longish and very narrow tubes of pasta), and cut the ith piece to be of length si, for i = 1, . . . ,n. Next, take all
these pieces of pasta in your hand, make them stand up vertically, with their bottom end lying on a horizontal
surface. Next, lower your handle till it hit the first (i.e., tallest) piece of pasta. Take it out, measure it height,
write down its number, and continue in this fashion till you have extracted all the pieces of pasta. Clearly, this
is a sorting algorithm that works in linear time. But we know that sorting takes Ω(n log n) time. Thus, this
algorithm is much faster than the standard sorting algorithms.

This faster algorithm was achieved by changing the computation model. We allowed new “strange” oper-
ations (cutting a piece of pasta into a certain length, picking the longest one in constant time, and measuring
the length of a pasta piece in constant time). Using these operations we can sort in linear time.

If this was all we can do with this approach, that would have only been a
curiosity. However, interestingly enough, there are natural computation mod-
els which are considerably stronger than the standard model of computation.
Indeed, consider the task of computing the output of the circuit on the right
(here, the input is boolean values on the input wires on the left, and the output
is the single output on the right).

Clearly, this can be solved by ordering the gates in the “right” order (this can be done by topological sorting),
and then computing the value of the gates one by one in this order, in such a way that a gate being computed
knows the values arriving on its input wires. For the circuit above, this would require 8 units of time, since
there are 8 gates.

However, if you consider this circuit more carefully, one realized that we can
compute this circuit in 4 time units. By using the fact that several gates are
independent of each other, and we can compute them in parallel, as depicted on
the right. Furthermore, circuits are inherently parallel and we should be able
to take advantage of this fact.

So, let us consider the classical problem of sorting n numbers. The question
is whether we can sort them in sublinear time by allowing parallel comparisons. To this end, we need to precisely
define our computation model.

24.2. Sorting with a circuit – a naive solution

Comparator

x

y

y′ = max(x, y)

x′ = min(x, y)We are going to design a circuit, where the inputs are the numbers and we
compare two numbers using a comparator gate. Such a gate has two inputs and
two outputs, and it is depicted on the right.

y

x′ = min(x, y)

y′ = max(x, y)

x We usually depict such a gate as a vertical segment connecting two wires,
as depicted on the right. This would make drawing and arguing about sorting
networks easier.

164



Our circuits would be depicted by horizontal lines, with vertical seg-
ments (i.e., gates) connecting between them. For example, see complete
sorting network depicted on the right.

The inputs come on the wires on the left, and are output on the
wires on the right. The largest number is output on the bottom line.
Somewhat surprisingly, one can generate circuits from known sorting
algorithms.

24.2.1. Definitions

Definition 24.2.1. A comparison network is a DAG (directed acyclic graph), with n inputs and n outputs,
where each gate (i.e., done) has two inputs and two outputs (i.e., two incoming edges, and two outgoing edges).

Definition 24.2.2. The depth of a wire is 0 at the input. For a gate with two inputs of depth d1 and d2 the
depth on the output wire is 1 +max(d1, d2). The depth of a comparison network is the maximum depth of an
output wire.

Definition 24.2.3. A sorting network is a comparison network such that for any input, the output is mono-
tonically sorted. The size of a sorting network is the number of gates in the sorting network. The running
time of a sorting network is just its depth.

24.2.2. Sorting network based on insertion sort

Consider the sorting circuit on the left.
Clearly, this is just the inner loop of the
standard insertion sort. As such, if we
repeat this loop, we get the sorting net-
work on the right. It is easy to argue

that this circuit sorts correctly all inputs (we removed some unnecessary
gates).

1 2 3 4 5 6 7 8  9

(i) (ii)

Figure 24.1: The sorting network inspired by insertion
sort.

An alternative way of drawing this sorting net-
work is depicted in Figure 24.1 (ii). The next natu-
ral question, is how much time does it take for this
circuit to sort the n numbers. Observe, that the run-
ning time of the algorithm is how many different time
ticks we have to wait till the result stabilizes in all
the gates. In our example, the alternative drawing
immediately tell us how to schedule the computation
of the gates. See Figure 24.1 (ii).

In particular, the above discussion implies the fol-
lowing result.

Lemma 24.2.4. The sorting network based on insertion sort has O(n2) gates, and requires 2n− 1 time units to
sort n numbers.

24.3. The Zero-One Principle

The zero-one principle states that if a comparison network sort correctly all binary inputs (i.e., every number
is either 0 or 1) then it sorts correctly all inputs. We (of course) need to prove that the zero-one principle is
true.
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Lemma 24.3.1. If a comparison network transforms the input sequence a = 〈a1,a2, . . . ,an〉 into the output
sequence b = 〈b1, b2, . . . , bn〉, then for any monotonically increasing function f , the network transforms the
input sequence f (a) = 〈 f (a1), . . . , f (an)〉 into the sequence f (b) = 〈 f (b1), . . . , f (bn)〉.

Proof: Consider a single comparator with inputs x and y, and outputs x ′ = min(x, y) and y′ = max(x, y). If
f (x) = f (y) then the claim trivially holds for this comparator. If f (x) < f (y) then clearly

max
(
f (x), f (y)

)
= f

(
max(x, y)

)
and

min
(
f (x), f (y)

)
= f

(
min(x, y)

)
,

since f (·) is monotonically increasing. As such, for the input 〈x, y〉, for x < y, we have output 〈x, y〉. Thus, for
the input 〈 f (x), f (y)〉 the output is 〈 f (x), f (y)〉. Similarly, if x > y, the output is 〈y, x〉. In this case, for the
input 〈 f (x), f (y)〉 the output is 〈 f (y), f (x)〉. This establish the claim for a single comparator.

Now, we claim by induction that if a wire carry a value ai, when the sorting network get input a1, . . . ,an,
then for the input f (a1), . . . , f (an) this wire would carry the value f (ai).

This is proven by induction on the depth on the wire at each point. If the point has depth 0, then its an
input and the claim trivially hold. So, assume it holds for all points in our circuits of depth at most i, and
consider a point p on a wire of depth i + 1. Let G be the gate which this wire is an output of. By induction, we
know the claim holds for the inputs of G (which have depth at most i). Now, we the claim holds for the gate
G itself, which implies the claim apply the above claim to the gate G, which implies the claim holds at p.

Theorem 24.3.2. If a comparison network with n inputs sorts all 2n binary strings of length n correctly, then
it sorts all sequences correctly.

Proof: Assume for the sake of contradiction, that it sorts incorrectly the sequence a1, . . . ,an. Let b1, . . . bn be
the output sequence for this input.

Let ai < ak be the two numbers that are output in incorrect order (i.e. ak appears before ai in the output).
Let

f (x) =

{
0 x ≤ ai
1 x > ai .

Clearly, by the above lemma (Lemma 24.3.1), for the input

〈 f (a1), . . . , f (an)〉 ,

which is a binary sequence, the circuit would output 〈 f (b1), . . . , f (bn)〉. But then, this sequence looks like

000..0???? f (ak)???? f (ai)??1111

but f (ai) = 0 and f (aj) = 1. Namely, the output is a sequence of the form ????1????0????, which is not sorted.
Namely, we have a binary input (i.e., 〈 f (b1), . . . , f (bn)〉) for which the comparison network does not sort it

correctly. A contradiction to our assumption.

24.4. A bitonic sorting network
Definition 24.4.1. A bitonic sequence is a sequence which is first increasing and then decreasing, or can be
circularly shifted to become so.

Example 24.4.2. The sequences (1,2,3, π,4,5,4,3,2,1) and (4,5,4,3,2,1,1,2,3) are bitonic, while the sequence
(1,2,1,2) is not bitonic.

Observation 24.4.3. A binary bitonic sequence (i.e., bitonic sequence made out only of zeroes and ones) is
either of the form 0i1j0k or of the form 1i0j1k , where 0i (resp, 1i) denote a sequence of i zeros (resp., ones).
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Figure 24.2: Depicted are the (i) recursive construction of BitonicSorter[n], (ii) opening up the recursive con-
struction, and (iii) the resulting comparison network.

Definition 24.4.4. A bitonic sorter is a comparison network that sorts all bitonic sequences correctly.

Definition 24.4.5. A half-cleaner is a comparison network, connecting line i with line
i + n/2. In particular, let Half-Cleaner[n] denote the half-cleaner with n inputs. Note,
that the depth of a Half-Cleaner[n] is one, see figure on the right.

111..111 000..000000..000

000..000111..111 111..111 111

000..000

000..000

111..111 111000..000

000..000 111

000..000

half−

cleaner

It is beneficial to consider what a half-cleaner do to an input which
is a (binary) bitonic sequence. Clearly, in the specific example, depicted
on the left, we have that the left half size is clean and all equal to 0.
Similarly, the right size of the output is bitonic.

Specifically, one can prove by simple (but tedious) case analysis that
the following lemma holds.

Lemma 24.4.6. If the input to a half-cleaner (of size n) is a binary bitonic sequence then for the output
sequence we have that
(i) the elements in the top half are smaller than the elements in bottom half, and
(ii) one of the halves is clean, and the other is bitonic.

Proof: If the sequence is of the form 0i1j0k and the block of ones is completely on the left side (i.e., its part of
the first n/2 bits) or the right side, the claim trivially holds. So, assume that the block of ones starts at position
n/2 − β and ends at n/2 + α.

00 . . . 00 111 . . . 111

000 . . . 00011 . . . 11

HalfCleaner

00 . . . 00 00 . . . 0011

111 . . . 111

α︷             ︸︸             ︷

︸           ︷︷           ︸
β

If n/2 − α ≥ β then this is exactly the case depicted above
and claim holds. If n/2 − α < β then the second half is going
to be all ones, as depicted on the right. Implying the claim for
this case.

A similar analysis holds if the sequence is of the form
1i0j1k .

This suggests a simple recursive construction of BitonicSorter[n], see Figure 24.2, and we have the following
lemma.

Lemma 24.4.7. BitonicSorter[n] sorts bitonic sequences of length n = 2k , it uses (n/2)k = (n/2) lg n gates, and
it is of depth k = lg n.
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Figure 24.3: (i) Merger via flipping the lines of bitonic sorter. (ii) A BitonicSorter. (ii) The Merger after we
“physically” flip the lines, and (iv) An equivalent drawing of the resulting Merger.
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Figure 24.4: (i) FlipCleaner[n], and (ii) Merger[n] described using FlipCleaner.

24.4.1. Merging sequence

Next, we deal with the following merging question. Given two sorted sequences of length n/2, how do we merge
them into a single sorted sequence?

The idea here is concatenate the two sequences, where the second sequence is being flipped (i.e., reversed).
It is easy to verify that the resulting sequence is bitonic, and as such we can sort it using the BitonicSorter[n].

Specifically, given two sorted sequences a1 ≤ a2 ≤ . . . ≤ an and b1 ≤ b2 ≤ . . . ≤ bn, observe that the sequence
a1,a2, . . . ,an, bn, bn−1, bn−2, . . . , b2, b1 is bitonic.

Thus, to merge two sorted sequences of length n/2, just flip one of them, and use BitonicSorter[n], see
Figure 24.3. This is of course illegal, and as such we take BitonicSorter[n] and physically flip the last n/2
entries. The process is depicted in Figure 24.3. The resulting circuit Merger takes two sorted sequences of
length n/2, and return a sorted sequence of length n.

It is somewhat more convenient to describe the Merger using a FlipCleaner component. See Figure 24.4

Lemma 24.4.8. The circuit Merger[n] gets as input two sorted sequences of length n/2 = 2k−1, it uses (n/2)k =
(n/2) lg n gates, and it is of depth k = lg n, and it outputs a sorted sequence.

24.5. Sorting Network
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We are now in the stage, where we can build a sorting network. To this end,
we just implement merge sort using the Merger[n] component. The resulting
component Sorter[n] is depicted on the right using a recursive construction.

Lemma 24.5.1. The circuit Sorter[n] is a sorting network (i.e., it sorts
any n numbers) using G(n) = O(n log2 n) gates. It has depth O(log2 n).
Namely, Sorter[n] sorts n numbers in O(log2 n) time.

Proof: The number of gates is
G(n) = 2G(n/2) + Gates(Merger[n]).

Which is G(n) = 2G(n/2) +O(n log n) = O(n log2 n).
As for the depth, we have that D(n) = D(n/2) + Depth(Merger[n]) = D(n/2) + O(log(n)), and thus D(n) =

O(log2 n), as claimed.

24.6. Faster sorting networks

Figure 24.5: Sorter[8].

One can build a sorting network of logarithmic depth (see [AKS83]).
The construction however is very complicated. A simpler parallel algo-
rithm would be discussed sometime in the next lectures. BTW, the AKS
construction [AKS83] mentioned above, is better than bitonic sort for n
larger than 28046.
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Chapter 25

Union Find

25.1. Union-Find

25.1.1. Requirements from the
data-structure

We want to maintain a collection of sets,
under the following operations.
(i) makeSet(x) - creates a set that con-

tains the single element x.
(ii) find(x) - returns the set that contains

x.
(iii) union(A,B) - returns the set which

is the union of A and B. Namely
A∪B. Namely, this operation merges
the two sets A and B and return the
merged set.

Scene: It’s a fine sunny day in the forest, and a rabbit is sitting
outside his burrow, tippy-tapping on his typewriter.
Along comes a fox, out for a walk.
Fox: “What are you working on?”
Rabbit: “My thesis.”
Fox: “Hmmm. What’s it about?”
Rabbit: “Oh, I’m writing about how rabbits eat foxes.”
Fox: (incredulous pause) “That’s ridiculous! Any fool knows that
rabbits don’t eat foxes.”
Rabbit: “Sure they do, and I can prove it. Come with me.”
They both disappear into the rabbit’s burrow. After a few min-
utes, the rabbit returns, alone, to his typewriter and resumes
typing.
Scene inside the rabbit’s burrow: In one corner, there is a
pile of fox bones. In another corner, a pile of wolf bones. On
the other side of the room, a huge lion is belching and picking his
teeth.
(The End)
Moral: It doesn’t matter what you choose for a thesis subject.
It doesn’t matter what you use for data.
What does matter is who you have for a thesis advisor.

– – Anonymous25.1.2. Amortized analysis

We use a data-structure as a black-box inside an algorithm (for example Union-Find in Kruskal algorithm for
computing minimum spanning tee). So far, when we design a data-structure we cared about worst case time
for operation. Note however, that this is not necessarily the right measure. Indeed, we care about the overall
running time spend on doing operations in the data-structure, and less about its running time for a single
operation.

Formally, the amortized running-time of an operation is the average time it takes to perform an operation
on the data-structure. Formally, the amortized time of an operation is overall running time

number of operations .

25.1.3. The data-structure
a

cb

ed

f g h

i j

k

Figure 25.1: The Union-Find representation of the sets
A = {a, b, c, d, e} and B = { f ,g, h, i, j, k}. The set A is
uniquely identified by a pointer to the root of A, which
is the node containing a.

To implement this operations, we are going to use
Reversed Trees. In a reversed tree, every element is
stored in its own node. A node has one pointer to
its parent. A set is uniquely identified with the ele-
ment stored in the root of such a reversed tree. See
Figure 25.1 for an example of how such a reversed
tree looks like.

We implement the operations of the Union-Find
data structure as follows:

a

(A) makeSet: Create a singleton pointing to itself:
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x

a

cb

d

y

z

x

a

cb

d

y z

(a) (b)

Figure 25.2: (a) The tree before performing find(z), and (b) The reversed tree after performing find(z) that
uses path compression.

makeSet(x)
p(x) ← x
rank(x) ← 0

find(x)
if x , p(x) then

p(x) ← f ind(p(x))
return p(x)

union(x, y )
A← f ind(x)
B← f ind(y)
if rank(A) > rank(B) then

p(B) ← A
else

p(A) ← B
if rank(A) = rank(B) then

rank(B) ← rank(B) + 1

Figure 25.3: The pseudo-code for the Union-Find data-structure that uses both path-compression and union
by rank. For element x, we denote the parent pointer of x by p(x).

a

cb

xd

(B) find(x): We start from the node that contains x, and we start traversing up the tree,
following the parent pointer of the current node, till we get to the root, which is just a node
with its parent pointer pointing to itself.
Thus, doing a find(x) operation in the reversed tree shown on the right, involve going up
the tree from x → b→ a, and returning a as the set.

(C) union(a, p): We merge two sets, by hanging the root of one tree, on
the root of the other. Note, that this is a destructive operation, and
the two original sets no longer exist. Example of how the new tree
representing the new set is depicted on the right.

Note, that in the worst case, depth of tree can be linear in n (the number of elements stored in the tree),
so the find operation might require Ω(n) time. To see that this worst case is realizable perform the following
sequence of operations: create n sets of size 1, and repeatedly merge the current set with a singleton. If we
always merge (i.e., do union) the current set with a singleton by hanging the current set on the singleton, the
end result would be a reversed tree which looks like a linked list of length n. Doing a find on the deepest element
will take linear time.

So, the question is how to further improve the performance of this data-structure. We are going to do this,
by using two “hacks”:

(i) Union by rank: Maintain for every tree, in the root, a bound on its depth (called rank). Always hang
the smaller tree on the larger tree.

(ii) Path compression: Since, anyway, we travel the path to the root during a find operation, we might as
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well hang all the nodes on the path directly on the root.

An example of the effects of path compression are depicted in Figure 25.2. For the pseudo-code of the
makeSet, union and find using path compression and union by rank, see Figure 25.3.

We maintain a rank which is associated with each element in the data-structure. When a singleton is being
created, its associated rank is set to zero. Whenever two sets are being merged, we update the rank of the new
root of the merged trees. If the two trees have different root ranks, then the rank of the root does not change.
If they are equal then we set the rank of the new root to be larger by one.

25.2. Analyzing the Union-Find Data-Structure

Definition 25.2.1. A node in the union-find data-structure is a leader if it is the root of a (reversed) tree.

Lemma 25.2.2. Once a node stop being a leader (i.e., the node in top of a tree), it can never become a leader
again.

Proof: Note, that an element x can stop being a leader only because of a union operation that hanged x on an
element y. From this point on, the only operation that might change x parent pointer, is a find operation that
traverses through x. Since path-compression can only change the parent pointer of x to point to some other
element y, it follows that x parent pointer will never become equal to x again. Namely, once x stop being a
leader, it can never be a leader again.

Lemma 25.2.3. Once a node stop being a leader then its rank is fixed.

Proof: The rank of an element changes only by the union operation. However, the union operation changes the
rank, only for elements that are leader after the operation is done. As such, if an element is no longer a leader,
than its rank is fixed.

Lemma 25.2.4. Ranks are monotonically increasing in the reversed trees, as we travel from a node to the root
of the tree.

Proof: It is enough to prove, that for every edge u → v in the data-structure, we have rank(u) < rank(v). The
proof is by induction. Indeed, in the beginning of time, all sets are singletons, with rank zero, and the claim
trivially holds.

Next, assume that the claim holds at time t, just before we perform an operation. Clearly, if this operation
is union (A,B), and assume that we hanged root(A) on root(B). In this case, it must be that rank(root(B)) is
now larger than rank(root(A)), as can be easily verified. As such, if the claim held before the union operation,
then it is also true after it was performed.

If the operation is find, and we traverse the path π, then all the nodes of π are made to point to the last
node v of π. However, by induction, rank(v) is larger than the rank of all the other nodes of π. In particular,
all the nodes that get compressed, the rank of their new parent, is larger than their own rank.

Lemma 25.2.5. When a node gets rank k than there are at least ≥ 2k elements in its subtree.

Proof: The proof is by induction. For k = 0 it is obvious since a singleton has a rank zero, and a single element
in the set. Next observe that a node gets rank k only if the merged two roots has rank k − 1. By induction,
they have 2k−1 nodes (each one of them), and thus the merged tree has ≥ 2k−1 + 2k−1 = 2k nodes.

Lemma 25.2.6. The number of nodes that get assigned rank k throughout the execution of the Union-Find
data-structure is at most n/2k .
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Proof: Again, by induction. For k = 0 it is obvious. We charge a node v of rank k to the two elements u and v

of rank k − 1 that were leaders that were used to create the new larger set. After the merge v is of rank k and
u is of rank k − 1 and it is no longer a leader (it can not participate in a union as a leader any more). Thus, we
can charge this event to the two (no longer active) nodes of degree k − 1. Namely, u and v.

By induction, we have that the algorithm created at most n/2k−1 nodes of rank k − 1, and thus the number
of nodes of rank k created by the algorithm is at most ≤

(
n/2k−1)/2 = n/2k .

Lemma 25.2.7. The time to perform a single find operation when we perform union by rank and path com-
pression is O(log n) time.

Proof: The rank of the leader v of a reversed tree T , bounds the depth of a tree T in the Union-Find data-
structure. By the above lemma, if we have n elements, the maximum rank is lg n and thus the depth of a tree
is at most O(log n).

Surprisingly, we can do much better.

Theorem 25.2.8. If we perform a sequence of m operations over n elements, the overall running time of the
Union-Find data-structure is O((n + m) log∗ n).

We remind the reader that log∗(n) is the number one has to take lg of a number to get a number smaller than
two (there are other definitions, but they are all equivalent, up to adding a small constant). Thus, log∗ 2 = 1
and log∗ 22 = 2. Similarly, log∗ 222

= 1 + log∗(22) = 2 + log∗ 2 = 3. Similarly, log∗ 2222
= log∗(65536) = 4. Things

get really exciting, when one considers

log∗ 22222

= log∗265536 = 5.

However, log∗ is a monotone increasing function. And β = 22222

= 265536 is a huge number (considerably larger
than the number of atoms in the universe). Thus, for all practical purposes, log∗ returns a value which is smaller
than 5. Intuitively, Theorem 25.2.8 states (in the amortized sense), that the Union-Find data-structure takes
constant time per operation (unless n is larger than β which is unlikely).

It would be useful to look on the inverse function to log∗.

Definition 25.2.9. Let Tower(b) = 2Tower(b−1) and Tower(0) = 1.

So, Tower(i) is just a tower of 222·
· ·2

of height i. Observe that log∗(Tower(i)) = i.

Definition 25.2.10. For i ≥ 0, let Block(i) = [Tower(i − 1) + 1,Tower(i)]; that is

Block(i) =
[
z,2z−1] for z = Tower(i − 1) + 1.

For technical reasons, we define Block(0) = [0,1]. As such,

Block(0) =
[
0,1

]
Block(1) =

[
2,2

]
Block(2) =

[
3,4

]
Block(3) =

[
5,16

]
Block(4) =

[
17,65536

]
Block(5) =

[
65537,265536]

....
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The running time of find(x) is proportional to the length of the path from x to the root of the tree that
contains x. Indeed, we start from x and we visit the sequence:

x1 = x, x2 = p(x) = p(x1), ..., xi = p(xi−1), . . . , xm = root of tree.

Clearly, we have for this sequence: rank(x1) < rank(x2) < rank(x3) < . . . < rank(xm), and the time it takes
to perform find(x) is proportional to m, the length of the path from x to the root of the tree containing x.

Definition 25.2.11. A node x is in the ith block if rank(x) ∈ Block(i).

We are now looking for ways to pay for the find operation, since the other two operations take constant
time.

Block(0)

Block(1)

Block(1 . . . 4)

Block(5)

Block(6 . . . 7)

Block(8)

Block(9)

Block(10)

between jump

internal jump

Observe, that the maximum rank of a node v is O(log n), and
the number of blocks is O(log∗ n), since O(log n) is in the block Block(c log∗ n),
for c a constant sufficiently large.

In particular, consider a find (x) operation, and let π be the path
visited. Next, consider the ranks of the elements of π, and imagine
partitioning π into which blocks each element rank belongs to. An
example of such a path is depicted on the right. The price of the
find operation is the length of π.

Formally, for a node x, ν = indexB(x) is the index of the block
that contains rank(x). Namely, rank(x) ∈ Block(indexB(x)). As such,
indexB(x) is the block of x.

Now, during a find operation, since the ranks of the nodes we
visit are monotone increasing, once we pass through from a node v

in the ith block into a node in the (i + 1)th block, we can never go
back to the ith block (i.e., visit elements with rank in the ith block). As such, we can charge the visit to nodes
in π that are next to a element in a different block, to the number of blocks (which is O(log∗ n)).

Definition 25.2.12. Consider a path π traversed by a find operation. Along the path π, an element x, such that
p(x) is in a different block, is a jump between blocks.

On the other hand, a jump during a find operation inside a block is called an internal jump; that is, x
and p(x) are in the same block.

Lemma 25.2.13. During a single find(x) operation, the number of jumps between blocks along the search path
is O(log∗ n).

Proof: Consider the search path π = x1, . . . , xm, and consider the list of numbers 0 ≤ indexB(x1) ≤ indexB(x2) ≤
. . . ≤ indexB(xm). We have that indexB(xm) = O(log∗ n). As such, the number of elements x in π such that
indexB(x) , indexB(p(x)) is at most O(log∗ n).

Consider the case that x and p(x) are both the same block (i.e., indexB(x) = indexB(p(x)) and we perform a
find operation that passes through x. Let rbef = rank(p(x)) before the find operation, and let raft be rank(p(x))
after the find operation. Observe, that because of path compression, we have raft > rbef . Namely, when we
jump inside a block, we do some work: we make the parent pointer of x jump forward and the new parent has
higher rank. We will charge such internal block jumps to this “progress”.

Lemma 25.2.14. At most |Block(i)| ≤ Tower(i) find operations can pass through an element x, which is in the
ith block (i.e., indexB(x) = i) before p(x) is no longer in the ith block. That is indexB(p(x)) > i.

Proof: Indeed, by the above discussion, the parent of x increases its rank every-time an internal jump goes
through x. Since there at most |Block(i)| different values in the ith block, the claim follows. The inequality
|Block(i)| ≤ Tower(i) holds by definition, see Definition 25.2.10.
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Lemma 25.2.15. There are at most n/Tower(i) nodes that have ranks in the ith block throughout the algorithm
execution.

Proof: By Lemma 25.2.6, we have that the number of elements with rank in the ith block is at most∑
k∈Block(i)

n
2k
=

Tower(i)∑
k=Tower(i−1)+1

n
2k
= n ·

Tower(i)∑
k=Tower(i−1)+1

1
2k
≤

n
2Tower(i−1) =

n
Tower(i) .

Lemma 25.2.16. The number of internal jumps performed, inside the ith block, during the lifetime of the
union-find data-structure is O(n).

Proof: An element x in the ith block, can have at most |Block(i)| internal jumps, before all jumps through x are
jumps between blocks, by Lemma 25.2.14. There are at most n/Tower(i) elements with ranks in the ith block,
throughout the algorithm execution, by Lemma 25.2.15. Thus, the total number of internal jumps is

|Block(i)| · n
Tower(i) ≤ Tower(i) · n

Tower(i) = n.

We are now ready for the last step.

Lemma 25.2.17. The number of internal jumps performed by the Union-Find data-structure overall is O(n log∗ n).

Proof: Every internal jump can be associated with the block it is being performed in. Every block contributes
O(n) internal jumps throughout the execution of the union-find data-structures, by Lemma 25.2.16. There are
O(log∗ n) blocks. As such there are at most O(n log∗ n) internal jumps.

Lemma 25.2.18. The overall time spent on m find operations, throughout the lifetime of a union-find data-
structure defined over n elements, is O((m + n) log∗ n).

Theorem 25.2.8 now follows readily from the above discussion.

Chapter 26

Approximate Max Cut

We had encountered in the previous lecture examples of using rounding techniques for approximating discrete
optimization problems. So far, we had seen such techniques when the relaxed optimization problem is a linear
program. Interestingly, it is currently known how to solve optimization problems that are considerably more
general than linear programs. Specifically, one can solve convex programming. Here the feasible region is
convex. How to solve such an optimization problems is outside the scope of this course. It is however natural to
ask what can be done if one assumes that one can solve such general continuous optimization problems exactly.

In the following, we show that (optimization problem) max cut can be relaxed into a weird continuous
optimization problem. Furthermore, this semi-definite program can be solved exactly efficiently. Maybe more
surprisingly, we can round this continuous solution and get an improved approximation.

175



26.1. Problem Statement
Given an undirected graph G = (V,E) and nonnegative weights ωi j , for all i j ∈ E, the maximum cut problem
(MAX CUT) is that of finding the set of vertices S that maximizes the weight of the edges in the cut

(
S,S

)
; that

is, the weight of the edges with one endpoint in S and the other in S. For simplicity, we usually set ωi j = O for
i j < E and denote the weight of a cut

(
S,S

)
by w

(
S,S

)
=

∑
i∈S, j∈S

ωi j .

This problem is NP-Complete, and hard to approximate within a certain constant.
Given a graph with vertex set V = {1, . . . ,n} and nonnegative weights ωi j , the weight of the maximum cut

w(S,S) is given by the following integer quadratic program:

(Q) max 1
2

∑
i< j

ωi j(1 − yiyj)

subject to: yi ∈ {−1,1} ∀i ∈ V.

Indeed, set S =
{
i
��� yi = 1

}
. Clearly, ω

(
S,S

)
= 1

2
∑

i< j ωi j(1 − yiyj).
Solving quadratic integer programming is of course NP-Hard. Thus, we will relax it, by thinking about

the numbers yi as unit vectors in higher dimensional space. If so, the multiplication of the two vectors, is now
replaced by dot product. We have:

(P) max γ =
1
2

∑
i< j

ωi j

(
1 −

〈
vi, vj

〉)
subject to: vi ∈ S

(n) ∀i ∈ V,

where S(n) is the n dimensional unit sphere in Rn+1. This is an instance of semi-definite programming, which is a
special case of convex programming, which can be solved in polynomial time (solved here means approximated
within a factor of (1 + ε) of optimal, for any arbitrarily small ε > 0, in polynomial time). Namely, the solver
finds a feasible solution with a the target function being arbitrarily close to the optimal solution. Observe that
(P) is a relaxation of (Q), and as such the optimal solution of (P) has value larger than the optimal value of
(Q).

The intuition is that vectors that correspond to vertices that should be on one side of the cut, and vertices
on the other sides, would have vectors which are faraway from each other in (P). Thus, we compute the optimal
solution for (P), and we uniformly generate a random vector r on the unit sphere S(n). This induces a hyperplane
h which passes through the origin and is orthogonal to r. We next assign all the vectors that are on one side of
h to S, and the rest to S.

Summarizing, the algorithm is as follows: First, we solve (P), next, we pick a random vector r uniformly on
the unit sphere S(n). Finally, we set

S =
{
vi

��� 〈vi,r 〉 ≥ 0
}
.

26.1.1. Analysis

The intuition of the above rounding procedure, is that with good probability, vectors in the solution of (P) that
have large angle between them would be separated by this cut.

Lemma 26.1.1. We have P
[
sign

(
〈vi,r 〉

)
, sign

(〈
vj,r

〉)]
=

1
π

arccos
(〈
vi, vj

〉)
.
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Proof: Let us think about the vectors vi, vj and r as being in the plane. To see why this
is a reasonable assumption, consider the plane g spanned by vi and vj , and observe
that for the random events we consider, only the direction of r matter, which can be
decided by projecting r on g, and normalizing it to have length 1. Now, the sphere is
symmetric, and as such, sampling r randomly from S(n), projecting it down to g, and
then normalizing it, is equivalent to just choosing uniformly a vector from the unit
circle.

Now, sign(〈vi,r 〉) , sign
(〈
vj,r

〉)
happens only if r falls in the double wedge formed

by the lines perpendicular to vi and vj . The angle of this double wedge is exactly the
angle between vi and vj . Now, since vi and vj are unit vectors, we have

〈
vi, vj

〉
= cos(τ),

where τ = ∠vivj . Thus,

P
[
sign(〈vi,r 〉) , sign

(〈
vj,r

〉)]
=

2τ
2π =

1
π
· arccos

(〈
vi, vj

〉)
,

as claimed.

Theorem 26.1.2. Let W be the random variable which is the weight of the cut generated by the algorithm. We
have

E[W] =
1
π

∑
i< j

ωi j arccos
(〈
vi, vj

〉)
.

Proof: Let Xi j be an indicator variable which is 1 if and only if the edge i j is in the cut. We have

E
[
Xi j

]
= P

[
sign(〈vi,r 〉) , sign

(〈
vj,r

〉)]
=

1
π

arccos
(〈
vi, vj

〉)
,

by Lemma 26.1.1. Clearly, W =
∑

i< j ωi jXi j , and by linearity of expectation, we have

E[W] =
∑
i< j

ωi j E
[
Xi j

]
=

1
π

∑
i< j

ωi j arccos
(〈
vi, vj

〉)
.

Lemma 26.1.3. For −1 ≤ y ≤ 1, we have arccos(y)
π

≥ α ·
1
2 (1 − y), where α = min

0≤ψ≤π

2
π

ψ

1 − cos(ψ) .

Proof: Set y = cos(ψ). The inequality now becomes ψ
π ≥ α

1
2 (1 − cosψ). Reorganizing, the inequality becomes

2
π

ψ
1−cosψ ≥ α, which trivially holds by the definition of α.

Lemma 26.1.4. α > 0.87856.

Proof: Using simple calculus, one can see that α achieves its value for ψ = 2.331122..., the nonzero root of
cosψ + ψ sinψ = 1.

Theorem 26.1.5. The above algorithm computes in expectation a cut with total weight α ·Opt ≥ 0.87856Opt,
where Opt is the weight of the maximal cut.

Proof: Consider the optimal solution to (P), and lets its value be γ ≥ Opt. We have

E[W] =
1
π

∑
i< j

ωi j arccos
(〈
vi, vj

〉)
≥

∑
i< j

ωi jα
1
2
(
1 −

〈
vi, vj

〉)
= αγ ≥ α ·Opt,

by Lemma 26.1.3.
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26.2. Semi-definite programming

Let us define a variable xi j =
〈
vi, vj

〉
, and consider the n by n matrix M formed by those variables, where xii = 1

for i = 1, . . . ,n. Let V be the matrix having v1, . . . , vn as its columns. Clearly, M = VTV . In particular, this
implies that for any non-zero vector v ∈ Rn, we have vT Mv = vT AT Av = (Av)T (Av) ≥ 0. A matrix that has this
property, is called positive semidefinite. Interestingly, any positive semidefinite matrix P can be represented
as a product of a matrix with its transpose; namely, P = BT B. Furthermore, given such a matrix P of size n× n,
we can compute B such that P = BT B in O(n3) time. This is know as Cholesky decomposition.

Observe, that if a semidefinite matrix P = BT B has a diagonal where all the entries are one, then B has
columns which are unit vectors. Thus, if we solve (P) and get back a semi-definite matrix, then we can recover
the vectors realizing the solution, and use them for the rounding.

In particular, (P) can now be restated as

(SD) max 1
2

∑
i< j

ωi j(1 − xi j)

subject to: xii = 1 for i = 1, . . . ,n(
xi j

)
i=1,...,n, j=1,...,n is a positive semi-definite matrix.

We are trying to find the optimal value of a linear function over a set which is the intersection of linear
constraints and the set of positive semi-definite matrices.

Lemma 26.2.1. Let U be the set of n × n positive semidefinite matrices. The set U is convex.

Proof: Consider A,B ∈ U, and observe that for any t ∈ [0,1], and vector v ∈ Rn, we have:

vT
(
t A + (1 − t)B

)
v = vT

(
t Av + (1 − t)Bv

)
= tvT Av + (1 − t)vT Bv ≥ 0 + 0 ≥ 0,

since A and B are positive semidefinite.

Positive semidefinite matrices corresponds to ellipsoids. Indeed, consider the set xT Ax = 1: the set of
vectors that solve this equation is an ellipsoid. Also, the eigenvalues of a positive semidefinite matrix are all
non-negative real numbers. Thus, given a matrix, we can in polynomial time decide if it is positive semidefinite
or not (by computing the eigenvalues of the matrix).

Thus, we are trying to optimize a linear function over a convex domain. There is by now machinery to
approximately solve those problems to within any additive error in polynomial time. This is done by using the
interior point method, or the ellipsoid method. See [BV04, GLS93] for more details. The key ingredient that is
required to make these methods work, is the ability to decide in polynomial time, given a solution, whether its
feasible or not. As demonstrated above, this can be done in polynomial time.

26.3. Bibliographical Notes

The approximation algorithm presented is from the work of Goemans and Williamson [GW95]. Håstad [Hås01b]
showed that MAX CUT can not be approximated within a factor of 16/17 ≈ 0.941176. Recently, Khot et al.
[KKMO04] showed a hardness result that matches the constant of Goemans and Williamson (i.e., one can not
approximate it better than α, unless P = NP). However, this relies on two conjectures, the first one is the
“Unique Games Conjecture”, and the other one is “Majority is Stablest”. The “Majority is Stablest” conjecture
was recently proved by Mossel et al. [MOO05]. However, it is not clear if the “Unique Games Conjecture” is
true, see the discussion in [KKMO04].

The work of Goemans and Williamson was very influential and spurred wide research on using SDP for
approximation algorithms. For an extension of the MAX CUT problem where negative weights are allowed and
relevant references, see the work by Alon and Naor [AN04].
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`

Figure 27.1: Linear separable red and blue point sets.

Chapter 27

The Perceptron Algorithm

27.1. The perceptron algorithm
Assume, that we are given examples, say a database of cars, and you would like to determine which cars are
sport cars, and which are regular cars. Each car record, can be interpreted as a point in high dimensions.
For example, a sport car with 4 doors, manufactured in 1997, by Quaky (with manufacturer ID 6) will be
represented by the point (4,1997,6), marked as a sport car. A tractor made by General Mess (manufacturer ID
3) in 1998, would be stored as (0,1997,3) and would be labeled as not a sport car.

Naturally, in a real database there might be hundreds of attributes in each record, for engine size, weight,
price, maximum speed, cruising speed, etc, etc, etc.

We would like to automate this classification process, so that tagging the records whether they correspond
to race cars be done automatically without a specialist being involved. We would like to have a learning
algorithm, such that given several classified examples, develop its own conjecture about what is the rule of the
classification, and we can use it for classifying new data.

That is, there are two stages for learning: training and classifying. More formally, we are trying to
learn a function

f : Rd → {−1,1} .

The challenge is, of course, that f might have infinite complexity – informally, think about a label assigned
to items where the label is completely random – there is nothing to learn except knowing the label for all
possible items.

This situation is extremely rare is the real world, and we would limit ourselves to a set of functions that
can be easily described. For example, consider a set of red and blue points that are linearly separable, as
demonstrated in Figure 27.1. That is, we are trying to learn a line ` that separates the red points from the blue
points.

The natural question is now, given the red and blue points, how to compute the line `? Well, a line or more
generally a plane (or even a hyperplane) is the zero set of a linear function, that has the form

∀x ∈ Rd f (x) = 〈a, x〉 + b,

where a = (a1, . . . ,ad), b = (b1, . . . , bd) ∈ R
2, and 〈a, x〉 =

∑
i aixi is the dot product of a and x. The classification

itself, would be done by computing the sign of f (x); that is sign( f (x)). Specifically, if sign( f (x)) is negative, it
outside the class, if it is positive it is inside.
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Algorithm perceptron(S: a set of l examples)
w0 ← 0,k ← 0
R = max(x,y)∈S ‖x‖ .
repeat
for (x, y) ∈ S do
if sign(〈wk,x〉) , y then

wk+1 ← wk + y ∗ x
k ← k + 1

until no mistakes are made in the classification
return wk and k

Figure 27.2: The perceptron algorithm.

A set of training examples is a set of pairs

S = {(x1, y1), . . . , (xn, yn)} ,

where xi ∈ Rd and yi ∈ {-1,1}, for i = 1, . . . ,n.
A linear classifier h is a pair (w, b) where w ∈ Rd and b ∈ R. The classification of x ∈ Rd is sign(〈w, x〉+b).

For a labeled example (x, y), h classifies (x, y) correctly if sign(〈w, x〉 + b) = y.
Assume that the underlying label we are trying to learn has a linear classifier (this is a problematic assump-

tion – more on this later), and you are given “enough” examples (i.e., n). How to compute the linear classifier
for these examples?

One natural option is to use linear programming. Indeed, we are looking for (w, b), such that for an (xi, yi)

we have sign(〈w,xi〉 + b) = yi, which is

〈w,xi〉 + b ≥ 0 if yi = 1,
and 〈w,xi〉 + b ≤ 0 if yi = −1.

Or equivalently, let xi =
(
x1
i , . . . , x

d
i

)
∈ Rd, for i = 1, . . . ,m, and let w =

(
w1, . . . ,wd

)
, then we get the linear

constraint
d∑

k=1
wk xki + b ≥ 0 if yi = 1,

and
d∑

k=1
wk xki + b ≤ 0 if yi = −1.

Thus, we get a set of linear constraints, one for each training example, and we need to solve the resulting
linear program.

The main stumbling block is that linear programming is very sensitive to noise. Namely, if we have points
that are misclassified, we would not find a solution, because no solution satisfying all of the constraints exists.
Instead, we are going to use an iterative algorithm that converges to the optimal solution if it exists, see
Figure 27.2.

Why does the perceptron algorithm converges to the right solution? Well, assume that we made a mistake
on a sample (x, y) and y = 1. Then, 〈wk,x〉 < 0, and

〈wk+1,x〉 = 〈wk + y ∗ x, x〉 = 〈wk,x〉 + y 〈x,x〉 = 〈wk,x〉 + y ‖x‖ > 〈wk,x〉 .

Namely, we are “walking” in the right direction, in the sense that the new value assigned to x by wk+1 is larger
(“more positive”) than the old value assigned to x by wk .
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Theorem 27.1.1. Let S be a training set of examples, and let R = max(x,y)∈S ‖x‖. Suppose that there exists a
vector wopt such that

wopt

 = 1, and a number γ > 0, such that

y
〈
wopt, x

〉
≥ γ ∀(x, y) ∈ S.

Then, the number of mistakes made by the online perceptron algorithm on S is at most(
R
γ

)2
.

Proof: Intuitively, the perceptron algorithm weight vector converges to wopt , To see that, let us define the
distance between wopt and the weight vector in the kth update:

αk =

wk −
R2

γ
wopt

2
.

We next quantify the change between αk and αk+1 (the example being misclassified is (x, y)):

αk+1 =

wk+1 −
R2

γ
wopt

2

=

wk + yx − R2

γ
wopt

2

=

(wk −
R2

γ
wopt

)
+ yx

2

=

〈(
wk −

R2

γ
wopt

)
+ yx,

(
wk −

R2

γ
wopt

)
+ yx

〉
.

Expanding this we get:

αk+1 =

〈(
wk −

R2

γ
wopt

)
,

(
wk −

R2

γ
wopt

)〉
+ 2y

〈(
wk −

R2

γ
wopt

)
,x

〉
+ 〈x,x〉

= αk + 2y
〈(
wk −

R2

γ
wopt

)
, x

〉
+ ‖ x ‖2 .

As (x, y) is misclassified, it must be that sign(〈wk,x〉) , y, which implies that sign(y 〈wk,x〉) = −1; that is
y 〈wk,x〉 < 0. Now, since ‖x‖ ≤ R, we have

αk+1 ≤ αk + R2 + 2y 〈wk,x〉 − 2y
〈

R2

γ
wopt,x

〉
≤ αk + R2 + −2 R2

γ
y
〈
wopt ,x

〉
.

Next, since y
〈
wopt , x

〉
≥ γ for ∀(x, y) ∈ S, we have that

αk+1 ≤ αk + R2 − 2 R2

γ
γ

≤ αk + R2 − 2R2

≤ αk − R2.

We have: αk+1 ≤ αk − R2, and

α0 =

0 − R2

γ
wopt

2
=

R4

γ2

wopt

2
=

R4

γ2 .
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Finally, observe that αi ≥ 0 for all i. Thus, what is the maximum number of classification errors the algo-
rithm can make?

(
R2

γ2

)
.

It is important to observe that any linear program can be written as the problem of separating red points
from blue points. As such, the perceptron algorithm can be used to solve linear programs.

27.2. Learning A Circle
Given a set of red points, and blue points in the plane, we want to learn a circle that contains all the red points,
and does not contain the blue points.

σ

How to compute the circle σ ?
It turns out we need a simple but very clever trick. For every point (x, y) ∈ P map it to the point(

x, y, x2 + y2). Let z(P) =
{(

x, y, x2 + y2) ��� (x, y) ∈ P
}
be the resulting point set.

Theorem 27.2.1. Two sets of points R and B are separable by a circle in two dimensions, if and only if z(R)
and z(B) are separable by a plane in three dimensions.

Proof: Let σ ≡ (x − a)2 + (y − b)2 = r2 be the circle containing all the points of R and having all the points of B
outside. Clearly, (x − a)2 + (y − b)2 ≤ r2 for all the points of R. Equivalently

−2ax − 2by +
(
x2 + y2

)
≤ r2 − a2 − b2.

Setting z = x2 + y2 we get that

h ≡ −2ax − 2by + z − r2 + a2 + b2 ≤ 0.

Namely, p ∈ σ if and only if h(z(p)) ≤ 0. We just proved that if the point set is separable by a circle, then the
lifted point set z(R) and z(B) are separable by a plane.

As for the other direction, assume that z(R) and z(B) are separable in 3d and let

h ≡ ax + by + cz + d = 0

be the separating plane, such that all the point of z(R) evaluate to a negative number by h. Namely, for
(x, y, x2 + y2) ∈ z(R) we have ax + by + c(x2 + y2) + d ≤ 0

and similarly, for (x, y, x2 + y2) ∈ B we have ax + by + c(x2 + y2) + d ≥ 0.
Let U(h) =

{
(x, y)

��� h
(
(x, y, x2 + y2)

)
≤ 0

}
. Clearly, if U(h) is a circle, then this implies that R ⊂ U(h) and

B ∩U(h) = ∅, as required.
So, U(h) are all the points in the plane, such that

ax + by + c
(
x2 + y2

)
≤ −d.
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Equivalently (
x2 +

a
c

x
)
+

(
y2 +

b
c
y

)
≤ −

d
c

(
x +

a
2c

)2
+

(
y +

b
2c

)2
≤

a2 + b2

4c2 −
d
c

but this defines the interior of a circle in the plane, as claimed.

This example show that linear separability is a powerful technique that can be used to learn complicated
concepts that are considerably more complicated than just hyperplane separation. This lifting technique showed
above is the kernel technique or linearization.

27.3. A Little Bit On VC Dimension
As we mentioned, inherent to the learning algorithms, is the concept of how complex is the function we are
trying to learn. VC-dimension is one of the most natural ways of capturing this notion. (VC = Vapnik,
Chervonenkis,1971).

A matter of expressivity. What is harder to learn:

1. A rectangle in the plane.

2. A halfplane.

3. A convex polygon with k sides.

Let X =
{
p1,p2, . . . , pm

}
be a set of m points in the plane, and let R be the set of all halfplanes.

A half-plane r defines a binary vector

r(X) = (b1, . . . , bm)

where bi = 1 if and only if pi is inside r.
Let

U(X,R) = {r(X) | r ∈ R } .

A set X of m elements is shattered by R if

|U(X,R)| = 2m.

What does this mean?
The VC-dimension of a set of ranges R is the size of the largest set that it can shatter.
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27.3.1. Examples

What is the VC dimensions of circles in the plane?
Namely, X is set of n points in the plane, and R is a set of all circles.
X = {p,q,r, s}
What subsets of X can we generate by circle?

p

q

r

s

{}, {r}, {p}, {q}, {s},{p, s}, {p,q}, {p,r},{r,q}{q, s} and {r, p,q}, {p,r, s}{p, s,q},{s,q,r} and {r, p,q, s}
We got only 15 sets. There is one set which is not there. Which one?
The VC dimension of circles in the plane is 3.

Lemma 27.3.1 (Sauer Lemma). If R has VC dimension d then |U(X,R)| = O
(
md

)
, where m is the size of X.
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Part VIII
Compression, entropy, and randomness

Chapter 28

Huffman Coding

28.1. Huffman coding

(This portion of the class notes is based on Jeff Erickson class notes.)
A binary code assigns a string of 0s and 1s to each character in the alphabet. A code assigns for each symbol

in the input a codeword over some other alphabet. Such a coding is necessary, for example, for transmitting
messages over a wire, were you can send only 0 or 1 on the wire (i.e., for example, consider the good old
telegraph and Morse code). The receiver gets a binary stream of bits and needs to decode the message sent. A
prefix code, is a code where one can decipher the message, a character by character, by reading a prefix of the
input binary string, matching it to a code word (i.e., string), and continuing to decipher the rest of the stream.
Such a code is a prefix code.

A binary code (or a prefix code) is prefix-free if no code is a prefix of any other. ASCII and Unicode’s
UTF-8 are both prefix-free binary codes. Morse code is a binary code (and also a prefix code), but it is not
prefix-free; for example, the code for S (· · · ) includes the code for E (·) as a prefix. (Hopefully the receiver
knows that when it gets · · · that it is extremely unlikely that this should be interpreted as EEE, but rather S.

a

b c

d
0

0

0

1

1

1Any prefix-free binary code can be visualized as a binary tree with the encoded
characters stored at the leaves. The code word for any symbol is given by the path
from the root to the corresponding leaf; 0 for left, 1 for right. The length of a codeword
for a symbol is the depth of the corresponding leaf. Such trees are usually referred to
as prefix trees or code trees.

The beauty of prefix trees (and thus of prefix odes) is that decoding is easy. As
a concrete example, consider the tree on the right. Given a string ’010100’, we can
traverse down the tree from the root, going left if get a ’0’ and right if we get ’1’. Whenever we get to a leaf,
we output the character output in the leaf, and we jump back to the root for the next character we are about
to read. For the example ’010100’, after reading ’010’ our traversal in the tree leads us to the leaf marked with
’b’, we jump back to the root and read the next input digit, which is ’1’, and this leads us to the leaf marked
with ’d’, which we output, and jump back to the root. Finally, ’00’ leads us to the leaf marked by ’a’, which
the algorithm output. Thus, the binary string ’010100’ encodes the string “bda”.
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newline 16, 492
space 130,376
‘!’ 955
‘"’ 5,681
‘$’ 2
‘%’ 1
‘” 1,174
‘(’ 151
‘)’ 151
‘*’ 70
‘,’ 13,276
‘–’ 2,430
‘.’ 6,769

‘0’ 20
‘1’ 61
‘2’ 10
‘3’ 12
‘4’ 10
‘5’ 14
‘6’ 11
‘7’ 13
‘8’ 13
‘9’ 14
‘:’ 267
‘;’ 1,108
‘?’ 913

‘A’ 48,165
‘B’ 8,414
‘C’ 13,896
‘D’ 28,041
‘E’ 74,809
‘F’ 13,559
‘G’ 12,530
‘H’ 38,961
‘I’ 41,005
‘J’ 710
‘K’ 4,782
‘L’ 22,030
‘M’ 15,298

‘N’ 42,380
‘O’ 46,499
‘P’ 9,957
‘Q’ 667
‘R’ 37,187
‘S’ 37,575
‘T’ 54,024
‘U’ 16,726
‘V’ 5,199
‘W’ 14,113
‘X’ 724
‘Y’ 12,177
‘Z’ 215

‘_’ 182
’‘’ 93
‘@’ 2
‘/’ 26

Figure 28.1: Frequency of characters in the book “A tale of two cities” by Dickens. For the sake of brevity,
small letters were counted together with capital letters.

char frequency code
‘A’ 48165 1110
‘B’ 8414 101000
‘C’ 13896 00100
‘D’ 28041 0011
‘E’ 74809 011
‘F’ 13559 111111
‘G’ 12530 111110
‘H’ 38961 1001

char frequency code
‘I’ 41005 1011
‘J’ 710 1111011010
‘K’ 4782 11110111
‘L’ 22030 10101
‘M’ 15298 01000
‘N’ 42380 1100
‘O’ 46499 1101
‘P’ 9957 101001
‘Q’ 667 1111011001

char frequency code
‘R’ 37187 0101
‘S’ 37575 1000
‘T’ 54024 000
‘U’ 16726 01001
‘V’ 5199 1111010
‘W’ 14113 00101
‘X’ 724 1111011011
‘Y’ 12177 111100
‘Z’ 215 1111011000

Figure 28.2: The resulting prefix code for the frequencies of Figure 28.1. Here, for the sake of simplicity of
exposition, the code was constructed only for the A—Z characters.

Suppose we want to encode messages in an n-character alphabet so that the encoded message is as short
as possible. Specifically, given an array frequency counts f [1 . . . n], we want to compute a prefix-free binary
code that minimizes the total encoded length of the message. That is we would like to compute a tree T that
minimizes

cost(T) =
n∑
i=1

f [i] ∗ len(code(i)), (28.1)

where code(i) is the binary string encoding the ith character and len(s) is the length (in bits) of the binary
string s.

As a concrete example, consider Figure 28.1, which shows the frequency of characters in the book “A tale
of two cities”, which we would like to encode. Consider the characters ‘E’ and ‘Q’. The first appears > 74,000
times in the text, and other appears only 667 times in the text. Clearly, it would be logical to give ‘E’, the
most frequent letter in English, a very short prefix code, and a very long (as far as number of bits) code to ‘Q’.

A nice property of this problem is that given two trees for some parts of the alphabet, we can easily put
them together into a larger tree by just creating a new node and hanging the trees from this common node.
For example, putting two characters together, we have the following.

M U ⇒

•

M

.................................................................

U

.................................................................
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•

•

•

T

....................................................................

•

•

C

............................................................

W

............................................................

..................................................................................... D

.................................................................

........................................................................................

..................................................................................................................................................... •

•

•

M

............................................................

U

............................................................

.................................................................................... R

................................................................

....................................................................................... E

...................................................................

.....................................................................................................................................................

.............................................................................................................................................................................................................................................................. •

•

•

S

...........................................................

H

...........................................................

.............................................................................................................. •

•

•

B

...........................................................

P

...........................................................

................................................................................... L

................................................................

..................................................................................... I

..................................................................

..............................................................................................................

........................................................................................................................................................................ •

•

N

............................................................

O

............................................................

........................................................................................................................... •

A

.............................................................................................................................
•

•

Y

........................................................................

•

V

......................................................................................

•

•

•

Z

...........................................................

Q

.........................................................

...................................................................................... •

J

...........................................................

X

...........................................................

......................................................................................

................................................................................................... K

............................................................................

.............................................................................................................

..............................................................................................

........................................................................................................................................................................... •

G

...........................................................

F

...........................................................

...........................................................................................................................................................................

................................................................................................................................................

...........................................................................................................................

........................................................................................................................................................................

..............................................................................................................................................................................................................................................................

Figure 28.3: The Huffman tree generating the code of Figure 28.2.

Similarly, we can put together two subtrees.

A

.

...................................................................... .

.....................................................................................................................................................

B

.

...................................................................... .

..................................................................................................................................................... ⇒

•

A

.

...................................................................... .

.....................................................................................................................................................

................................................................................................. B

.

...................................................................... .

.....................................................................................................................................................

.................................................................................................

28.1.1. The algorithm to build Hoffman’s code

This suggests a simple algorithm that takes the two least frequent characters in the current frequency table,
merge them into a tree, and put the merged tree back into the table (instead of the two old trees). The algorithm
stops when there is a single tree. The intuition is that infrequent characters would participate in a large number
of merges, and as such would be low in the tree – they would be assigned a long code word.

This algorithm is due to David Huffman, who developed it in 1952. Shockingly, this code is the best
one can do. Namely, the resulting code is asymptotically gives the best possible compression of the data (of
course, one can do better compression in practice using additional properties of the data and careful hacking).
This Huffman coding is used widely and is the basic building block used by numerous other compression
algorithms.

To see how such a resulting tree (and the associated code) looks like, see Figure 28.2 and Figure 28.3.

28.1.2. Analysis

Lemma 28.1.1. Let T be an optimal code tree. Then T is a full binary tree (i.e., every node of T has either 0
or 2 children).

In particular, if the height of T is d, then there are leafs nodes of height d that are sibling.
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Proof: If there is an internal node in T that has one child, we can remove this node from T, by connecting
its only child directly with its parent. The resulting code tree is clearly a better compressor, in the sense of
Eq. (28.1).

As for the second claim, consider a leaf u with maximum depth d in T, and consider it parent v = p(u). The
node v has two children, and they are both leafs (otherwise u would not be the deepest node in the tree), as
claimed.

Lemma 28.1.2. Let x and y be the two least frequent characters (breaking ties between equally frequent char-
acters arbitrarily). There is an optimal code tree in which x and y are siblings.

Proof: More precisely, there is an optimal code in which x and y are siblings and have the largest depth of any
leaf. Indeed, let T be an optimal code tree with depth d. The tree T has at least two leaves at depth d that are
siblings, by Lemma 28.1.1.

Now, suppose those two leaves are not x and y, but some other characters α and β. Let T′ be the code tree
obtained by swapping x and α. The depth of x increases by some amount ∆, and the depth of α decreases by
the same amount. Thus,

cost(T′) = cost(T) −
(
f [α] − f [x]

)
∆.

By assumption, x is one of the two least frequent characters, but α is not, which implies that f [α] > f [x]. Thus,
swapping x and α does not increase the total cost of the code. Since T was an optimal code tree, swapping x
and α does not decrease the cost, either. Thus, T′ is also an optimal code tree (and incidentally, f [α] actually
equals f [x]). Similarly, swapping y and b must give yet another optimal code tree. In this final optimal code
tree, x and y as maximum-depth siblings, as required.

Theorem 28.1.3. Huffman codes are optimal prefix-free binary codes.

Proof: If the message has only one or two different characters, the theorem is trivial. Otherwise, let f [1 . . . n]
be the original input frequencies, where without loss of generality, f [1] and f [2] are the two smallest. To keep
things simple, let f [n+1] = f [1]+ f [2]. By the previous lemma, we know that some optimal code for f [1..n] has
characters 1 and 2 as siblings. Let Topt be this optimal tree, and consider the tree formed by it by removing 1
and 2 as it leaves. We remain with a tree T′opt that has as leafs the characters 3, . . . ,n and a “special” character
n + 1 (which is the parent of 1 and 2 in Topt) that has frequency f [n + 1]. Now, since f [n + 1] = f [1] + f [2], we
have

cost
(
Topt

)
=

n∑
i=1

f [i]depthTopt(i)

=

n+1∑
i=3

f [i]depthTopt(i) + f [1]depthTopt(1) + f [2]depthTopt(2) − f [n + 1]depthTopt(n + 1)

= cost
(
T′opt

)
+

(
f [1] + f [2]

)
depth

(
Topt

)
−

(
f [1] + f [2]

) (
depth

(
Topt

)
− 1

)
= cost

(
T′opt

)
+ f [1] + f [2]. (28.2)

This implies that minimizing the cost of Topt is equivalent to minimizing the cost of T′opt. In particular, T′opt must
be an optimal coding tree for f [3 . . . n + 1]. Now, consider the Huffman tree T′H constructed for f [3, . . . ,n + 1]
and the overall Huffman tree TH constructed for f [1, . . . ,n]. By the way the construction algorithm works, we
have that T′H is formed by removing the leafs of 1 and 2 from T. Now, by induction, we know that the Huffman
tree generated for f [3, . . . ,n + 1] is optimal; namely, cost

(
T′opt

)
= cost

(
T′H

)
. As such, arguing as above, we have

cost(TH ) = cost
(
T′H

)
+ f [1] + f [2] = cost

(
T′opt

)
+ f [1] + f [2] = cost

(
Topt

)
,

by Eq. (28.2). Namely, the Huffman tree has the same cost as the optimal tree.
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28.1.3. What do we get

For the book “A tale of two cities” which is made out of 779,940 bytes, and using the above Huffman compression
results in a compression to a file of size 439,688 bytes. A far cry from what gzip can do (301,295 bytes) or
bzip2 can do (220,156 bytes!), but still very impressive when you consider that the Huffman encoder can be
easily written in a few hours of work.

(This numbers ignore the space required to store the code with the file. This is pretty small, and would not
change the compression numbers stated above significantly.

28.1.4. A formula for the average size of a code word

Assume that our input is made out of n characters, where the ith character is pi fraction of the input (one can
think about pi as the probability of seeing the ith character, if we were to pick a random character from the
input).

Now, we can use these probabilities instead of frequencies to build a Huffman tree. The natural question is
what is the length of the codewords assigned to characters as a function of their probabilities?

In general this question does not have a trivial answer, but there is a simple elegant answer, if all the
probabilities are power of 2.
Lemma 28.1.4. Let 1, . . . ,n be n symbols, such that the probability for the ith symbol is pi, and furthermore,
there is an integer li ≥ 0, such that pi = 1/2li . Then, in the Huffman coding for this input, the code for i is of
length li.

Proof: The proof is by easy induction of the Huffman algorithm. Indeed, for n = 2 the claim trivially holds since
there are only two characters with probability 1/2. Otherwise, let i and j be the two characters with lowest
probability. It must hold that pi = pj (otherwise,

∑
k pk can not be equal to one). As such, Huffman’s merges

this two letters, into a single “character” that have probability 2pi, which would have encoding of length li − 1,
by induction (on the remaining n− 1 symbols). Now, the resulting tree encodes i and j by code words of length
(li − 1) + 1 = li, as claimed.

In particular, we have that li = lg 1/pi. This implies that the average length of a code word is∑
i

pi lg 1
pi
.

If we consider X to be a random variable that takes a value i with probability pi, then this formula is

H(X) =
∑
i

P[X = i] lg 1
P[X = i]

,

which is the entropy of X.

Chapter 29

Entropy, Randomness, and Information

“If only once - only once - no matter where, no matter before what audience - I could better the record of the great
Rastelli and juggle with thirteen balls, instead of my usual twelve, I would feel that I had truly accomplished something
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H(p) = −p lg p− (1− p) lg(1− p)

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 29.1: The binary entropy function.

for my country. But I am not getting any younger, and although I am still at the peak of my powers there are moments
- why deny it? - when I begin to doubt - and there is a time limit on all of us.”

– –Romain Gary, The talent scout..

29.1. Entropy
Definition 29.1.1. The entropy in bits of a discrete random variable X is given by

H(X) = −
∑
x

P[X = x] lg P[X = x].

Equivalently, H(X) = E
[
lg 1
P[X]

]
.

The binary entropy function H(p) for a random binary variable that is 1 with probability p, is H(p) =
−p lg p − (1 − p) lg(1 − p). We define H(0) = H(1) = 0. See Figure 29.1.

The function H(p) is a concave symmetric around 1/2 on the interval [0,1] and achieves its maximum at 1/2.
For a concrete example, consider H(3/4) ≈ 0.8113 and H(7/8) ≈ 0.5436. Namely, a coin that has 3/4 probably
to be heads have higher amount of “randomness” in it than a coin that has probability 7/8 for heads.

We have H′(p) = − lg p + lg(1 − p) = lg 1−p
p and H′′(p) = p

1−p ·
(
− 1

p2

)
= − 1

p(1−p) . Thus, H′′(p) ≤ 0, for all
p ∈ (0,1), and the H(·) is concave in this range. Also, H′(1/2) = 0, which implies that H(1/2) = 1 is a maximum
of the binary entropy. Namely, a balanced coin has the largest amount of randomness in it.

Example 29.1.2. A random variable X that has probability 1/n to be i, for i = 1, . . . ,n, has entropy H(X) =
−

∑n
i=1

1
n lg 1

n = lg n.

Note, that the entropy is oblivious to the exact values that the random variable can have, and it is sensitive
only to the probability distribution. Thus, a random variables that accepts −1,+1 with equal probability has
the same entropy (i.e., 1) as a fair coin.

Lemma 29.1.3. Let X and Y be two independent random variables, and let Z be the random variable (X,Y ).
Then H(Z) = H(X) + H(Y ).
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Proof: In the following, summation are over all possible values that the variables can have. By the independence
of X and Y we have

H(Z) =
∑
x,y

P[(X,Y ) = (x, y)] lg
1

P[(X,Y ) = (x, y)]

=
∑
x,y

P[X = x]P[Y = y] lg 1
P[X = x]P[Y = y]

=
∑
x

∑
y

P[X = x]P[Y = y] lg 1
P[X = x]

+
∑
y

∑
x

P[X = x]P[Y = y] lg 1
P[Y = y]

=
∑
x

P[X = x] lg 1
P[X = x]

+
∑
y

P[Y = y] lg 1
P[Y = y]

= H(X) + H(Y ).

Lemma 29.1.4. Suppose that nq is integer in the range [0,n]. Then 2nH(q)

n + 1 ≤
(

n
nq

)
≤ 2nH(q).

Proof: This trivially holds if q = 0 or q = 1, so assume 0 < q < 1. We know that(
n

nq

)
qnq(1 − q)n−nq ≤ (q + (1 − q))n = 1.

As such, since q−nq(1 − q)−(1−q)n = 2n (−q lg q−(1−q) lg(1−q)) = 2nH(q), we have(
n

nq

)
≤ q−nq(1 − q)−(1−q)n = 2nH(q).

As for the other direction, let µ(k) =
(n
k

)
qk(1− q)n−k . We claim that µ(nq) =

( n
nq

)
qnq(1− q)n−nq is the largest

term in
∑n

k=0 µ(k) = 1. Indeed,

∆k = µ(k) − µ(k + 1) =
(
n
k

)
qk(1 − q)n−k

(
1 − n − k

k + 1
q

1 − q

)
,

and the sign of this quantity is the sign of the last term, which is

sign(∆k) = sign
(
1 − (n − k)q
(k + 1)(1 − q)

)
= sign

(
(k + 1)(1 − q) − (n − k)q

(k + 1)(1 − q)

)
.

Now,
(k + 1)(1 − q) − (n − k)q = k + 1 − kq − q − nq + kq = 1 + k − q − nq.

Namely, ∆k ≥ 0 when k ≥ nq + q − 1, and ∆k < 0 otherwise. Namely, µ(k) < µ(k + 1), for k < nq, and
µ(k) ≥ µ(k + 1) for k ≥ nq. Namely, µ(nq) is the largest term in

∑n
k=0 µ(k) = 1, and as such it is larger than the

average. We have µ(nq) =
( n
nq

)
qnq(1 − q)n−nq ≥ 1

n+1 , which implies(
n

nq

)
≥

1
n + 1q−nq(1 − q)−(n−nq) =

1
n + 12nH(q).

Lemma 29.1.4 can be extended to handle non-integer values of q. This is straightforward, and we omit the
easy but tedious details.
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Corollary 29.1.5. We have:
(i) q ∈ [0,1/2] ⇒

( n
bnqc

)
≤ 2nH(q).

(ii) q ∈ [1/2,1]
( n
dnqe

)
≤ 2nH(q).

(iii) q ∈ [1/2,1] ⇒ 2nH(q)

n+1 ≤
( n
bnqc

)
.

(iv) q ∈ [0,1/2] ⇒ 2nH(q)

n+1 ≤
( n
dnqe

)
.

The bounds of Lemma 29.1.4 and Corollary 29.1.5 are loose but sufficient for our purposes. As a sanity
check, consider the case when we generate a sequence of n bits using a coin with probability q for head, then
by the Chernoff inequality, we will get roughly nq heads in this sequence. As such, the generated sequence Y
belongs to

( n
nq

)
≈ 2nH(q) possible sequences that have similar probability. As such, H(Y ) ≈ lg

( n
nq

)
= nH(q), by

Example 29.1.2, a fact that we already know from Lemma 29.1.3.

29.1.1. Extracting randomness

Entropy can be interpreted as the amount of unbiased random coin flips can be extracted from a random
variable.

Definition 29.1.6. An extraction function E xt takes as input the value of a random variable X and outputs a
sequence of bits y, such that P

[
E xt(X) = y

��� |y | = k
]
= 1

2k , whenever P[|y | = k] > 0, where |y | denotes the length
of y.

As a concrete (easy) example, consider X to be a uniform random integer variable out of 0, . . . ,7. All that
E xt(X) has to do in this case, is to compute the binary representation of x. However, note that Definition 29.1.6
is somewhat more subtle, as it requires that all extracted sequence of the same length would have the same
probability.

Thus, for X a uniform random integer variable in the range 0, . . . ,11, the function E xt(x) can output the
binary representation for x if 0 ≤ x ≤ 7. However, what do we do if x is between 8 and 11? The idea is to
output the binary representation of x−8 as a two bit number. Clearly, Definition 29.1.6 holds for this extraction
function, since P

[
E xt(X) = 00

��� |E xt(X)| = 2
]
= 1

4 , as required. This scheme can be of course extracted for any
range.

The following is obvious, but we provide a proof anyway.

Lemma 29.1.7. Let x/y be a faction, such that x/y < 1. Then, for any i, we have x/y < (x + i)/(y + i).

Proof: We need to prove that x(y+ i)− (x+ i)y < 0. The left size is equal to i(x− y), but since y > x (as x/y < 1),
this quantity is negative, as required.

Theorem 29.1.8. Suppose that the value of a random variable X is chosen uniformly at random from the
integers {0, . . . ,m − 1}. Then there is an extraction function for X that outputs on average at least blg mc − 1 =
bH(X)c − 1 independent and unbiased bits.

Proof: We represent m as a sum of unique powers of 2, namely m =
∑

i ai2i, where ai ∈ {0,1}. Thus, we
decomposed {0, . . . ,m − 1} into a disjoint union of blocks that have sizes which are distinct powers of 2. If a
number falls inside such a block, we output its relative location in the block, using binary representation of the
appropriate length (i.e., k if the block is of size 2k). One can verify that this is an extraction function, fulfilling
Definition 29.1.6.

Now, observe that the claim holds trivially if m is a power of two. Thus, consider the case that m is not
a power of 2. If X falls inside a block of size 2k then the entropy is k. Thus, for the inductive proof, assume
that are looking at the largest block in the decomposition, that is m < 2k+1, and let u =

⌊
lg(m − 2k)

⌋
< k.

There must be a block of size u in the decomposition of m. Namely, we have two blocks that we known in the
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decomposition of m, of sizes 2k and 2u. Note, that these two blocks are the largest blocks in the decomposition
of m. In particular, 2k + 2 ∗ 2u > m, implying that 2u+1 + 2k − m > 0.

Let Y be the random variable which is the number of bits output by the extractor algorithm.
By Lemma 29.1.7, since m−2k

m < 1, we have

m − 2k

m
≤

m − 2k +
(
2u+1 + 2k − m

)
m +

(
2u+1 + 2k − m

) = 2u+1

2u+1 + 2k
.

Thus, by induction (we assume the claim holds for all integers smaller than m), we have

E[Y ] ≥
2k

m
k +

m − 2k

m

( ⌊
lg(m − 2k)

⌋︸          ︷︷          ︸
u

−1
)
=

2k

m
k +

m − 2k

m
(k − k︸︷︷︸
=0

+u − 1)

= k +
m − 2k

m
(u − k − 1)

≥ k +
2u+1

2u+1 + 2k
(u − k − 1) = k −

2u+1

2u+1 + 2k
(1 + k − u),

since u − k − 1 ≤ 0 as k > u. If u = k − 1, then E[Y ] ≥ k − 1
2 · 2 = k − 1, as required. If u = k − 2 then

E[Y ] ≥ k − 1
3 · 3 = k − 1. Finally, if u < k − 2 then

E[Y ] ≥ k −
2u+1

2k
(1 + k − u) = k −

k − u + 1
2k−u−1 = k −

2 + (k − u − 1)
2k−u−1 ≥ k − 1,

since (2 + i)/2i ≤ 1 for i ≥ 2.

Chapter 30

Even more on Entropy, Randomness, and
Information

“It had been that way even before, when for years at a time he had not seen blue sky, and each second of those years
could have been his last. But it did not benefit an Assualtman to think about death. Though on the other hand you
had to think a lot about possible defeats. Gorbovsky had once said that death is worse than any defeat, even the most
shattering. Defeat was always really only an accident, a setback which you could surmount. You had to surmount it.
Only the dead couldn’t fight on.”

– – Defeat, Arkady and Boris Strugatsky.

30.1. Extracting randomness

30.1.1. Enumerating binary strings with j ones

Consider a binary string of length n with j ones. S(n, j) denote the set of all such binary strings. There are
(n
j

)
such strings. For the following, we need an algorithm that given a string U of n bits with j ones, maps it into
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a number in the range 0, . . . ,
(n
j

)
− 1.

To this end, consider the full binary tree T of height n. Each leaf, encodes a string of length n, and mark
each leaf that encodes a string of S(n, j). Consider a node v in the tree, that is of height k; namely, the path πv
from the root of T to v is of length k. Furthermore, assume there are m ones written on the path πv. Clearly,
any leaf in the subtree of v that is in S(n, j) is created by selecting j − m ones in the remaining n − k positions.
The number of possibilities to do so is

(n−k
j−m

)
. Namely, given a node v in this tree T, we can quickly compute

the number of elements of S(n, j) stored in this subtree.
As such, let traverse T using a standard DFS algorithm, which would always first visit the ‘0’ child before

the ‘1’ child, and use it to enumerate the marked leaves. Now, given a string x of Sj , we would like to compute
what number would be assigned to by the above DFS procedure. The key observation is that calls made by the
DFS on nodes that are not on the path, can be skipped by just computing directly how many marked leaves
are there in the subtrees on this nodes (and this we can do using the above formula). As such, we can compute
the number assigned to x in linear time.

The cool thing about this procedure, is that we do not need T to carry it out. We can think about T as
being a virtual tree.

Formally, given a string x made out of n bits, with j ones, we can in O(n) time map it to an integer in the
range 0, . . . ,

(n
j

)
− 1, and this mapping is one-to-one. Let EnumBinomCoeffAlg denote this procedure.

30.1.2. Extracting randomness

Theorem 30.1.1. Consider a coin that comes up heads with probability p > 1/2. For any constant δ > 0 and
for n sufficiently large:
(A) One can extract, from an input of a sequence of n flips, an output sequence of (1 − δ)nH(p) (unbiased)

independent random bits.
(B) One can not extract more than nH(p) bits from such a sequence.

Proof: There are
(n
j

)
input sequences with exactly j heads, and each has probability pj(1− p)n−j . We map this

sequence to the corresponding number in the set Sj =
{
0, . . . ,

(n
j

)
− 1

}
. Note, that this, conditional distribution

on j, is uniform on this set, and we can apply the extraction algorithm of Theorem 29.1.8 to Sj . Let Z be the
random variable which is the number of heads in the input, and let B be the number of random bits extracted.
We have

E[B] =
n∑

k=0
P[Z = k]E

[
B

��� Z = k
]
,

and by Theorem 29.1.8, we have E
[
B

��� Z = k
]
≥

⌊
lg

(
n
k

)⌋
− 1. Let ε < p − 1/2 be a constant to be determined

shortly. For n(p − ε) ≤ k ≤ n(p + ε), we have(
n
k

)
≥

(
n

bn(p + ε)c

)
≥

2nH(p+ε)

n + 1 ,

by Corollary 29.1.5 (iii). We have

E[B] ≥
dn(p+ε)e∑

k= bn(p−ε)c

P[Z = k]E
[
B

��� Z = k
]
≥

dn(p+ε)e∑
k= bn(p−ε)c

P
[
Z = k

] ( ⌊
lg

(
n
k

)⌋
− 1

)
≥

dn(p+ε)e∑
k= bn(p−ε)c

P[Z = k]
(
lg 2nH(p+ε)

n + 1 − 2
)

= (nH(p + ε) − lg(n + 1) − 2)P[|Z − np| ≤ εn]

≥ (nH(p + ε) − lg(n + 1) − 2)
(
1 − 2 exp

(
−

nε2

4p

))
,
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since µ = E[Z] = np and P
[
|Z − np| ≥ ε

p pn
]
≤ 2 exp

(
−

np
4

(
ε
p

)2
)
= 2 exp

(
−nε2

4p

)
, by the Chernoff inequality. In

particular, fix ε > 0, such that H(p + ε) > (1 − δ/4)H(p), and since p is fixed nH(p) = Ω(n), in particular, for
n sufficiently large, we have − lg(n + 1) ≥ − δ

10 nH(p). Also, for n sufficiently large, we have 2 exp
(
−nε2

4p

)
≤ δ

10 .
Putting it together, we have that for n large enough, we have

E[B] ≥
(
1 − δ4 −

δ

10

)
nH(p)

(
1 − δ

10

)
≥ (1 − δ)nH(p),

as claimed.
As for the upper bound, observe that if an input sequence x has probability P[X = x], then the output

sequence y = E xt(x) has probability to be generated which is at least P[X = x]. Now, all sequences of length |y |
have equal probability to be generated. Thus, we have the following (trivial) inequality

2 |Ext(x) | P[X = x] ≤ 2 |Ext(x) | P[y = E xt(x)] ≤ 1,

implying that |E xt(x)| ≤ lg(1/P[X = x]). Thus,

E[B] =
∑
x

P[X = x] |E xt(x)| ≤
∑
x

P[X = x] lg 1
P[X = x]

= H(X).

30.2. Bibliographical Notes

The presentation here follows [MU05, Sec. 9.1-Sec 9.3].

Chapter 31

Shannon’s theorem

“This has been a novel about some people who were punished entirely too much for what they did. They wanted to
have a good time, but they were like children playing in the street; they could see one after another of them being
killed - run over, maimed, destroyed - but they continued to play anyhow. We really all were very happy for a while,
sitting around not toiling but just bullshitting and playing, but it was for such a terrible brief time, and then the
punishment was beyond belief; even when we could see it, we could not believe it.”

– – A Scanner Darkly, Philip K. Dick.

31.1. Coding: Shannon’s Theorem
We are interested in the problem sending messages over a noisy channel. We will assume that the channel noise
is behave “nicely”.

Definition 31.1.1. The input to a binary symmetric channel with parameter p is a sequence of bits x1, x2, . . . ,
and the output is a sequence of bits y1, y2, . . . , such that P[xi = yi] = 1 − p independently for each i.
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Translation: Every bit transmitted have the same probability to be flipped by the channel. The question
is how much information can we send on the channel with this level of noise. Naturally, a channel would have
some capacity constraints (say, at most 4,000 bits per second can be sent on the channel), and the question is
how to send the largest amount of information, so that the receiver can recover the original information sent.

Now, its important to realize that handling noise is unavoidable in the real world. Furthermore, there are
tradeoffs between channel capacity and noise levels (i.e., we might be able to send considerably more bits on the
channel but the probability of flipping [i.e., p] might be much larger). In designing a communication protocol
over this channel, we need to figure out where is the optimal choice as far as the amount of information sent.

Definition 31.1.2. A (k,n) encoding function Enc : {0,1}k → {0,1}n takes as input a sequence of k bits and
outputs a sequence of n bits. A (k,n) decoding function Dec : {0,1}n → {0,1}k takes as input a sequence of n
bits and outputs a sequence of k bits.

Thus, the sender would use the encoding function to send its message, and the receiver would use the
transmitted string (with the noise in it), to recover the original message. Thus, the sender starts with a
message with k bits, it blow it up to n bits, using the encoding function (to get some robustness to noise), it
send it over the (noisy) channel to the receiver. The receiver takes the given (noisy) message with n bits, and
use the decoding function to recover the original k bits of the message.

Naturally, we would like k to be as large as possible (for a fixed n), so that we can send as much information
as possible on the channel.

The following celebrated result of Shannon¬ in 1948 states exactly how much information can be sent on
such a channel.

Theorem 31.1.3 (Shannon’s theorem). For a binary symmetric channel with parameter p < 1/2 and for
any constants δ, γ > 0, where n is sufficiently large, the following holds:
(i) For an k ≤ n(1 − H(p) − δ) there exists (k,n) encoding and decoding functions such that the probability the

receiver fails to obtain the correct message is at most γ for every possible k-bit input messages.
(ii) There are no (k,n) encoding and decoding functions with k ≥ n(1 − H(p) + δ) such that the probability of

decoding correctly is at least γ for a k-bit input message chosen uniformly at random.

31.1.0.1. Intuition behind Shanon’s theorem

Let assume the senders has sent a string S = s1s2 . . . sn. The receiver got a string T = t1t2 . . . tn, where
p = P[ti , si], for all i. In particular, let U be the Hamming distance between S and T ; that is, U =

∑
i

[
si , ti

]
.

Under our assumptions E[U] = pn, and U is a binomial variable. By Chernoff inequality, we know that
U ∈

[
(1 − δ)np, (1 + δ)np

]
with high probability, where δ is some tiny constant. So lets assume this indeed

happens. This means that T is in a ring R centered at S, with inner radius (1− δ)np and outer radius (1+ δ)np.
This ring has

(1+δ)np∑
i=(1−δ)np

(
n
i

)
≤ 2

(
n

(1 + δ)np

)
≤ α = 2 · 2nH((1+δ)p).

Let us pick as many rings as possible in the hypercube so that they are disjoint: R1, . . . ,Rκ . If somehow
magically, every word in the hypercube would be covered, then we could use all the possible 2n codewords, then
the number of rings κ we would pick would be at least

κ ≥
2n

|R|
≥

2n

2 · 2nH((1+δ)p)
≈ 2n(1−H((1+δ)p)).

¬Claude Elwood Shannon (April 30, 1916 - February 24, 2001), an American electrical engineer and mathematician, has been
called “the father of information theory”.
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In particular, consider all possible strings of length k such that 2k ≤ κ. We map the ith string in {0,1}k to the
center Ci of the ith ring Ri. Assuming that when we send Ci, the receiver gets a string in Ri, then the decoding
is easy - find the ring Ri containing the received string, take its center string Ci, and output the original string
it was mapped to. Now, observe that

k = blog κc = n(1 − H((1 + δ)p)) ≈ n(1 − H(p)),

as desired.

31.1.0.2. What is wrong with the above?

The problem is that we can not find such a large set of disjoint rings. The reason is that when you pack rings
(or balls) you are going to have wasted spaces around. To overcome this, we would allow rings to overlap
somewhat. That makes things considerably more involved. The details follow.

31.2. Proof of Shannon’s theorem
The proof is not hard, but requires some care, and we will break it into parts.

31.2.1. How to encode and decode efficiently

31.2.1.1. The scheme

Our scheme would be simple. Pick k ≤ n(1 − H(p) − δ). For any number i = 0, . . . , K̂ = 2k+1 − 1, randomly
generate a binary string Yi made out of n bits, each one chosen independently and uniformly. Let Y0, . . . ,YK̂
denote these code words. Here, we have

K̂ = 2n(1−H(p)−δ).

For each of these codewords we will compute the probability that if we send this codeword, the receiver
would fail. Let X0, . . . ,XK , where K = 2k − 1, be the K codewords with the lowest probability to fail. We assign
these words to the 2k messages we need to encode in an arbitrary fashion.

The decoding of a message w is done by going over all the codewords, and finding all the codewords that
are in (Hamming) distance in the range [p(1 − ε)n, p(1 + ε)n] from w. If there is only a single word Xi with this
property, we return i as the decoded word. Otherwise, if there are no such words or there is more than one
word, the decoder stops and report an error.

31.2.1.2. The proof

Intuition. Let Si be all the binary strings (of length n) such that if the receiver gets this word, it would
decipher it to be i (here are still using the extended codeword Y0, . . . ,YK̂). Note, that if we remove some
codewords from consideration, the set Si just increases in size. Let Wi be the probability that Xi was sent, but
it was not deciphered correctly. Formally, let r denote the received word. We have that

Wi =
∑
r<Si

P[r received when Xi was sent].

To bound this quantity, let ∆(x, y) denote the Hamming distance between the binary strings x and y. Clearly,
if x was sent the probability that y was received is

w(x, y) = p∆(x,y)(1 − p)n−∆(x,y).

As such, we have
P[r received when Xi was sent] = w(Xi,r).
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Let Si,r be an indicator variable which is 1 if r < Si. We have that

Wi =
∑
r<Si

P[r received when Xi was sent] =
∑
r<Si

w(Xi,r) =
∑
r

Si,rw(Xi,r).

The value of Wi is a random variable of our choice of Y0, . . . ,YK̂ . As such, its natural to ask what is the
expected value of Wi.

Consider the ring
R(r) =

{
x

��� (1 − ε)np ≤ ∆(x,r) ≤ (1 + ε)np
}
,

where ε > 0 is a small enough constant. Suppose, that the code word Yi was sent, and r was received. The
decoder return i if Yi is the only codeword that falls inside R(r).

Lemma 31.2.1. Given that Yi was sent, and r was received and furthermore r ∈ R(Yi), then the probability of
the decoder failing, is

τ = P
[
r < Si

��� r ∈ R(Yi)
]
≤
γ

8 ,

where γ is the parameter of Theorem 31.1.3.

Proof: The decoder fails here, only if R(r) contains some other codeword Yj ( j , i) in it. As such,

τ = P
[
r < Si

��� r ∈ R(Yi)
]
≤ P

[
Yj ∈ R(r), for any j , i

]
≤

∑
j,i

P
[
Yj ∈ R(r)

]
.

Now, we remind the reader that the Yjs are generated by picking each bit randomly and independently, with
probability 1/2. As such, we have

P
[
Yj ∈ R(r)

]
=

(1+ε)np∑
m=(1−ε)np

( n
m

)
2n ≤

n
2n

(
n

b(1 + ε)npc

)
,

since (1 + ε)p < 1/2 (for ε sufficiently small), and as such the last binomial coefficient in this summation is the
largest. By Corollary 29.1.5 (i), we have

P
[
Yj ∈ R(r)

]
≤

n
2n

(
n

b(1 + ε)npc

)
≤

n
2n 2nH((1+ε)p) = n2n(H((1+ε)p)−1).

As such, we have

τ = P
[
r < Si

��� r ∈ R(Yi)
]
≤

∑
j,i

P
[
Yj ∈ R(r)

]
≤ K̂ P[Y1 ∈ R(r)] ≤ 2k+1n2n(H((1+ε)p)−1)

≤ n2n(1−H(p)−δ)+1n2n(H((1+ε)p)−1) ≤ n2n
(
H((1+ε)p)−H(p)−δ

)
+1

since k ≤ n(1−H(p)−δ). Now, we choose ε to be a small enough constant, so that the quantity H((1 + ε)p)−H(p)−δ
is equal to some (absolute) negative (constant), say −β, where β > 0. Then, τ ≤ n2−βn+1, and choosing n large
enough, we can make τ smaller than γ/2, as desired. As such, we just proved that

τ = P
[
r < Si

��� r ∈ R(Yi)
]
≤
γ

2 .

Lemma 31.2.2. We have, that
∑

r<R(Yi ) w(Yi,r) ≤ γ/8, where γ is the parameter of Theorem 31.1.3.
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Proof: This quantity, is the probability of sending Yi when every bit is flipped with probability p, and receiving
a string r such that more than εpn bits where flipped. But this quantity can be bounded using the Chernoff
inequality. Let Z = ∆(Yi,r), and observe that E[Z] = pn, and it is the sum of n independent indicator variables.
As such ∑

r<R(Yi )

w(Yi,r) = P[|Z − E[Z]| > εpn] ≤ 2 exp
(
−
ε2

4 pn
)
<
γ

4 ,

since ε is a constant, and for n sufficiently large.

Lemma 31.2.3. For any i, we have µ = E[Wi] ≤ γ/4, where γ is the parameter of Theorem 31.1.3.

Proof: By linearity of expectations, we have

µ = E[Wi] = E

[∑
r

Si,rw(Yi,r)

]
=

∑
r

E
[
Si,rw(Yi,r)

]
=

∑
r

E
[
Si,r

]
w(Yi,r) =

∑
r

P[x < Si]w(Yi,r),

since Si,r is an indicator variable. Setting, τ = P
[
r < Si

��� r ∈ R(Yi)
]
and since

∑
r w(Yi,r) = 1, we get

µ =
∑

r ∈R(Yi )

P[x < Si]w(Yi,r) +
∑

r<R(Yi )

P[x < Si]w(Yi,r)

=
∑

r ∈R(Yi )

P
[
x < Si

��� r ∈ R(Yi)
]
w(Yi,r) +

∑
r<R(Yi )

P[x < Si]w(Yi,r)

≤
∑

r ∈R(Yi )

τ · w(Yi,r) +
∑

r<R(Yi )

w(Yi,r) ≤ τ +
∑

r<R(Yi )

w(Yi,r) ≤
γ

4 +
γ

4 =
γ

2 .

Now, the receiver got r (when we sent Yi), and it would miss encode it only if (i) r is outside of R(Yi), or
R(r) contains some other codeword Yj ( j , i) in it. As such,

τ = P
[
r < Si

��� r ∈ R(Yi)
]
≤ P

[
Yj ∈ R(r), for any j , i

]
≤

∑
j,i

P
[
Yj ∈ R(r)

]
.

Now, we remind the reader that the Yjs are generated by picking each bit randomly and independently, with
probability 1/2. As such, we have

P
[
Yj ∈ R(r)

]
=

(1+ε)np∑
m=(1−ε)np

( n
m

)
2n ≤

n
2n

(
n

b(1 + ε)npc

)
,

since (1 + ε)p < 1/2 (for ε sufficiently small), and as such the last binomial coefficient in this summation is the
largest. By Corollary 29.1.5 (i), we have

P
[
Yj ∈ R(r)

]
≤

n
2n

(
n

b(1 + ε)npc

)
≤

n
2n 2nH((1+ε)p) = n2n(H((1+ε)p)−1).

As such, we have

τ = P
[
r < Si

��� r ∈ R(Yi)
]
≤

∑
j,i

P
[
Yj ∈ R(r)

]
. ≤ K̂ P[Y1 ∈ R(r)] ≤ 2k+1n2n(H((1+ε)p)−1)

≤ n2n(1−H(p)−δ)+1+n(H((1+ε)p)−1) ≤ n2n
(
H((1+ε)p)−H(p)−δ

)
+1
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since k ≤ n(1−H(p)−δ). Now, we choose ε to be a small enough constant, so that the quantity H((1 + ε)p)−H(p)−δ
is negative (constant). Then, choosing n large enough, we can make τ smaller than γ/2, as desired. As such,
we just proved that

τ = P
[
r < Si

��� r ∈ R(Yi)
]
≤
γ

2 .

In the following, we need the following trivial (but surprisingly deep) observation.

Observation 31.2.4. For a random variable X, if E[X] ≤ ψ, then there exists an event in the probability space,
that assigns X a value ≤ µ.

This holds, since E[X] is just the average of X over the probability space. As such, there must be an event
in the universe where the value of X does not exceed its average value.

The above observation is one of the main tools in a powerful technique to proving various claims in mathe-
matics, known as the probabilistic method.

Lemma 31.2.5. For the codewords X0, . . . ,XK , the probability of failure in recovering them when sending them
over the noisy channel is at most γ.

Proof: We just proved that when using Y0, . . . ,YK̂ , the expected probability of failure when sending Yi, is E[Wi] ≤

γ2, where K̂ = 2k+1 − 1. As such, the expected total probability of failure is

E


K̂∑
i=0

Wi

 =
K̂∑
i=0
E[Wi] ≤

γ

2 2k+1 = γ2k,

by Lemma 31.2.3 (here we are using the facts that all the random variables we have are symmetric and behave
in the same way). As such, by Observation 31.2.4, there exist a choice of Yis, such that

K̂∑
i=0

Wi ≤ 2kγ.

Now, we use a similar argument used in proving Markov’s inequality. Indeed, the Wi are always positive, and
it can not be that 2k of them have value larger than γ, because in the summation, we will get that

K̂∑
i=0

Wi > 2kγ.

Which is a contradiction. As such, there are 2k codewords with failure probability smaller than γ. We set our
2k codeword to be these words. Since we picked only a subset of the codewords for our code, the probability of
failure for each codeword shrinks, and is at most γ.

Lemma 31.2.5 concludes the proof of the constructive part of Shannon’s theorem.

31.2.2. Lower bound on the message size

We omit the proof of this part.

31.3. Bibliographical Notes

The presentation here follows [MU05, Sec. 9.1-Sec 9.3].
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Part IX
Miscellaneous topics II

Chapter 32

Matchings

I’ve never touched the hard stuff, only smoked grass a few times with the boys to be polite, and that’s all, though ten is the
age when the big guys come around teaching you all sorts to things. But happiness doesn’t mean much to me, I still think
life is better. Happiness is a mean son of a bitch and needs to be put in his place. Him and me aren’t on the same team, and
I’m cutting him dead. I’ve never gone in for politics, because somebody always stand to gain by it, but happiness is an even
crummier racket, and their ought to be laws to put it out of business.

Momo, Emile Ajar

32.1. Definitions and basic properties

32.1.1. Definitions

Definition 32.1.1. For a graph G = (V,E) a set M ⊆ E of edges is a matching if no pair of edges of M has a
common vertex.

Definition 32.1.2. A matching is perfect if it covers all the vertices of G. For a weight function w, which assigns
real weight to the edges of G, a matching M is a maximum weight matching, if M is a matching and
w(M) =

∑
e∈M w(e) is maximum.

Definition 32.1.3. A matching M is a maximal, if M is a matching and it can not be made bigger by adding
any edge.

Thus, a maximal matching is locally optimal, while a maximum matching is the global largest/heaviest
possible matching.
Problem 32.1.4 (Maximum size matching). If there is no weight on the edges, we consider the weight of every
edge to be one, and in this case, we are trying to compute a maximum size matching (aka maximum
cardinality matching).

Problem 32.1.5 (Maximum weight matching). Given a graph G and a weight function on the edges, compute the
maximum weight matching in G.

Remark 32.1.6. There is a simple way to compute a maximum size matching in a bipartite graph using network
flow. Here we present an alternative algorithm that does not use network flow.
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Figure 32.1: (A) The input graph. (B) A maximal matching in G. The edge e is free, and vertices 1 and 4 are
free. (C) An alternating path. (D) The resulting matching from applying the augmenting path.

32.1.2. Matchings and alternating paths

Consider a matching M. An edge e ∈ M is a matching edge. Naturally, Any edge e′ ∈ E(G) \ M is free. In
particular, a vertex v ∈ V(G) is matched if it is adjacent to an edge in M. Naturally, a vertex v′ which is not
matched is free.

An alternating path is a simple path that its edges are alternately matched and free. An alternating
cycle is defined similarly. The length of a path/cycle is the number of edges in it.

Definition 32.1.7. A path π = v1v2, . . . , v2k+2 is an augmenting path for a matching M in a graph G if
(i) π is simple,
(ii) for all i, ei = vivi+1 ∈ E(G),
(iii) v1 and v2k+1 are free vertices for M,
(iv) e1, e3, . . . , e2k+1 < M, and
(v) e2, e4, . . . , e2k ∈ M.

An augmenting path is an alternating path that starts and end with a free edge, and the two endpoints of
the path are also free.

Lemma 32.1.8. If M is a matching and π is an augmenting path relative to M, then

M ′ = M ⊕ π =
{
e ∈ E

�� e ∈ (M \ π) ∪ (π \ M)
}

is a matching of size |M | + 1.

Proof: Think about removing π from the graph all together. What is left of M, is a matching of size |M |−|M ∩ π |.
Now, add back π and alternate the edges of the matching M with the free edges of π. Clearly, the new set of
edges is a matching, since π is disjoint from the rest of the matching, this alternation results in a valid matching,
and its size is |M ′ | = |M | − |M ∩ π | + |π \ M | = |M | + 1.

Lemma 32.1.9. Let M be a matching, and T be a maximum matching, and k = |T | − |M |. Then M has (at
least) k vertex disjoint augmenting paths. At least one of length ≤ u/k − 1, where u = 2(|T | + |M |).

Proof: Let E ′ = M ⊕T , and let H = (V,E ′), where V is the set of vertices used by the edges of E ′, see Figure 32.2.
Clearly, every vertex in H has at most degree 2 because every vertex is adjacent to at most one edge of M and
one edge of T . Thus, H is a collection of disjoint paths and (even length) cycles. The cycles are of even length
since the edges of the cycle are alternating between two matchings (i.e., you can think about the cycle edges as
being 2-colorable).
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(A) The graph. (B) A matching. (C) A bigger matching. (D) The union graph H.

Figure 32.2: The graph formed by the union of matchings.

Now, there are k more edges of T in M ⊕ T than of M. Every cycle have the same number of edges of M
and T . Thus, a path in H can have at most one more edge of T than of M. In such a case, this path is an
augmenting path for M. It follows that there are at least k augmenting paths for M in H.

As for the claim on the length of the shortest augmenting path. Let u = |V(H)| ≤ 2(|T | + |M |). Observe that
if all these k (vertex disjoint) augmenting paths were of length ≥ u/k then the total number of vertices in H
would be at least (u/k + 1)k > u, since a path of length ` has ` + 1 vertices. A contradiction.

The lemma readily implies:

Corollary 32.1.10. A matching M is maximum ⇐⇒ there is no augmenting path for M.

32.2. Unweighted matching in bipartite graph

32.2.1. The slow algorithm; algSlowMatch

The algorithm. Let G = (L ∪ R,E) be a bipartite graph. Let M0 = ∅ be an empty matching. In the ith
iteration of algSlowMatch, let Li and Ri be the free vertices in L and R, relative to the matching Mi−1. If there
an edge in G between a vertex of Li and Ri, we just add this edge to the matching, and go on to the next
iteration.

Otherwise, we build a new graph Hi. We orient all the edges of E \ Mi−1 from left to the right. Formally,
an edge lr ∈ E \ Mi−1, with l ∈ L and r ∈ R, is going to induced the directed edge (l,r) in Hi. Similarly, the
matching edges lr ∈ Mi−1 are oriented from the right to left, as the new directed edge (r, l).

Now, using BFS, compute the shortest path πi from a vertex of Li to a vertex of Ri. If there is no such
path, the algorithm stops and outputs the current matching (i.e., it is a maximum matching). Otherwise, the
algorithm updates Mi = Mi−1 ⊕ πi, and continues to the next iteration.

Analysis. An augmenting path has an odd number of edges. As such, if it starts in a free vertex on the
left side, then it must ends in a free vertex on the right side. As such, such an augmenting path, corresponds
to a path between a vertex of Li to a vertex of Ri in Hi. By Corollary 32.1.10, as long as the algorithm has
not computed the maximum matching, there is an augmenting path, and this path increases the size of the
matching by one.

Observe, that any shortest path found in Hi between Li and Ri is an augmenting path. Namely, if there is
an augmenting path for Mi−1, then there is a path from a vertex of Li to a vertex of Ri in Hi, and the algorithm
computes the shortest such path.

We conclude, that after at most n iterations, the algorithm would be done. Clearly, each iteration of the
algorithm can be implemented in linear time. We thus have the following result:
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Lemma 32.2.1. Given a bipartite undirected graph G = (L∪R,E), with n vertices and m edges, one can compute
the maximum matching in G in O(nm) time.

32.2.2. The Hopcroft-Karp algorithm

We next improve the running time – this requires quite a bit of work, but hopefully exposes some interesting
properties of matchings in bipartite graphs.

32.2.2.1. Some more structural observations

We need three basic observations:
(A) If we augmenting along a shortest path, then the next augmenting path must be longer (or at least not

shorter). See Lemma 32.2.2 below.
(B) As such, if we always augment along shortest paths, then the augmenting paths get longer as the algorithm

progress, see Corollary 32.2.3 below.
(C) Furthermore, all the augmenting paths of the same length used by the algorithm are vertex-disjoint (!).

See Lemma 32.2.4 below. (The main idea of the faster algorithm is to compute this block of vertex-disjoint
paths of the same length in one go, thus getting the improved running time.)

Lemma 32.2.2. Let M be a matching, and π be the shortest augmenting path for M, and let π′ be any aug-
menting path for M ′ = M ⊕ π. Then |π′ | ≥ |π |. Specifically, we have |π′ | ≥ |π | + 2 |π ∩ π′ |.

Proof: Consider the matching N = M ⊕π⊕π′. Observe that |N | = |M |+2. As such, ignoring cycles and balanced
paths, M ⊕ N contains two augmenting paths, say σ1 and σ2 – importantly, both σ1 and σ2 are augmenting
paths of the original matching M.

Observe that for any sets B,C,D, we have B ⊕ (C ⊕ D) = (B ⊕ C) ⊕ D. This implies that

M ⊕ N = M ⊕ (M ⊕ π ⊕ π′) = π ⊕ π′.

As such, we have
|π ⊕ π′ | = |M ⊕ N | ≥ |σ1 | + |σ2 | .

Since π was the shortest augmenting path for M, it follows that |σ1 | ≥ |π | and |σ2 | ≥ |π |. We conclude that

|π ⊕ π′ | ≥ |σ1 | + |σ2 | ≥ |π | + |π | = 2 |π | .

By definition, we have that |π ⊕ π′ | = |π | + |π′ | − 2 |π ∩ π′ | . To see why the factor 2 is there, observe that for
e ∈ π ∩ π′ we have e < π ⊕ π′. Combining with the above, we have

|π | + |π′ | − 2 |π ∩ π′ | ≥ 2 |π | =⇒ |π′ | ≥ |π | + 2 |π ∩ π′ | .

The above lemma immediately implies the following.

Corollary 32.2.3. Let π1, π2, . . . , πt be the sequence of augmenting paths used by the algorithm of Section 32.2.1
(which always augments the matching along the shortest augmenting path). We have that |π1 | ≤ |π2 | ≤ . . . ≤ |πt |.

Lemma 32.2.4. For all i and j, such that |πi | = · · · = |πj |, we have that the paths πi and πj are vertex disjoint.

Proof: Assume for the sake of contradiction, that |πi | = |πj |, i < j, and πi and πj are not vertex disjoint, and
assume that j − i is minimal. As such, for any k, such that i < k < j, we have that πk is disjoint from πi and πj .

Now, let Mi be the matching after πi was applied. We have that πj is not using any of the edges of
πi+1, . . . , πj−1. As such, πj is an augmenting path for Mi. Now, πj and πi share vertices. It definitely can not
be that they share the two endpoints of πj (since they are free) - so it must be some interval vertex of πj . But
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Figure 32.3: (A) A bipartite graph and its matching. (B) Its layered graph.

then, πi and πj must share an edge – indeed, assume the shared vertex is v – πj uses a matching edge of Mi

adjacent to v, but this must belong to πj - since it contains the only matching edge adjacent to v in Mi. Namely,��πi ∩ πj �� ≥ 1. Now, by Lemma 32.2.2, we conclude that

|πj | ≥ |πi | + 2|πi ∩ πj | > |πi |.

A contradiction.

32.2.2.2. Improved algorithm

The idea is going to extract all possible augmenting shortest paths of a certain length in one iteration. Indeed,
assume for the time being, that given a matching we can extract all augmenting paths of length k for M in G
in O(m) time, for k = 1,3,5, . . .. Specifically, we apply this extraction algorithm, till k = 1 + 2

⌈√
n
⌉
. This would

take O(km) = O(
√

nm) time.
The key observation is that the matching Mk , at the end of this process, is of size |T |−Ω(

√
n), see Lemma 32.2.5

below, where T is the maximum matching. As such, we resume the regular algorithm that augments one
augmenting path at a time. After O(

√
n) regular iterations we would be done.

Lemma 32.2.5. Consider the iterative algorithm that applies shortest path augmenting path to the current
matching, and let M be the first matching such that the shortest path augmenting path for it is of length ≥

√
n,

where n is the number of vertices in the input graph G. Let T be the maximum matching. Then |T | ≤ |M |+O(
√

n).

Proof: At this point, the shortest augmenting path for the current matching M is of length at ≥
√

n. By
Lemma 32.1.9, this implies that if T is the maximum matching, then we have that there is an augmenting path
of length ≤ 2n/(|T | − |M |) + 1. Combining these two inequalities, we have that

√
n ≤

2n
|T | − |M |

+ 1,

which implies that |T | − |M | ≤ 3
√

n, for n ≥ 4.

32.2.2.3. Extracting many augmenting paths: algExtManyPaths

The basic idea is to build a data-structure that is similar to a BFS tree, but enable us to extract many augmenting
paths simultaneously. So, assume we are given a graph G, as above, a matching M, and a parameter k, where
k is an odd integer. Furthermore, assume that the shortest augmenting path for M in relation to G is of length
k. Our purpose is to extract as many augmenting paths as possible that are vertex disjoint that are of length
k (k = 1 is exactly the greedy algorithm for maximal matching!).
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The reverse graph.

The free vertices at layer L2.

Doing DFS from a free vertex re-
veals an augmenting path.

We remove the path and all the ver-
tices it uses (except the last one,
naturally).

A DFS from a free vertex that fails
to arrive to the source.

We delete (i.e., mark as visited)
all the edges/vertices visited by the
failed DFS.

Another augmenting path from a
free vertex resulting in a new aug-
menting path.

The layered graph is empty of free
vertices in the layer of interest.
Time to move on to the next iter-
ation.

Figure 32.4: Extracting augmenting paths from the reverse layered graph.
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(A) (B) (C)

Figure 32.5: (A) A bipartite graph and its current matching. (B) Augmenting paths computed using the layered
graph (see Figure 32.3. (C) The new matching after we apply the augmenting paths.

To this end, let F be the set of free vertices in G. We build a directed graph, having a source vertex s, and
that is connected to all the vertices of L1 = L ∩ F (all the free vertices in L). Now, we direct the edges of G,
as done above, and let H be the resulting graph (i.e., non-matching edges are directed from left to right, and
matching edges are directed from right to left). Now, compute BFS on the graph H starting at s, and let T be
the resulting tree.

Let L1,R1, L2,R2, L3, . . . be the layers of the BFS. By assumption, the first free vertex below L1 encountered
in the tree is of level Rτ , where τ = dk/2e (note, that no free vertex can be encountered on Li, for i > 1, since
all the free vertices of L are in L1).

Scan the edges of H. A back edge connects a vertex to a vertex that is in a higher level of the tree – we ignore
such edges. The other possibilities, is an edge that is a forward edge – an edge between two vertices that belong
to two consecutive levels of the BFS tree T. Let J be the resulting graph of removing all backward and cross
edges from H (a cross edge connects two vertices in the same layer of the BFS, which is impossible for bipartite
graphs, so there are no such edges here). All the remaining edges are either BFS edges or forward edges, and
we direct them according to the BFS layers from the shallower layer to the deeper layer. The resulting graph
is a DAG (which is an enrichment of the original tree T). Compute also the reverse graph Jrev (where, we just
reverse the edges).

Now, let Fτ = Rτ∩F be the free vertices of distance k from the free vertices of L1 (which are all free vertices).
For every vertex v ∈ Fτ do a DFS in Jrev till the DFS reaches a vertex of L1. Mark all the vertices visited
by the DFS as “used” – thus not allowing any future DFS to use these vertices (i.e., the DFS ignore edges
leading to used vertices). If the DFS succeeds, we extract the shortest path found, and add it to the collection
of augmenting paths. Otherwise, we move on to the next vertex in Fτ , till we visit all such vertices.

This algorithm results in a collection of augmenting paths Pτ , which are vertex disjoint. We claim that Pτ
is the desired set maximal cardinality disjoint set of augmenting paths of length k.

Analysis. Building the initial graphs J and Jrev takes O(m) time. We charge the running time of the second
stage to the edges and vertices visited. Since any vertex visited by any DFS is never going to be visited again,
this imply that an edge of Jrev is going to be considered only once by the algorithm. As such, the running time
of the algorithm is O(n + m) as desired.

Repeated application of Lemma 32.2.2 implies the following.

Observation 32.2.6. Assume M is a matching, such that the shortest augmenting path for it is of length k.
Then, augmenting it with a sequence of paths of length k, results in matching M ′, with its shortest augmenting
path being of length at least k.

Lemma 32.2.7. The set Pk is a maximal set of vertex-disjoint augmenting paths of length k for M.
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Proof: Let M ′ be the result of augmenting M with the paths of Pk . And, assume for the sake of contradiction,
that Pk is not maximal. Namely, there is an augmenting path σ of that is disjoint from the vertices of the paths
of Pk . By the above observation, the path σ is of length at least k.

The interesting case here is if σ is of length exactly k. Then, we could traverse σ in J, and this would go
through unused vertices. Indeed, if any of the vertices of σ were used by any of the DFS, then it would have
resulted in a path that goes to a free vertex in L1. But that is a contradiction, as σ is supposedly disjoint from
the paths of Pk .

32.2.2.4. The result

Theorem 32.2.8. Given a bipartite unweighted graph G with n vertices and m edges, one can compute maximum
matching in G in O(

√
nm) time.

Proof: The algMatchingHK algorithm is described in Section 32.2.2.2, and the running time analysis is done
above.

The main challenge is the correctness. The idea is to interpret the execution of this algorithm as simulating
the slower the simpler algorithm of Section 32.2.1. Indeed, the algMatchingHK algorithm computes a sequence of
sets of augmenting paths P1,P3,P5, . . .. We order these augmenting paths in an arbitrary order inside each such
set. This results in a sequence of augmenting paths that are shortest augmenting paths for the current matching,
and furthermore by Lemma 32.2.7 each set Pk contains a maximal set of such vertex-disjoint augmenting paths
of length k. By Lemma 32.2.4, all augmenting paths of length k computed are vertex disjoint.

As such, now by induction, we can argue that if algMatchingHK simulates correctly algSlowMatch, for the
augmenting paths in P1 ∪ P3 ∪ . . . Pi, then it simulates it correctly for P1 ∪ P3 ∪ . . . Pi ∪ Pi+1, and we are done.

32.3. Bibliographical notes

The description here follows the original paper of Hopcroft and Karp [HK73].

Chapter 33

Matchings II

He left his desk, bore down on me on tiptoe and, bending toward me, whispered in tones full of hatred that the elephants
were a mere political diversion and that of course he knew what the real issue was, but if communism triumphed in Africa,
the elephants would be the first to die.

The roots of heaven, Romain Gary
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33.1. Maximum weight matchings in a bipartite graph

33.1.1. On the structure of the problem

For an alternating path/cycle π, its weight, in relation to a matching M, is

γ(π,M) =
∑

e∈π\M

ω(e) −
∑

e∈π∩M

ω(e). (33.1)

Namely, it is the total weight of the free edges in π minus the weight of the matched edges. This is a natural
concept because of the following lemma.
Lemma 33.1.1. Let M be a matching, and let π be an alternating path/cycle with positive weight relative to
M; that is γ(π,M) > 0. Furthermore, assume that

M ′ = M ⊕ π = (M \ π) ∪ (π \ M)

is a matching. Then ω(M ′) is bigger; namely, ω(M ′) > ω(M).

Proof: We have that
ω(M ′) − ω(M) =

∑
e∈M′

ω(e) −
∑
e∈M

ω(e) =
∑

e∈M′\M

ω(e) −
∑

e∈M\M′

ω(e) =
∑

e∈π\M

ω(e) −
∑

e∈M\π

ω(e) = γ(π,M).

As such, we have that ω(M ′) = ω(M) + γ(π,M).

We remind the reader that an alternating path is augmenting if it starts and ends in a free vertex.
Observation 33.1.2. If M has an augmenting path π then M is not of maximum size matching (this is for the
unweighted case), since M ⊕ π is a larger matching.

Theorem 33.1.3. Let M be a matching of maximum weight among matchings of size |M |. Let π be an aug-
menting path for M of maximum weight, and let T be the matching formed by augmenting M using π. Then T
is of maximum weight among matchings of size |M | + 1.

Proof: Let S be a matching of maximum weight among all matchings with |M | + 1 edges. And consider H =
(V,M ⊕ S).

Consider a cycle σ in H. The weight γ(σ,M) (see Eq. (33.1)) must be zero. Indeed, if γ(σ,M) > 0 then
M ⊕ σ is a matching of the same size as M which is heavier than M. A contradiction to the definition of M as
the maximum weight such matching.

Similarly, if γ(σ,M) < 0 than γ(σ,S) = −γ(σ,M) and as such S ⊕ σ is heavier than S. A contradiction.
By the same argumentation, if σ is a path of even length in the graph H then γ(σ,M) = 0 by the same

argumentation.
Let US be all the odd length paths in H that have one edge more in S than in M, and similarly, let UM be

the odd length paths in H that have one edge more of M than an edge of S.
We know that |US | − |UM | = 1 since S has one more edge than M. Now, consider a path π ∈ US and a path

π′ ∈ UM . It must be that γ(π,M) + γ(π′,M) = 0. Indeed, if γ(π,M) + γ(π′,M) > 0 then M ⊕ π ⊕ π′ would have
bigger weight than M while having the same number of edges. Similarly, if γ(π,M)+ γ(π′,M) < 0 (compared to
M) then S ⊕ π ⊕ π′ would have the same number of edges as S while being a heavier matching. A contradiction.

Thus, γ(π,M) + γ(π′,M) = 0. Thus, we can pair up the paths in US to paths in UM , and the total weight
of such a pair is zero, by the above argumentation. There is only one path µ in US which is not paired, and it
must be that γ(µ,M) = ω(S) − ω(M) (since everything else in H has zero weight as we apply it to M to get S).

This establishes the claim that we can augment M with a single path to get a maximum weight matching of
cardinality |M |+1. Clearly, this path must be the heaviest augmenting path that exists for M. Otherwise, there
would be a heavier augmenting path σ′ for M such that ω(M ⊕ σ′) > ω(S). A contradiction to the maximality
of S.

The above theorem imply that if we always augment along the maximum weight augmenting path, than we
would get the maximum weight matching in the end.
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33.1.2. Maximum Weight Matchings in a bipartite Graph

33.1.2.1. Building the residual graph

Let G = (L ∪ R,E) be the given bipartite graph, with w : E → R be the non-negative weight function. Given a
matching M, let GM to be the directed graph, where
(i) For all edges rl ∈ M, l ∈ L and r ∈ R, the edge (r, l) is added GM , with weight α

(
(r, l)

)
= ω(rl).

(ii) For all edges rl ∈ E \ M, the edge (l → r) is added to GM , with weight α
(
(l,r)

)
= −ω(rl).

Namely, we direct all the matching edges from right to left, and assign them their weight, and we direct all
other edges from left to right, with their negated weight. Let GM denote the resulting graph.

An augmenting path π in G must have an odd number of edges. Since G is bipartite, π must have one
endpoint on the left side and one endpoint on the right side. Observe, that a path π in GM has weight
α(π) = −γ(π,M).

Let UL be all the unmatched vertices in L and let UR be all the unmatched vertices in R.
Thus, what we are looking for is a path π in GM starting UL going to UR with maximum weight γ(π),

namely with minimum weight α(π).

Lemma 33.1.4. If M is a maximum weight matching with k edges in G, than there is no negative cycle in GM

where α(·) is the associated weight function.

Proof: Assume for the sake of contradiction that there is a cycle C, and observe that γ(C) = −α(C) > 0. Namely,
M ⊕C is a new matching with bigger weight and the same number of edges. A contradiction to the maximality
of M.

33.1.2.2. The algorithm

So, we now can find a maximum weight in the bipartite graph G as follows: Find a maximum weight matching
M with k edges, compute the maximum weight augmenting path for M, apply it, and repeat till M is maximal.

Thus, we need to find a minimum weight path in GM between UL and UR (because we flip weights). This is
the problem of computing a shortest path in the graph GM which does not have negative cycles, and this can
be done by using the Bellman-Ford algorithm. Indeed, collapse all the vertices of UL into a single vertex, and
all the uncovered vertices of UR into a single vertex. Let HM be the resulting graph. Clearly, we are looking
for the shortest path between the two vertices corresponding to UL and UR in HM and since this graph has no
negative cycles, this can be done using the Bellman-Ford algorithm, which takes O(nm) time. We conclude:

Lemma 33.1.5. Given a bipartite graph G and a maximum weight matching M of size k one can find a
maximum weight augmenting path for M in G, in O(nm) time, where n is the number of vertices of G and m is
the number of edges.

We need to apply this algorithm n/2 times at most, as such, we get:

Theorem 33.1.6. Given a weight bipartite graph G, with n vertices and m edges, one can compute a maximum
weight matching in G in O(n2m) time.

33.1.3. Faster Algorithm

It turns out that the graph here is very special, and one can use the Dijkstra algorithm. We omit any further
details, and state the result. The interested student can figure out the details (warning: this is not easy). or
lookup the literature.

Theorem 33.1.7. Given a weight bipartite graph G, with n vertices and m edges, one can compute a maximum
weight matching in G in O(n(n log n + m)) time.
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33.2. The Bellman-Ford algorithm - a quick reminder
The Bellman-Ford algorithm computes the shortest path from a single source s in a graph G that has no negative
cycles to all the vertices in the graph. Here G has n vertices and m edges. The algorithm works by initializing
all distances to the source to be ∞ (formally, for all u ∈ V(G), we set d[u] ← ∞ and d[s] ← 0). Then, it n times
scans all the edges, and for every edge (u, v) ∈ E(G) it performs a Relax(u, v) operation. The relax operation
checks if x = d[u] + w

(
(u, v)

)
< d[v], and if so, it updates d[v] to x, where d[u] denotes the current distance

from s to u. Since Relax(u, v) operation can be performed in constant time, and we scan all the edges n times,
it follows that the overall running time is O(mn).

We claim that in the end of the execution of the algorithm the shortest path length from s to u is d[u], for
all u ∈ V(G). Indeed, every time we scan the edges, we set at least one vertex distance to its final value (which
is its shortest path length). More formally, all vertices that their shortest path to s have i edges, are being set
to their shortest path length in the ith iteration of the algorithm, as can be easily proved by induction. This
implies the stated bound on the running time of the algorithm.

Notice, that if we want to detect negative cycles, we can ran Bellman-Ford for an additional iteration. If
the distances changes, we know that there is a negative cycle somewhere in the graph.

33.3. Maximum size matching in a non-bipartite graph

The results from the previous lecture suggests a natural algorithm for computing a maximum size (i.e., matching
with maximum number of edges in it) matching in a general (i.e., not necessarily bipartite) graph. Start from
an empty matching M and repeatedly find an augmenting path from an unmatched vertex to an unmatched
vertex. Here we are discussing the unweighted case.

Notations. Let T be a given tree. For two vertices x, y ∈ V(T), let τxy denote the path in T between x and y.
For two paths π and π′ that share an endpoint, let π | | π′ denotes the path resulting from concatenating π to
π′. For a path π, let |π | denote the number of edges in π.

33.3.1. Finding an augmenting path

We are given a graph G and a matching M, and we would to compute a bigger matching in G. We will do it by
computing an augmenting path for M.

We first observe that if G has any edge with both endpoints being free, we can just add it to the current
matching. Thus, in the following, we assume that for all edges, at least one of their endpoint is covered by the
current matching M. Our task is to find an augmenting path in M.

Let H be the result of collapsing all the unmatched vertices in G into a single (special) vertex s.
Next, we compute an alternating BFS of H starting from s. Formally, we perform a BFS on H starting

from s such that for the even levels of the tree the algorithm is allowed to traverse only edges in the matching
M, and in odd levels the algorithm traverses the unmatched edges. Let T denote the resulting tree.

An augmenting path in G corresponds to an odd cycle in H with passing through the vertex s.

Definition 33.3.1. An edge uv ∈ E(G) is a bridge if the following conditions are met:
(i) u and v have the same depth in T,
(ii) if the depth of u in T is even then uv is free (i.e., uv < M, and
(iii) if the depth of u in T is odd then uv ∈ M.

Note, that given an edge uv we can check if it is a bridge in constant time after linear time preprocessing of
T and G.

The following is an easy technical lemma.
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Lemma 33.3.2. Let v be a vertex of G, M a matching in G, and let π be the shortest alternating path between
s and v in G. Furthermore, assume that for any vertex w of π the shortest alternating path between w and s is
the path along π.

Then, the depth dT(v) of v in T is |π |.

Proof: By induction on |π |. For |π | = 1 the proof trivially holds, since then v is a neighbor of s in G, and as
such it is a child of s in T.

For |π | = k, consider the vertex just before v on π, and let us denote it by u. By induction, the depth of u
in T is k − 1. Thus, when the algorithm computing the alternating BFS visited u, it tried to hang v from it in
the next iteration. The only possibility for failure is if the algorithm already hanged v in earlier iteration of the
algorithm. But then, there exists a shorter alternating path from s to v, which is a contradiction.

Lemma 33.3.3. If there is an augmenting path in G for a matching M, then there exists an edge uv ∈ E(G)
which is a bridge in T.

Proof: Let π be an augmenting path in G. The path π corresponds to a an odd length alternating cycle in H.
Let σ be the shortest odd length alternating cycle in G (note that both edges in σ that are adjacent to s are
unmatched).

For a vertex x of σ, let d(x) be the length of the shortest alternating path between x and s in H. Similarly,
let d ′(x) be the length of the shortest alternating path between s and x along σ. Clearly, d(x) ≤ d ′(x).

The claim that is that d(x) = d ′(x), for all x ∈ σ. Indeed, assume for the sake of contradiction that
d(x) < d ′(x), and let π1, π2 be the two paths from x to s formed by σ. Let η be the shortest alternating path
between s and x. We know that |η | < |π1 | and |η | < |π2 |. It is now easy to verify that either π1 | | η or π2 | | η is
an alternating cycle shorter than σ involving s, which is a contradiction.

But then, take the two vertices of σ furthest away from s. Clearly, both of them have the same depth in T,
since d(u) = d ′(u) = d ′(v) = d(v). By Lemma 33.3.2, we now have that dT(u) = d(u) = d(v) = dT(v). Establishing
the first part of the claim. See Figure 33.1.

As for the second claim, observe that it easily follows as σ is created from an alternating path.

Thus, we can do the following: Compute the alternating BFS T for H, and find a bridge uv in it. If M is not
a maximal matching, then there exists an augmenting path for G, and by Lemma 33.3.3 there exists a bridge.
Computing the bridge uv takes O(m) time.

Extract the paths from s to u and from s to v in T, and glue them together with the edge uv to form an
odd cycle µ in H; namely, µ = τsu | | uv | | τvs. If µ corresponds to an alternating path in G then we are done,
since we found an alternating path, and we can apply it and find a bigger matching.

s

u v

s

u v

depth 0

depth 1

depth 2depth 2

depth 3

depth 4

Figure 33.1: A cycle in the alternating BFS tree. Depths in the alternating BFS tree.
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But µ might have repeated edges. In particular, let πsu and πsv be the two paths
from s to u and v, respectively. Let w be the lowest vertex in T that is common to both
πsu and πsv.

Definition 33.3.4. Given a matching M, a flower for M is formed by a stem and a
blossom. The stem is an even length alternating path starting at a free vertex v

ending at vertex w, and the blossom is an odd length (alternating) cycle based at w.

w

u v

T

s

Lemma 33.3.5. Consider a bridge edge uv ∈ G, and let w be the least common ancestor (LCA) of u and v in
T. Consider the path πsw together with the cycle C = πwu | | uv | | πvw. Then πsw and C together form a flower.

Proof: Since only the even depth nodes in T have more than one child, w must be of even depth, and as such
πsw is of even length. As for the second claim, observe that α = |πwu | = |πwv | since the two nodes have the
same depth in T. In particular, |C | = |πwu | + |πwv | + 1 = 2α + 1, which is an odd number.

f

w

Figure 33.2: A blossom is made out of a
stem (the path f w), and an odd length cy-
cle which is the blossom. Together they form
a flower.

Let us translate this blossom of H back to the original
graph G. The path s to w corresponds to an alternating path
starting at a free vertex f (of G) and ending at w, where
the last edge is in the stem is in the matching, the cycle
w . . . u . . . v . . .w is an alternating odd length cycle in G where
the two edges adjacent to w are unmatched.

We can not apply a blossom to a matching in the hope
of getting better matching. In fact, this is illegal and yield
something which is not a matching. On the positive side, we
discovered an odd alternating cycle in the graph G. Summa-
rizing the above algorithm, we have:

Lemma 33.3.6. Given a graph G with n vertices and m edges, and a matching M, one can find in O(n + m)
time, either a blossom in G or an augmenting path in G.

To see what to do next, we have to realize how a matching in G interact
with an odd length cycle which is computed by our algorithm (i.e., blossom).
In particular, assume that the free vertex in the cycle is unmatched. To get
a maximum number of edges of the matching in the cycle, we must at most
(n − 1)/2 edges in the cycle, but then we can rotate the matching edges in the
cycle, such that any vertex on the cycle can be free. See figure on the right.

a

b

d

C a

b

d

{C}

Let G/C denote the graph resulting from collapsing such an odd cycle C
into single vertex. The new vertex is marked by {C}.

Lemma 33.3.7. Given a graph G, a matching M, and a flower B, one can find a matching M ′ with the same
cardinality, such that the blossom of B contains a free (i.e., unmatched) vertex in M ′.

Proof: If the stem of B is empty and B is just formed by a blossom, and then we are done. Otherwise, B was
as stem π which is an even length alternating path starting from a free vertex v. Observe that the matching
M ′ = M ⊕ π is of the same cardinality, and the cycle in B now becomes an alternating odd cycle, with a free
vertex.

Intuitively, what we did is to apply the stem to the matching M. See Figure 33.3.

Theorem 33.3.8. Let M be a matching, and let C be a blossom for M with an unmatched vertex v. Then, M
is a maximum matching in G if and only if M/C = M \ C is a maximum matching in G/C.
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f

w

f
w

(i) (ii)

Figure 33.3: (i) the flower, and (ii) the invert stem.

Proof: Let G/C be the collapsed graph, with {C} denoting the vertex that correspond to the cycle C.
Note, that the collapsed vertex {C} in G/C is free. Thus, an augmenting path π in G/C either avoids the

collapsed vertex {C} altogether, or it starts or ends there. In any case, we can rotate the matching around C
such that π would be an augmenting path in G. Thus, if M/C is not a maximum matching in G/C then there
exists an augmenting path in G/C, which in turn is an augmenting path in G, and as such M is not a maximum
matching in G.

Similarly, if π is an augmenting path in G and it avoids C then it is also an augmenting path in G/C, and
then M/C is not a maximum matching in G/C.

Otherwise, since π starts and ends in two different free vertices and C has only one free vertex, it follows
that π has an endpoint outside C. Let v be this endpoint of π and let u be the first vertex of π that belongs to
C. Let σ be the path π[v,u].

Let f be the free vertex of C. Note that f is unmatched. Now, if u = f we are done, since then π is an
augmenting path also in G/C. Note that if u is matched in C, as such, it must be that the last edge e in π

is unmatched. Thus, rotate the matching M around C such that u becomes free. Clearly, then σ is now an
augmenting path in G (for the rotated matching) and also an augmenting path in G/C.

Corollary 33.3.9. Let M be a matching, and let C be an alternating odd length cycle with the unmatched vertex
being free. Then, there is an augmenting path in G if and only if there is an augmenting path in G/C.

33.3.2. The algorithm

Start from the empty matching M in the graph G.
Now, repeatedly, try to enlarge the matching. First, check if you can find an edge with both endpoints being

free, and if so add it to the matching. Otherwise, compute the graph H (this is the graph where all the free
vertices are collapsed into a single vertex), and compute an alternating BFS tree in H. From the alternating
BFS, we can extract the shortest alternating cycle based in the root (by finding the highest bridge). If this
alternating cycle corresponds to an alternating path in G then we are done, as we can just apply this alternating
path to the matching M getting a bigger matching.

If this is a flower, with a stem ρ and a blossom C then apply the stem to M (i.e., compute the matching
M ⊕ ρ). Now, C is an odd cycle with the free vertex being unmatched. Compute recursively an augmenting
path π in G/C. By the above discussing, we can easily transform this into an augmenting path in G. Apply
this augmenting path to M.

Thus, we succeeded in computing a matching with one edge more in it. Repeat till the process get stuck.
Clearly, what we have is a maximum size matching.

33.3.2.1. Running time analysis

Every shrink cost us O(m + n) time. We need to perform O(n) recursive shrink operations till we find an
augmenting path, if such a path exists. Thus, finding an augmenting path takes O(n(m + n)) time. Finally, we
have to repeat this O(n) times. Thus, overall, the running time of our algorithm is O(n2(m + n)) = O(n4).

214



Theorem 33.3.10. Given a graph G with n vertices and m edges, computing a maximum size matching in G
can be done in O

(
n2m

)
time.

33.4. Maximum weight matching in a non-bipartite graph
This the hardest case and it is non-trivial to handle. There are known polynomial time algorithms, but I
feel that they are too involved, and somewhat cryptic, and as such should not be presented in class. For the
interested student, a nice description of such an algorithm is presented in

Combinatorial Optimization - Polyhedral and efficiency
by Alexander Schrijver
Vol. A, 453–459.

The description above also follows loosely the same book.

Chapter 34

Lower Bounds

34.1. Sorting
We all know that sorting can be done in O(n log n) time. Interestingly enough, one can show that one needs
Ω(n log n) time to solve this.

Rules of engagement. We need to define exactly what the sorting algorithm can do, or can not do. In the
comparison model, we allow the sorting algorithm to do only one operation: it compare two elements. To this
end, we provide the sorting algorithm a black box compare(i, j) that compares the ith element in the input to
the jth element.

Problem statement. Our purpose is to solve the following problem.

Problem 34.1.1. Consider an input of n distinct elements, with an ordering defining over them. In the worst,
how many calls to the comparison subroutine (i.e., compare) a deterministic sorting algorithm have to perform?

34.1.1. Decision trees

Well, we can think about a sorting algorithm as a decision procedure, at each stage, it has the current collection
of comparisons it already resolved, and it need to decide which comparison to perform next. We can describe
this as a decision tree, see Figure 34.1. The algorithm starts at the root.
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x1 < x2

x2 < x3

x1 < x3
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Similar

x1 < x3 < x2
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x1 < x3 < x2
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1 <
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2x 1

>
x 2

x
2 <

x
3x 2

>
x 3

x
1 <

x
3x 1

>
x 3

r

u

Figure 34.1: A decision tree for sorting three elements.

But what is a sorting algorithm? The output of a sorting algorithm is the input elements is a certain
order. That is, a sorting algorithm for n elements outputs a permutation π of JnK =

{
1, . . . ,n

}
. Formally, if the

input is x1, . . . , xn the output is a permutation π of JnK, such that xπ(1) < xπ(2) < . . . < xπ(n).
Initially all n! permutations are possible, but as the algorithm performs comparisons, and as the algo-

rithm descend in the tree it rules out some of these orderings as not being feasible. For example, the
root r of the decision tree of Figure 34.1 have all possible 6 permutations as a possible output; that is,
Φ(r) =

{
(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1)

}
. But after the comparison in the root is performed and

algorithm decides that x1 < x2, then the algorithm descends into the node u, and the possible ordering of the out-
put that are still valid (in light of the comparison the algorithm performed), is Φ(u) =

{
(1,2,3), (1,3,2), (3,1,2)

}
.

In particular, for a node v of the decision tree, let Φ(v) be the set of feasible permutations; that is, it is
the set of all permutations that are compatible with the set of comparisons that were performed from the root
to v.

Example 34.1.2. Assume the input is x1, x2, x3, x4. If the permutation {(3,4,1,2)} is in Φ(v) then as far as the
comparisons the algorithm performed in traveling from the root to v, it might be that this specific ordering of
the input is a valid ordering. That is, it might be that x3 < x4 < x1 < x2.

Lemma 34.1.3. Given a permutation π of JnK, an input that is sorted in the ordering specified by pi is the
following: xi = π−1(i), for i = 1, . . . ,n.

Proof: The input we construct would be made out of the numbers of JnK. Now, clearly, xπ(1) must be the smaller
number, that is 1, namely xπ(1) = 1. Applying this argument repeatedly, we have that xπ(i) = i, for all i. In
particular, take j = π−1(i), and observe that xi = xπ(π−1(i)) = xπ(j) = j = π−1(i), as claimed.

Example 34.1.4. A convenient way to do the above transformation is the following. Write the permutation as
a function JnK by writing it as matrix with two rows, the top row having 1, . . . ,n, and the second row having
the real permutation. Computing the inverse permutation is then no more than exchanging the two lines, and

sorting the columns. For example, for π = (3,4,2,1) =
(

1 2 3 4
3 4 2 1

)
. Then the input realizing this permutation,

is the input π−1 = (3,4,1,2) =
(

1 2 3 4
4 3 1 2

)
. Specifically, the input x1 = 4, x2 = 3, x3 = 1, and x4 = 2.
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Observation 34.1.5. Assume the algorithm had arrived to a node v in the decision tree, where |Φ(v)| > 1.
Namely, there are more than one permutation of the input that comply with the comparisons performed so far
by the algorithm. Then, the algorithm must continue performing comparisons (otherwise, it would not know
what to output – there are still at least two possible outputs).

Lemma 34.1.6. Any deterministic sorting algorithm in the comparisons model, must perform Ω(n log n) com-
parisons.

Proof: An algorithm in the comparison model is a decision tree. Indeed, an execution of the sorting algorithm
on a specific input is a path in this tree. Imagine running the algorithm on all possible inputs, and generating
this decision tree.

Now, the idea is to use an adversary argument, which would pick the worse possible input for the given
algorithm. Importantly, the adversary need to show the input it used only in the end of the execution of the
algorithm – that is, it can change the input of the algorithm on the fly, as long as it does not change the answer
to the comparisons already seen so far.

So, let T be the decision tree associated with the algorithm, and observe that |Φ(r)| = n!, where r = root(T).
The adversary, at the beginning, has no commitment on which of the permutations of Φ(r) it is using for

the input. Specifically, the adversary computes the sets Φ(u), for all the nodes u ∈ V(T).
Imagine, that the algorithm performed k comparisons, and it is currently at a node vt of the decision tree.

The algorithm call compare to perform the comparison of xi to xj associated with vk . The adversary can now
decide what of the two possible results this comparison returns. Let uL,uR be the two children of vt , where uL

(resp. UR) is the child if the result of the comparison is xi > xj (resp. xi < xj).
The adversary computes Φ(UL) and Φ(UR). There are two cases:

(I) If |Φ(UL)| < |Φ(UR)|, the adversary prefers the algorithm to continue into UR, and as such it returns the
result of comparison of xi and xj as xi < xj .

(II) If |Φ(UL)| ≥ |Φ(UR)|, the adversary returns the comparison results xi > xj .

The adversary continues the traversal down the tree in this fashion, always picking the child that has more
permutations associated with it. Let v1, . . . , vk be the path taken by the algorithm. The input the adversary
pick, is the input realizing the single permutation of Φ(vk).

Note, that 1 =
��Φ(

vk
) �� ≥ |Φ(vk−1)|

2 ≥ . . . ≥
|Φ(v1)|

2k−1 . Thus, 2k−1 ≥ |Φ(v1)| = n!. Implying that k ≥ lg(n!) + 1 =

Ω(n log n). We conclude that the depth of T is Ω(n log n). Namely, there is an input which forces the given
sorting algorithm to perform Ω(n log n) comparisons.

34.1.2. An easier direct argument

Proof: (Proof of Lemma 34.1.6.) Consider the set Π of all permutations of JnK (each can be interpreted as a
sequence of the n numbers 1, . . . ,n). We treat an element (x1, . . . , xn) ∈ Π as an input to the algorithm. Next,
stream the inputs one by one through the decision tree. Each such input ends up in a leaf of the decision tree.
Note, that no leaf can have two different inputs that arrive to it – indeed, if this happened, then the sorting
algorithm would have failed to sort correctly one of the two inputs.

Now, the decision tree is a binary tree, it has at least n! leafs, and as such, if h is the maximum depth of a
node in the decision tree, we must have that 2h ≥ n!. That is, h ≥ lg n! = Ω(n log n), as desired.

The reader might wonder why we bothered to show the original proof of Lemma 34.1.6. First, the second
proof is simpler because the reader is already familiar with the language of decision trees. Secondly, the original
proof brings to the forefront the idea of computation as a gave against an adversary – this is a rather powerful
and useful idea.
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34.2. Uniqueness
Problem 34.2.1 (Uniqueness). Given an input of n real numbers x1, . . . , xn. Decide if all the numbers are unique
(i.e., different).

Intuitively, this seems significantly easier than sorting. In particular, one can solve this in expected linear
time. Nevertheless, this problem is as hard as sorting.

Theorem 34.2.2. Any deterministic algorithm in the comparison model that solves Uniqueness, has Ω(n log n)
running time in the worst case.

Note, that the linear time algorithm mentioned above is in a different computation model (allowing floor
function, randomization, etc). The proof of the above theorem is similar to the sorting case, but it is trickier.
As before, let T be the decision tree (note that every node has three children).

Lemma 34.2.3. For a node v in the decision tree T for the given deterministic algorithm solving Uniqueness,
if the set Φ(v) contains more than one permutation, then there exists two inputs which arrive to v, where one
is unique and other is not.

Proof: Let σ and σ′ be any two different permutations in Φ(v), and let X = x1, . . . , xn be an input realizing σ,
and let Y = y1, . . . , yn be an input realizing σ′. Let Z(t) = z1(t), . . . , zn(t) be an input where zi(t) = t xi + (1 − t)yi.
Clearly, Z(0) = x1, . . . , xn and Z(1) = y1, . . . , yn.

We claim that for any t ∈ [0,1] the input Z(t) will arrive to the node v in T.

xi

xj

yi

yj

zi(t)

zj(t)

t = 0 t = α t = 1

Indeed, assume for the sake contradiction that this is false, and assume
that for t = α, that algorithm did not arrive to v in T. Assume that the
algorithm compared the ith element of the input to the jth element in the
input, when it decided to take a different path in T than the one taken
for X and Y . The claim is that then xi < xj and yi > yj or xi > xj and
yi < yj . Namely, in such a case either X or Y will not arrive to v in T.

to this end, consider the functions zi(t) and zj(t), depicted on the right.
The ordering between the zi(t) and zj(t) is either the ordering between xi
and xj or the ordering between yi and yj . As such, if is Z(t) followed a
different path than X in T, then Y would never arrive to v. A contradiction.

Thus, all the inputs Z(t), for all t ∈ [0,1] arrive to the same node v.
Now, X and Y are both made of unique numbers and have a different ordering when sorted. In particular,

there must be two indices, say f and g, such that, either:
(i) x f < xg and y f > yg, or
(ii) x f > xg and y f < yg.

Indeed, if there where no such indices f and g, then X and Y would have the same sorted ordering, which is a
contradiction.

Now, arguing as in the above figure, there must be β ∈ (0,1) such z f (β) = zg(β).
This is a contradiction. Indeed, there are two inputs Z(0) and Z(β) where one is unique and the other is

not, such that they both arrive to the node v in the decision tree. The algorithm must continue performing
comparisons to figure out what is the right output, and v can not be a leaf.

Proof: (of Theorem 34.2.2) We apply the same argument as in Lemma 34.1.6. If in the decision tree T for
Uniqueness, the adversary arrived to a node containing more than one permutation, it continues into the child
that have more permutations associated with it. As in the sorting argument it follows that there exists a path
in T of length Ω(n log n).
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34.3. Other lower bounds

34.3.1. Algebraic tree model

In this model, at each node, we are allowed to compute a polynomial, and ask for its sign at a certain point
(i.e., comparing xi to xj is equivalent to asking if the polynomial xi − xj is positive/negative/zero).

One can prove things in this model, but it requires considerably stronger techniques.

Problem 34.3.1 (Degenerate points). Given a set P of n points in Rd, deciding if there are d+1 points in P which
are co-linear (all lying on a common plane).

Theorem 34.3.2 (Jeff Erickson and Raimund Seidel [ES95]). Solving the degenerate points problem re-
quires Ω(nd) time in a “reasonable” model of computation.

34.3.2. 3Sum-Hard

Problem 34.3.3 (3SUM). Given three sets of numbers A,B,C are there three numbers a ∈ A, b ∈ B and c ∈ C,
such that a + b = c.

We leave the following as an exercise to the interested reader.

Lemma 34.3.4. One can solve the 3SUM problem in O(n2) time.

Somewhat surprisingly, no better solution is known. An interesting open problem is to find a subquadratic
algorithm for 3SUM. It is widely believed that no such algorithm exists. There is a large collection problems
that are 3SUM-Hard: if you solve them in subquadratic time, then you can solve 3SUM in subquadratic time
Those problems include:
(I) For n points in the plane, is there three points that lie on the same line.
(II) Given a set of n triangles in the plane, do they cover the unit square
(III) Given two polygons P and Q can one translate P such that it is contained inside Q?
So, how does one prove that a problem is 3SUM-Hard? One uses reductions that have subquadratic running
time. The details are interesting, but are omitted. The interested reader should check out the research on the
topic [GO95].

Chapter 35

Backwards analysis

The idea of backwards analysis (or backward analysis) is a technique to analyze randomized algorithms by
imagining as if it was running backwards in time, from output to input. Most of the more interesting applications
of backward analysis are in Computational Geometry, but nevertheless, there are some other applications that
are interesting and we survey some of them here.
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35.1. How many times can the minimum change?
Let Π = π1 . . . πn be a random permutation of {1, . . . ,n}. Let Ei be the event that πi is the minimum number
seen so far as we read Π; that is, Ei is the event that πi = mini

k=1 πk . Let Xi be the indicator variable that is one
if Ei happens. We already seen, and it is easy to verify, that E[Xi] = 1/i. We are interested in how many times
the minimum might change¬; that is Z =

∑
i Xi, and how concentrated is the distribution of Z. The following

is maybe surprising.

Lemma 35.1.1. The events E1, . . . ,En are independent (as such, variables X1, . . . ,Xn are independent).

Proof: The trick is to think about the sampling process in a different way, and then the result readily follows.
Indeed, we randomly pick a permutation of the given numbers, and set the first number to be πn. We then,
again, pick a random permutation of the remaining numbers and set the first number as the penultimate number
(i.e., πn−1) in the output permutation. We repeat this process till we generate the whole permutation.

Now, consider 1 ≤ i1 < i2 < . . . < ik ≤ n, and observe that P
[
Ei1

���Ei2 ∩ . . . ∩ Eik

]
= P

[
Ei1

]
, since by our

thought experiment, Ei1 is determined after all the other variables Ei2, . . . ,Eik . In particular, the variable Ei1 is
inherently not effected by these events happening or not. As such, we have

P
[
Ei1 ∩ Ei2 ∩ . . . ∩ Eik

]
= P

[
Ei1

���Ei2 ∩ . . . ∩ Eik

]
P
[
Ei2 ∩ . . . ∩ Eik

]
= P

[
Ei1

]
P
[
Ei2 ∩ Ei2 ∩ . . . ∩ Eik

]
=

k∏
j=1
P
[
Ei j

]
=

k∏
j=1

1
ij
,

by induction.

Theorem 35.1.2. Let Π = π1 . . . πn be a random permutation of 1, . . . ,n, and let Z be the number of times, that
πi is the smallest number among π1, . . . , πi, for i = 1, . . . ,n. Then, we have that for t ≥ 2e that P

[
Z > t ln n

]
≤

1/nt ln 2, and for t ∈
[
1,2e

]
, we have that P

[
Z > t ln n

]
≤ 1/n(t−1)2/4.

Proof: Follows readily from Chernoff’s inequality, as Z =
∑

i Xi is a sum of independent indicator variables, and,
since by linearity of expectations, we have

µ = E
[
Z
]
=

∑
i

E
[
Xi

]
=

n∑
i=1

1
i
≥

∫ n+1

x=1

1
x

dx = ln(n + 1) ≥ ln n.

Next, we set δ = t − 1, and use Chernoff inequality.

35.2. Yet another analysis of QuickSort
Rephrasing QuickSort. We need to restate QuickSort in a slightly different way for the backward analysis
to make sense.

We conceptually can think about QuickSort as being a randomized incremental algorithm, building up a
list of numbers in the order they are used as pivots. Consider the execution of QuickSort when sorting a set
P of n numbers. Let 〈p1, . . . ,pn〉 be the random permutation of the numbers picked in sequence by QuickSort.
Specifically, in the ith iteration, it randomly picks a number pi that was not handled yet, pivots based on this
number, and then recursively handles the subproblems.

Specifically, assume that at the end of the ith iteration, a set Pi = {p1, . . . ,pi} of pivots has already been
handled by the algorithm. That is, the algorithm have these pivots in sorted orders p′1 < p′2 < . . . < p′i. In
addition, the numbers that were not handled yet P\Pi, are partitions into sets Q0, . . . ,Qi, where all the numbers

¬The answer, my friend, is blowing in the permutation.
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in P \ Pi between p′i and p′i+1 are in the set Qi, for all i. In the (i + 1)th iteration, QuickSort randomly picks a
pivot pi+1 ∈ P \Pi, identifies the set Qj that contains it, splits this set according to the pivot into two sets (i.e.,
a set for the smaller elements, and a set for the bigger elements). The algorithm QuickSort continues in this
fashion till all the numbers were pivots.

Lemma 35.2.1. Consider QuickSort being executed on a set P of n numbers. For any element q ∈ P, in
expectation, q participates in O(log n) comparisons during the execution of QuickSort.

Proof: Consider a specific element q ∈ P. For any subset B ⊆ P, let U(B) be the two closest numbers in B having
q in between them in the original ordering of P. In other words, U(B) contains the (at most) two elements that
are the endpoints of the interval of R \ B that contains q. Let Xi be the indicator variable of the event that the
pivot pi used in the ith iteration is in U(Pi). That is, q got compared to the ith pivot when it was inserted.
Clearly, the total number of comparisons q participates in is

∑
i Xi.

Now, we use backward analysis. Consider the state of the algorithm just after i pivots were handled (i.e.,
the end of the ith iteration). Consider the set Pi = {p1, . . . ,pi} and imagine that you know only what elements
are in this set, but the internal ordering is not known to you. As such, as there are (at most) two elements in
U(Pi), the probability that pi ∈ U(Pi) is at most 2/i.

As such, the expected number of comparisons q participates in is E[
∑

i Xi] ≤
∑n

i=1 2/i = O(log n), as desired.
This also implies that QuickSort takes O(n log n) time in expectation.

Exercise 35.2.2. Prove using backward analysis that QuickSort takes O(n log n) with high probability.
It is not true that the indicator variables X1,X2, . . . are independent (this is quite subtle and not easy to see,

as such extending directly the proof of Theorem 35.1.2 for this case does not work.

35.3. Closest pair: Backward analysis in action
We are interested in solving the following problem:

Problem 35.3.1. Given a set P of n points in the plane, find the pair of points closest to each other. Formally,
return the pair of points realizing CP(P) = min

p,q, p,q∈P
‖p − q‖.

35.3.1. Definitions

Definition 35.3.2. For a real positive number ∆ and a point p = (p1, . . . ,pd) ∈ Rd, define G∆(p) to be the grid
point (bp1/∆c∆, . . . , bpd/∆c∆).

N≤r(p)

p
r

∆We call ∆ the width or sidelength of the grid G∆. Observe that G∆ partitions
Rd into cubes, which are grid cells. The grid cell of p is uniquely identified by
the integer point id(p) =

(
bp1/∆c , . . . , bpd/∆c

)
.

For a number r ≥ 0, let N≤r (p) denote the set of grid cells in distance ≤ r from
p, which is the neighborhood of p. Note, that the neighborhood also includes
the grid cell containing p itself, and if ∆ = Θ(r) then |N≤r (p)| = Θ

(
(2 + d2r/∆e)d

)
=

Θ(1). See figure on the right.

35.3.2. Back to the problem

The following is an easy standard packing argument that underlines, under various disguises, many algorithms
in computational geometry.
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Lemma 35.3.3. Let P be a set of points contained inside a square �, such that the
sidelength of � is α = CP(P). Then |P| ≤ 4.

Proof: Partition � into four equal squares �1, . . . ,�4, and observe that each of these
squares has diameter

√
2α/2 < α, and as such each can contain at most one point

of P; that is, the disk of radius α centered at a point p ∈ P completely covers the
subsquare containing it; see the figure on the right.
Note that the set P can have four points if it is the four corners of �.

α
p

Lemma 35.3.4. Given a set P of n points in the plane and a distance α, one can verify in linear time whether
CP(P) < α, CP(P) = α, or CP(P) > α.

Proof: Indeed, store the points of P in the grid Gα. For every non-empty grid cell, we maintain a linked list of
the points inside it. Thus, adding a new point p takes constant time. Specifically, compute id(p), check if id(p)
already appears in the hash table, if not, create a new linked list for the cell with this ID number, and store p
in it. If a linked list already exists for id(p), just add p to it. This takes O(n) time overall.

Now, if any grid cell in Gα(P) contains more than, say, 4 points of P, then it must be that the CP(P) < α,
by Lemma 35.3.3.

D
p

α

Thus, when we insert a point p, we can fetch all the points of P that were
already inserted in the cell of p and the 8 adjacent cells (i.e., all the points
stored in the cluster of p); that is, these are the cells of the grid Gα that
intersects the disk D = disk(p, α) centered at p with radius α; see the figure
on the right. If there is a point closer to p than α that was already inserted,
then it must be stored in one of these 9 cells (since it must be inside D). Now,
each one of those cells must contain at most 4 points of P by Lemma 35.3.3
(otherwise, we would already have stopped since the CP(·) of the inserted
points is smaller than α). Let S be the set of all those points, and observe
that |S | ≤ 9 · 4 = O(1). Thus, we can compute, by brute force, the closest
point to p in S. This takes O(1) time. If d(p,S) < α, we stop; otherwise, we
continue to the next point.

Overall, this takes at most linear time.
As for correctness, observe that the algorithm returns ‘CP(P) < α’ only after finding a pair of points of P

with distance smaller than α. So, assume that p and q are the pair of points of P realizing the closest pair and
that ‖p − q‖ = CP(P) < α. Clearly, when the later point (say p) is being inserted, the set S would contain q,
and as such the algorithm would stop and return ‘CP(P) < α’. Similar argumentation works for the case that
CP(P) = α. Thus if the algorithm returns ‘CP(P) > α’, it must be that CP(P) is not smaller than α or equal
to it. Namely, it must be larger. Thus, the algorithm output is correct.

Remark 35.3.5. Assume that CP(P \ {p}) ≥ α, but CP(P) < α. Furthermore, assume that we use Lemma 35.3.4
on P, where p ∈ P is the last point to be inserted. When p is being inserted, not only do we discover that
CP(P) < α, but in fact, by checking the distance of p to all the points stored in its cluster, we can compute
the closest point to p in P \ {p} and denote this point by q. Clearly, pq is the closest pair in P, and this last
insertion still takes only constant time.

35.3.3. Slow algorithm

Lemma 35.3.4 provides a natural way of computing CP(P). Indeed, permute the points of P in an arbitrary
fashion, and let P = 〈p1, . . . ,pn〉. Next, let αi−1 = CP({p1, . . . ,pi−1}). We can check if αi < αi−1 by using the
algorithm of Lemma 35.3.4 on Pi and αi−1. In fact, if αi < αi−1, the algorithm of Lemma 35.3.4 would return
‘CP(Pi) < αi−1’ and the two points of Pi realizing αi.
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So, consider the “good” case, where αi = αi−1; that is, the length of the shortest pair does not change
when pi is being inserted. In this case, we do not need to rebuild the data-structure of Lemma 35.3.4 to store
Pi = 〈p1, . . . ,pi〉. We can just reuse the data-structure from the previous iteration that was used by Pi−1 by
inserting pi into it. Thus, inserting a single point takes constant time, as long as the closest pair does not
change.

Things become problematic when αi < αi−1, because then we need to rebuild the grid data-structure and
reinsert all the points of Pi = 〈p1, . . . ,pi〉 into the new grid Gαi (Pi). This takes O(i) time.

In the end of this process, we output the number αn, together with the two points of P that realize the
closest pair.

Observation 35.3.6. If the closest pair distance, in the sequence α1, . . . , αn, changes only t times, then the
running time of our algorithm would be O(nt + n). Naturally, t might be Ω(n), so this algorithm might take
quadratic time in the worst case.

35.3.4. Linear time algorithm

Surprisingly, we can speed up the above algorithm to have linear running time by spicing it up using random-
ization.

We pick a random permutation of the points of P and let 〈p1, . . . ,pn〉 be this permutation. Let α2 = ‖p1 − p2‖,
and start inserting the points into the data-structure of Lemma 35.3.4. We will keep the invariant that αi would
be the closest pair distance in the set Pi, for i = 2, . . . ,n.

In the ith iteration, if αi = αi−1, then this insertion takes constant time. If αi < αi−1, then we know what
is the new closest pair distance αi (see Remark 35.3.5), rebuild the grid, and reinsert the i points of Pi from
scratch into the grid Gαi . This rebuilding of Gαi (Pi) takes O(i) time.

Finally, the algorithm returns the number αn and the two points of Pn realizing it, as the closest pair in P.

Lemma 35.3.7. Let t be the number of different values in the sequence α2, α3, . . . , αn. Then E[t] = O(log n). As
such, in expectation, the above algorithm rebuilds the grid O(log n) times.

Proof: For i ≥ 3, let Xi be an indicator variable that is one if and only if αi < αi−1. Observe that E[Xi] = P[Xi = 1]
(as Xi is an indicator variable) and t =

∑n
i=3 Xi.

To bound P[Xi = 1] = P[αi < αi−1], we (conceptually) fix the points of Pi and randomly permute them. A
point q ∈ Pi is critical if CP(Pi \ {q}) > CP(Pi). If there are no critical points, then αi−1 = αi and then
P[Xi = 1] = 0 (this happens, for example, if there are two pairs of points realizing the closest distance in Pi). If
there is one critical point, then P[Xi = 1] = 1/i, as this is the probability that this critical point would be the
last point in the random permutation of Pi.

Assume there are two critical points and let p,q be this unique pair of points of Pi realizing CP(Pi). The
quantity αi is smaller than αi−1 only if either p or q is pi. The probability for that is 2/i (i.e., the probability in a
random permutation of i objects that one of two marked objects would be the last element in the permutation).

Observe that there cannot be more than two critical points. Indeed, if p and q are two points that realize
the closest distance, then if there is a third critical point s, then CP(Pi \ {s}) = ‖p − q‖, and hence the point s
is not critical.

Thus, P[Xi = 1] = P[αi < αi−1] ≤ 2/i, and by linearity of expectations, we have that E[t] = E
[∑n

i=3 Xi

]
=∑n

i=3 E[Xi] ≤
∑n

i=3 2/i = O(log n).

Lemma 35.3.7 implies that, in expectation, the algorithm rebuilds the grid O(log n) times. By Observa-
tion 35.3.6, the running time of this algorithm, in expectation, is O(n log n). However, we can do better than
that. Intuitively, rebuilding the grid in early iterations of the algorithm is cheap, and only late rebuilds (when
i = Ω(n)) are expensive, but the number of such expensive rebuilds is small (in fact, in expectation it is a
constant).

Surprise in the eyes of the beholder. The reader might not be surprised at all and might be mildly annoyed by the whole affair.
In this case, the reader should read any occurrence of “surprisingly” in the text as being “mildly annoying”.
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Theorem 35.3.8. For set P of n points in the plane, one can compute the closest pair of P in expected linear
time.

Proof: The algorithm is described above. As above, let Xi be the indicator variable which is 1 if αi , αi−1, and
0 otherwise. Clearly, the running time is proportional to

R = 1 +
n∑
i=3
(1 + Xi · i).

Thus, the expected running time is proportional to

E
[
R
]
= E

[
1 +

n∑
i=3
(1 + Xi · i)

]
≤ n +

n∑
i=3
E
[
Xi

]
· i ≤ n +

n∑
i=3

i · P
[
Xi = 1

]
≤ n +

n∑
i=3

i ·
2
i
≤ 3n,

by linearity of expectation and since E[Xi] = P[Xi = 1] and since P[Xi = 1] ≤ 2/i (as shown in the proof of
Lemma 35.3.7). Thus, the expected running time of the algorithm is O(E[R]) = O(n).

Theorem 35.3.8 is a surprising result, since it implies that uniqueness (i.e., deciding if n real numbers are all
distinct) can be solved in linear time. Indeed, compute the distance of the closest pair of the given numbers
(think about the numbers as points on the x-axis). If this distance is zero, then clearly they are not all unique.

However, there is a lower bound of Ω(n log n) on the running time to solve uniqueness, using the comparison
model. This “reality dysfunction” can be easily explained once one realizes that the computation model of
Theorem 35.3.8 is considerably stronger, using hashing, randomization, and the floor function.

35.4. Computing a good ordering of the vertices of a graph
We are given a G = (V,E) be an edge-weighted graph with n vertices and m edges. The task is to compute an
ordering π = 〈π1, . . . , πn〉 of the vertices, and for every vertex v ∈ V, the list of vertices Lv, such that πi ∈ Łv, if
πi is the closet vertex to v in the ith prefix 〈π1, . . . , πi〉.

This situation can arise for example in a streaming scenario, where we install servers in a network. In the
ith stage there i servers installed, and every client in the network wants to know its closest server. As we install
more and more servers (ultimately, every node is going to be server), each client needs to maintain its current
closest server.

The purpose is to minimize the total size of these lists L =
∑

v∈V |Lv |.

35.4.1. The algorithm

Take a random permutation π1, . . . , πn of the vertices V of G. Initially, we set δ(v) = +∞, for all v ∈ V.
In the ith iteration, set δ(πi) to 0, and start Dijkstra from the ith vertex πi. The Dijkstra propagates only

if it improves the current distance associated with a vertex. Specifically, in the ith iteration, we update δ(u)
to dG(πi,u) if and only if dG(πi,u) < δ(u) before this iteration started. If δ(u) is updated, then we add πi to Lu.
Note, that this Dijkstra propagation process might visit only small portions of the graph in some iterations –
since it improves the current distance only for few vertices.

35.4.2. Analysis

Lemma 35.4.1. The above algorithm computes a permutation π, such that E
[
|L|

]
= O(n log n), and the expected

running time of the algorithm is O
(
(n log n + m) log n

)
, where n = |V(G)| and m = |E(G)|. Note, that both bounds

also hold with high probability.
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Proof: Fix a vertex v ∈ V = {v1, . . . , vn}. Consider the set of n numbers {dG(v, v1), . . . ,dG(v, vn)}. Clearly,
dG(v, π1), . . . ,dG(v, πn) is a random permutation of this set, and by Lemma 35.1.1 the random permutation π

changes this minimum O(log n) time in expectations (and also with high probability). This readily implies that
|Lv | = O(log n) both in expectations and high probability.

The more interesting claim is the running time. Consider an edge uv ∈ E(G), and observe that δ(u) or δ(v)
changes O(log n) times. As such, an edge gets visited O(log n) times, which implies overall running time of
O(n log2 n + m log n), as desired.

Indeed, overall there are O(n log n) changes in the value of δ(·). Each such change might require one delete-
min operation from the queue, which takes O(log n) time operation. Every edge, by the above, might trigger
O(log n) decrease-key operations. Using Fibonacci heaps, each such operation takes O(1) time.

35.5. Computing nets

35.5.1. Basic definitions

35.5.1.1. Metric spaces

Definition 35.5.1. A metric space is a pair (X,d) where X is a set and d : X×X→ [0,∞) is a metric satisfying
the following axioms: (i) d(x, y) = 0 if and only if x = y, (ii) d(x, y) = d(y, x), and (iii) d(x, y) + d(y, z) ≥ d(x, z)
(triangle inequality).

For example, R2 with the regular Euclidean distance is a metric space. In the following, we assume that we
are given black-box access to dM . Namely, given two points p,q ∈ X, we assume that d(p,q) can be computed
in constant time.

Another standard example for a finite metric space is a graph G with non-negative weights ω(·) defined on
its edges. Let dG(x, y) denote the shortest path (under the given weights) between any x, y ∈ V(G). It is easy
to verify that dG(·, ·) is a metric. In fact, any finite metric (i.e., a metric defined over a finite set) can be
represented by such a weighted graph.

35.5.1.2. Nets

Definition 35.5.2. For a point set P in a metric space with a metric d, and a parameter r > 0, an r-net of P is
a subset C ⊆ P, such that
(i) for every p,q ∈ C, p , q, we have that d(p,q) ≥ r, and
(ii) for all p ∈ P, we have that minq∈C d(p,q) < r.

Intuitively, an r-net represents P in resolution r.

35.5.2. Computing nets quickly for a point set in Rd

The results here have nothing to do with backward analysis and are included here only for the sake of com-
pleteness.

There is a simple algorithm for computing r-nets. Namely, let all the points in P be initially unmarked.
While there remains an unmarked point, p, add p to C, and mark it and all other points in distance < r from
p (i.e. we are scooping away balls of radius r). By using grids and hashing one can modify this algorithm to
run in linear time. The following is implicit in previous work [Har04], and we include it here for the sake of
completeness® – it was also described by the authors in [ERH12].

Lemma 35.5.3. Given a point set P ⊆ Rd of size n and a parameter r > 0, one can compute an r-net for P in
O(n) time.

®Specifically, the algorithm of Har-Peled [Har04] is considerably more complicated than Lemma 35.5.3, and does not work in
this settings, as the number of clusters it can handle is limited to O

(
n1/6

)
. Lemma 35.5.3 has no such restriction.

225



Proof: Let G denote the grid in Rd with side length ∆ = r/
(
2
√

d
)
. First compute for every point p ∈ P the grid

cell in G that contains p; that is, id(p). Let G denote the set of grid cells of G that contain points of P. Similarly,
for every cell � ∈ G we compute the set of points of P which it contains. This task can be performed in linear
time using hashing and bucketing assuming the floor function can be computed in constant time. Specifically,
store the id(·) values in a hash table, and in constant time hash each point into its appropriate bin.

Scan the points of P one at a time, and let p be the current point. If p is marked then move on to the next
point. Otherwise, add p to the set of net points, C, and mark it and each point q ∈ P such that ‖p − q‖ < r.
Since the cells of N≤r (p) contain all such points, we only need to check the lists of points stored in these grid
cells. At the end of this procedure every point is marked. Since a point can only be marked if it is in distance
< r from some net point, and a net point is only created if it is unmarked when visited, this implies that C is
an r-net.

As for the running time, observe that a grid cell, c, has its list scanned only if c is in the neighborhood
of some created net point. As ∆ = Θ(r), there are only O(1) cells which could contain a net point p such that
c ∈ N≤r (p). Furthermore, at most one net point lies in a single cell since the diameter of a grid cell is strictly
smaller than r. Therefore each grid cell had its list scanned O(1) times. Since the only real work done is in
scanning the cell lists and since the cell lists are disjoint, this implies an O(n) running time overall.

Observe that the closest net point, for a point p ∈ P, must be in one of its neighborhood’s grid cells. Since
every grid cell can contain only a single net point, it follows that in constant time per point of P, one can
compute each point’s nearest net point. We thus have the following.

Corollary 35.5.4. For a set P ⊆ Rd of n points, and a parameter r > 0, one can compute, in linear time, an
r-net of P, and furthermore, for each net point the set of points of P for which it is the nearest net point.

In the following, a weighted point is a point that is assigned a positive integer weight. For any subset S
of a weighted point set P, let |S | denote the number of points in S and let ω(S) =

∑
p∈S ω(p) denote the total

weight of S.
In particular, Corollary 35.5.4 implies that for a weighted point set one can compute the following quantity

in linear time.

Algorithm 35.5.5 (net). Given a weighted point set P ⊆ Rd, let N(r,P) denote an r-net of P, where the
weight of each net point p is the total sum of the weights of the points assigned to it. We slightly abuse notation,
and also use N(r,P) to designate the algorithm computing this net, which has linear running time.

35.5.3. Computing an r-net in a sparse graph

Given a G = (V,E) be an edge-weighted graph with n vertices and m edges, and let r > 0 be a parameter. We
are interested in the problem of computing an r-net for G. That is, a set of vertices of G that complies with
Definition 35.5.2p225.

35.5.3.1. The algorithm

We compute an r-net in a sparse graph using a variant of Dijkstra’s algorithm with the sequence of starting
vertices chosen in a random permutation.

Let πi be the ith vertex in a random permutation π of V. For each vertex v we initialize δ(v) to +∞. In the
ith iteration, we test whether δ(πi) ≥ r, and if so we do the following steps:
(A) Add πi to the resulting net N .
(B) Set δ(πi) to zero.
(C) Perform Dijkstra’s algorithm starting from πi, modified to avoid adding a vertex u to the priority queue

unless its tentative distance is smaller than the current value of δ(u). When such a vertex u is expanded,
we set δ(u) to be its computed distance from πi, and relax the edges adjacent to u in the graph.
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35.5.3.2. Analysis

While the analysis here does not directly uses backward analysis, it is inspired to a large extent by such an
analysis as in Section 35.4p224.

Lemma 35.5.6. The set N is an r-net in G.

Proof: By the end of the algorithm, each v ∈ V has δ(v) < r, for δ(v) is monotonically decreasing, and if it were
larger than r when v was visited then v would have been added to the net.

An induction shows that if ` = δ(v), for some vertex v, then the distance of v to the set N is at most `.
Indeed, for the sake of contradiction, let j be the (end of) the first iteration where this claim is false. It must
be that πj ∈ N , and it is the nearest vertex in N to v. But then, consider the shortest path between πj and
v. The modified Dijkstra must have visited all the vertices on this path, thus computing δ(v) correctly at this
iteration, which is a contradiction.

Finally, observe that every two points in N have distance ≥ r. Indeed, when the algorithm handles vertex
v ∈ N , its distance from all the vertices currently in N is ≥ r, implying the claim.

Lemma 35.5.7. Consider an execution of the algorithm, and any vertex v ∈ V. The expected number of times
the algorithm updates the value of δ(v) during its execution is O(log n), and more strongly the number of updates
is O(log n) with high probability.

Proof: For simplicity of exposition, assume all distances in G are distinct. Let Si be the set of all the vertices
x ∈ V, such that the following two properties both hold:
(A) dG(x, v) < dG(v,Πi), where Πi = {π1, . . . , πi}.
(B) If πi+1 = x then δ(v) would change in the (i + 1)th iteration.

Let si = |Si |. Observe that S1 ⊇ S2 ⊇ · · · ⊇ Sn, and |Sn | = 0.
In particular, let Ei+1 be the event that δ(v) changed in iteration (i + 1) – we will refer to such an iteration

as being active. If iteration (i + 1) is active then one of the points of Si is πi+1. However, πi+1 has a uniform
distribution over the vertices of Si, and in particular, if Ei+1 happens then si+1 ≤ si/2, with probability at least
half, and we will refer to such an iteration as being lucky. (It is possible that si+1 < si even if Ei+1 does not
happen, but this is only to our benefit.) After O(log n) lucky iterations the set Si is empty, and we are done.
Clearly, if both the ith and jth iteration are active, the events that they are each lucky are independent of each
other. By the Chernoff inequality, after c log n active iterations, at least dlog2 ne iterations were lucky with high
probability, implying the claim. Here c is a sufficiently large constant.

Interestingly, in the above proof, all we used was the monotonicity of the sets S1, . . . ,Sn, and that if δ(v)
changes in an iteration then the size of the set Si shrinks by a constant factor with good probability in this
iteration. This implies that there is some flexibility in deciding whether or not to initiate Dijkstra’s algorithm
from each vertex of the permutation, without damaging the number of times of the values of δ(v) are updated.

Theorem 35.5.8. Given a graph G = (V,E), with n vertices and m edges, the above algorithm computes an
r-net of G in O((n log n + m) log n) expected time.

Proof: By Lemma 35.5.7, the two δ values associated with the endpoints of an edge get updated O(log n) times,
in expectation, during the algorithm’s execution. As such, a single edge creates O(log n) decrease-key operations
in the heap maintained by the algorithm. Each such operation takes constant time if we use Fibonacci heaps
to implement the algorithm.
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35.6. Bibliographical notes

Backwards analysis was invented/discovered by Raimund Seidel, and the QuickSort example is taken from
Seidel [Sei93]. The number of changes of the minimum result of Section 35.1 is by now folklore.

The closet-pair result is Section 35.3 follows Golin et al. [GRSS95]. This is in turn a simplification of a
result of Rabin [Rab76]. Smid provides a survey of such algorithms [Smi00].

The good ordering of Section 35.4 is probably also folklore, although a similar idea was used by Mendel
and Schwob [MS09] for a different problem. Computing nets in Rd, which has nothing to do with backwards
analysis, Section 35.5.2, is from Har-Peled and Raichel [HR13].

Computing a net in a sparse graph, Section 35.5.3, is from [EHS14]. While backwards analysis fails to hold
in this case, it provide a good intuition for the analysis, which is slightly more complicated and indirect.

Chapter 36

Linear time algorithms

36.1. The lowest point above a set of lines
Let L be a set of n lines in the plane. To simplify the exposition, assume the lines are in general position:
(A) No two lines of L are parallel.
(B) No line of L is vertical or horizontal.
(C) No three lines of L meet in a point.
We are interested in the problem of computing the point with the minimum y coordinate that is above all the
lines of L. We consider a point on a line to be above it.

UL UL

opt(L)

Figure 36.1: An input to the problem, the critical curve UL, and the optimal solution – the point opt(L).

For a line ` ∈ L, and a value α ∈ R, let `(x) be the value of ` at α. Formally, consider the intersection point
of p = ` ∩ (x = α) (here, x = α is the vertical line passing through (α,0)). Then `(x) = y(p).

Let UL(α) = max`∈L `(α) be the upper envelope of L. The function UL(·) is convex, as one can easily
verify. The problem asks to compute y∗ = minx∈RUL(x). Let x∗ be the coordinate such that y∗ = UL(x∗).

Definition 36.1.1. Let opt(L) = (x∗, y∗) denote the optimal solution – that is, lowest point on UL(x).
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`1

`2

x

opt(L)

UL

Figure 36.2: Illustration of the proof of Lemma 36.1.4.

Remark 36.1.2. There are some uninteresting cases of this problem. For example, if all the lines of L have
negative slope, then the solution is at x∗ = +∞. Similarly, if all the slopes are positive, then the solution is
x∗ = −∞. We can easily check these cases in linear time. In the following, we assume that at least one line of L
has positive slope, and at least one line has a negative slope.

Lemma 36.1.3. Given a value x, and a set L of n lines, one can in linear time do the following:
(A) Compute the value of UL(x).
(B) Decide which one of the following happens: (I) x = x∗, (II) x < x∗, or (III) x > x∗.

Proof: (A) Computing `(x), for x ∈ R, takes O(1) time. Thus computing this value for all the lines of L takes
O(n) time, and the maximum can be computed in O(n) time.

(B) For case (I) to happen, there must be two lines that realizes UL(x) – one of them has a positive slope,
the other has negative slope. This clearly can be checked in linear time.

Otherwise, consider UL(x). If there is a single line that realizes the maximum for x, then its slope is the
slope of UL(x) at x. If this slope is positive than x∗ < x. If the slope is negative then x < x∗.

The slightly more challenging case is when two lines realizes the value of UL(x). That is
(
x,UL(x)

)
is an

intersection point of two lines of L (i.e., a vertex) on the upper envelope of the lines of L). Let `1, `2 be these
two lines, and assume that slope(`1) < slope(`2).

If slope(`2) < 0, then both lines have negative slope, and x∗ > x. If slope(`1) > 0, then both lines have
positive slope, and x∗ < x. If slope(`1) < 0, and slope(`1) > 0, then this is case (I), and we are done.

Lemma 36.1.4. Let (x, y) be the intersection point of two lines `1, `2 ∈ L, such that slope(`1) < slope(`2), and
x < x∗. Then opt(L) = opt(L − `1), where L − `1 = L \ {`1}

Proof: See Figure 36.2. Since x < x∗, it must be that UL(·) has a negative slope at x (and also immediately to
its right). In particular, for any α > x, we have that UL(α) ≥ `2(x) > `1(x). That is, the line `1(x) is “buried”
below `2, and can not touch UL(·) to the right of x. In particular, removing `1 from L can not change UL(·) to
the right of x. Furthermore, since UL(·) has negative slope immediately after x, it implies that minimum point
can not move by the deletion of `1. Thus implying the claim.

Lemma 36.1.5. Let (x, y) be the intersection point of two lines `1, `2 ∈ L, such that slope(`1) < slope(`2), and
x∗ < x. Then opt(L) = opt(L − `2).

Proof: Symmetric argument to the one used in the proof of Lemma 36.1.4.

Observation 36.1.6. The point p = opt(L) is a vertex formed by the intersection of two lines of L. Indeed,
since none of the lines of L are horizontal, if p was in the middle of a line, then we could move it and improve
the value of the solution.

229



opt(L)

UL

`1

`2
x

Figure 36.3: Illustration of the proof of Lemma 36.1.5.

Lemma 36.1.7 (Prune). Given a set L of n lines, one can compute, in linear time, either:
(A) A set L ′ ⊆ L such that opt(L) = opt(L ′), and |L ′ | ≤ (7/8) |L |.
(B) A value x such that x∗(L) = x.

Proof: If |L | = n = O(1) then one can compute opt(L) by brute force. Indeed, compute all the
(n
2
)
vertices induced

by L, and for each one of them check if they define the optimal solution using the algorithm of Lemma 36.1.3.
This takes O(1) time, as desired.

Otherwise, pair the lines of L in N = bn/2c pairs `i, `′i . For each pair, let xi be the x-coordinate of the
vertex `i ∩ `′i . Compute, in linear time, using median selection, the median value z of x1, . . . , xN . For the sake of
simplicity of exposition assume that xi < z, for i = 1, . . . ,N/2 − 1, and xi > z, for i = N/2 + 1, . . . ,N (otherwise,
reorder the lines and the values so that it happens).

Using the algorithm of Lemma 36.1.3 decide which of the following happens:
(I) z = x∗: we found the optimal solution, and we are done.
(II) z < x∗. But then xi < z < x∗, for i = 1, . . . ,N/2−1, By Lemma 36.1.4, either `i or `′i can be dropped without

effecting the optimal solution, and which one can be dropped can be decided in O(1) time. In particular,
let L ′ be the set of lines after we drop a line from each such pair. We have that opt(L ′) = opt(L), and
|L ′ | = n − (N/2 − 1) ≤ (7/8)n.

(III) z > x∗. This case is handled symmetrically, using Lemma 36.1.5.

Theorem 36.1.8. Given a set L of n lines in the plane, one can compute the lowest point that is above all the
lines of L (i.e., opt(L)) in linear time.

Proof: The algorithm repeatedly apply the pruning algorithm of Lemma 36.1.7. Clearly, by the above, this
algorithm computes opt(L) as desired.

In the ith iteration of this algorithm, if the set of lines has ni lines, then this iteration takes O(ni) time.
However, ni ≤ (7/8)in. In particular, the overall running time of the algorithm is

O

(
∞∑
i=0
(7/8)in

)
= O(n).

36.2. Bibliographical notes

The algorithm presented in Section 36.1 is a simplification of the work of Megiddo [Meg84]. Megiddo solved
the much harder problem of solving linear programming in constant dimension in linear time, The algorithm
presented is essentially the core of his basic algorithm.
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Chapter 37

Streaming

I don’t know why it should be, I am sure; but the sight of another man asleep in bed when I am up, maddens me. It seems
to me so shocking to see the precious hours of a man’s life - the priceless moments that will never come back to him again -
being wasted in mere brutish sleep.

Jerome K. Jerome, Three men in a boat

37.1. How to sample a stream
Imagine that you are given a stream of elements s1, s2, . . ., and you need to sample k numbers from this stream
(say, without repetition) – assume that you do not know the length of the stream in advance, and furthermore,
you have only O(k) space available for you. How to do that efficiently?

There are two natural schemes:

(A) Whenever an element arrives, generate a random number for it in the range [0,1]. Maintain a heap with
the k elements with the lowest priority. Implemented naively this requires O(log k) comparisons after each
insertion, but it is not difficult to improve this to O(1) comparisons in the amortized sense per insertion.
Clearly, the resulting set is the desired random sample

(B) Let St be the random sample maintained in the tth iteration. When the ith element arrives, the algorithm
flip a coin that is heads with probability min(1, k/i). If the coin is heads then it inserts si to Si−1 to get
Si. If Si−1 already have k elements, then first randomly delete one of the elements.

Theorem 37.1.1. Given a stream of elements, one can uniformly sample k elements (without repetition), from
the stream using O(k) space, where O(1) time is spent for handling each incoming element.

Proof: We implement the scheme (B) above. We only need to argue that this is a uniform random sample.
The claim trivially hold for i = k. So assume the claim holds for i < t, and we need to prove that the set after
getting tth element is still a uniform random sample.

So, consider a specific set K ⊆ {s1, . . . , st } of k elements. The probability of K to be a random sample of size
k from a set of t elements is 1/

( t
k

)
. We need to argue that this probability remains the same for this scheme.

So, if st < K, then we have

P[K = St ] = P[K = St−1 and st was not inserted] =
1(t−1
k

) (1 − k
t

)
=

k!(t − 1 − k)!(t − k)
(t − 1)!t =

1( t
k

) .
If st ∈ K, then

P
[
K = St

]
= P


K \ {st } ⊆ St−1,
st was inserted

and St−1 \ K thrown out of St−1

 =
t − 1 − (k − 1)(t−1

k

) �k
t

1
�k
=
(t − k)k!(t − 1 − k)!

(t − 1)!t =
1( t
k

) ,
as desired. Indeed, there are t − 1 − (k − 1) subsets of size k of {s1, . . . , st−1} that contains K \ {st } – since we fix
k − 1 of the t − 1 elements.
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37.2. Sampling and median selection
Let B[1, . . . ,n] be a set of n numbers. We would like to estimate the median, without computing it outright. A
natural idea, would be to pick k elements e1, . . . , ek randomly from B, and return their median as the guess for
the median of B.

In the following, let RB(t) be the tth smallest number in the array B.

Observation 37.2.1. For ε ∈ (0,1), we have that 1
1−ε ≥ 1 + ε.

Lemma 37.2.2. Let ε ∈ (0,1/2), and let k =
⌈ 12
ε2 ln 2

δ

⌉
. Let Z be the median of the random sample of B of size

k. We have that
P

[
R
B

(1 − ε
2 n

)
≤ Z ≤ RB

(1 + ε
2 n

)]
≥ 1 − δ.

Namely, with probability at least 1 − δ, the returned value Z is (ε/2)n positions away from the true median.

Proof: Let L = RB((1 − ε)n/2). Let Xi = 1 if and only if ei ≤ L. We have that

P[Xi = 1] = (1 − ε)n/2
n

=
1 − ε

2 .

As such, setting Y =
∑k

i=1 Xi, we have

µ = E[Y ] =
1 − ε

2 k ≥
k
4 ≥

3
ε2 ln 2

δ
.

One case is that the algorithm fails, if Y ≥ k/2. We have that

P[Y ≥ k/2] = P
[
Y ≥

1/2
(1 − ε)/2 ·

1 − ε
2 k

]
= P[Y ≥ (1 + ε)µ] ≤ exp

(
−ε2µ/3

)
≤ exp

(
−ε2 ·

3
ε2 ln 2

δ

)
≤
δ

2 .

by Chernoff’s inequality (see Theorem 37.5.1).
This implies that P

[
RB((1 − ε)n/2) > Z

]
≤ δ/2.

The claim now follows by realizing that by symmetry (i.e., revering the order), we have that P
[
Z > RB((1 + ε)n/2)

]
≤

δ/2, and putting these two inequalities together.

The above already implies that we can get a good estimate for the median. We need something somewhat
stronger – we state it without proof since it follows by similarly mucking around with Chernoff’s inequality.

Lemma 37.2.3. Let ε ∈ (0,1/2), let B an array of n elements, and let S = {e1, . . . , ek} be a set of k samples
picked uniformly and randomly from B. Then, for some absolute constant c, and an integer k, such that
k ≥

⌈
c
ε2 ln 1

δ

⌉
, we have that

P
[
RS(k−) ≤ RB(n/2) ≤ RS

(
k+

) ]
≥ 1 − δ.

for k− = b(1 − ε)k/2c, and k+ = b(1 + ε)k/2c.
One can prove even a stronger statement:

P
[
RB((1 − 2ε)n/2) ≤ RS((1 − ε)k/2) ≤ RB(n/2) ≤ RS((1 + ε)k/2) ≤ RB((1 + 2ε)n/2)

]
≥ 1 − δ

(the constant c would have to be slightly bigger).
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37.2.1. A median selection with few comparisons

The above suggests a natural algorithm for computing the median (i.e., the element of rank n/2 in B). Pick a
random sample S of k = O(

√
n log n) elements. Next, sort S, and pick the elements L and R of ranks (1− ε)k and

(1 + ε)k in S, respectively. Next, scan the elements, and compare them to L and R, and keep only the elements
that are between. In the end of this process, we have computed:
(A) α: The rank of the number L in the set B.
(B) T = {x ∈ B | L ≤ x ≤ H}.

Compute, by brute force (i.e., sorting) the element of rank n/2 − α in T . Return it as the desired median. If
n/2 − α is negative, then the algorithm failed, and it tries again.

Lemma 37.2.4. The above algorithm performs 2n + O(n3/4 log n) comparisons, and reports the median. This
holds with high probability.

Proof: Set ε = 1/n1/4, and δ = 1/nO(1), and observe that Lemma 37.2.3 implies that with probability ≥ 1−1/δ, we
have that the desired median is between L and H. In addition, Lemma 37.2.3 also implies that |T | ≤ 4εn ≤ 4n3/4,
which readily implies the correctness of the algorithm.

As for the bound on the number of comparisons, we have, with high probability, that the number of
comparisons is

O(|S | log |S | + |T | log |T |) + 2n = O
(√

n log2 n + n3/4 log n
)
+ 2n,

since deciding if an element is between L and H requires two comparisons.

Lemma 37.2.5. The above algorithm can be modified to perform (3/2)n+O(n3/4 log n) comparisons, and reports
the median correctly. This holds with high probability.

Proof: The trick is to randomly compare each element either first to L or first to H with equal probability. For
elements that are either smaller than L or bigger than H, this requires (3/2)n comparisons in expectation. Thus
improving the bound from 2n to (3/2)n.

Remark 37.2.6. Note, that if we know, as in this case, that L and H are in the middle, than it is not needed
to do the random comparisons trick used above – indeed, just regular algorithm would work. This trick makes
sense only if do not know the rank of L and H in the real array, but only know that they are close together.
Then, the random comparisons trick does work better than the deterministic approach.

Lemma 37.2.7. Consider a stream B of n numbers, and assume we can make two passes over the data. Then,
one can compute exactly the median of B using:
(I) O(n3/4) space.
(II) 1.5n +O(n3/4 log n) comparisons.
The algorithm reports the median correctly, and it succeeds with high probability.

Proof: Implement the above algorithm, using the random sampling from Theorem 37.1.1.

37.3. Big data and the streaming model
Here, we are interested in doing some computational tasks when the amount of data we have to handle is quite
large (think terabytes or larger). The main challenge in many of these cases is that even reading the data once
is expensive. Running times of O(n log n) might not be acceptable. Furthermore, in many cases, we can load all
the data into memory.

In the streaming model, one reads the data as it comes in, but one can not afford to keep all the data. A
natural example would be a internet router, which has gazillion of packets going through it every minute. We
might still be interested in natural questions about these packets, but we want to do this without storing all
the packets.
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37.4. Heavy hitters
Imagine a stream s1, . . ., where elements might repeat, and we would like to maintain a list of elements that
appear at least εn times. We present a simple but clever scheme that maintains such a list.

The algorithm. To this end, let
k = d1/εe .

At each point in time, we maintain a set S of k elements, with a counter for each element. Let St be the version
of S after t were inserted. When st+1 arrives, we increase its counter if it is already in St . If |St | < k, then we
just insert st+1 to the set, and set its counter to 1. Otherwise, |St | = k and st+1 < St . We then decrease all the
k counters of elements in St by 1. If a counter of an element in St+1 is zero, then we delete it from the set.

37.5. Chernoff inequality
Proving the specific form of Chernoff’s inequality we need is outside our scope. The interested reader is referred
to notes here https://sarielhp.org/p/notes/16/chernoff/chernoff.pdf. We next state what we need:

Theorem 37.5.1. Let X1, . . . ,Xn be n independent Bernoulli trials, where P[Xi = 1] = pi, and P[Xi = 0] = 1− pi,
for i = 1, . . . ,n. Let X =

∑b
i=1 Xi, and µ = E

[
X
]
=

∑
i pi. For δ,∈ (0,1), we have

P
[
X > (1 + δ)µ

]
< exp

(
−µδ2/3

)
.
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Part X
Exercises

Chapter 38

Exercises - Prerequisites

This chapter include problems that are perquisite. Their main purpose is to check
whether you are read to take the 473 algorithms class. If you do not have the
prerequisites it is your responsibility to fill in the missing gaps in your education.

38.1. Graph Problems

1 A trip through the graph. (20 pts.)
A tournament is a directed graph with exactly one edge between every pair of vertices. (Think of the
nodes as players in a round-robin tournament, where each edge points from the winner to the loser.) A
Hamiltonian path is a sequence of directed edges, joined end to end, that visits every vertex exactly once.
Prove that every tournament contains at least one Hamiltonian path.

1
�

2
�

3
�

4
�

5
�

6
�

A six-vertex tournament containing the Hamiltonian path 6→ 4→ 5→ 2→ 3→ 1.

2 Graphs! Graphs! (20 pts.)
A coloring of a graph G by α colors is an assignment to each vertex of G a color which is an integer
between 1 and α, such that no two vertices that are connected by an edge have the same color.

2.A. (5 pts.) Prove or disprove that if in a graph G the maximum degree is k, then the vertices of the
graph can be colored using k + 1 colors.
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2.B. (5 pts.) Provide an efficient coloring algorithm for a graph G with n vertices and m edges that uses
at most k+1 colors, where k is the maximum degree in G. What is the running time of you algorithm,
if the graph is provided using adjacency lists. What is the running time of your algorithm if the
graph is given with an adjacency matrix. (Note, that your algorithm should be as fast as possible.)

2.C. (5 pts.) A directed graph G = (V,E) is a neat graph if there exist an ordering of the vertices of the
graph V(G) = 〈v1, v2, . . . , vn〉 such that if the edge

(
vi, vj

)
is in E(G) then i < j.

Prove (by induction) that a DAG (i.e., directed acyclic graph) is a neat graph.
2.D. (5 pts.) A cut (S,T) in a directed graph G = (V,E) is a partition of V into two disjoint sets S and T .

A cut is mixed if there exists s, s′ ∈ S and t, t ′ ∈ T such that (s, t) ∈ E and (t ′, s′) ∈ E. Prove that if all
the non-trivial cuts (i.e., neither S nor T are empty) are mixed then the graph is not a neat graph.

3 Mad Cow Disease (20 pts.)
In a land far far away (i.e., Canada), a mad cow decease was spreading among cow farms. The cow farms
were, naturally, organized.as a n× n grid. The epidemic started when m contaminated cows were dlivered
to (some) of the farms. Once one cow in a farm has Mad Cow disease then all the cows in this farm get
the disease. For a farm, if two or more of its neighboring farms have the disease than the cows in the farm
would get the disease. A farm in the middle of the grid has four neighboring farms (two horizontally next
to it, and two verticality next to it). We are interested in how the disease spread if we wait enough time.

• (5 pts.) Show that if m = n then there is a scenario such that all the farms in the n × n grid get
contaminated.

• (15 pts.) Prove that if m ≤ n − 1 then (always) not all the farms are conaminated.

4 Connectivity and walking. (10 pts.)

4.A. Use induction to prove that in a simple graph, every walk between a pair of vertices, u, v, contains
a path between u and v. Recall that a walk is a list of the form v0, e1, v1, e2, v2, ..., ek, vk , in which
ei has endpoints vi−1 and vi.

4.B. Prove that a graph is connected if and only if for every partition of its vertices into two nonempty
sets, there exists an edge that has endpoints in both sets.

5 Chessboard (10 pts.)
Consider a 2n × 2n chessboard with one (arbitrarily chosen) square removed, as in the following picture
(for n = 3):

Prove that any such chessboard can be tiled without gaps or overlaps by L-shapes consisting of 3 squares
each.

6 Coloring (10 pts.)

6.A. (5 pts.) Let T1,T2 and T3 be three trees defined over the set of vertices {v1, . . . , vn}. Prove that the
graph G = T1 ∪ T2 ∪ T3 is colorable using six colors (e is an edge of G if and only if it is an edge in
one of trees T1, T2 and T3).
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6.B. (5 pts.) Describe an efficient algorithm for computing this coloring. What is the running time of
your algorithm?

7 Binary trees and codes. Professor George O’Jungle has a favorite 26-node binary tree, whose nodes
are labeled by letters of the alphabet. The preorder and postorder sequences of nodes are as follows:

preorder: M N H C R S K W T G D X I Y A J P O E Z V B U L Q F
postorder: C W T K S G R H D N A O E P J Y Z I B Q L F U V X M

Draw Professor O’Jungle’s binary tree, and give the in-order sequence of nodes.

38.2. Recurrences

8 Recurrences. (20 pts.)
Solve the following recurrences. State tight asymptotic bounds for each function in the form Θ( f (n)) for
some recognizable function f (n). You do not need to turn in proofs (in fact, please don’t turn in proofs),
but you should do them anyway just for practice. Assume reasonable but nontrivial base cases if none
are supplied. More exact solutions are better.

8.A. (2 pts.) A(n) = A
(√

n/3 + blog nc
)
+ n

8.B. (2 pts.) B(n) = min
0<k<n

(
3 + B(k) + B(n − k)

)
.

8.C. (2 pts.) C(n) = 3C(dn/2e − 5) + n/log n

8.D. (2 pts.) D(n) = n
n−3 D(n − 1) + 1

8.E. (2 pts.) E(n) = E(b3n/4c) +
√

n

8.F. (2 pts.) F(n) = F(blog nc) + log n (HARD)
8.G. (2 pts.) G(n) = n +

⌊√
n
⌋
· G(

⌊√
n
⌋
)

8.H. (2 pts.) H(n) = log(H(n − 1)) + 1
8.I. (2 pts.) I(n) = 5I

( ⌊√
n
⌋ )
+ 1

8.J. (2 pts.) J(n) = 3J(n/4) + 1

9 Recurrences II (20 pts.)
Solve the following recurrences. State tight asymptotic bounds for each function in the form Θ( f (n)) for
some recognizable function f (n). You do not need to turn in proofs (in fact, please don’t turn in proofs),
but you should do them anyway just for practice. Assume reasonable but nontrivial base cases if none
are supplied. More exact solutions are better.

9.A. (1 pts.) A(n) = A(n/3 + 5 + blog nc) + n log log n

9.B. (1 pts.) B(n) = min
0<k<n

(
3 + B(k) + B(n − k)

)
.

9.C. (1 pts.) C(n) = 3C(dn/2e − 5) + n/log n

9.D. (1 pts.) D(n) = n
n−5 D(n − 1) + 1

9.E. (1 pts.) E(n) = E(b3n/4c) + 1/
√

n

9.F. (1 pts.) F(n) = F(
⌊
log2 n

⌋
) + log n (HARD)

9.G. (1 pts.) G(n) = n + 7
√

n · G(
⌊√

n
⌋
)

9.H. (1 pts.) H(n) = log2(H(n − 1)) + 1
9.I. (1 pts.) I(n) = I

( ⌊
n1/4⌋ ) + 1
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9.J. (1 pts.) J(n) = J(n − bn/log nc) + 1

10 Recurrences III (20 pts.)
Solve the following recurrences. State tight asymptotic bounds for each function in the form Θ( f (n)) for
some recognizable function f (n). You do not need to turn in proofs (in fact, please don’t turn in proofs),
but you should do them anyway just for practice. Assume reasonable but nontrivial base cases if none
are supplied.

10.A. A(n) = A(n/2) + n

10.B. B(n) = 2B(n/2) + n

10.C. C(n) = n + 1
2
(
C(n − 1) + C(3n/4)

)
10.D. D(n) = max

n/3<k<2n/3

(
D(k) + D(n − k) + n

)
(HARD)

10.E. E(n) = 2E(n/2) + n/lg n (HARD)
10.F. F(n) = F(n−1)

F(n−2) , where F(1) = 1 and F(2) = 2. (HARD)

10.G. G(n) = G(n/2) + G(n/4) + G(n/6) + G(n/12) + n [Hint: 1
2 +

1
4 +

1
6 +

1
12 = 1.] (HARD)

10.H. H(n) = n +
√

n · H(
√

n) (HARD)
10.I. I(n) = (n − 1)(I(n − 1) + I(n − 2)), where F(0) = F(1) = 1 (HARD)
10.J. J(n) = 8J(n − 1) − 15J(n − 2) + 1

11 Evaluate summations. (10 pts.)
Evaluate the following summations; simplify your answers as much as possible. Significant partial credit
will be given for answers in the form Θ( f (n)) for some recognizable function f (n).

11.A. (2 pts.)
n∑
i=1

i∑
j=1

i∑
k=j

1
i

(HARD)

11.B. (2 pts.)
n∑
i=1

i∑
j=1

i∑
k=j

1
j

11.C. (2 pts.)
n∑
i=1

i∑
j=1

i∑
k=j

1
k

11.D. (2 pts.)
n∑
i=1

i∑
j=1

j∑
k=1

1
k

11.E. (2 pts.)
n∑
i=1

i∑
j=1

j∑
k=1

1
j · k

12 Simplify binary formulas. This problem asks you to simplify some recursively defined boolean
formulas as much as possible. In each case, prove that your answer is correct. Each proof can be just a
few sentences long, but it must be a proof.

12.A. Suppose α0 = p, α1 = q, and αn = (αn−2 ∧ αn−1) for all n ≥ 2. Simplify αn as much as possible. [Hint:
What is α5?]

12.B. Suppose β0 = p, β1 = q, and βn = (βn−2 ⇔ βn−1) for all n ≥ 2. Simplify βn as much as possible. [Hint:
What is β5?]
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12.C. Suppose γ0 = p, γ1 = q, and γn = (γn−2 ⇒ γn−1) for all n ≥ 2. Simplify γn as much as possible. [Hint:
What is γ5?]

12.D. Suppose δ0 = p, δ1 = q, and δn = (δn−2 on δn−1) for all n ≥ 2, where on is some boolean function with
two arguments. Find a boolean function on such that δn = δm if and only if n − m is a multiple of 4.
[Hint: There is only one such function.]

38.3. Counting

13 Counting dominos

13.A. A domino is a 2 × 1 or 1 × 2 rectangle. How many different ways are there to completely fill a 2 × n
rectangle with n dominos? Set up a recurrence relation and give an exact closed-form solution.

13.B. A slab is a three-dimensional box with dimensions 1×2×2, 2×1×2, or 2×2×1. How many different
ways are there to fill a 2 × 2 × n box with n slabs? Set up a recurrence relation and give an exact
closed-form solution.

A 2 × 10 rectangle filled with ten dominos, and a 2 × 2 × 10 box filled with ten slabs.

38.4. O notation and friends

14 Sorting functions (20 pts.)
Sort the following 25 functions from asymptotically smallest to asymptotically largest, indicating ties if
there are any. You do not need to turn in proofs (in fact, please don’t turn in proofs), but you should do
them anyway just for practice.

n4.5 − (n − 1)4.5 n n2.1 lg∗(n/8) 1 + lg lg lg n

cos n + 2 lg(lg∗ n) (lg n)! (lg∗ n)lg n n5

lg∗ 222n 2lg n
√

ne
∑n

i=1 i
∑n

i=1 i2

n7/(2n) n3/(2 lg n) 12 + blg lg(n)c (lg(2 + n))lg n
(
1 + 1

154
)15n

n1/lg lg n nlg lg n lg(201) n n1/125 n(lg n)4

To simplify notation, write f (n) � g(n) to mean f (n) = o(g(n)) and f (n) ≡ g(n) to mean f (n) = Θ(g(n)). For
example, the functions n2, n,

(n
2
)
, n3 could be sorted either as n � n2 ≡

(n
2
)
� n3 or as n �

(n
2
)
≡ n2 � n3.

[Hint: When considering two functions f (·) and g(·) it is sometime useful to consider the functions ln f (·)
and ln g(·).]

15 Sorting functions II (20 pts.)
Sort the following 25 functions from asymptotically smallest to asymptotically largest, indicating ties if
there are any. You do not need to turn in proofs (in fact, please don’t turn in proofs), but you should do
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them anyway just for practice.

n5.5 − (n − 1)5.5 n n2.2 lg∗(n/7) 1 + lg lg n

cos n + 2 lg(lg∗ n) lg(n!) (lg∗ n)lg n n4

lg∗ 22n 2lg∗ n e
√
n ∑n

i=1
1
i

∑n
i=1

1
i2

n3/(2n) n3/(2 lg n) blg lg(n!)c (lg(7 + n))lg n
(
1 + 1

154
)154n

n1/lg lg n nlg lg n lg(200) n n1/1234 n(lg n)3

To simplify notation, write f (n) � g(n) to mean f (n) = o(g(n)) and f (n) ≡ g(n) to mean f (n) = Θ(g(n)). For
example, the functions n2, n,

(n
2
)
, n3 could be sorted either as n � n2 ≡

(n
2
)
� n3 or as n �

(n
2
)
≡ n2 � n3.

16 O notation revisited. (10 pts.)

16.A. Let fi(n) be a sequence of functions, such that for every i, fi(n) = o(
√

n) (namely, limn→∞
fi (n)√
n
= 0).

Let g(n) =
∑n

i=1 fi(n). Prove or disprove: g(n) = o(n3/2).
16.B. If f1(n) = O(g1(n)) and f2(n) = O(g2(n)). Prove or disprove:

• f1(n) + f2(n) = O(g1(n) + g2(n))
• f1(n) ∗ f2(n) = O(g1(n) ∗ g2(n))
• f1(n) f2(n) = O(g1(n)g2(n))

17 Some proofs required.

17.A. Prove that 2 dlg ne+ blg nc = Θ(n2).
17.B. Prove or disprove: 2 blg nc = Θ

(
2 dlg ne

)
.

17.C. Prove or disprove: 22blg lg nc
= Θ

(
22dlg lg ne ).

17.D. Prove or disprove: If f (n) = O(g(n)), then log( f (n)) = O(log(g(n))).
17.E. Prove or disprove: If f (n) = O(g(n)), then 2 f (n) = O(2g(n)).

(HARD)
17.F. Prove that logk n = o(n1/k) for any positive integer k.

38.5. Probability

18 Balls and boxes. (20 pts.) There are n balls (numbered from 1 to n) and n boxes (numbered from
1 to n). We put each ball in a randomly selected box.

18.A. (4 pts.) A box may contain more than one ball. Suppose X is the number on the box that has the
smallest number among all nonempty boxes. What is the expectation of X?

18.B. (4 pts.) What is the expected number of bins that have exactly one ball in them? (Hint: Com-
pute the probability of a specific bin to contain exactly one ball and then use some properties of
expectation.)

18.C. (8 pts.) We put the balls into the boxes in such a way that there is exactly one ball in each box. If
the number written on a ball is the same as the number written on the box containing the ball, we
say there is a match. What is the expected number of matches?

18.D. (4 pts.) What is the probability that there are exactly k matches? (1 ≤ k < n)

[Hint: If you have to appeal to “intuition” or “common sense”, your answers are probably wrong!]
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19 Idiotic Sort (20 pts.)
There is an array A with n unsorted distinct numbers in it. IdioticSort(A) sorts the array using an
iterative algorithm. In each iteration, it picks randomly (and uniformly) two indices i, j in the ranges
{1, . . . ,n}. Next, if A[min(i, j)] > A[max(i, j)] it swaps A[i] and A[ j]. The algorithm magically stop once
the array is sorted.

19.A. (5 pts.) Prove that after (at most) n! swaps performed by the algorithm, the array A is sorted.
19.B. (5 pts.) Prove that after at most (say) 6n3 swaps performed by the algorithm, the array A is sorted.

(There might be an easy solution, but I don’t see it.)
19.C. (5 pts.) Prove that if A is not sorted, than the probability for a swap in the next iteration is at least

≥ 2/n2.
19.D. (5 pts.) Prove that if A is not sorted, then the expected number of iterations till the next swap is

≤ n2/2. [Hint: use geometric random variable.]
19.E. (5 pts.) Prove that the expected number of iterations performed by the algorithm is O(n5). [Hint:

Use linearity of expectation.]

20 Random walk. (10 pts.)
A random walk is a walk on a graph G, generated by starting from a vertex v0 = v ∈ V(G), and in the i-th
stage, for i > 0, randomly selecting one of the neighbors of vi−1 and setting vi to be this vertex. A walk
v0, v1, . . . , vm is of length m.

20.A. For a vertex u ∈ V(G), let Pu(m, v) be the probability that a random walk of length m, starting from
u, visits v (i.e., vi = v for some i).
Prove that a graph G with n vertices is connected, if and only if, for any two vertices u, v ∈ V(G), we
have Pu(n − 1, v) > 0.

20.B. Prove that a graph G with n vertices is connected if and only if for any pair of vertices u, v ∈ V(G),
we have limm→∞ Pu(m, v) = 1.

21 Random Elections. (10 pts.)
You are in a shop trying to buy green tea. There n different types of green tea that you are considering:
T1, . . . ,Tn. You have a coin, and you decide to randomly choose one of them using random coin flips.
Because of the different prices of the different teas, you decide that you want to choose the ith tea with
probability pi (of course,

∑n
i=1 pi = 1).

Describe an algorithm that chooses a tea according to this distribution, using only coin flips. Compute
the expected number of coin flips your algorithm uses. (Your algorithm should minimize the number of
coin flips it uses, since if you flip coins too many times in the shop, you might be arrested.)

22 Runs? (10 pts.)
We toss a fair coin n times. What is the expected number of “runs”? Runs are consecutive tosses with
the same result. For example, the toss sequence HHHTTHTH has 5 runs.

23 A card game. Penn and Teller have a special deck of fifty-two cards, with no face cards and nothing
but clubs—the ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, . . . , 52 of clubs. (They’re big cards.) Penn shuffles
the deck until each of the 52! possible orderings of the cards is equally likely. He then takes cards one at
a time from the top of the deck and gives them to Teller, stopping as soon as he gives Teller the five of
clubs.

23.A. On average, how many cards does Penn give Teller?
23.B. On average, what is the smallest-numbered card that Penn gives Teller? (HARD)
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23.C. On average, what is the largest-numbered card that Penn gives Teller?

[Hint: Solve for an n-card deck and then set n = 52.] In each case, give exact answers and prove that they
are correct. If you have to appeal to “intuition” or “common sense”, your answers are probably wrong!

24 Alice and Bob Alice and Bob each have a fair n-sided die. Alice rolls her die once. Bob then repeatedly
throws his die until he rolls a number at least as big as the number Alice rolled. Each time Bob rolls, he
pays Alice $1. (For example, if Alice rolls a 5, and Bob rolls a 4, then a 3, then a 1, then a 5, the game
ends and Alice gets $4. If Alice rolls a 1, then no matter what Bob rolls, the game will end immediately,
and Alice will get $1.)
Exactly how much money does Alice expect to win at this game? Prove that your answer is correct. If
you have to appeal to ‘intuition’ or ‘common sense’, your answer is probably wrong!

38.6. Basic data-structures and algorithms

25 Storing temperatures. (10 pts.)
Describe a data structure that supports storing temperatures. The operations on the data structure are
as follows:

Insert(t, d) — Insert the temperature t that was measured on date d. Each temperature is a real
number between −100 and 150. For example, insert(22,”1/20/03”).

Average(d1, d2) report what is the average of all temperatures that were measured between date d1 and
date d2.

Each operation should take time O(log n), where n is the number of dates stored in the data structure.
You can assume that a date is just an integer which specifies the number of days since the first of January
1970.

26 Binary search tree modifications. (10 pts.)
Suppose we have a binary search tree. You perform a long sequence of operations on the binary tree
(insertion, deletions, searches, etc), and the maximum depth of the tree during those operations is at
most h.
Modify the binary search tree T so that it supports the following operations. Implementing some of
those operations would require you to modify the information stored in each node of the tree, and the
way insertions/deletions are being handled in the tree. For each of the following, describe separately the
changes made in detail, and the algorithms for answering those queries. (Note, that under the modified
version of the binary search tree, insertion and deletion should still take O(h) time, where h is the maximum
height of the tree during all the execution of the algorithm.)

26.A. (2 pts.) Find the smallest element stored in T in O(h) time.
26.B. (2 pts.) Given a query k, find the k-th smallest element stored in T in O(h) time.
26.C. (3 pts.) Given a query [a, b], find the number of elements stored in T with their values being in the

range [a, b], in O(h) time.
26.D. (3 pts.) Given a query [a, b], report (i.e., printout) all the elements stored in T in the range [a, b],

in O(h + u) time, where u is the number of elements printed out.

27 Euclid revisited. (10 pts.)
Prove that for any nonnegative parameters a and b, the following algorithms terminate and produce
identical output. Also, provide bounds on the running times of those algorithms. Can you imagine any
reason why WeirdEuclid would be preferable to FastEuclid?
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SlowEuclid(a, b) :
if b > a

return SlowEuclid(b,a)
else if b = 0

return a
else

return SlowEuclid(b,a − b)

FastEuclid(a, b) :
if b = 0

return a
else

return FastEuclid(b,a mod b)

WeirdEuclid(a, b) :
if b = 0

return a
if a = 0

return b
if a is even and b is even

return 2∗WeirdEuclid(a/2, b/2)
if a is even and b is odd

return WeirdEuclid(a/2, b)
if a is odd and b is even

return WeirdEuclid(a, b/2)
if b > a

return WeirdEuclid(b − a,a)
else

return WeirdEuclid(a − b, b)

28 This despicable sorting hat trick.
Every year, upon their arrival at Hogwarts School of Witchcraft and Wizardry, new students are sorted
into one of four houses (Gryffindor, Hufflepuff, Ravenclaw, or Slytherin) by the Hogwarts Sorting Hat.
The student puts the Hat on their head, and the Hat tells the student which house they will join. This
year, a failed experiment by Fred and George Weasley filled almost all of Hogwarts with sticky brown
goo, mere moments before the annual Sorting. As a result, the Sorting had to take place in the basement
hallways, where there was so little room to move that the students had to stand in a long line.
After everyone learned what house they were in, the students tried to group together by house, but there
was too little room in the hallway for more than one student to move at a time. Fortunately, the Sorting
Hat took CS Course many years ago, so it knew how to group the students as quickly as possible. What
method did the Sorting Hat use?

28.A. More formally, you are given an array of n items, where each item has one of four possible values,
possibly with a pointer to some additional data. Describe an algorithm¬ that rearranges the items
into four clusters in O(n) time using only O(1) extra space.

G H R R G G R G H H R S R R H G S H G G
Harry Ann Bob Tina Chad Bill Lisa Ekta Bart Jim John Jeff Liz Mary Dawn Nick Kim Fox Dana Melww�
G G G G G G G H H H H H R R R R R R S S

Harry Ekta Bill Chad Nick Mel Dana Fox Ann Jim Dawn Bart Lisa Tina John Bob Liz Mary Kim Jeff

28.B. Describe an algorithm for the case where there are k possible values (i.e., 1,2, . . . , k) that rearranges
the items using only O(log k) extra space. How fast is your algorithm? (A faster algorithm would
get more credit)

¬Since you’ve read the Homework Instructions, you know what the phrase ‘describe an algorithm’ means. Right?
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28.C. Describe a faster algorithm (if possible) for the case when O(k) extra space is allowed. How fast is
your algorithm?

28.D. (HARD)Provide a fast algorithm that uses only O(1) additional space for the case where there are
k possible values.

29 Snake or shake?
Suppose you have a pointer to the head of singly linked list. Normally, each node in the list only has
a pointer to the next element, and the last node’s pointer is Null. Unfortunately, your list might have
been corrupted by a bug in somebody else’s code, so that the last node has a pointer back to some other
node in the list instead.

Top: A standard linked list. Bottom: A corrupted linked list.

Describe an algorithm that determines whether the linked list is corrupted or not. Your algorithm must
not modify the list. For full credit, your algorithm should run in O(n) time, where n is the number of
nodes in the list, and use O(1) extra space (not counting the list itself).

38.7. General proof thingies

30 Cornification (20 pts.)
Cornification - Conversion into, or formation of, horn; a becoming like horn. Source: Webster’s Revised
Unabridged Dictionary.
During the sweetcorn festival in Urbana, you had been kidnapped by an extreme anti corn organization
called Al Corona. To punish you, they give you several sacks with a total of (n+1)n/2 cobs of corn in them,
and an infinite supply of empty sacks. Next, they ask you to play the following game: At every point in
time, you take a cob from every non-empty sack, and you put this set of cobs into a new sack. The game
terminates when you have n non-empty sacks, with the ith sack having i cobs in it, for i = 1, . . . ,n.
For example, if we started with {1,5} (i.e., one sack has 1 cob, the other 5), we would have the following
sequence of steps: {2,4}, {1,2,3} and the game ends.

30.A. (5 pts.) Prove that the game terminates if you start from a configuration where all the cobs are in
a single sack.

30.B. (5 pts.) Provide a bound, as tight as possible, on the number of steps in the game till it terminates
in the case where you start with a single sack.

30.C. (5 pts.) (hard) Prove that the game terminates if you start from an arbitrary configuration where
the cobs might be in several sacks.

30.D. (5 pts.) Provide a bound, as tight as possible, on the number of steps in the game till it terminates
in the general case.

31 Fibonacci numbers. Recall the standard recursive definition of the Fibonacci numbers: F0 = 0,
F1 = 1, and Fn = Fn−1 + Fn−2 for all n ≥ 2. Prove the following identities for all positive integers n and m.

After all, your code is always completely 100% bug-free. Isn’t that right, Mr. Gates?
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31.A. Fn is even if and only if n is divisible by 3.
31.B.

∑n
i=0 Fi = Fn+2 − 1

31.C. F2
n − Fn+1Fn−1 = (−1)n+1 (Really HARD)

31.D. If n is an integer multiple of m, then Fn is an integer multiple of Fm.

32 Some binomial identities.

32.A. Prove the following identity by induction:(
2n
n

)
=

n∑
k=0

(
n
k

) (
n

n − k

)
.

32.B. Give a non-inductive combinatorial proof of the same identity, by showing that the two sides of the
equation count exactly the same thing in two different ways. There is a correct one-sentence proof.

38.8. Miscellaneous

33 A walking ant. (HARD)An ant is walking along a rubber band, starting at the left end. Once every
second, the ant walks one inch to the right, and then you make the rubber band one inch longer by pulling
on the right end. The rubber band stretches uniformly, so stretching the rubber band also pulls the ant
to the right. The initial length of the rubber band is n inches, so after t seconds, the rubber band is n + t
inches long.

t=0

t=2

t=1

Every second, the ant walks an inch, and then the rubber band is stretched an inch longer.

33.A. How far has the ant moved after t seconds, as a function of n and t? Set up a recurrence and (for
full credit) give an exact closed-form solution. [Hint: What fraction of the rubber band’s length has
the ant walked?]

33.B. How long does it take the ant to get to the right end of the rubber band? For full credit, give an
answer of the form f (n) + Θ(1) for some explicit function f (n).
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Chapter 39

Exercises - NP Completeness

39.1. Equivalence of optimization and decision problems

1 Beware of Greeks bearing gifts (The expression “beware of Greeks bearing gifts” is Based on
Virgil’s Aeneid: “Quidquid id est, timeo Danaos et dona ferentes”, which means literally “Whatever it is,
I fear Greeks even when they bring gifts.”.)
The reduction faun, the brother of the Partition satyr, came to visit you on labor day, and left you with
two black boxes.

1.A. (10 pts.) The first black box, was a black box that can solves the following decision problem in
polynomial time:

Minimum Test Collection
Instance: A finite set A of “possible diagnoses,” a collection C of subsets of A, representing
binary “tests,” and a positive integer J ≤ |C |.
Question: Is there a subcollection C ′ ⊆ C with |C ′ | ≤ J such that, for every pair ai,aj of
possible diagnoses from A, there is some test c ∈ C ′ for which

��{ai,aj

}
∩ c

�� = 1 (that is, a
test c that “distinguishes” between ai and aj)?

Show how to use this black box, how to solve in polynomial time the optimization version of this
problem (i.e., finding and outputting the smallest possible set C ′).

1.B. (10 pts.)
The second box was a black box for solving
Subgraph Isomorphism.

Subgraph Isomorphism
Instance: Two graphs, G = (V1,E1) and H = (V2,E2).
Question: Does G contain a subgraph isomorphic to H, that is, a subset V ⊆ V1 and
a subset E ⊆ E1 such that |V | = |V2 |, |e| = |E2 |, and there exists a one-to-one function
f : V2 → V satisfying {u, v} ∈ E2 if and only if { f (u), f (v)} ∈ E?

Show how to use this black box, to compute the subgraph isomorphism (i.e., you are given G and H,
and you have to output f ) in polynomial time.

2 Partition The Partition satyr, the uncle of the deduction fairy, had visited you on winter break and gave
you, as a token of appreciation, a black-box that can solve Partition in polynomial time (note that this
black box solves the decision problem). Let S be a given set of n integer numbers. Describe a polynomial
time algorithm that computes, using the black box, a partition of S if such a solution exists. Namely, your
algorithm should output a subset T ⊆ S, such that∑

s∈T

s =
∑

s∈S\T

s.
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39.2. Showing problems are NP-Complete

3 Graph Isomorphism

3.A. (5 pts.) Show that the following problem is NP-Complete.

SUBGRAPH ISOMORPHISM
Instance: Graphs G = (V1,E1),H = (V2,E2).
Question: Does G contain a subgraph isomorphic to H, i.e., a subset V ⊆ V1 and a subset
E ⊆ E1 such that |V | = |V2 |, |E | = |E2 |, and there exists a one-to-one function f : V2 → V
satisfying {u, v} ∈ E2 if and only if { f (u), f (v)} ∈ E?

3.B. (5 pts.) Show that the following problem is NP-Complete.

LARGEST COMMON SUBGRAPH
Instance: Graphs G = (V1,E1),H = (V2,E2), positive integer K.
Question: Do there exists subsets E ′1 ⊆ E1 and E ′2 ⊆ E2 with |E ′1 | = |E

′
2 | ≥ K such that the

two subgraphs G′ = (V1,E ′1) and H ′ = (V2,E ′2) are isomorphic?

4 NP Completeness collection

4.A. (5 pts.)

MINIMUM SET COVER
Instance: Collection C of subsets of a finite set S and an integer k.
Question: Are there k sets S1, . . . ,Sk in C such that S ⊆ ∪ki=1Si?

4.B. (5 pts.)

BIN PACKING
Instance: Finite set U of items, a size s(u) ∈ ZZ+ for each u ∈ U, an integer bin capacity B,
and a positive integer K.
Question: Is there a partition of U int disjoint sets U1, . . . ,UK such that the sum of the
sizes of the items inside each Ui is B or less?

4.C. (5 pts.)

TILING
Instance: Finite set RECTS of rectangles and a rectangle R in the plane.
Question: Is there a way of placing the rectangles of RECTS inside R, so that no pair of
the rectangles intersect, and all the rectangles have their edges parallel of the edges of R?

4.D. (5 pts.)

HITTING SET
Instance: A collection C of subsets of a set S, a positive integer K.
Question: Does S contain a hitting set for C of size K or less, that is, a subset S′ ⊆ S with
|S′ | ≤ K and such that S′ contains at least one element from each subset in C.
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5 LONGEST-PATH Show that the problem of deciding whether an unweighted undirected graph has a
path of length greater than k is NP-Complete.

6 EXACT-COVER-BY-4-SETS The EXACT-COVER-BY-3-SETS problem is defines as the following:
given a finite set X with |X | = 3q and a collection C of 3-element subsets of X, does C contain an exact
cover for X, that is, a subcollection C ′ ⊆ C such that every element of X occurs in exactly one member of
C ′?

Given that EXACT-COVER-BY-3-SETS is NP-Complete, show that EXACT-COVER-BY-4-SETS is
also NP-Complete.

39.3. Solving special subcases of NP-Complete problems in polynomial
time

7 Subset Sum

Subset Sum
Instance: S - set of positive integers, t: - an integer number
Question: Is there a subset X ⊆ S such that∑

x∈X

x = t ?

Given an instance of Subset Sum, provide an algorithm that solves it in polynomial time in n, and M,
where M = maxs∈S s. Why this does not imply that P = NP?

8 2SAT Given an instance of 2SAT (this is a problem similar to 3SAT where every clause has at most two
variables), one can try to solve it by backtracking.

8.A. (1 pts.) Prove that if a formula F ′ is not satisfiable, and F is formed by adding clauses to F ′, then
the formula F is not satisfiable. (Duh?)
We refer to F ′ as a subformula of F.

8.B. (3 pts.) Given an assignment xi ← b to one of the variables of a 2SAT instance F (where b is either
0 or 1), describe a polynomial time algorithm that computes a subformula F ′ of F, such that (i)
F ′ does not have the variable xi in it, (ii) F ′ is a 2SAT formula, (iii) F ′ is satisfiable iff there is a
satisfying assignment for F with xi = b, and (iv) F ′ is a subformula of F.
How fast is your algorithm?

8.C. (6 pts.) Describe a polynomial time algorithm that solves the 2SAT problem (using (b)). How fast
is your algorithm?

9 2-CNF-SAT Prove that deciding satisfiability when all clauses have at most 2 literals is in P.

10 Hamiltonian Cycle Revisited Let Cn denote the cycle graph over n vertices (i.e., V(Cn) = {1, . . . ,n},
and E(Cn) = {{1,2} , {2,3} , . . . , {n − 1,n} {n,1}}). Let Ck

n denote the graph where {i, j} ∈ E(Ck
n ) iff i and j

are in distance at most k in Cn.
Let G be a graph, such that G is a subgraph of Ck

n , where k is a small constant. Describe a polynomial
time algorithm (in n) that outputs a Hamiltonian cycle if such a cycle exists in G. How fast is your
algorithm, as a function of n and k?

248



11 Partition revisited Let S be an instance of partition, such that n = |S |, and M = maxs∈S s. Show a
polynomial time (in n and M) algorithm that solves partition.

12 Why Mike can not get it. (10 pts.)

Not-3SAT
Instance: A 3CNF formula F
Question: Is F not satisfiable? (Namely, for all inputs for F, it evaluates to FALSE.)

12.A. Prove that Not-3SAT is co − NP.
12.B. Here is a proof that Not-3SAT is in NP: If the answer to the given instance is Yes, we provide the

following proof to the verifier: We list every possible assignment, and for each assignment, we list the
output (which is FALSE). Given this proof, of length L, the verifier can easily verify it in polynomial
time in L. QED.
What is wrong with this proof?

12.C. Show that given a black-box that can solves Not-3SAT, one can find the satisfying assignment of
a formula F in polynomial time, using polynomial number of calls to the black-box (if such an
assignment exists).

13 NP-Completeness Collection (20 pts.) Prove that the following problems are NP-Complete.

13.A.

MINIMUM SET COVER
Instance: Collection C of subsets of a finite set S and an integer k.
Question: Are there k sets S1, . . . ,Sk in C such that S ⊆ ∪ki=1Si?

13.B.

HITTING SET
Instance: A collection C of subsets of a set S, a positive integer K.
Question: Does S contain a hitting set for C of size K or less, that is, a subset S′ ⊆ S with
|S′ | ≤ K and such that S′ contains at least one element from each subset in C.

13.C.

Hamiltonian Path
Instance: Graph G = (V,E)
Question: Does G contains a Hamiltonian path? (Namely a path that visits all vertices of
G.)

13.D.

Max Degree Spanning Tree
Instance: Graph G = (V,E) and integer k
Question: Does G contains a spanning tree T where every node in T is of degree at most
k?

14 Independence (10 pts.) Let G = (V,E) be an undirected graph over n vertices. Assume that you are
given a numbering π : V → {1, . . . ,n} (i.e., every vertex have a unique number), such that for any edge
i j ∈ E, we have |π(i) − π( j)| ≤ 20.
Either prove that it is NP-Hard to find the largest independent set in G, or provide a polynomial time
algorithm.

15 Partition We already know the following problem is NP-Complete:
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SUBSET SUM
Instance: A finite set A and a “size” s(a) ∈ ZZ+ for each a ∈ A, an integer B.
Question: Is there a subset A′ ⊆ A such that

∑
a∈A′ s(a) = B?

Now let’s consider the following problem:

PARTITION
Instance: A finite set A and a “size” s(a) ∈ ZZ+ for each a ∈ A.
Question: Is there a subset A′ ⊆ A such that∑

a∈A′

s(a) =
∑

a∈A\A′

s(a)?

Show that PARTITION is NP-Complete.
16 Minimum Set Cover (15 pts.)

MINIMUM SET COVER
Instance: Collection C of subsets of a finite set S and an integer k.
Question: Are there k sets S1, . . . ,Sk in C such that S ⊆ ∪ki=1Si?

16.A. (5 pts.) Prove that MINIMUM SET COVER problem is NP-Complete
16.B. (5 pts.) Prove that the following problem is NP-Complete.

HITTING SET
Instance: A collection C of subsets of a set S, a positive integer K.
Question: Does S contain a hitting set for C of size K or less, that is, a subset S′ ⊆ S with
|S′ | ≤ K and such that S′ contains at least one element from each subset in C.

16.C. (5 pts.) Hitting set on the line
Given a set I of n intervals on the real line, show a O(n log n) time algorithm that computes the
smallest set of points X on the real line, such that for every interval I ∈ I there is a point p ∈ X,
such that p ∈ I.

17 Bin Packing

BIN PACKING
Instance: Finite set U of items, a size s(u) ∈ ZZ+ for each u ∈ U, an integer bin capacity B, and
a positive integer K.
Question: Is there a partition of U into disjoint sets U1, . . . ,UK such that the sum of the sizes
of the items inside each Ui is B or less?

17.A. (5 pts.) Show that the BIN PACKING problem is NP-Complete
17.B. (5 pts.) Show that the following problem is NP-Complete.
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TILING
Instance: Finite set RECTS of rectangles and a rectangle R in the plane.
Question: Is there a way of placing all the rectangles of RECTS inside R, so that no pair
of the rectangles intersect in their interior, and all the rectangles have their edges parallel
of the edges of R?

18 Knapsack

18.A. (5 pts.) Show that the following problem is NP-Complete.

KNAPSACK
Instance: A finite set U, a "size" s(u) ∈ ZZ+ and a "value" v(u) ∈ ZZ+ for each u ∈ U, a size
constraint B ∈ ZZ+, and a value goal K ∈ ZZ+.
Question: Is there a subset U ′ ⊆ U such that

∑
u∈U′ s(u) ≤ B and

∑
u∈U′ v(u) ≥ K.

18.B. (5 pts.) Show that the following problem is NP-Complete.

MULTIPROCESSOR SCHEDULING
Instance: A finite set A of "tasks", a "length" l(a) ∈ ZZ+ for each a ∈ A, a number m ∈ ZZ+
of "processors", and a "deadline" D ∈ ZZ+.
Question: Is there a partition A = A1

⋃
A2

⋃
· · ·

⋃
Am of A into m disjoint sets such that

max{
∑

a∈Ai
l(a) : 1 ≤ i ≤ m} ≤ D?

18.C. Scheduling with profits and deadlines
Suppose you have one machine and a set of n tasks a1,a2, ...,an. Each task aj has a processing time
tj , a profit pj , and a deadline dj . The machine can process only one task at a time, and task aj

must run uninterruptedly for tj consecutive time units to complete. If you complete task aj by its
deadline dj , you receive a profit pj . But you receive no profit if you complete it after its deadline.
As an optimization problem, you are given the processing times, profits and deadlines for a set of n
tasks, and you wish to find a schedule that completes all the tasks and returns the greatest amount
of profit.

18.C.i. (3 pts.) State this problem as a decision problem.
18.C.ii. (2 pts.) Show that the decision problem is NP-Complete.

19 Vertex Cover

VERTEX COVER
Instance: A graph G = (V,E) and a positive integer K ≤ |V |.
Question: Is there a vertex cover of size K or less for G, that is, a subset V ′ ⊆ V such that
|V ′ | ≤ K and for each edge {u, v} ∈ E, at least one of u and v belongs to V ′?

19.A. Show that VERTEX COVER is NP-Complete. Hint: Do a reduction from INDEPENDENT
SET to VERTEX COVER.

19.B. Show a polynomial approximation algorithm to the Vertex-Cover problem which is a factor 2
approximation of the optimal solution. Namely, your algorithm should output a set X ⊆ V , such
that X is a vertex cover, and |C | ≤ 2Kopt , where Kopt is the cardinality of the smallest vertex cover
of G.¬

¬It was very recently shown (I. Dinur and S. Safra. On the importance of being biased. Manuscript.
http://www.math.ias.edu/~iritd/mypapers/vc.pdf, 2001.) that doing better than 1.3600 approximation to VERTEX COVER
is NP-Hard. In your free time you can try and improve this constant. Good luck.
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19.C. Present a linear time algorithm that solves this problem for the case that G is a tree.
19.D. For a constant k, a graph G is k-separable, if there are k vertices of G, such that if we remove

them from G, each one of the remaining connected components has at most (2/3)n vertices, and
furthermore each one of those connected components is also k-separable. (More formally, a graph
G = (V,E) is k-separable, if for any subset of vertices S ⊆ V , there exists a subset M ⊆ S, such that
each connected component of GS\M has at most (2/3)|S | vertices, and |M | ≤ k.)
Show that given a graph G which is k-separable, one can compute the optimal VERTEX COVER
in nO(k) time.

20 Bin Packing

BIN PACKING
Instance: Finite set U of items, a size s(u) ∈ ZZ+ for each u ∈ U, an integer bin capacity B, and
a positive integer K.
Question: Is there a partition of U int disjoint sets U1, . . . ,UK such that the sum of the sizes
of the items inside each Ui is B or less?

20.A. Show that the BIN PACKING problem is NP-Complete
20.B. In the optimization variant of BIN PACKING one has to find the minimum number of bins needed

to contain all elements of U. Present an algorithm that is a factor two approximation to optimal
solution. Namely, it outputs a partition of U into M bins, such that the total size of each bin is at
most B, and M ≤ kopt , where kopt is the minimum number of bins of size B needed to store all the
given elements of U.

20.C. Assume that B is bounded by an integer constant m. Describe a polynomial algorithm that computes
the solution that uses the minimum number of bins to store all the elements.

20.D. Show that the following problem is NP-Complete.

TILING
Instance: Finite set RECTS of rectangles and a rectangle R in the plane.
Question: Is there a way of placing the rectangles of RECTS inside R, so that no pair of
the rectangles intersect, and all the rectangles have their edges parallel of the edges of R?

20.E. Assume that RECTS is a set of squares that can be arranged as to tile R completely. Present a
polynomial time algorithm that computes a subset T ⊆ RECTS, and a tiling of T , so that this
tiling of T covers, say, 10% of the area of R.

21 Minimum Set Cover

MINIMUM SET COVER
Instance: Collection C of subsets of a finite set S and an integer k.
Question: Are there k sets S1, . . . ,Sk in C such that S ⊆ ∪ki=1Si?

21.A. Prove that MINIMUM SET COVER problem is NP-Complete
21.B. The greedy approximation algorithm for MINIMUM SET COVER, works by taking the largest

set in X ∈ C, remove all all the elements of X from S and also from each subset of C. The algorithm
repeat this until all the elements of S are removed. Prove that the number of elements not covered
after kopt iterations is at most n/2, where kopt is the smallest number of sets of C needed to cover S,
and n = |S |.
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21.C. Prove the greedy algorithm is O(log n) factor optimal approximation.
21.D. Prove that the following problem is NP-Complete.

HITTING SET
Instance: A collection C of subsets of a set S, a positive integer K.
Question: Does S contain a hitting set for C of size K or less, that is, a subset S′ ⊆ S with
|S′ | ≤ K and such that S′ contains at least one element from each subset in C.

21.E. Given a set I of n intervals on the real line, show a O(n log n) time algorithm that computes the
smallest set of points X on the real line, such that for every interval I ∈ I there is a point p ∈ X,
such that p ∈ I.

22 k-Center

k-CENTER
Instance: A set P of n points in the plane, and an integer k and a radius r.
Question: Is there a cover of the points of P by k disks of radius (at most) r?

22.A. Describe an nO(k) time algorithm that solves this problem.
22.B. There is a very simple and natural algorithm that achieves a 2-approximation for this cover: First

it select an arbitrary point as a center (this point is going to be the center of one of the k covering
disks). Then it computes the point that it furthest away from the current set of centers as the
next center, and it continue in this fashion till it has k-points, which are the resulting centers. The
smallest k equal radius disks centered at those points are the required k disks.
Show an implementation of this approximation algorithm in O(nk) time.

22.C. Prove that that the above algorithm is a factor two approximation to the optimal cover. Namely,
the radius of the disks output ≤ 2ropt , where ropt is the smallest radius, so that we can find k-disks
that cover the point-set.

22.D. Provide an ε-approximation algorithm for this problem. Namely, given k and a set of points P in the
plane, your algorithm would output k-disks that cover the points and their radius is ≤ (1 + ε)ropt ,
where ropt is the minimum radius of such a cover of P.

22.E. Prove that dual problem r-DISK-COVER problem is NP-Hard. In this problem, given P and a
radius r, one should find the smallest number of disks of radius r that cover P.

22.F. Describe an approximation algorithm to the r-DISK COVER problem. Namely, given a point-set
P and a radius r, outputs k disks, so that the k disks cover P and are of radius r, and k = O(kopt ),
where kopt is the minimal number of disks needed to cover P by disks of radius r.

23 MAX 3SAT Consider the Problem MAX SAT.

MAX SAT
Instance: Set U of variables, a collection C of disjunctive clauses of literals where a literal is a
variable or a negated variable in U.
Question: Find an assignment that maximized the number of clauses of C that are being
satisfied.
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23.A. Prove that MAX SAT is NP-Hard.
23.B. Prove that if each clause has exactly three literals, and we randomly assign to the variables values 0

or 1, then the expected number of satisfied clauses is (7/8)M, where M = |C |.
23.C. Show that for any instance of MAX SAT, where each clause has exactly three different literals,

there exists an assignment that satisfies at least 7/8 of the clauses.
23.D. Let (U,C) be an instance of MAX SAT such that each clause has ≥ 10 · log n distinct variables, where

n is the number of clauses. Prove that there exists a satisfying assignment. Namely, there exists an
assignment that satisfy all the clauses of C.

24 Complexity

24.A. Prove that P ⊆ co-NP.
24.B. Show that if NP , co-NP, then every NP-Complete problem is not a member of co-NP.

25 3SUM Describe an algorithm that solves the following problem as quickly as possible: Given a set of n
numbers, does it contain three elements whose sum is zero? For example, your algorithm should answer
True for the set {−5,−17,7,−4,3,−2,4}, since −5+7+(−2) = 0, and False for the set {−6,7,−4,−13,−2,5,13}.

26 Polynomially equivalent. Consider the following pairs of problems:

(A) MIN SPANNING TREE and MAX SPANNING TREE.
(B) SHORTEST PATH and LONGEST PATH.
(C) TRAVELING SALESMAN PROBLEM and VACATION TOUR PROBLEM (the longest tour is sought).
(D) MIN CUT and MAX CUT (between s and t).
(E) EDGE COVER and VERTEX COVER.
(F) TRANSITIVE REDUCTION and MIN EQUIVALENT DIGRAPH.

(all of these seem dual or opposites, except the last, which are just two versions of minimal representation
of a graph).
Which of these pairs are polynomial time equivalent and which are not? Why?

27 PLANAR-3-COLOR Using 3COLORABLE, and the ‘gadget’ in figure below, prove that the problem
of deciding whether a planar graph can be 3-colored is NP-Complete. Hint: show that the gadget can
be 3-colored, and then replace any crossings in a planar embedding with the gadget appropriately.

Figure 39.1: Gadget for PLANAR-3-COLOR.

28 DEGREE-4-PLANAR-3-COLOR Using the previous result, and the ‘gadget’ in the figure below,
prove that the problem of deciding whether a planar graph with no vertex of degree greater than four can
be 3-colored is NP-Complete. Hint: show that you can replace any vertex with degree greater than 4
with a collection of gadgets connected in such a way that no degree is greater than four.
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Figure 39.2: Gadget for DEGREE-4-PLANAR-3-COLOR.

29 Primality and Complexity Prove that PRIMALITY (Given n, is n prime?) is in NP ∩ co-NP.
Hint: co-NP is easy (what’s a certificate for showing that a number is composite?). For NP, consider a
certificate involving primitive roots and recursively their primitive roots. Show that knowing this tree of
primitive roots can be checked to be correct and used to show that n is prime, and that this check takes
poly time.

30 Poly time subroutines can lead to exponential algorithms Show that an algorithm that makes
at most a constant number of calls to polynomial-time subroutines runs in polynomial time, but that a
polynomial number of calls to polynomial-time subroutines may result in an exponential-time algorithm.

31 Polynomial time Hmiltonian path

31.A. Prove that if G is an undirected bipartite graph with an odd number of vertices, then G is non-
hamiltonian. Give a polynomial time algorithm algorithm for finding a hamiltonian cycle in an
undirected bipartite graph or establishing that it does not exist.

31.B. Show that the hamiltonian-path problem can be solved in polynomial time on directed acyclic
graphs by giving an efficient algorithm for the problem.

31.C. Explain why the results in previous questions do not contradict the facts that both HAM-CYCLE
and HAM-PATH are NP-Complete problems.

32 (Really HARD)GRAPH-ISOMORPHISM Consider the problem of deciding whether one graph
is isomorphic to another.

32.A. Give a brute force algorithm to decide this.
32.B. Give a dynamic programming algorithm to decide this.
32.C. Give an efficient probabilistic algorithm to decide this.
32.D. Either prove that this problem is NP-Complete, give a poly time algorithm for it, or prove that

neither case occurs.

33 (t, k)-grids. (20 pts.)
A graph G is a (t, k)-grid if it vertices are

V(G) =
{
(i, j)

��� i = 1, . . . ,n/k, j = 1, . . . , k
}
,

and two vertices (x1, x2) and (y1, y2) can be connected only if |x1 − y1 | + |x2 − y2 | ≤ t. Here n is the number
of vertices of G.

33.A. (8 pts.) Present an efficient algorithm that computes a Vertex Cover of minimum size in a given
(t,1)-grid G (here you can assume that t is a constant).

33.B. (12 pts.) Let t and k be two constants.
Provide an algorithm (as fast as possible) that in polynomial time computes the maximum size
Independent Set for G. What is the running time of your algorithm (explicitly specify the dependency
on t and k)?
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34 Build the network. (20 pts.)
You had decided to immigrate to Norstrilia (never heard of it? Google for it), and you had discovered to
your horror that because of import laws the cities of Norstrilia are not even connected by a fast computer
network. You join the Roderick company which decided to connect the k major cities by a network. To
be as cheap as possible, your network is just going to be a spanning tree of these k cities, but you are
allowed to put additional vertices in your network in some other cities. For every pair of cities, you know
what is the price of laying a line connecting them. Your task is to compute the cheapest spanning tree
for those k cities.
Formally, you are given a complete graph G = (V,E) defined over n vertices. There is a (positive) weight
w(e) associated with each edges e ∈ E(G). Furthermore, you can assume that ∀i, j, k ∈ V you have
w(ik) ≤ w(i j) + w( j k) (i.e., the triangle inequality). Finally, you are given a set X ⊆ V of k vertices
of G. You need to compute the cheapest tree T , such that X ⊆ V(T), where the price of the tree T is
w(T) =

∑
e∈E(T ) w(e).

1
1

1

1.99

1.991.99

a

b

c

d
To see why this problem is interesting, and inherently different from the
minimum spanning tree problem, consider the graph on the right. The
optimal solution, if we have to connect the three round vertices (i.e., b, c, d),
is by taking the three middle edges ab,ad,ac (total price is 3). The naive
solution, would be to take bc and cd, but its cost is 3.98. Note that the
triangle inequality holds for the weights in this graph.

34.A. (5 pts.) Provide a nO(k) time algorithm for this problem.
34.B. (15 pts.) Provide an algorithm for this problem with running time O( f (k) · nc), where f (k) is a

function of k, and c is a constant independent of the value of k.

(Comments: This problem is NP-Hard, although a 2-approximation is
relatively easy. Problems that have running time like in (B) are referred to
as fixed parameter tractable, since their running time is polynomial for a fixed value of the parameters.)

Chapter 40

Exercises - Network Flow

This chapter include problems that are realted to network flow.

40.1. Network Flow

40.1.1. The good, the bad, and the middle.

(10 pts.)
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Suppose you’re looking at a flow network G with source s and sink t, and you want to be able to express
something like the following intuitive notion: Some nodes are clearly on the “source side” of the main bottlenecks;
some nodes are clearly on the “sink side” of the main bottlenecks; and some nodes are in the middle. However,
G can have many minimum cuts, so we have to be careful in how we try making this idea precise.

Here’s one way to divide the nodes of G into three categories of this sort.

• We say a node v is upstream if, for all minimum s-t cuts (A,B), we have v ∈ A – that is, v lies on the
source side of every minimum cut.

• We say a node v is downstream if, for all minimum s-t cuts (A,B), we have v ∈ B – that is, v lies on the
sink side of every minimum cut.

• We say a node v is central if it is neither upstream nor downstream; there is at least one minimum s-t cut
(A,B) for which v ∈ A, and at least one minimum s-t cut (A′,B′) for which v ∈ B′.

Give an algorithm that takes a flow network G and classifies each of its nodes as being upstream, downstream,
or central. The running time of your algorithm should be within a constant factor of the time required to
compute a single maximum flow.

40.1.2. Ad hoc networks

(20 pts.)
Ad hoc networks are made up of low-powered wireless devices, have been proposed for situations like natural

disasters in which the coordinators of a rescue effort might want to monitor conditions in a hard-to-reach area.
The idea is that a large collection of these wireless devices could be dropped into such an area from an airplane
and then configured into a functioning network.

Note that we’re talking about (a) relatively inexpensive devices that are (b) being dropped from an airplane
into (c) dangerous territory; and for the combination of reasons (a), (b), and (c), it becomes necessary to include
provisions for dealing with the failure of a reasonable number of the nodes.

We’d like it to be the case that if one of the devices v detects that it is in danger of failing, it should transmit
a representation of its current state to some other device in the network. Each device has a limited transmitting
range – say it can communicate with other devices that lie within d meters of it. Moreover, since we don’t
want it to try transmitting its state to a device that has already failed, we should include some redundancy: A
device v should have a set of k other devices that it can potentially contact, each within d meters of it. We’ll
call this a back-up set for device v.

1. Suppose you’re given a set of n wireless devices, with positions represented by an (x, y) coordinate pair for
each. Design an algorithm that determines whether it is possible to choose a back-up set for each device
(i.e., k other devices, each within d meters), with the further property that, for some parameter b, no
device appears in the back-up set of more than b other devices. The algorithm should output the back-up
sets themselves, provided they can be found.

2. The idea that, for each pair of devices v and w, there’s a strict dichotomy between being “in range” or “out
of range” is a simplified abstraction. More accurately, there’s a power decay function f (·) that specifies,
for a pair of devices at distance δ, the signal strength f (δ) that they’ll be able to achieve on their wireless
connection. (We’ll assume that f (δ) decreases with increasing δ.)
We might want to build this into our notion of back-up sets as follows: among the k devices in the back-up
set of v, there should be at least one that can be reached with very high signal strength, at least one other
that can be reached with moderately high signal strength, and so forth. More concretely, we have values
p1 ≥ p2 ≥ · · · ≥ pk , so that if the back-up set for v consists of devices at distances d1 ≤ d2 ≤ · · · ≤ dk , then
we should have f (dj) ≥ pj for each j.
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Give an algorithm that determines whether it is possible to choose a back-up set for each device subject
to this more detailed condition, still requiring that no device should appear in the back-up set of more
than b other devices. Again, the algorithm should output the back-up sets themselves, provided they can
be found.

40.1.3. Minimum Flow

(10 pts.)
Give a polynomial-time algorithm for the following minimization analogue of the Maximum-Flow Problem.

You are given a directed graph G = (V,E), with a source s ∈ V and sink t ∈ V , and numbers (capacities) `(v,w)
for each edge (v,w) ∈ E. We define a flow f , and the value of a flow, as usual, requiring that all nodes except
s and t satisfy flow conservation. However, the given numbers are lower bounds on edge flow – that is, they
require that f (v,w) ≥ `(v,w) for every edge (v,w) ∈ E, and there is no upper bound on flow values on edges.

1. Give a polynomial-time algorithm that finds a feasible flow of minimum possible values.

2. Prove an analogue of the Max-Flow Min-Cut Theorem for this problem (i.e., does min-flow = max-cut?).

40.1.4. Prove infeasibility.

You are trying to solve a circulation problem, but it is not feasible. The problem has demands, but no capacity
limits on the edges. More formally, there is a graph G = (V,E), and demands dv for each node v (satisfying∑

v∈V dv = 0), and the problem is to decide if there is a flow f such that f (e) ≥ 0 and f in(v) − f out (v) = dv for
all nodes v ∈ V . Note that this problem can be solved via the circulation algorithm from Section 7.7 by setting
ce = +∞ for all edges e ∈ E. (Alternately, it is enough to set ce to be an extremely large number for each edge
– say, larger than the total of all positive demands dv in the graph.)

You want to fix up the graph to make the problem feasible, so it would be very useful to know why the
problem is not feasible as it stands now. On a closer look, you see that there is a subset U of nodes such that
there is no edge into U, and yet

∑
v∈U dv > 0. You quickly realize that the existence of such a set immediately

implies that the flow cannot exist: The set U has a positive total demand, and so needs incoming flow, and yet
U has no edges into it. In trying to evaluate how far the problem is from being solvable, you wonder how big
the demand of a set with no incoming edges can be.

Give a polynomial-time algorithm to find a subset S ⊂ V of nodes such that there is no edge into S and for
which

∑
v∈S dv is as large as possible subject to this condition.

40.1.5. Cellphones and services.

Consider an assignment problem where we have a set of n stations that can provide service, and there is a set of
k requests for service. Say, for example, that the stations are cell towers and the requests are cell phones. Each
request can be served by a given set of stations. The problem so far can be represented by a bipartite graph G:
one side is the stations, the other the customers, and there is an edge (x, y) between customer x and station y

if customer x can be served from station y. Assume that each station can serve at most one customer. Using a
max-flow computation, we can decide whether or not all customers can be served, or can get an assignment of
a subset of customers to stations maximizing the number of served customers.

Here we consider a version of the problem with an addition complication: Each customer offers a different
amount of money for the service. Let U be the set of customers, and assume that customer x ∈ U is willing to
pay vx ≥ 0 for being served. Now the goal is to find a subset X ⊂ U maximizing

∑
x∈X vx such that there is an

assignment of the customers in X to stations.
Consider the following greedy approach. We process customers in order of decreasing value (breaking ties

arbitrarily). When considering customer x the algorithm will either “promise” service to x or reject x in the
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following greedy fashion. Let X be the set of customers that so far have been promised service. We add x to
the set X if and only if there is a way to assign X ∪ {x} to servers, and we reject x otherwise. Note that rejected
customers will not be considered later. (This is viewed as an advantage: If we need to reject a high-paying
customer, at least we can tell him/her early.) However, we do not assign accepting customers to servers in
a greedy fashion: we only fix the assignment after the set of accepted customers is fixed. Does this greedy
approach produce an optimal set of customers? Prove that it does, or provide a counterexample.

40.1.6. Follow the stars

(20 pts.)
Some friends of yours have grown tired of the game “Six Degrees of Kevin Bacon” (after all, they ask, isn’t

it just breadth-first search?) and decide to invent a game with a little more punch, algorithmically speaking.
Here’s how it works.

You start with a set X of n actresses and a set Y of n actors, and two players P0 and P1. Player P0 names
an actress x1 ∈ X, player P1 names an actor y1 who has appeared in a movie with x1, player P0 names an
actress x2 who has appeared in a movie with y1, and so on. Thus, P0 and P1 collectively generate a sequence
x1, y1, x2, y2, . . . such that each actor/actress in the sequence has costarred with the actress/actor immediately
preceding. A player Pi (i = 0,1) loses when it is Pi’s turn to move, and he/she cannot name a member of his/her
set who hasn’t been named before.

Suppose you are given a specific pair of such sets X and Y , with complete information on who has appeared in
a movie with whom. A strategy for Pi, in our setting, is an algorithm that takes a current sequence x1, y1, x2, y2, . . .
and generates a legal next move for Pi (assuming it’s Pi’s turn to move). Give a polynomial-time algorithm
that decides which of the two players can force a win, in a particular instance of this game.

40.1.7. Flooding

(10 pts.)
Network flow issues come up in dealing with natural disasters and other crises, since major unexpected

events often require the movement and evacuation of large numbers of people in a short amount of time.
Consider the following scenario. Due to large-scale flooding in a region, paramedics have identified a set of

n injured people distributed across the region who need to be rushed to hospitals. There are k hospitals in the
region, and each of the n people needs to be brought to a hospital that is within a half-hour’s driving time of
their current location (so different people will have different options for hospitals, depending on where they are
right now).

At the same time, one doesn’t want to overload any one of the hospitals by sending too many patients its
way. The paramedics are in touch by cell phone, and they want to collectively work out whether they can
choose a hospital for each of the injured people in such a way that the load on the hospitals is balanced: Each
hospital receives at most dn/ke people.

Give a polynomial-time algorithm that takes the given information about the people’s locations and deter-
mines whether this is possible.

40.1.8. Capacitation, yeh, yeh, yeh

Suppose you are given a directed graph G = (V,E), with a positive integer capacity ce on each edge e, a
designated source s ∈ V , and a designated sink t ∈ V . You are also given a maximum s-t flow in G, defined by a
flow value fe on each edge e. The flow { fe} is acyclic: There is no cycle in G on which all edges carry positive
flow.

Now suppose we pick a specific edge e∗ ∈ E and reduce its capacity by 1 unit. Show how to find a maximum
flow in the resulting capacitated graph in time O(m + n), where m is the number of edges in G and n is the
number of nodes.
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40.1.9. Fast Friends

(20 pts.)
Your friends have written a very fast piece of maximum-flow code based on repeatedly finding augmenting

paths as in the course lecture notes. However, after you’ve looked at a bit of output from it, you realize that it’s
not always finding a flow of maximum value. The bug turns out to be pretty easy to find; your friends hadn’t
really gotten into the whole backward-edge thing when writing the code, and so their implementation builds a
variant of the residual graph that only includes the forwards edges. In other words, it searches for s-t paths in a
graph G̃ f consisting only of edges of e for which f (e) < ce, and it terminates when there is no augmenting path
consisting entirely of such edges. We’ll call this the Forward-Edge-Only Algorithm. (Note that we do not try
ot prescribe how this algorithms chooses its forward-edge paths; it may choose them in any fashion it wants,
provided that it terminates only when there are no forward-edge paths.)

It’s hard to convince your friends they need to reimplement the code. In addition to its blazing speed, they
claim, in fact, that it never returns a flow whose value is less than a fixed fraction of optimal. Do you believe
this? The crux of their claim can be made precise in the following statement.

“There is an absolute constant b > 1 (independent of the particular input flow network), so that on every
instance of the Maximum-Flow Problem, the Forward-Edge-Only Algorithm is guaranteed to find a flow of value
at least 1/b times the maximum-flow value (regardless of how it chooses its forward-edge paths).

Decide whether you think this statement is true or false, and give a proof of either the statement or its
negation.

40.1.10. Even More Capacitation

(10 pts.)
In a standard s − t Maximum-Flow Problem, we assume edges have capacities, and there is no limit on how

much flow is allowed to pass through a node. In this problem, we consider the variant of the Maximum-Flow
and Minimum-Cut problems with node capacities.

Let G = (V,E) be a directed graph, with source s ∈ V , sink t ∈ V , and nonnegative node capacities {cv ≥ 0}
for each v ∈ V . Given a flow f in this graph, the flow through a node v is defined as f in(v). We say that a flow
is feasible if it satisfies the usual flow-conservation constraints and the node-capacity constraints: f in(v) ≤ cv
for all nodes.

Give a polynomial-time algorithm to find an s-t maximum flow in such a node-capacitated network. Define
an s-t cut for node-capacitated networks, and show that the analogue of the Max-Flow Min-Cut Theorem holds
true.

40.1.11. Matrices

(10 pts.)
Let M be an n × n matrix with each entry equal to either 0 or 1. Let mi j denote the entry in row i and

column j. A diagonal entry is one of the form mii for some i.
Swapping rows i and j of the matrix M denotes the following action: we swap the values of mik and mjk ,

for k = 1, . . . ,n. Swapping two columns is defined analogously.
We say that M is rearrangeable if it is possible to swap some of the pairs of rows and some of the pairs of

columns (in nay sequence) so that after all the swapping, all the diagonal entries of M are equal to 1.

1. (2 pts.) Give an example of a matrix M that is not rearrangeable, but for which at least one entry in
each row and each column is equal to 1.

2. (8 pts.) Give a polynomial-time algorithm that determines whether a matrix M with 0-1 entries is
rearrangeable.
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40.1.12. Unique Cut

(10 pts.)
Let G = (V,E) be a directed graph, with source s ∈ V , sink t ∈ V , and nonnegative edge capacities {ce}.

Give a polynomial-time algorithm to decide whether G has a unique minimum s-t cut (i.e., an s-t of capacity
strictly less than that of all other s-t cuts).

40.1.13. Transitivity

(10 pts.)
Given a graph G = (V,E), and a natural number k, we can define a relation G,k

−−−→ on pairs of vertices of G as
follows. If x, y ∈ V , we say that x

G,k
−−−→ y if there exist k mutually edge-disjoint paths from x to y in G.

Is it true that for every G and every k ≥ 0, the relation G,k
−−−→ is transitive? That is, is it always the case that

if x
G,k
−−−→ y and y

G,k
−−−→ z, then we have x

G,k
−−−→ z? Give a proof or a counterexample.

40.1.14. Census Rounding

(20 pts.)
You are consulting for an environmental statistics firm. They collect statistics and publish the collected data

in a book. The statistics are about populations of different regions in the world and are recorded in multiples
of one million. Examples of such statistics would look like the following table.

Country A B C Total
grown-up men 11.998 9.083 2.919 24.000
grown-up women 12.983 10.872 3.145 27.000
children 1.019 2.045 0.936 4.000
total 26.000 22.000 7.000 55.000

We will assume here for simplicity that our data is such that all row and column sums are integers. The
Census Rounding Problem is to round all data to integers without changing any row or column sum. Each
fractional number can be rounded either up or down. For example, a good rounding for our table data would
be as follows.

Country A B C Total
grown-up men 11.000 10.000 3.000 24.000
grown-up women 13.000 10.000 4.000 27.000
children 1.000 2.000 0.000 4.000
total 26.000 22.000 7.000 55.000

1. (5 pts.) Consider first the special case when all data are between 0 and 1. So you have a matrix of
fractional numbers between 0 and 1, and your problem is to round each fraction that is between 0 and 1
to either 0 or 1 without changing the row or column sums. Use a flow computation to check if the desired
rounding is possible.

2. (5 pts.) Consider the Census Rounding Problem as defined above, where row and column sums are
integers, and you want to round each fractional number α to either bαc or dαe. Use a flow computation
to check if the desired rounding is possible.

3. (10 pts.) Prove that the rounding we are looking for in (a) and (b) always exists.
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40.1.15. Edge Connectivity

(20 pts.)
The edge connectivity of an undirected graph is the minimum number k of edges that must be removed to

disconnect the graph. For example, the edge connectivity of a tree is 1, and the edge connectivity of a cyclic
chain of vertices is 2. Show how the edge connectivity of an undirected graph G = (V,E) can be determined by
running a maximum-flow algorithm on at most |V | flow networks, each having O(V) vertices and O(E) edges.

40.1.16. Maximum Flow By Scaling

(20 pts.)
Let G = (V,E) be a flow network with source s, sink t, and an integer capacity c(u, v) on each edge (u, v) ∈ E.

Let C = max(u,v)∈Ec(u, v).

1. (2 pts.) Argue that a minimum cut of G has capacity at most C |E |.

2. (5 pts.) For a given number K, show that an augmenting path of capacity at least K can be found in
O(E) time, if such a path exists.
The following modification of Ford-Fulkerson-Method can be used to compute a maximum flow in
G.

Max-Flow-By-Scaling(G, s, t)
1 C ← max(u,v)∈Ec(u, v)
2 initialize flow f to 0
3 K ← 2 blgC c
4 while K ≥ 1 do {
5 while (there exists an augmenting path p of

capacity at least K) do {
6 augment flow f along p

}
7 K ← K/2

}

8 return f

3. (3 pts.) Argue that Max-Flow-By-Scaling returns a maximum flow.

4. (4 pts.) Show that the capacity of a minimum cut of the residual graph G f is at most 2K |E | each time
line 4 is executed.

5. (4 pts.) Argue that the inner while loop of lines 5-6 is executed O(E) times for each value of K.

6. (2 pts.) Conclude that Max-Flow-By-Scaling can be implemented so that it runs in O(E2 lg C) time.

40.1.17. Perfect Matching

(20 pts.)
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1. (10 pts.) A perfect matching is a matching in which every vertex is matched. Let G = (V,E) be an
undirected bipartite graph with vertex partition V = L ∪ R, where |L | = |R|. For any X ⊆ V , define the
neighborhood of X as

N(X) =
{
y ∈ V

��� (x, y) ∈ E for some x ∈ X
}
,

that is, the set of vertices adjacent to some member of X. Prove Hall’s theorem: there exists a perfect
matching in G if and only if |A| ≤ |N(A)| for every subset A ⊆ L.

2. (10 pts.) We say that a bipartite graph G = (V,E), where V = L ∪ R, is d-regular if every vertex v ∈ V
has degree exactly d. Every d-regular bipartite graph has |L | = |R|. Prove that every d-regular bipartite
graph has a matching of cardinality |L | by arguing that a minimum cut of the corresponding flow network
has capacity |L |.

40.1.18. Number of augmenting paths

1. (10 pts.) Show that a maximum flow in a network G = (V,E) can always be found by a sequence of at
most |E | augmenting paths. [Hint: Determine the paths after finding the maximum flow.]

2. (10 pts.) Suppose that a flow network G = (V,E) has symmetric edges, that is, (u, v) ∈ E if and only
(v,u) ∈ E. Show that the Edmonds-Karp algorithm terminates after at most |V | |E |/4 iterations. [Hint:
For any edge (u,v), consider how both δ(s,u) and δ(v, t) change between times at which (u, v) is critical.]

40.1.19. Minimum Cut Festival

(20 pts.)

1. Given a multigraph G(V,E), show that an edge can be selected uniform at random from E in time O(n),
given access to a source of random bits.

2. For any α ≥ 1, define an α approximate cut in a multigraph G as any cut whose cardinality is within
a multiplicative factor α of the cardinality of the min-cut in G. Determine the probability that a single
iteration of the randomized algorithm for cuts will produce as output some α-approximate cut in G.

3. Using the analysis of the randomized min-cut algorithm, show that the number of distinct min-cuts in a
multigraph G cannot exceed n(n − 1)/2, where n is the number of vertices in G.

4. Formulate and prove a similar result of the number of α -approximate cuts in a multigraph G.

40.1.20. Independence Matrix

(10 pts.)
Consider a 0 − 1 matrix H with n1 rows and n2 columns. We refer to a row or a column of the matrix H as

a line. We say that a set of 1’s in the matrix H is independent if no two of them appear in the same line. We
also say that a set of lines in the matrix is a cover of H if they include (i.e., “cover”) all the 1’s in the matrix.
Using the max-flow min-cut theorem on an appropriately defined network, show that the maximum number of
independent 1’s equals the minimum number of lines in the cover.
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40.1.21. Scalar Flow Product

(10 pts.)
Let f be a flow in a network, and let α be a real number. The scalar flow product, denoted by α f , is a

function from V × V to R defined by
(α f )(u, v) = α · f (u, v).

Prove that the flows in a network form a convex set. That is, show that if f1 and f2 are flows, then so is
α f1 + (1 − α) f2 for all α in the range 0 ≤ α ≤ 1.

40.1.22. Go to school!

Professor Adam has two children who, unfortunately, dislike each other. The problem is so severe that not only
they refuse to walk to school together, but in fact each one refuses to walk on any block that the other child
has stepped on that day. The children have no problem with their paths crossing at a corner. Fortunately both
the professor’s house and the school are on corners, but beyond that he is not sure if it is going to be possible
to send both of his children to the same school. The professor has a map of his town. Show how to formulate
the problem of determining if both his children can go to the same school as a maximum-flow problem.

40.1.23. The Hopcroft-Karp Bipartite Matching Algorithm

(20 pts.)
In this problem, we describe a faster algorithm, due to Hopcroft and Karp, for finding a maximum matching

in a bipartite graph. The algorithm runs in O(
√

VE) time. Given an undirected, bipartite graph G = (V,E),
where V = L ∪ R and all edges have exactly one endpoint in L, let M be a matching in G. We say that a simple
path P in G is an augmenting path with respect to M if it starts at an unmatched vertex in L, ends at an
unmatched vertex in R, and its edges belong alternatively to M and E − M. (This definition of an augmenting
path is related to, but different from, an augmenting path in a flow network.) In this problem, we treat a path
as a sequence of edges, rather than as a sequence of vertices. A shortest augmenting path with respect to a
matching M is an augmenting path with a minimum number of edges.

Given two sets A and B, the symmetric difference A ⊕ B is defined as (A− B) ∪ (B − A), that is, the elements
that are in exactly one of the two sets.

1. (4 pts.) Show that if M is a matching and P is an augmenting path with respect to M, then the symmetric
difference M ⊕ P is a matching and |M ⊕ P | = |M | + 1. Show that if P1, P2, ..., Pk are vertex-disjoint
augmenting paths with respect to M, then the symmetric difference M ⊕ (P1 ∪ P2 ∪ ... ∪ Pk) is a matching
with cardinality |M | + k.
The general structure of our algorithm is the following:

Hopcroft-Karp(G)
1 M ← ∅
2 repeat
3 let P← {P1,P2, ...,Pk} be a maximum set of

vertex-disjoint shortest augmenting paths
with respect to M

4 M ← M ⊕ (P1 ∪ P2 ∪ . . . ∪ Pk)

5 until P = ∅

6 return M

The remainder of this problem asks you to analyze the number of iterations in the algorithm (that is, the
number of iterations in the repeat loop) and to describe an implementation of line 3.
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2. (4 pts.) Given two matchings M and M∗ in G, show that every vertex in the graph G′ = (V,M ⊕ M∗)
has degree at most 2. Conclude that G′ is a disjoint union of simple paths or cycles. Argue that edges in
each such simple path or cycle belong alternatively to M or M∗. Prove that if |M | ≤ |M∗ |, then M ⊕ M∗

contains at least |M∗ | − |M | vertex-disjoint augmenting paths with respect to M.
Let l be the length of a shortest augmenting path with respect to a matching M, and let P1, P2, ...,
Pk be a maximum set of vertex-disjoint augmenting paths of length l with respect to M. Let M ′ =
M ⊕ (P1 ∪ P2 ∪ ... ∪ Pk), and suppose that P is a shortest augmenting path with respect to M ′.

3. (2 pts.) Show that if P is vertex-disjoint from P1, P2, ..., Pk , then P has more than l edges.

4. (2 pts.) Now suppose P is not vertex-disjoint from P1, P2, ..., Pk . Let A be the set of edges (M ⊕M ′) ⊕ P.
Show that A = (P1 ∪ P2 ∪ ... ∪ Pk) ⊕ P and that |A| ≥ (k + 1)l. Conclude that P has more than l edges.

5. (2 pts.) Prove that if a shortest augmenting path for M has length l, the size of the maximum matching
is at most |M | + |V |/l.

6. (2 pts.) Show that the number of repeat loop iterations in the algorithm is at most 2
√

V . [Hint: By
how much can M grow after iteration number

√
V?]

7. (4 pts.) Give an algorithm that runs in O(E) time to find a maximum set of vertex-disjoint shortest
augmenting paths P1, P2, ..., Pk for a given matching M. Conclude that the total running time of
Hopcroft-Karp is O(

√
VE).

40.2. Min Cost Flow

40.2.1. Streaming TV.

(20 pts.)
You are given a directed graph G, a source vertex s (i.e., a server in the internet), and a set T of vertices (i.e.,

consumers computers). We would like to broadcast as many TV programs from the server to the customers
simultaneously. A single broadcast is a path from the server to one of the customers. The constraint is that no
edge or vertex (except from the server) can have two streams going through them.

1 (10 pts.) Provide a polynomial time algorithm that computes the largest number of paths that can be
streamed from the server.

2 (10 pts.) Let k be the number of paths computed in (A). Present an algorithm, that in polynomial time,
computes a set of k such paths (one end point in the server, the other endpoint is in T) with minimum
number of edges.

40.2.2. Transportation Problem.

(20 pts.)
Let G be a digraph with n vertices and m edges.
In the transportation problem, you are given a set X of x vertices in a graph G, for every vertex v ∈ X there

is a quantity qx > 0 of material available at v. Similarly, there is a set of vertices Y , with associated capacities
cy with each vertex y ∈ Y . Furthermore, every edge of G has an associated distance with it.

The work involved in transporting α units of material on an edge e of length ` is α ∗ `. The problem is
to move all the material available in X to the vertices of Y , without violating the capacity constraints of the
vertices, while minimizing the overall work involved.

Provide a polynomial time algorithm for this problem. How fast is your algorithm?
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40.2.3. Edge Connectivity

(20 pts.)
The edge connectivity of an undirected graph is the minimum number k of edges that must be removed to

disconnect the graph. For example, the edge connectivity of a tree is 1, and the edge connectivity of a cyclic
chain of vertices is 2. Show how the edge connectivity of an undirected graph G = (V,E) can be determined by
running a maximum-flow algorithm on at most |V | flow networks, each having O(V) vertices and O(E) edges.

40.2.4. Perfect Matching

(20 pts.)

1. (10 pts.) A perfect matching is a matching in which every vertex is matched. Let G = (V,E) be an
undirected bipartite graph with vertex partition V = L ∪ R, where |L | = |R|. For any X ⊆ V , define the
neighborhood of X as

N(X) =
{
y ∈ V

��� (x, y) ∈ E for some x ∈ X
}
,

that is, the set of vertices adjacent to some member of X. Prove Hall’s theorem: there exists a perfect
matching in G if and only if |A| ≤ |N(A)| for every subset A ⊆ L.

2. (10 pts.) We say that a bipartite graph G = (V,E), where V = L ∪ R, is d-regular if every vertex v ∈ V
has degree exactly d. Every d-regular bipartite graph has |L | = |R|. Prove that every d-regular bipartite
graph has a matching of cardinality |L | by arguing that a minimum cut of the corresponding flow network
has capacity |L |.

40.2.5. Max flow by augmenting

1. (10 pts.) Show that a maximum flow in a network G = (V,E) can always be found by a sequence of at
most |E | augmenting paths. [Hint: Determine the paths after finding the maximum flow.]

2. (10 pts.) Suppose that a flow network G = (V,E) has symmetric edges, that is, (u, v) ∈ E if and only
(v,u) ∈ E. Show that the Edmonds-Karp algorithm terminates after at most |V | |E |/4 iterations. [Hint:
For any edge (u, v), consider how both δ(s,u) and δ(v, t) change between times at which (u, v) is critical.]

40.2.6. And now for something completely different.

(10 pts.)
Prove that the following problems are NPC or provide a polynomial time algorithm to solve them:

1. Given a directly graph G, and two vertices u, v ∈ V(G), find the maximum number of edge disjoint paths
between u and v.

2. Given a directly graph G, and two vertices u, v ∈ V(G), find the maximum number of vertex disjoint paths
between u and v (the paths are disjoint in their vertices, except of course, for the vertices u and v).

40.2.7. Minimum Cut

(10 pts.)
Present a deterministic algorithm, such that given an undirected graph G, it computes the minimum cut in

G. How fast is your algorithm? How does your algorithm compares with the randomized algorithm shown in
class?
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Chapter 41

Exercises - Miscellaneous

41.1. Data structures

1 Furthest Neighbor (20 pts.)
Let P = {p1, . . . , pn} be a set of n points in the plane.

1.A. (10 pts.) A partition P = (S,T) of P is a decomposition of P into two sets S,T ⊆ P, such that
P = S ∪ T , and S ∩ T = ∅.
Describe a deterministic¬ algorithm to compute m = O(log n) partitions P1, . . . ,Pm of P, such that
for any pair of distinct points p,q ∈ P, there exists a partition Pi = (Si,Ti), where 1 ≤ i ≤ m, such
that p ∈ Si and q ∈ Ti or vice versa (i.e., p ∈ Ti and q ∈ Si). The running time of your algorithm
should be O(n log n).

1.B. (10 pts.) Assume that you are given a black-box B, such that given a set of points Q in the plane,
one can compute in O(|Q | log |Q |) time, a data-structure X, such that given any query point w in the
plane, one can compute, in O(log |Q |) time, using the data-structure, the furthest point in Q from w

(i.e., this is the point in Q with largest distance from w). To make things interesting, assume that if
w ∈ Q, then the data-structure does not work.
Describe an algorithm that uses B, and such that computes, in O(n log2 n) time, for every point p ∈ P,
its furthest neighbor fp in P \ {p}.

2 Free lunch. (10 pts.)

2.A. (3 pts.) Provide a detailed description of the procedure that computes the longest ascending subse-
quence in a given sequence of n numbers. The procedure should use only arrays, and should output
together with the length of the subsequence, the subsequence itself.

2.B. (4 pts.) Provide a data-structure, that store pairs (ai, bi) of numbers, such that an insertion/deletion
operation takes O(log n) time, where n is the total number of elements inserted. And furthermore,
given a query interval [α, β], it can output in O(log n) time, the pair realizing

max
(ai ,bi )∈S,ai ∈[α,β]

bi,

where S is the current set of pairs.
2.C. (3 pts.) Using (b), describe an O(n log n) time algorithm for computing the longest ascending

subsequence given a sequence of n numbers.

41.2. Divide and Conqueror

3 Divide-and-Conquer Multiplication
¬There is a very nice and simple randomized algorithm for this problem, you can think about it if you are interested.
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3.A. (5 pts.) Show how to multiply two linear polynomials ax + b and cx + d using only three multipli-
cations. (Hint: One of the multiplications is (a + b) · (c + d).)

3.B. (5 pts.) Give two divide-and-conquer algorithms for multiplying two polynomials of degree-bound
n that run in time Θ(nlg 3). The first algorithm should divide the input polynomial coefficients into
a high half and a low half, and the second algorithm should divide them according to whether their
index is odd or even.

3.C. (5 pts.) Show that two n-bit integers can be multiplied in O(nlg 3) steps, where each step operates
on at most a constant number of 1-bit values.

41.3. Fast Fourier Transform

4 3sum Consider two sets A and B, each having n integers in the range from 0 to 10n. We wish to compute
the Cartesian sum of A and B, defined by

C = {x + y : x ∈ A and y ∈ B}.

Note that the integers in C are in the range from 0 to 20n. We want to find the elements of C and the
number of times each element of C is realized as a sum of elements in A and B. Show that the problem
can be solved in O(n lg n) time. (Hint: Represent A and B as polynomials of degree at most 10n.)

5 Common subsequence Given two sequences, a1, . . . ,an and b1, . . . , bm of real numbers, We want to
determine whether there is an i ≥ 0, such that b1 = ai+1, b2 = ai+2, . . . , bm = ai+m. Show how to solve this
problem in O(n log n) time with high probability.

6 Computing Polynomials Quickly In the following, assume that given two polynomials p(x),q(x)
of degree at most n, one can compute the polynomial remainder of p(x) mod q(x) in O(n log n) time. The
remainder of r(x) = p(x) mod q(x) is the unique polynomial of degree smaller than this of q(x), such
that p(x) = q(x) ∗ d(x) + r(x), where d(x) is a polynomial.
Let p(x) =

∑n−1
i=0 aixi be a given polynomial.

6.A. (4 pts.) Prove that p(x) mod (x − z) = p(z), for all z.
6.B. (4 pts.) We want to evaluate p(·) on the points x0, x1, . . . , xn−1. Let

Pi j(x) =
j∏

k=i

(x − xk)

and
Qi j(x) = p(x) mod Pi j(x).

Observe that the degree of Qi j is at most j − i.
Prove that, for all x, Qkk(x) = p(xk) and Q0,n−1(x) = p(x).

6.C. (4 pts.) Prove that for i ≤ k ≤ j, we have

∀x Qik(x) = Qi j(x) mod Pik(x)

and
∀x Qk j(x) = Qi j(x) mod Pk j(x).

6.D. (8 pts.) Given an O(n log2 n) time algorithm to evaluate p(x0), . . . , p(xn−1). Here x0, . . . , xn−1 are n
given real numbers.
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41.4. Union-Find

7 Linear time Union-Find, (20 pts.)

7.A. (2 pts.) With path compression and union by rank, during the lifetime of a Union-Find data-
structure, how many elements would have rank equal to blg n − 5c, where there are n elements stored
in the data-structure?

7.B. (2 pts.) Same question, for rank b(lg n)/2c.
7.C. (4 pts.) Prove that in a set of n elements, a sequence of n consecutive Find operations take O(n)

time in total.
7.D. (2 pts.)

Write a non-recursive version of Find with path compression.
7.E. (6 pts.) Show that any sequence of m MakeSet, Find, and Union operations, where all the Union

operations appear before any of the Find operations, takes only O(m) time if both path compression
and union by rank are used.

7.F. (4 pts.) What happens in the same situation if only the path compression is used?

8 Off-line Minimum (20 pts.)
The off-line minimum problem asks us to maintain a dynamic set T of elements from the domain {1,2, . . . ,n}
under the operations Insert and Extract-Min. We are given a sequence S of n Insert and m Extract-
Min calls, where each key in {1,2, . . . ,n} is inserted exactly once. We wish to determine which key is
returned by each Extract-Min call. Specifically, we wish to fill in an array extracted[1 . . .m], where for
i = 1,2, . . . ,m, extracted[i] is the key returned by the ith Extract-Min call. The problem is “off-line”
in the sense that we are allowed to process the entire sequence S before determining any of the returned
keys.

8.A. (4 pts.)
In the following instance of the off-line minimum problem, each Insert is represented by a number
and each Extract-Min is represented by the letter E:

4,8,E,3,E,9,2,6,E,E,E,1,7,E,5.

Fill in the correct values in the extracted array.
8.B. (8 pts.)

To develop an algorithm for this problem, we break the sequence S into homogeneous subsequences.
That is, we represent S by
I1,E, I2,E, I3, . . . , Im,E, Im+1,

where each E represents a single Extract-Min call and each Ij represents a (possibly empty)
sequence of Insert calls. For each subsequence Ij , we initially place the keys inserted by these
operations into a set Kj , which is empty if Ij is empty. We then do the following.

Off-Line-Minimum(m,n)
1 for i ← 1 to n
2 do determine j such that i ∈ Kj

3 if j , m + 1
4 then extracted[ j] ← i
5 let l be the smallest value greater than j for which set Kl exists
6 Kl ← Kj ∪ Kl, destroying Kj

7 return extracted
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Argue that the array extracted returned by Off-Line-Minimum is correct.
8.C. (8 pts.)

Describe how to implement Off-Line-Minimum efficiently with a disjoint-set data structure. Give
a tight bound on the worst-case running time of your implementation.

9 Tarjan’s Off-Line Least-Common-Ancestors Algorithm (20 pts.)
The least common ancestor of two nodes u and v in a rooted tree T is the node w that is an ancestor of
both u and v and that has the greatest depth in T . In the off-line least-common-ancestors problem, we
are given a rooted tree T and an arbitrary set P = {{u, v}} of unordered pairs of nodes in T , and we wish
to determine the least common ancestor of each pair in P.
To solve the off-line least-common-ancestors problem, the following procedure performs a tree walk of T
with the initial call LCA(root[T]). Each node is assumed to be colored white prior to the walk.

LCA(u)
1 MakeSet(u)
2 ancestor[Find(u)] ← u
3 for each child v of u in T
4 do LCA(v)
5 Union(u, v)
6 ancestor[Find(u)] ← u
7 color[u] ← black
8 for each node v such that {u, v} ∈ P
9 do if color[v] = black
10 then print “The least common ancestor of” u “and” v “is” ancestor[Find(v)]

9.A. (4 pts.) Argue that line 10 is executed exactly once for each pair {u, v} ∈ P.
9.B. (4 pts.) Argue that at the time of the call LCA(u), the number of sets in the disjoint-set data

structure is equal to the depth of u in T .
9.C. (6 pts.) Prove that LCA correctly prints the least common ancestor of u and v for each pair

{u, v} ∈ P.
9.D. (6 pts.) Analyze the running time of LCA, assuming that we use the implementation of the disjoint-

set data structure with path compression and union by rank.

10 Ackermann Function (20 pts.)
The Ackermann’s function Ai(n) is defined as follows:

Ai(n) =


4 if n = 1
4n if i = 1

Ai−1(Ai(n − 1)) otherwise

Here we define A(x) = Ax(x). And we define α(n) as a pseudo-inverse function of A(x). That is, α(n) is the
least x such that n ≤ A(x).

10.A. (4 pts.) Give a precise description of what are the functions: A2(n), A3(n), and A4(n).
10.B. (4 pts.) What is the number A(4)?

10.C. (4 pts.) Prove that lim
n→∞

α(n)
log∗(n) = 0.
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10.D. (4 pts.) We define

log∗∗ n = min

i ≥ 1

������� log∗ . . . log∗︸         ︷︷         ︸
i times

n ≤ 2


(i.e., how many times do you have to take log∗ of a number before you get a number smaller than

2). Prove that lim
n→∞

√
α(n)

log∗∗(n) = 0.

10.E. (4 pts.) Prove that log(α(n)) ≤ α(log∗∗ n) for n large enough.

41.5. Lower bounds

11 Sort them Up (20 pts.)
A sequence of real numbers x1, . . . , xn is k-mixed, if there exists a permutation π, such that xπ(i) ≤ xπ(i+1)
and |π(i) − i | ≤ k, for i = 1, . . . ,n − 1.

11.A. (10 pts.) Give a fast algorithm for sorting x1, . . . , xn.
11.B. (10 pts.) Prove a lower bound in the comparison model on the running time of your algorithm.

12 Another Lower Bound (20 pts.)
Let b1 ≤ b2 ≤ b3 ≤ . . . ≤ bk be k given sorted numbers, and let A be a set of n arbitrary numbers
A = {a1, . . . ,an}, such that b1 < ai < bk , for i = 1, . . . ,n
The rank v = r(ai) of ai is the index, such that bv < ai < bv+1.
Prove, that in the comparison model, any algorithm that outputs the ranks r(a1), . . . ,r(an) must take
Ω(n log k) running time in the worst case.

41.6. Number theory

13 Some number theory. (10 pts.)

13.A. (5 pts.) Prove that if gcd(m,n) = 1, then mφ(n) + nφ(m) ≡ 1(modmn).
13.B. (5 pts.) Give two distinct proofs that there are an infinite number of prime numbers.

14 Even More Number Theory (10 pts.)

Prove that |P(n)| = Ω(n2), where P(n) =
{
(a, b)

��� a, b ∈ ZZ ,0 < a < b ≤ n,gcd(a, b) = 1
}
.

15 Yet Another Number Theory Question (20 pts.)

15.A. (2 pts.) Prove that the product of all primes p, for m < p ≤ 2m is at most
(2m
m

)
.

15.B. (4 pts.) Using (a), prove that the number of all primes between m and 2m is O(m/ln m).
15.C. (3 pts.) Using (b), prove that the number of primes smaller than n is O(n/ln n).
15.D. (2 pts.) Prove that if 2k divides

(2m
m

)
then 2k ≤ 2m.

15.E. (5 pts.) (Hard) Prove that for a prime p, if pk divides
(2m
m

)
then pk ≤ 2m.

15.F. (4 pts.) Using (e), prove that that the number of primes between 1 and n is Ω(n/ln n). (Hint: use
the fact that

(2m
m

)
≥ 22m/(2m).)
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41.7. Sorting networks

16 Lower bound on sorting network (10 pts.)
Prove that an n-input sorting network must contain at least one comparator between the ith and (i + 1)st
lines for all i = 1,2, ...,n − 1.

17 First sort, then partition
Suppose that we have 2n elements < a1,a2, ...,a2n > and wish to partition them into the n smallest and the
n largest. Prove that we can do this in constant additional depth after separately sorting < a1,a2, ...,an >
and < an+1,an+2, ...,a2n >.

18 Easy points. (20 pts.)
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the depth of a merging network
with 2k inputs. Suppose that we have a sequence of n numbers to be sorted and we know that every
number is within k positions of its correct position in the sorted order, which means that we need to move
each number at most (k − 1) positions to sort the inputs. For example, in the sequence 3 2 1 4 5 8 7 6 9,
every number is within 3 positions of its correct position. But in sequence 3 2 1 4 5 9 8 7 6, the number
9 and 6 are outside 3 positions of its correct position.
Show that we can sort the n numbers in depth S(k) + 2M(k). (You need to prove your answer is correct.)

19 Matrix Madness (20 pts.)
We can sort the entries of an m × m matrix by repeating the following procedure k times:

(I) Sort each odd-numbered row into monotonically increasing order.
(II) Sort each even-numbered row into monotonically decreasing order.
(III) Sort each column into monotonically increasing order.

19.A. (8 pts.) Suppose the matrix contains only 0’s and 1’s. We repeat the above procedure again and
again until no changes occur. In what order should we read the matrix to obtain the sorted output
(m × m numbers in increasing order)? Prove that any m × m matrix of 0’s and 1’s will be finally
sorted.

19.B. (8 pts.) Prove that by repeating the above procedure, any matrix of real numbers can be sorted.
[Hint:Refer to the proof of the zero-one principle.]

19.C. (4 pts.) Suppose k iterations are required for this procedure to sort the m × m numbers. Give an
upper bound for k. The tighter your upper bound the better (prove you bound).

41.8. Max Cut

20 Splitting and splicing
Let G = (V,E) be a graph with n vertices and m edges. A splitting of G is a partition of V into two sets
V1,V2, such that V = V1 ∪ V2, and V1 ∩ V2 = ∅. The cardinality of the split (V1,V2), denoted by m(V1,V2), is
the number of edges in G that has one vertex in V1, and one vertex in V2. Namely,

m(V1,V2) =
���{e

��� e = {uv} ∈ E(G),u ∈ V1, v ∈ V2
}��� .

Let ∫\(G) = max
V1

m(V1,V2) be the maximum cardinality of such a split. Describe a deterministic polynomial
time algorithm that computes a splitting (V1,V2) of G, such that m(V1,V2) ≥ ∫\(G)/2. (Hint: Start from
an arbitrary split, and continue in a greedy fashion to improve it.)
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Chapter 42

Exercises - Approximation Algorithms

This chapter include problems that are realted to approximation algorithms.

42.1. Greedy algorithms as approximation algorithms

42.1.1. Greedy algorithm does not work for TSP with the triangle inequality.

(20 pts.)
In the greedy Traveling Salesman algorithm, the algorithm starts from a starting vertex v1 = s, and in i-th

stage, it goes to the closest vertex to vi that was not visited yet.

1. (10 pts.) Show an example that prove that the greedy traveling salesman does not provide any constant
factor approximation to the TSP.
Formally, for any constant c > 0, provide a complete graph G and positive weights on its edges, such that
the length of the greedy TSP is by a factor of (at least) c longer than the length of the shortest TSP of
G.

2. (10 pts.) Show an example, that prove that the greedy traveling salesman does not provide any constant
factor approximation to the TSP with triangle inequality.
Formally, for any constant c > 0, provide a complete graph G, and positive weights on its edges, such that
the weights obey the triangle inequality, and the length of the greedy TSP is by a factor of (at least) c
longer than the length of the shortest TSP of G. (In particular, prove that the triangle inequality holds
for the weights you assign to the edges of G.)

42.1.2. Greedy algorithm does not work for VertexCover.
(10 pts.)

Extend the example shown in class for the greedy algorithm for Vertex Cover. Namely, for any n, show a
graph Gn, with n vertices, for which the greedy Vertex Cover algorithm, outputs a vertex cover which is of size
Ω(Opt(Gn) log n), where Opt(Gn) is the cardinality of the smallest Vertex Cover of Gn.

42.1.3. Greedy algorithm does not work for independent set.

(20 pts.)
A natural algorithm, GreedyIndependent, for computing maximum independent set in a graph, is to

repeatedly remove the vertex of lowest degree in the graph, and add it to the independent set, and remove all
its neighbors.

1. (5 pts.) Show an example, where this algorithm fails to output the optimal solution.

2. (5 pts.) Let G be a (k, k + 1)-uniform graph (this is a graph where every vertex has degree either k or
k + 1). Show that the above algorithm outputs an independent set of size Ω(n/k), where n is the number
of vertices in G.
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3. (5 pts.) Let G be a graph with average degree δ (i.e., δ = 2 |E(G)| /|V(G)|). Prove that the above
algorithm outputs an independent set of size Ω(n/δ).

4. (5 pts.) For any integer k, present an example of a graph Gk , such that GreedyIndependent outputs
an independent set of size ≤ |OPT(Gk)| /k, where OPT(Gk) is the largest independent set in Gk . How
many vertices and edges does Gk has? What it the average degree of Gk?

42.1.4. Greedy algorithm does not work for coloring. Really.

(20 pts.)
Let G be a graph defined over n vertices, and let the vertices be ordered: v1, . . . , vn. Let Gi be the induced

subgraph of G on v1, . . . , vi. Formally, Gi = (Vi,Ei), where Vi = {v1, . . . , vi} and

Ei =
{
uv ∈ E

��� u, v ∈ Vi and uv ∈ E(G)
}
.

The greedy coloring algorithm, colors the vertices, one by one, according to their ordering. Let ki denote
the number of colors the algorithm uses to color the first i vertices.

In the i-th iteration, the algorithm considers vi in the graph Gi. If all the neighbors of vi in Gi are using all
the ki−1 colors used to color Gi−1, the algorithm introduces a new color (i.e., ki = ki−1 + 1) and assigns it to vi.
Otherwise, it assign vi one of the colors 1, . . . , ki−1 (i.e., ki = ki−1).

Give an example of a graph G with n vertices, and an ordering of its vertices, such that even if G can be
colored using O(1) (in fact, it is possible to do this with two) colors, the greedy algorithm would color it with
Ω(n) colors. (Hint: consider an ordering where the first two vertices are not connected.)

42.1.5. Greedy coloring does not work even if you do it in the right order.

(20 pts.)
Given a graph G, with n vertices, let us define an ordering on the vertices of G where the min degree vertex

in the graph is last. Formally, we set vn to be a vertex of minimum degree in G (breaking ties arbitrarily),
define the ordering recursively, over the graph G \ vn, which is the graph resulting from removing vn from G.
Let v1, . . . , vn be the resulting ordering, which is known as min last ordering.

1. (10 pts.) Prove that the greedy coloring algorithm, if applied to a planar graph G, which uses the min
last ordering, outputs a coloring that uses 6 colors.¬

2. (10 pts.) Give an example of a graph Gn with O(n) vertices which is 3-colorable, but nevertheless, when
colored by the greedy algorithm using min last ordering, the number of colors output is n.

42.2. Approximation for hard problems

42.2.1. Even More on Vertex Cover

1. (3 pts.) Give an example of a graph for which Approx-Vertex-Cover always yields a suboptimal
solution.

2. (2 pts.) Give an efficient algorithm that finds an optimal vertex cover for a tree in linear time.
¬There is a quadratic time algorithm for coloring planar graphs using 4 colors (i.e., follows from a constructive proof of the four

color theorem). Coloring with 5 colors requires slightly more cleverness.
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3. (5 pts.) (Based on CLRS 35.1-3)
Professor Nixon proposes the following heuristic to solve the vertex-cover problem. Repeatedly select a
vertex of highest degree, and remove all of its incident edges. Give an example to show that the professor’s
heuristic does not have an approximation ratio of 2. [Hint: Try a bipartite graph with vertices of uniform
degree on the left and vertices of varying degree on the right.]

42.2.2. Maximum Clique

(10 pts.)
Let G = (V,E) be an undirected graph. For any k ≥ 1, define G(k) to be the undirected graph (V (k),E (k)),

where V (k) is the set of all ordered k-tuples of vertices from V and E (k) is defined so that (v1, v2, ..., vk) is adjacent
to (w1,w2, ...,wk) if and only if for each i (1 ≤ i ≤ k) either vertex vi is adjacent to wi in G, or else vi = wi.

1. (5 pts.) Prove that the size of the maximum clique in G(k) is equal to the k-th power of the size of the
maximum clique in G.

2. (5 pts.) Argue that if there is an approximation algorithm that has a constant approximation ratio
for finding a maximum-size clique, then there is a fully polynomial time approximation scheme for the
problem.

42.2.3. Pack these squares.

(10 pts.)
Let R be a set of squares. You need to pack them inside the unit square in the plane (i.e., place them inside

the square), such that all the squares are interior disjoint. Provide a polynomial time algorithm that outputs
a packing that covers at least OPT/4 fraction of the unit square, where OPT is the fraction of the unit square
covered by the optimal solution.

42.2.4. Smallest Interval

(20 pts.)
Given a set X of n real numbers x1, . . . , xn (no necessarily given in sorted order), and k > 0 a parameter

(which is not necessarily small). Let Ik = [a, b] be the shortest interval that contains k numbers of X.

1. (5 pts.) Give a O(n log (n) time algorithm that outputs Ik .

2. (5 pts.) An interval J is called 2-cover, if it contains at least k points of X, and |J | ≤ 2|Ik |, where |J |
denote the length of J. Give a O(n log (n/k)) expected time algorithm that computes a 2-cover.

3. (10 pts.) (hard) Give an expected linear time algorithm that outputs a 2-cover of X with high probability.

42.2.5. Rectangles are Forever.

(20 pts.)
A rectangle in the plane r is called neat, if the ratio between its longest edge and shortest edge is bounded

by a constant α. Given a set of rectangles R, the induced graph GR, has the rectangles of R as vertices, and it
connect two rectangles if their intersection is not empty.

1. (5 pts.) (hard?) Given a set R of n neat rectangles in the plane (not necessarily axis parallel), describe
a polynomial time algorithm for computing an independent set I in the graph GR, such that |I | ≥ β |X |,
where X is the largest independent set in GR, and β is a constant that depends only on α. Give an explicit
formula for the dependency of β on α. What is the running time of your algorithm?
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2. (5 pts.) Let R be a set of rectangles which are axis parallel. Show a polynomial time algorithm for finding
the largest independent set in GR if all the rectangles of R intersects the y-axis.

3. (10 pts.) Let R be a set of axis parallel rectangles. Using (b), show to compute in polynomial time an
independent set of rectangles of size Ω(kc), where k is the size of the largest independent set in GR and c
is an absolute constant. (Hint: Consider all vertical lines through vertical edges of rectangles of R. Next,
show that by picking one of them “cleverly” and using (b), one can perform a divide and conquer to find
a large independent set. Define a recurrence on the size of the independent set, and prove a lower bound
on the solution of the recurrence.)

42.2.6. Graph coloring revisited

1. (5 pts.) Prove that a graph G with a chromatic number k (i.e., k is the minimal number of colors needed
to color G), must have Ω(k2) edges.

2. (5 pts.) Prove that a graph G with m edges can be colored using 4
√

m colors.

3. (10 pts.) Describe a polynomial time algorithm that given a graph G, which is 3-colorable, it computes
a coloring of G using, say, at most O(

√
n) colors.

Chapter 43

Randomized Algorithms

This chapter include problems on randomized algorithms

43.1. Randomized algorithms

43.1.1. Find kth smallest number.

(20 pts.)
This question asks you to design and analyze a randomized incremental algorithm to select the kth smallest

element from a given set of n elements (from a universe with a linear order).
In an incremental algorithm, the input consists of a sequence of elements x1, x2, . . . , xn. After any prefix

x1, . . . , xi−1 has been considered, the algorithm has computed the kth smallest element in x1, . . . , xi−1 (which
is undefined if i ≤ k), or if appropriate, some other invariant from which the kth smallest element could be
determined. This invariant is updated as the next element xi is considered.

Any incremental algorithm can be randomized by first randomly permuting the input sequence, with each
permutation equally likely.

1. (5 pts.) Describe an incremental algorithm for computing the kth smallest element.

2. (5 pts.) How many comparisons does your algorithm perform in the worst case?
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3. (10 pts.) What is the expected number (over all permutations) of comparisons performed by the ran-
domized version of your algorithm? (Hint: When considering xi, what is the probability that xi is smaller
than the kth smallest so far?) You should aim for a bound of at most n + O(k log(n/k)). Revise (A) if
necessary in order to achieve this.

43.1.2. Minimum Cut Festival

(20 pts.)

1. Given a multigraph G(V,E), show that an edge can be selected uniform at random from E in time O(n),
given access to a source of random bits.

2. For any α ≥ 1, define an α approximate cut in a multigraph G as any cut whose cardinality is within
a multiplicative factor α of the cardinality of the min-cut in G. Determine the probability that a single
iteration of the randomized algorithm for cuts will produce as output some α-approximate cut in G.

3. Using the analysis of the randomized min-cut algorithm, show that the number of distinct min-cuts in a
multigraph G cannot exceed n(n − 1)/2, where n is the number of vertices in G.

4. Formulate and prove a similar result of the number of α -approximate cuts in a multigraph G.

43.1.3. Adapt min-cut

(20 pts.)
Consider adapting the min-cut algorithm to the problem of finding an s-t min-cut in an undirected graph.

In this problem, we are given an undirected graph G together with two distinguished vertices s and t. An s-t
min-cut is a set of edges whose removal disconnects s from t; we seek an edge set of minimum cardinality. As
the algorithm proceeds, the vertex s may get amalgamated into a new vertex as the result of an edge being
contracted; we call this vertex the s-vertex (initially s itself). Similarly, we have a t-vertex. As we run the
contraction algorithm, we ensure that we never contract an edge between the s-vertex and the t-vertex.

1. (10 pts.) Show that there are graphs in which the probability that this algorithm finds an s-t min-cut is
exponentially small.

2. (10 pts.) How large can the number of s-t min-cuts in an instance be?

43.1.4. Majority tree

(20 pts.)
Consider a uniform rooted tree of height h (every leaf is at distance h from the root). The root, as well as

any internal node, has 3 children. Each leaf has a boolean value associated with it. Each internal node returns
the value returned by the majority of its children. The evaluation problem consists of determining the value of
the root; at each step, an algorithm can choose one leaf whose value it wishes to read.

1 Show that for any deterministic algorithm, there is an instance (a set of boolean values for the leaves)
that forces it to read all n = 3h leaves. (hint: Consider an adversary argument, where you provide the
algorithm with the minimal amount of information as it request bits from you. In particular, one can
devise such an adversary algorithm.).

2 Consider the recursive randomized algorithm that evaluates two subtrees of the root chosen at random. If
the values returned disagree, it proceeds to evaluate the third sub-tree. If they agree, it returns the value
they agree on. Show the expected number of leaves read by the algorithm on any instance is at most n0.9.
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43.1.5. Hashing to Victory

(20 pts.)
In this question we will investigate the construction of hash table for a set W , where W is static, provided

in advance, and we care only for search operations.

1. (2 pts.) Let U = {1, . . . ,m}, and p = m + 1 is a prime.
Let W ⊆ U, such that n = |W |, and s an integer number larger than n. Let gk(x, s) = (k x mod p) mod s.

Let β(k, j, s) =
���{x

��� x ∈ W,gk(x, s) = j
}���. Prove that

p−1∑
k=1

s∑
j=1

(
β(k, j, s)

2

)
<
(p − 1)n2

s
.

2. (2 pts.) Prove that there exists k ∈ U, such that
s∑
j=1

(
β(k, j, s)

2

)
<

n2

s
.

3. (2 pts.) Prove that
∑n

j=1 β(k, j,n) = |W | = n.

4. (3 pts.) Prove that there exists a k ∈ U such that
∑n

j=1(β(k, j,n))2 < 3n.

5. (3 pts.) Prove that there exists a k ′ ∈ U, such that the function h(x) = (k ′x mod p) mod n2 is one-to-one
when restricted to W .

6. (3 pts.) Conclude, that one can construct a hash-table for W , of O(n2), such that there are no collisions,
and a search operation can be performed in O(1) time (note that the time here is worst case, also note
that the construction time here is quite bad - ignore it).

7. (3 pts.) Using (d) and (f), conclude that one can build a two-level hash-table that uses O(n) space, and
perform a lookup operation in O(1) time (worst case).

43.1.6. Sorting Random Numbers

(20 pts.)
Suppose we pick a real number xi at random (uniformly) from the unit interval, for i = 1, . . . ,n.
1. (5 pts.) Describe an algorithm with an expected linear running time that sorts x1, . . . , xn.

To make this question more interesting, assume that we are going to use some standard sorting algorithm
instead (say merge sort), which compares the numbers directly. The binary representation of each xi can be
generated as a potentially infinite series of bits that are the outcome of unbiased coin flips. The idea is to
generate only as many bits in this sequence as is necessary for resolving comparisons between different numbers
as we sort them. Suppose we have only generated some prefixes of the binary representations of the numbers.
Now, when comparing two numbers xi and xj , if their current partial binary representation can resolve the
comparison, then we are done. Otherwise, the have the same partial binary representations (upto the length of
the shorter of the two) and we keep generating more bits for each until they first differ.

1. (10 pts.) Compute a tight upper bound on the expected number of coin flips or random bits needed for
a single comparison.

2. (5 pts.) Generating bits one at a time like this is probably a bad idea in practice. Give a more practical
scheme that generates the numbers in advance, using a small number of random bits, given an upper
bound n on the input size. Describe a scheme that works correctly with probability ≥ 1 − n−c, where c is
a prespecified constant.
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Chapter 44

Exercises - Linear Programming

This chapter include problems that are related to linear programming.

44.1. Miscellaneous

44.1.1. Slack form

(10 pts.)
Let L be a linear program given in slack form, with n nonbasic variables N, and m basic variables B. Let N ′

and B′ be a different partition of N ∪ B, such that |N ′ ∪ B′ | = |N ∪ B|. Show a polynomial time algorithm that
computes an equivalent slack form that has N ′ as the nonbasic variables and b′ as the basic variables. How fast
is your algorithm?

44.2. Tedious

44.2.1. Tedious Computations

(20 pts.)
Provide detailed solutions for the following problems, showing each pivoting stage separately.

1. (5 pts.)
maximize 6x1 + 8x2 + 5x3 + 9x4
subject to
2x1 + x2 + x3 + 3x4 ≤ 5
x1 + 3x2 + x3 + 2x4 ≤ 3
x1, x2, x3, x4 ≥ 0.

2. (5 pts.)
maximize 2x1 + x2
subject to
2x1 + x2 ≤ 4
2x1 + 3x2 ≤ 3
4x1 + x2 ≤ 5
x1 + 5x2 ≤ 1
x1, x2 ≥ 0.

3. (5 pts.)
maximize 6x1 + 8x2 + 5x3 + 9x4
subject to
x1 + x2 + x3 + x4 = 1
x1, x2, x3, x4 ≥ 0.

4. (5 pts.)
minimize x12 + 8x13 + 9x14 + 2x23 + 7x24 + 3x34
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subject to
x12 + x13 + x14 ≥ 1
−x12 + x23 + x24 = 0
−x13 − x23 + x34 = 0
x14 + x24 + x34 ≤ 1
x12, x13, . . . , x34 ≥ 0.

44.2.2. Linear Programming for a Graph

1. (3 pts.) Given a weighted, directed graph G = (V,E), with weight function w : E → R mapping edges to
real-valued weights, a source vertex s, and a destination vertex t. Show how to compute the value d[t],
which is the weight of a shortest path from s to t, by linear programming.

2. (4 pts.)
Given a graph G as in (a), write a linear program to compute d[v], which is the shortest-path weight from
s to v, for each vertex v ∈ V .

3. (4 pts.)
In theminimum-cost multicommodity-flow problem, we are given a directed graph G = (V,E), in which each
edge (u, v) ∈ E has a nonnegative capacity c(u, v) ≥ 0 and a cost α(u, v). As in the multicommodity-flow
problem (Chapter 29.2, CLRS), we are given k different commodities, K1, K2, . . . , Kk , where commodity
i is specified by the triple Ki = (si, ti, di). Here si is the source of commodity i, ti is the sink of commodity
i, and di is the demand, which is the desired flow value for commodity i from si to ti. We define a flow for
commodity i, denoted by fi, (so that fi(u, v) is the flow of commodity i from vertex u to vertex v) to be a
real-valued function that satisfies the flow-conservation, skew-symmetry, and capacity constraints. We now
define f (u, v) , the aggregate flow, to be sum of the various commodity flows, so that f (u, v) =

∑k
i=1 fi(u, v).

The aggregate flow on edge (u, v) must be no more than the capacity of edge (u, v).
The cost of a flow is

∑
u,v∈V f (u, v), and the goal is to find the feasible flow of minimum cost. Express this

problem as a linear program.

44.2.3. Linear programming

(20 pts.)

1. (10 pts.) Show the following problem in NP-hard.

Integer Linear Programming
Instance: A linear program in standard form, in which A and B contain only integers.
Question: Is there a solution for the linear program, in which the x must take integer values?

2. (5 pts.) A steel company must decide how to allocate next week’s time on a rolling mill, which is a
machine that takes unfinished slabs of steel as input and produce either of two semi-finished products:
bands and coils. The mill’s two products come off the rolling line at different rates:

Bands 200 tons/hr
Coils 140 tons/hr.

They also produce different profits:
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Bands $ 25/ton
Coils $ 30/ton.

Based on current booked orders, the following upper bounds are placed on the amount of each product
to produce:

Bands 6000 tons
Coils 4000 tons.

Given that there are 40 hours of production time available this week, the problem is to decide how many
tons of bands and how many tons of coils should be produced to yield the greatest profit. Formulate this
problem as a linear programming problem. Can you solve this problem by inspection?

3. (5 pts.) A small airline, Ivy Air, flies between three cities: Ithaca (a small town in upstate New York),
Newark (an eyesore in beautiful New Jersey), and Boston (a yuppie town in Massachusetts). They offer
several flights but, for this problem, let us focus on the Friday afternoon flight that departs from Ithaca,
stops in Newark, and continues to Boston. There are three types of passengers:

(a) Those traveling from Ithaca to Newark (god only knows why).
(b) Those traveling from Newark to Boston (a very good idea).
(c) Those traveling from Ithaca to Boston (it depends on who you know).

The aircraft is a small commuter plane that seats 30 passengers. The airline offers three fare classes:

(a) Y class: full coach.
(b) B class: nonrefundable.
(c) M class: nonrefundable, 3-week advanced purchase.

Ticket prices, which are largely determined by external influences (i.e., competitors), have been set and
advertised as follows:

Ithaca-Newark Newark-Boston Ithaca-Boston
Y 300 160 360
B 220 130 280
M 100 80 140

Based on past experience, demand forecasters at Ivy Air have determined the following upper bounds on
the number of potential customers in each of the 9 possible origin-destination/fare-class combinations:

Ithaca-Newark Newark-Boston Ithaca-Boston
Y 4 8 3
B 8 13 10
M 22 20 18

The goal is to decide how many tickets from each of the 9 origin/destination/fare-class combinations to
sell. The constraints are that the place cannot be overbooked on either the two legs of the flight and that
the number of tickets made available cannot exceed the forecasted maximum demand. The objective is
to maximize the revenue. Formulate this problem as a linear programming problem.
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44.2.4. Distinguishing between probablities

(5 pts.) Suppose that Y is a random variable taking on one of the n know values:

a1,a2, . . . ,an.

Suppose we know that Y either has distribution p given by

P(Y = aj) = pj

or it has distribution q given by

P(Y = aj) = qj .

Of course, the numbers pj, j = 1,2, . . . ,n are nonnegative and sum to one. The same is true for the qj ’s. Based
on a single observation of Y , we wish to guess whether it has distribution p or distribution q. That is, for each
possible outcome aj , we will assert with probability xj that the distribution is p and with probability 1 − xj
that the distribution is q. We wish to determine the probabilities xj, j = 1,2, . . . ,n, such that the probability of
saying the distribution is p when in fact it is q has probability no larger than β, where β is some small positive
value (such as 0.05). Furthermore, given this constraint, we wish to maximize the probability that we say the
distribution is p when in fact it is p. Formulate this maximization problem as a linear programming problem.

44.2.5. Strong duality.

(20 pts.)
Consider a directed graph G with source vertex s and target vertex t and associated costs cost(·) ≥ 0 on the

edges. Let P denote the set of all the directed (simple) paths from s to t in G.
Consider the following (very large) integer program:

minimize
∑

e∈E(G)
cost(e)xe

subject to xe ∈ {0,1} ∀e ∈ E(G)∑
e∈π

xe ≥ 1 ∀π ∈ P.

1 (5 pts.) What does this IP computes?

2 (5 pts.) Write down the relaxation of this IP into a linear program.

3 (5 pts.) Write down the dual of the LP from (B). What is the interpretation of this new LP? What is it
computing for the graph G (prove your answer)?

4 (5 pts.) The strong duality theorem states the following.
Theorem 44.2.1. If the primal LP problem has an optimal solution x∗ =(
x∗1, . . . , x

∗
n

)
then the dual also has an optimal solution, y∗ =

(
y∗1, . . . , y

∗
m

)
, such that∑

j

cj x∗j =
∑
i

biy∗i .

In the context of (A)-(C) what result is implied by this theorem if we apply it to the primal LP and its
dual above? (For this, you can assume that the optimal solution to the LP of (B) is integral – which is
not quite true – things are slightly more complicated than that.)
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Chapter 45

Exercises - Computational Geometry

This chapter include problems that are related to computational geometry.

45.1. Misc

1 Nearest Point to a Polygon (20 pts.)
Given a convex polygon P, its balanced triangulation is created by recursively triangulating the convex
polygon P′ defined by its even vertices, and finally adding consecutive diagonals between even points. For
example:

Alternative interpretation of this construction, is that we create a sequence of polygons where P0 is the
highest level polygon (a quadrangle in the above example), and Pi is the refinement of Pi−1 till Pdlog ne = P.

1. (5 pts.) Given a polygon P, show how to compute its balanced triangulation in linear time.
2. (15 pts.) Let T be the dual tree to the balanced triangulation. Show how to use T and the balanced

triangulation to answer a query to decide whether point q is inside P or outside it. The query time
should be O(log n), where n is the number of vertices of P. (Hint: use T to maintain the closest point
in Pi to q, and use this to decide in constant time what is the closest point in Pi+1 to q.)

2 Sweeping (20 pts.)

2.A. (5 pts.) Given two x-monotone polygons, show how to compute their intersection polygon (which
might be made out of several connected components) in O(n) time, where n is the total number of
vertices of P and X.

2.B. (5 pts.) You are given a set H of n half-planes (a half plane is the region defined by a line - it
is either all the points above a given line, or below it). Show an algorithm to compute the convex
polygon ∩h∈Hh in O(n log n) time. (Hint: use (a).)

2.C. (10 pts.) Given two simple polygons P and Q, show how to compute their intersection polygon.
How fast is your algorithm?
What the maximum number of connected components of the polygon P ∩ Q (provide a tight upper
and lower bounds)?
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45.1.1. Robot Navigation

(20 pts.)
Given a set S of m simple polygons in the plane (called obstacles), with total complexity n, and start
point s and end point t, find the shortest path between s and t (this is the path that a robot would take
to move from s to t).

1. (5 pts.) For a point q ∈ R2, which is not contained in any of the obstacles, the visibility polygon of
q, is the set of all the points in the plane that are visible form q. Show how to compute this visibility
polygon in O(n log n) time.

2. (5 pts.) Show a O(n3) time algorithm for this problem. (Hint: Consider the shortest path, and
analyze its structure. Build an appropriate graph, and do a Dijkstra in this graph.)).

3. (10 pts.) Show a O(n2 log n) time algorithm for this problem.

45.1.2. Point-Location

Given a x-monotone polygonal chain C with n vertices, show how to preprocess it in linear time, such that
given a query point q, one can decide, in O(log n) time, whether q is below and above C, and what is the
segment of C that intersects the vertical line that passes through q. Show how to use this to decide, in
O(log n) whether a point p is inside a x-monotone polygon P with n vertices. Why would this method be
preferable to the balanced triangulation used in the previous question (when used on a convex polygon)?

45.1.3. Convexity revisited.

2.A. Prove that for any set S of four points in the plane, there exists a partition of S into two subsets
S1,S2, such that CH(S1) ∩ CH(S2) , ∅.

2.B. Prove that any point x which is a convex combination of n points p1, . . . , pn in the plane, can be
defined as a convex combination of three points of p1, . . . , pn. (Hint: use (a) and induction on the
number of points.)

2.C. Prove that for any set S of d + 2 points in Rd, there exists a partition of S into two subsets S1,S2,
such that CH(S1) ∩ CH(S2) , ∅, S = S1 ∪ S2, and S1 ∩ S2 = ∅. (Hint: Use (a) and induction on the
dimension.)

3 Covered by triangles You are given a set of n triangles in the plane, show an algorithm, as fast as
possible, that decides whether the square [0,1] × [0,1] is completely covered by the triangles.

45.1.4. Nearest Neighbor

Let P be a set of n points in the plane. For a point p ∈ P, its nearest neighbor in P, is the point in P \ {p}
which has the smallest distance to p. Show how to compute for every point in P its nearest neighbor in
O(n log n) time.
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Chapter 46

Exercises - Entropy

46.0.1. Compress a sequence.

We wish to compress a sequence of independent, identically distributed random variables X1,X2, , . . .. Each Xj

takes on one of n values. The ith value occurs with probability pi, where p1 ≥ p2 ≥ . . . ≥ pn. The result is
compressed as follows. Set

Ti =
i−1∑
j=1

pj,

and let the ith codeword be the first dlg(1/pi)e bits of Ti. Start with an empty string„ and consider X j in order.
If Xj takes on the ith value, append the ith codeword to the end of the string.

1 Show that no codeword is the prefix of any other codeword.

2 Let Z be the average number of bits appended for each random variable Xj . Show that

H
(
Xj

)
≤ z ≤ H

(
Xj

)
+ 1.

46.0.2. Arithmetic coding

Arithmetic coding is a standard compression method. In the case when the string to be compressed is
a sequence of biased coin flips, it can be described as follows. Suppose that we have a sequence of bits
X = (X1,X2, . . . ,Xn), where each Xi is independently 0 with probability p and 1 with probability 1 − p. The
sequences can be ordered lexicographically, so for x = (x1, x2, . . . , xn and y = (y1, y2, . . . , yn), we say that x < y if
xi = 0 and yi = 1 in the first coordinate i such that xi , yi. If z(x) is the number of zeroes in the string x, then
define p(x) = pz(x)(1 − p)n−z(x) and

q(x) =
∑
y<x

p(y).

1 Suppose we are given X = (X1,X2, . . . ,Xn). Explain how to compute q(X) in time O(n) (assume that any
reasonable operation on real numbers takes constant time).

2 Argue that the intervals
[
q(x),q(x) + p(x)

)
are disjoint subintervals of [0,1).

3 Given (A) and (B), the sequence X can be represented by any point in the interval I(X) =
[
q(X),q(X) + p(X)

)
.

Show that we can choose a codeword in I(X) with dlg(1/p(X))e + 1 binary decimal digits to represent X in
such a way that no codeword is the prefix of any other codeword.

4 Given a codeword chosen as in (C), explain how to decompress it to determine the corresponding sequence
(X1,X2, . . . ,Xn).

5 Using the Chernoff inequality, argue that lg(1/p(X)) is close to nH(p) with high probability. Thus, this
approach yields an effective compression scheme.
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46.0.3. Computing entropy.

1. Let S =
∑10

i=1 1/i2. Consider a random variable X such that P[X = i] = 1/(Si2), for i = 1, . . . ,10. Compute
H(X).

2. Let S =
∑10

i=1 1/i3. Consider a random variable X such that P[X = i] = 1/(Si3), for i = 1, . . . ,10. Compute
H(X).

3. Let S(α) =
∑10

i=1 1/iα, for α > 1. Consider a random variable X such that P[X = i] = 1/(S(α)iα), for
i = 1, . . . ,10. Prove that H(X) is either increasing or decreasing as a function of α (you can assume that
α is an integer).

46.0.4. When is entropy maximized?

Consider an n-sided die, where the ith face comes up with probability pi. Show that the entropy of a die roll is
maximized when each face comes up with equal probability 1/n.

46.0.5. Condition entropy.

The conditional entropy H(Y |X) is defined by

H(Y |X) =
∑
x,y

P[(X = x) ∩ (Y = y)] lg 1
P[Y = y |X = x]

.

If Z = (X,Y ), prove that
H(Z) = H(X) + H(Y |X).

46.0.6. Improved randomness extraction.

We have shown that we can extract, on average, at least blg mc − 1 independent, unbiased bits from a number
chosen uniformly at random from {0, . . . ,m − 1}. It follows that if we have k numbers chosen independently
and uniformly at random from {0, . . . ,m − 1} then we can extract, on average, at least k blg mc − k independent,
unbiased bits from them. Give a better procedure that extracts, on average, at least k blg mc − 1 independent,
unbiased bits from these numbers.

46.0.7. Kraft inequality.

Assume you have a (valid) prefix code with n codewords, where the ith codeword is made out of `i bits. Prove
that

n∑
i=1

1
2li
≤ 1.
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Part XI
Homeworks/midterm/final

Chapter 47

Fall 2001

47.1. Homeworks

47.1.1. Homework 0

1 1. Prove that any positive integer can be written as the sum of distinct powers of 2. For example:
42 = 25 + 23 + 21, 25 = 24 + 23 + 20, 17 = 24 + 20. [Hint: ‘Write the number in binary’ is not a proof;
it just restates the problem.]

2. Prove that any positive integer can be written as the sum of distinct nonconsecutive Fibonacci
numbers—if Fn appears in the sum, then neither Fn+1 nor Fn−1 will. For example: 42 = F9 + F6,
25 = F8 + F4 + F2, 17 = F7 + F4 + F2.

3. Prove that any integer (positive, negative, or zero) can be written in the form
∑

i ±3i, where the
exponents i are distinct non-negative integers. For example: 42 = 34 − 33 − 32 − 31, 25 = 33 − 31 + 30,
17 = 33 − 32 − 30.

2 Sort the following 26 functions from asymptotically smallest to asymptotically largest, indicating ties if
there are any. You do not need to turn in proofs (in fact, please don’t turn in proofs), but you should do
them anyway just for practice.

1 n n2 lg n lg∗ n

22lg lg n+1 lg∗ 2n 2lg∗ n 2
√

lg n blg(n!)c
blg nc! nlg n (lg n)n nn (lg n)lg n

n1/lg n nlg lg n log1000 n lg1000 n lg(1000) n(
1 + 1

1000
)n n1/1000 n1/lg n (1 + 1/n)n (n + 1)3 − n3

n2.5
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To simplify notation, write f (n) � g(n) to mean f (n) = o(g(n)) and f (n) ≡ g(n) to mean f (n) = Θ(g(n)). For
example, the functions n2, n,

(n
2
)
, n3 could be sorted either as n � n2 ≡

(n
2
)
� n3 or as n �

(n
2
)
≡ n2 � n3.

3 Solve the following recurrences. State tight asymptotic bounds for each function in the form Θ( f (n)) for
some recognizable function f (n). You do not need to turn in proofs (in fact, please don’t turn in proofs),
but you should do them anyway just for practice. Assume reasonable but nontrivial base cases if none
are supplied. Extra credit will be given for more exact solutions.

1. A(n) = 7A(n/3) + n log log n

2. B(n) = min
0<k<n

(
B(k) + B(n − k) + 7

)
.

3. C(n) = 4C(bn/2c + 5) + n2

4. D(n) = D(n − 1) + 1/n
5. E(n) = −E(n − 1) + 1/n
6. F(n) = 2F(n/log n) + 6 (HARD)
7. G(n) = n + 2

√
n · G(

√
n)

4 This problem asks you to simplify some recursively defined boolean formulas as much as possible. In each
case, prove that your answer is correct. Each proof can be just a few sentences long, but it must be a
proof.

1. Suppose α0 = p, α1 = q, and αn = (αn−2 ∧ αn−1) for all n ≥ 2. Simplify αn as much as possible. [Hint:
What is α5?]

2. Suppose β0 = p, β1 = q, and βn = (βn−2 ⇔ βn−1) for all n ≥ 2. Simplify βn as much as possible. [Hint:
What is β5?]

3. Suppose γ0 = p, γ1 = q, and γn = (γn−2 ⇒ γn−1) for all n ≥ 2. Simplify γn as much as possible. [Hint:
What is γ5?]

4. Suppose δ0 = p, δ1 = q, and δn = (δn−2 on δn−1) for all n ≥ 2, where on is some boolean function with
two arguments. Find a boolean function on such that δn = δm if and only if n − m is a multiple of 4.
[Hint: There is only one such function.]

5 Every year, upon their arrival at Hogwarts School of Witchcraft and Wizardry, new students are sorted
into one of four houses (Gryffindor, Hufflepuff, Ravenclaw, or Slytherin) by the Hogwarts Sorting Hat.
The student puts the Hat on their head, and the Hat tells the student which house they will join. This
year, a failed experiment by Fred and George Weasley filled almost all of Hogwarts with sticky brown
goo, mere moments before the annual Sorting. As a result, the Sorting had to take place in the basement
hallways, where there was so little room to move that the students had to stand in a long line.
After everyone learned what house they were in, the students tried to group together by house, but there
was too little room in the hallway for more than one student to move at a time. Fortunately, the Sorting
Hat took CS 373 many years ago, so it knew how to group the students as quickly as possible. What
method did the Sorting Hat use?

1. More formally, you are given an array of n items, where each item has one of four possible values,
possibly with a pointer to some additional data. Describe an algorithm¬ that rearranges the items
into four clusters in O(n) time using only O(1) extra space.

¬Since you’ve read the Homework Instructions, you know what the phrase ‘describe an algorithm’ means. Right?
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Harry Ekta Bill Chad Nick Mel Dana Fox Ann Jim Dawn Bart Lisa Tina John Bob Liz Mary Kim Jeff

2. Describe an algorithm for the case where there are k possible values (i.e., 1,2, . . . , k) that rearranges
the items using only O(log k) extra space. How fast is your algorithm? (A faster algorithm would
get more credit)

3. Describe a faster algorithm (if possible) for the case when O(k) extra space is allowed. How fast is
your algorithm?
(HARD)

4. Optional practice exercise - no credit: Provide a fast algorithm that uses only O(1) additional space
for the case where there are k possible values.

6 [This problem is required only for graduate students; undergrads can submit a solution for extra credit.]
Penn and Teller have a special deck of fifty-two cards, with no face cards and nothing but clubs—the ace,
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, . . . , 52 of clubs. (They’re big cards.) Penn shuffles the deck until each
each of the 52! possible orderings of the cards is equally likely. He then takes cards one at a time from
the top of the deck and gives them to Teller, stopping as soon as he gives Teller the five of clubs.

1. On average, how many cards does Penn give Teller?
2. On average, what is the smallest-numbered card that Penn gives Teller? (HARD)
3. On average, what is the largest-numbered card that Penn gives Teller?

[Hint: Solve for an n-card deck and then set n = 52.] In each case, give exact answers and prove that they
are correct. If you have to appeal to “intuition” or “common sense”, your answers are probably wrong!

Practice Problems

7 Recall the standard recursive definition of the Fibonacci numbers: F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2
for all n ≥ 2. Prove the following identities for all positive integers n and m.

1. Fn is even if and only if n is divisible by 3.
2.

∑n
i=0 Fi = Fn+2 − 1

3. F2
n − Fn+1Fn−1 = (−1)n+1 (Really HARD)

4. If n is an integer multiple of m, then Fn is an integer multiple of Fm.

8 1. Prove the following identity by induction:(
2n
n

)
=

n∑
k=0

(
n
k

) (
n

n − k

)
.

2. Give a non-inductive combinatorial proof of the same identity, by showing that the two sides of the
equation count exactly the same thing in two different ways. There is a correct one-sentence proof.
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9 A tournament is a directed graph with exactly one edge between every pair of vertices. (Think of the
nodes as players in a round-robin tournament, where each edge points from the winner to the loser.) A
Hamiltonian path is a sequence of directed edges, joined end to end, that visits every vertex exactly once.
Prove that every tournament contains at least one Hamiltonian path.

1
�

2
�

3
�

4
�

5
�

6
�

A six-vertex tournament containing the Hamiltonian path 6→ 4→ 5→ 2→ 3→ 1.

10 Solve the following recurrences. State tight asymptotic bounds for each function in the form Θ( f (n)) for
some recognizable function f (n). You do not need to turn in proofs (in fact, please don’t turn in proofs),
but you should do them anyway just for practice. Assume reasonable but nontrivial base cases if none
are supplied. Extra credit will be given for more exact solutions.

1. A(n) = A(n/2) + n

2. B(n) = 2B(n/2) + n (Really HARD)
3. C(n) = n + 1

2
(
C(n − 1) + C(3n/4)

)
4. D(n) = max

n/3<k<2n/3

(
D(k) + D(n − k) + n

)
(HARD)

5. E(n) = 2E(n/2) + n/lg n (HARD)
6. F(n) = F(n−1)

F(n−2) , where F(1) = 1 and F(2) = 2. (HARD)

7. G(n) = G(n/2) + G(n/4) + G(n/6) + G(n/12) + n [Hint: 1
2 +

1
4 +

1
6 +

1
12 = 1.] (HARD)

8. H(n) = n +
√

n · H(
√

n) (HARD)
9. I(n) = (n − 1)(I(n − 1) + I(n − 2)), where F(0) = F(1) = 1 (HARD)

10. J(n) = 8J(n − 1) − 15J(n − 2) + 1

11 1. Prove that 2 dlg ne+ blg nc = Θ(n2).
2. Prove or disprove: 2 blg nc = Θ

(
2 dlg ne

)
.

3. Prove or disprove: 22blg lg nc
= Θ

(
22dlg lg ne ).

4. Prove or disprove: If f (n) = O(g(n)), then log( f (n)) = O(log(g(n))).
5. Prove or disprove: If f (n) = O(g(n)), then 2 f (n) = O(2g(n)).

(HARD)
6. Prove that logk n = o(n1/k) for any positive integer k.

12 Evaluate the following summations; simplify your answers as much as possible. Significant partial credit
will be given for answers in the form Θ( f (n)) for some recognizable function f (n).
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1.
n∑
i=1

i∑
j=1

i∑
k=j

1
i

(HARD)

2.
n∑
i=1

i∑
j=1

i∑
k=j

1
j

3.
n∑
i=1

i∑
j=1

i∑
k=j

1
k

13 Suppose you have a pointer to the head of singly linked list. Normally, each node in the list only has
a pointer to the next element, and the last node’s pointer is Null. Unfortunately, your list might have
been corrupted by a bug in somebody else’s code, so that the last node has a pointer back to some other
node in the list instead.

Top: A standard linked list. Bottom: A corrupted linked list.

Describe an algorithm that determines whether the linked list is corrupted or not. Your algorithm must
not modify the list. For full credit, your algorithm should run in O(n) time, where n is the number of
nodes in the list, and use O(1) extra space (not counting the list itself).
(HARD)

14 An ant is walking along a rubber band, starting at the left end. Once every second, the ant walks one
inch to the right, and then you make the rubber band one inch longer by pulling on the right end. The
rubber band stretches uniformly, so stretching the rubber band also pulls the ant to the right. The initial
length of the rubber band is n inches, so after t seconds, the rubber band is n + t inches long.

t=0

t=2

t=1

Every second, the ant walks an inch, and then the rubber band is stretched an inch longer.

1. How far has the ant moved after t seconds, as a function of n and t? Set up a recurrence and (for
full credit) give an exact closed-form solution. [Hint: What fraction of the rubber band’s length has
the ant walked?]

After all, your code is always completely 100% bug-free. Isn’t that right, Mr. Gates?
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2. How long does it take the ant to get to the right end of the rubber band? For full credit, give an
answer of the form f (n) + Θ(1) for some explicit function f (n).

15 1. A domino is a 2 × 1 or 1 × 2 rectangle. How many different ways are there to completely fill a 2 × n
rectangle with n dominos? Set up a recurrence relation and give an exact closed-form solution.

2. A slab is a three-dimensional box with dimensions 1×2×2, 2×1×2, or 2×2×1. How many different
ways are there to fill a 2 × 2 × n box with n slabs? Set up a recurrence relation and give an exact
closed-form solution.

A 2 × 10 rectangle filled with ten dominos, and a 2 × 2 × 10 box filled with ten slabs.

16 Professor George O’Jungle has a favorite 26-node binary tree, whose nodes are labeled by letters of the
alphabet. The preorder and postorder sequences of nodes are as follows:

preorder: M N H C R S K W T G D X I Y A J P O E Z V B U L Q F
postorder: C W T K S G R H D N A O E P J Y Z I B Q L F U V X M

Draw Professor O’Jungle’s binary tree, and give the inorder sequence of nodes.

17 Alice and Bob each have a fair n-sided die. Alice rolls her die once. Bob then repeatedly throws his die
until he rolls a number at least as big as the number Alice rolled. Each time Bob rolls, he pays Alice $1.
(For example, if Alice rolls a 5, and Bob rolls a 4, then a 3, then a 1, then a 5, the game ends and Alice
gets $4. If Alice rolls a 1, then no matter what Bob rolls, the game will end immediately, and Alice will
get $1.)
Exactly how much money does Alice expect to win at this game? Prove that your answer is correct. If
you have to appeal to ‘intuition’ or ‘common sense’, your answer is probably wrong!

18 Prove that for any nonnegative parameters a and b, the following algorithms terminate and produce
identical output. Also, provide bounds on the running times of those algorithms. Can you imagine any
reason why WeirdEuclid would be preferable to FastEuclid?

SlowEuclid(a, b) :
if b > a

return SlowEuclid(b,a)
else if b = 0

return a
else

return SlowEuclid(b,a − b)

FastEuclid(a, b) :
if b = 0

return a
else

return FastEuclid(b,a mod b)
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WeirdEuclid(a, b) :
if b = 0

return a
if a is even and b is even

return 2∗WeirdEuclid(a/2, b/2)
if a is even and b is odd

return WeirdEuclid(a/2, b)
if a is odd and b is even

return W‘eirdEuclid(a, b/2)
if b > a

return WeirdEuclid(b − a,a)
else

return WeirdEuclid(a − b, b)

47.1.2. Homework 1

Required Problems

1 Consider the following strange sorting algorithm. For simplicity we will assume that n is always some
positive power of 2 (i.e. n = 2i, for some positive integer i > 0).

4-StupidSort(A[0 .. n − 1]) :
if n ≤ 8

InsertionSort(A[0 .. n − 1])
else /* n > 8 */

for i ← 0 to 2
for j ← 2 to i

4-StupidSort(A[ jn/4 .. ( j + 2)n/4 − 1])

1. Prove that 4-StupidSort actually sorts its input.
2. State a recurrence (including the base case(s)) for the number of comparisons executed by 4-

StupidSort.
3. Solve the recurrence, and prove that your solution is correct. Does the algorithm deserve its name?
4. Show that the number of swaps executed by 4-StupidSort is at most

(n
2
)
.

(HARD)

2 The following randomized algorithm selects the rth smallest element in an unsorted array A[1 .. n]. For
example, to find the smallest element, you would call RandomSelect(A,1); to find the median element,
you would call RandomSelect(A, bn/2c). Recall from lecture that Partition splits the array into three
parts by comparing the pivot element A[p] to every other element of the array, using n − 1 comparisons
altogether, and returns the new index of the pivot element.
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RandomSelect(A[1 .. n],r) :
p← Random(1,n)
k ← Partition(A[1 .. n], p)
if r < k

return RandomSelect(A[1 .. k − 1],r)
else if r > k

return RandomSelect(A[k + 1 .. n],r − k)
else

return A[k]

1. State a recurrence for the expected running time of RandomSelect, as a function of n and r.
2. What is the exact probability that RandomSelect compares the i-th smallest and j-th smallest

elements in the input array? The correct answer is a simple function of i, j, and r. [Hint: Check
your answer by trying a few small examples.]

3. Show that for any n and r, the expected running time of RandomSelect is Θ(n). You can use
either the recurrence from part (a) or the probabilities from part (b). For extra credit, find the exact
expected number of comparisons, as a function of n and r.

4. What is the expected number of times that RandomSelect calls itself recursively?

3 Solve the following randomization problems:

1. Given a function RandBit() that returns 0 or 1 with equal probability, write a function Rand(n)
that returns a random integer between 0 and n − 1 (inclusive) with uniform distribution over those
possible values.

2. Given a function RandReal() that returns a random real number between 0 and 1, describe a
procedure that generates a random permutation of the integer set {1, . . . ,n} where every possible
permutation has the same probability of being returned. You can assume that RandReal() never
returns the same number twice.

3. Given a function Rand(n) as describe above, describe a linear-time algorithm that outputs a permu-
tation of the integer set {1, . . . ,n} where all permutations have equal probability. You can assume
that Rand(n) takes constant time.

4 [This problem is required only for graduate students. Undergraduates can submit a solution for extra
credit.]
You are watching a stream of packets go by one at a time, and want to take a random sample of k distinct
packets from the stream. You face several problems:

• You only have room to save k packets at any one time.
• You do not know the total number of packets in the stream.
• If you choose not to save a packet as it goes by, it is gone forever.

In each of the three scenarios below, devise a scheme so that whenever the packet stream terminates you
are left holding a subset of k packets chosen uniformly at random from the entire packet stream. If the
total number of packets in the stream is less than k, you should hold all of these packets. (hint: To verify
your solution, imagine that you now repeat the same experiment with the same stream sent in the reverse
order. The probability to get the same output in the two experiments should be the same.)

1. Prior to watching the stream you know that the total number of packets is some number n. Also,
you have room to save all n packets (i.e. k = n).

2. In this scenario you the know the values of both n and k in advance.
(HARD)
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3. Here you still have room to hold k packets. However, you have no idea how many packets will flow
through in the stream (i.e., n is unknown in advance).

5 Recall from lecture the notion of an edit distance between two words (Lecture 2, Section 2.7). There
we derived an algorithm EDITDISTANCE to compute the minimum number of legal transformations
required to convert one string into another (i.e. the edit distance). Let us now consider the problem
assuming we have some additional information. Namely, suppose we are given a parameter k that is an
upper limit on the edit distance of the two string parameters (k is some positive finite integer). Write a
new procedure K-EDITDISTANCE to achieve the same results as EDITDISTANCE, this time taking
advantage of the additional k parameter. What are the new and improved space and time complexities?

6 Finding maximal longest monotonically increasing subsequence

1. Give an O(n2)-time algorithm to find the longest monotonically increasing subsequence of a sequence
of n numbers. Recall that a monotonically increasing sequence is a sequence s1, . . . , sn where i ≤ j ⇒
si ≤ sj for all i and j in {1, . . . ,n}.

2. [This problem is required only for graduate students. Undergraduates can submit a solution for extra
credit.]
Give an O(n lg n)-time algorithm to find the longest monotonically increasing subsequence of a se-
quence of n numbers. (Hint: Observe that the last element of a candidate subsequence of length i is
at least as large as the last element of a candidate subsequence of length i − 1. Maintain candidate
subsequences by linking them through the input sequence.)

7 [This problem is required only for graduate students. Undergraduates can submit a solution for extra
credit.]
Let an integer array A[0 .. n − 1] represent a histogram with n buckets, each of width 1 (see the figure
below). Informally, a bucket is a single-valued bar in the histogram while width is measured by the number
of array cells beneath an object (i.e. a single bucket can have width greater than one). For clarity, assume
throughout this entire problem that n ≥ 1 and that each of the n array entries are integers in some
predetermined finite range [0 .. M].

0

1

2

3

4

5

6

m

...
..

...23 44 6 0
[0] [1] [2] [3] [4] [5] [n−1]

A[] :

3 buckets

width 1

Histogram interpretation of an integer array.

A k-cover of a histogram is an approximation in the form of a new histogram of the same total width, but
with k buckets (possibly of k different widths) instead of the n buckets in the original histogram (see the
figures below). Each of the new k buckets have a width which is a non-negative integer number.¬ The
height of a new bucket is an integer number in the range [0..M].

¬A new bucket must cover all or none of any given original bucket (i.e. cannot split an original bucket between two or more new
buckets).

295



A 3−cover

[2][1][0]

This 3−cover’s error

[2][1][0]

�����������������������������������

�����������������������������������

�������������������������

������������������������� ������
������
���

������
������
���

This 2−cover’s error

[0] [1]

��������������������
	�		�	
�

�


�������������������������������������������������

�������������������������������������������������

A 2−cover

[0] [1]

[0] [1] [2] [3] [4] [5]

A 6−bucket histogram

A k-cover and its associated error.

The error of a k-cover is the area of the geometric difference between the original histogram and its
cover (i.e. the total area between the original histogram graph and the covering histogram graph). The
illustrations above should clarify this quantity. A best k-cover of a given histogram is a k-cover whose
error is no larger than any other k-cover of that same histogram (for the same value of k). The covers
shown above are definitely not optimal.

1. How many bits are required to store a histogram?
2. How many bits are required to store a k-cover of a histogram?
3. Write an algorithm 1-COVER(A[l .. r]) that determines the best 1-cover of the histogram A[l .. r]

and returns the value (height) of that histogram (NOTE: we are only covering A from index l through
index r). You can assume that 0 ≤ l ≤ r < n.

4. Using 1-COVER, write an algorithm K-COVER(A[0 .. n − 1], k,W[0 .. k − 1],H[0, .., k − 1]) that de-
termines the best k-cover of A[0 .. n − 1] and assigns the corresponding bucket widths of the k-cover
into the array W[0 .. k − 1] and their heights into H[0, .., k − 1].

5. What are the space and running time complexities of K-COVER?
(Really HARD)

6. Practice problem - no credit: Describe an algorithm that receives as an input an histogram
and constructs a data-structure in O(n log n) time, so that given query interval [l ..r], it computes
1-COVER(A[l .. r]) in O(log M log2 n) time. (It is possible to do even better than that.)

Practice Problems

8 Suppose you are a simple shopkeeper living in a country with n different types of coins, with values
1 = c[1] < c[2] < · · · < c[n]. (In the U.S., for example, n = 6 and the values are 1,5,10,25,50 and 100
cents.) Your beloved and belevolent dictator, El Generalissimo, has decreed that whenever you give a
customer change, you must use the smallest possible number of coins, so as not to wear out the image of
El Generalissimo lovingly engraved on each coin by servants of the Royal Treasury.

1. In the United States, there is a simple greedy algorithm that always results in the smallest number
of coins: subtract the largest coin and recursively give change for the remainder. El Generalissimo
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does not approve of American capitalist greed. Show that there is a set of coin values for which the
greedy algorithm does not always give the smallest possible of coins.

2. Describe and analyze a dynamic programming algorithm to determine, given a target amount A and
a sorted array c[1 .. n] of coin values, the smallest number of coins needed to make A cents in change.
You can assume that c[1] = 1, so that it is possible to make change for any amount A.

9 What excitement! The Champaign Spinners and the Urbana Dreamweavers have advanced to meet each
other in the World Series of Basketweaving! The World Champions will be decided by a best-of- 2n − 1
series of head-to-head weaving matches, and the first to win n matches will take home the coveted Golden
Basket (for example, a best-of-7 series requiring four match wins, but we will keep the generalized case).
We know that for any given match there is a constant probability p that Champaign will win, and a
subsequent probability q = 1 − p that Urbana will win.
Let P(i, j) be the probability that Champaign will win the series given that they still need i more victories,
whereas Urbana needs j more victories for the championship. P(0, j) = 1, 1 ≤ j ≤ n, because Champaign
needs no more victories to win. P(i,0) = 0, 1 ≤ i ≤ n, as Champaign cannot possibly win if Urbana
already has. P(0,0) is meaningless. Champaign wins any particular match with probability p and loses
with probability q, so

P(i, j) = p · P(i − 1, j) + q · P(i, j − 1)

for any i ≥ 1 and j ≥ 1.
Create and analyze an O(n2)-time dynamic programming algorithm that takes the parameters n, p and q
and returns the probability that Champaign will win the series (that is, calculate P(n,n)).

10 The traditional Devonian/Cornish drinking song “The Barley Mow” has the following pseudolyrics,
where container[i] is the name of a container that holds 2i ounces of beer.®

BarleyMow(n):
“Here’s a health to the barley-mow, my brave boys,”
“Here’s a health to the barley-mow!”
“We’ll drink it out of the jolly brown bowl,”
“Here’s a health to the barley-mow!”
“Here’s a health to the barley-mow, my brave boys,”
“Here’s a health to the barley-mow!”
for i ← 1 to n

“We’ll drink it out of the container[i], boys,”
“Here’s a health to the barley-mow!”
for j ← i downto 1

“The textcontainer[ j],”
“And the jolly brown bowl!”
“Here’s a health to the barley-mow!”
“Here’s a health to the barley-mow, my brave boys,”
“Here’s a health to the barley-mow!”

1. Suppose each container name textcontainer[i] is a single word, and you can sing four words a second.
How long would it take you to sing BarleyMow(n)? (Give a tight asymptotic bound.)

Pseudolyrics are to lyrics as pseudocode is to code.
®One version of the song uses the following containers: nipperkin, gill pot, half-pint, pint, quart, pottle, gallon, half-anker,

anker, firkin, half-barrel, barrel, hogshead, pipe, well, river, and ocean. Every container in this list is twice as big as its predecessor,
except that a firkin is actually 2.25 ankers, and the last three units are just silly.
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2. If you want to sing this song for n > 20, you’ll have to make up your own container names, and to
avoid repetition, these names will get progressively longer as n increases¯. Suppose textcontainer[n]
has Θ(log n) syllables, and you can sing six syllables per second. Now how long would it take you to
sing BarleyMow(n)? (Give a tight asymptotic bound.)

3. Suppose each time you mention the name of a container, you drink the corresponding amount of
beer: one ounce for the jolly brown bowl, and 2i ounces for each textcontainer[i]. Assuming for
purposes of this problem that you are at least 21 years old, exactly how many ounces of beer would
you drink if you sang BarleyMow(n)? (Give an exact answer, not just an asymptotic bound.)

11 Suppose we want to display a paragraph of text on a computer screen. The text consists of n words,
where the ith word is pi pixels wide. We want to break the paragraph into several lines, each exactly P
pixels long. Depending on which words we put on each line, we will need to insert different amounts of
white space between the words. The paragraph should be fully justified, meaning that the first word on
each line starts at its leftmost pixel, and except for the last line, the last character on each line ends at its
rightmost pixel. There must be at least one pixel of whitespace between any two words on the same line.
Define the slop of a paragraph layout as the sum over all lines, except the last, of the cube of the number
of extra white-space pixels in each line (not counting the one pixel required between every adjacent pair
of words). Specifically, if a line contains words i through j, then the amount of extra white space on
that line is P − j + i −

∑j
k=i

pk . Describe a dynamic programming algorithm to print the paragraph with
minimum slop.

12 You are at a political convention with n delegates. Each delegate is a member of exactly one political
party. It is impossible to tell which political party a delegate belongs to. However, you can check whether
any two delegates are in the same party or not by introducing them to each other. (Members of the same
party always greet each other with smiles and friendly handshakes; members of different parties always
greet each other with angry stares and insults.)

1. Suppose a majority (more than half) of the delegates are from the same political party. Give an
efficient algorithm that identifies a member of the majority party.

2. Suppose exactly k political parties are represented at the convention and one party has a plurality:
more delegates belong to that party than to any other. Present a practical procedure to pick a person
from the plurality party as parsimoniously as possible. (Please.)

13 Give an algorithm that finds the second smallest of n elements in at most n+ dlg ne −2 comparisons. [Hint:
divide and conquer to find the smallest; where is the second smallest?]

14 A company is planning a party for its employees. The employees in the company are organized into a
strict hierarchy, that is, a tree with the company president at the root. The organizers of the party have
assigned a real number to each employee measuring how ‘fun’ the employee is. In order to keep things
social, there is one restriction on the guest list: an employee cannot attend the party if their immediate
supervisor is present. On the other hand, the president of the company must attend the party, even
though she has a negative fun rating; it’s her company, after all. Give an algorithm that makes a guest
list for the party that maximizes the sum of the ‘fun’ ratings of the guests.

15 Suppose you have a subroutine that can find the median of a set of n items (i.e., the bn/2c smallest) in
O(n) time. Give an algorithm to find the kth biggest element (for arbitrary k) in O(n) time.

16 You’re walking along the beach and you stub your toe on something in the sand. You dig around it and
find that it is a treasure chest full of gold bricks of different (integral) weight. Your knapsack can only

¯“We’ll drink it out of the hemisemidemiyottapint, boys!”
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carry up to weight n before it breaks apart. You want to put as much in it as possible without going over,
but you cannot break the gold bricks up.

1. Suppose that the gold bricks have the weights 1,2,4,8, . . . ,2k , k ≥ 1. Describe and prove correct a
greedy algorithm that fills the knapsack as much as possible without going over.

2. Give a set of 3 weight values for which the greedy algorithm does not yield an optimal solution and
show why.

3. Give a dynamic programming algorithm that yields an optimal solution for an arbitrary set of gold
brick values.

47.1.3. Homework 2

CS 373: Combinatorial Algorithms, Fall 2001
Homework 2 (due Tue. October 2, 2001 at 23:59)

Required Problems

1 [20 points] Let’s analyze the number of random bits needed to implement the operations of a treap.
Suppose we pick a priority pi at random from the unit interval. Then the binary representation of each
pi can be generated as a potentially infinite series of bits that are the outcome of unbiased coin flips. The
idea is to generate only as many bits in this sequence as is necessary for resolving comparisons between
different priorities. Suppose we have only generated some prefixes of the binary representations of the
priorities of the elements in the treap T . Now, while inserting an item y, we compare its priority py to
other’s priorities to determine how y should be rotated. While comparing py to some pi, if their current
partial binary representation can resolve the comparison, then we are done. Otherwise, the have the same
partial binary representations (up to the length of the shorter of the two) and we keep generating more
bits for each until they first differ.

1.A. Compute a tight upper bound on the expected number of coin flips or random bits needed for a single
priority comparison. (Note that during insertion every time we decide whether or not to perform a
rotation, we perform a priority comparison. We are interested in the number of bits generated in
such a single comparison.)

1.B. Generating bits one at a time like this is probably a bad idea in practice. Give a more practical
scheme that generates the priorities in advance, using a small number of random bits, given an upper
bound n on the treap size. Describe a scheme that works correctly with probability ≥ 1− n−c, where
c is a prespecified constant.

2 [20 points] Consider a uniform rooted tree of height h (every leaf is at distance h from the root). The
root, as well as any internal node, has 3 children. Each leaf has a boolean value associated with it. Each
internal node returns the value returned by the majority of its children. The evaluation problem consists
of determining the value of the root; at each step, an algorithm can choose one leaf whose value it wishes
to

2.A. (5 pts.) Describe a deterministic algorithm that runs in O(n) time, that computes the value of the
tree, where n = 3h.
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2.B. (10 pts.) Consider the recursive randomized algorithm that evaluates two subtrees of the root
chosen at random. If the values returned disagree, it proceeds to evaluate the third sub-tree. Show
the expected number of leaves read by the algorithm on any instance is at most n0.9.
(HARD)

2.C. (5 pts.) Show that for any deterministic algorithm, there is an instance (a set of boolean values for
the leaves) that forces it to read all n = 3h leaves. (hint: Consider an adversary argument, where
you provide the algorithm with the minimal amount of information as it request bits from you. In
particular, one can devise such an adversary algorithm.).

3 [20 points] Assume that you are given a data-structure DS (i.e., a black box) so that given n points
p1, . . . , pn in Rd one can build it in T(n) time a data-structure that supports nearest-neighbor search in
Q(n) time. Namely, given a query point q ∈ Rd, one can compute the point pi which is nearest to q among
all the points p1, . . . , pn. Formally, dist(pi,q) ≤ dist(pj,q) for j = 1, . . . ,n.
Furthermore, assume that one can delete a point from DS in D(n) time (namely, this point would no
longer be considered in answering nearest-neighbor queries). Deleting a point that does not exist in the
data-structure is allowed, and does not do anything.
Describe how to construct a data-structure that support insertions (i.e., you are allowed to use the black-
box described above as a building block in the new data-structure). The new data-structure should have
the following performance:

• Build an empty data-structure in O(1) time.
• Insertion takes O((T(n)/n) log n) amortized time.
• Deletion takes O(D(n) log n) time.
• Nearest neighbor query takes O(Q(n) log n) time.

Here n is the overall number of insertions/deletions performed. (Hint: Maintain several data-structures
DS1, . . . ,DSk and simulate insertions by performing rebuilds.). Show that if T(n) = n2 then the amortized
insertion time is in fact O(T(n)/n).

4 [20 points] You are given two sorted arrays of real numbers A[1..n],B[1..n] (say, sorted in increasing
order). Consider the set C =

{
Ci j

}
of n2 numbers that can be represented as Ci j = A[i] + B[ j] (to make

things simple, assume that all those.n2 numbers are different), for i = 1, . . . ,n and j = 1, . . . ,n.

4.A. (3 point) Describe an O(n2) time algorithm that receives k, and return the kth smallest element in
C.

4.B. (15 points) Describe an O(n log2 n) expected time algorithm that receives k, and return the kth
smallest element in C. (Hint: consider C to be written as an implicit matrix of size n×n, and observe
that this matrix has a lot of useful properties).

4.C. (2 points) Describe an O(n log n) expected time algorithm that receives k, and return the kth smallest
element in C.

5 [10 points]

5.A. Given a binary search tree T with n nodes with values stored in each node, describe an algorithm
that prints all the values of T from smallest to largest in O(n) time.

5.B. Describe such an algorithm that uses only O(1) space, assuming that each node in T has a pointer
to its parent.

5.C. Describe an algorithm that receives a tree T and outputs a balanced binary tree T ′ with the same
values stored in it. The algorithm should work in linear time.
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6 [10 points] Show how to implement a queue with two ordinary stacks so that the amortized cost of each
ENQUEUE and each DEQUEUE operation is O(1)

7 [10 points] [This problem is required only for graduate students. No extra credit would be given for
undergraduates submitting a solution for this question] Design a data structure to support the following
two operations for a set S of integers:
INSERT(S, x) inserts x into S.
DELETE-LARGER-HALF(S) deletes the largest dS/2e
Explain how to implement this data structure so that any sequence of m operations runs in O(m) time.

8 [10 points] [This problem is required only for graduate students. No extra credit would be given for
undergraduates submitting a solution for this question]
You have to provide a data-structure that support the following operations:

1. Create an empty set.
2. Insert an integer number into a set.
3. Delete an integer number from a set.
4. Search - given an integer number decide if the number is inside the set.
5. Merge two sets into a new set (the two old sets are destroyed, and can not be used any more).

Describe how to implement such a data-structure so that the price of each operation is O(log n) amortized.
Namely, after performing a sequence of n operations, the overall running time is O(n log n). (Remember
to prove everything - bounds, correctness, etc.)

9 [10 points] [This problem is required only for graduate students. No extra credit would be given for
undergraduates submitting a solution for this question] Consider an ordinary binary search tree augmented
by adding to each node x the field size[x] giving the number of keys stored in the subtree rooted at x.
Let α be a constant in the range 1/2 < α < 1. We say that a given node x is α-balanced if

size[le f t[x]] ≤ α ∗ size[x]

and
size[right[x]] ≤ α ∗ size[x]

The tree as a whole is α-balanced if every node in the tree is α-balanced.
Suppose that INSERT and DELETE are implemented as usual for an n-node binary search tree, except
that after every such operation, if any node in the tree is no longer α-balanced, then the subtree rooted
at the highest such node in the tree is rebuilt so that it becomes 1/2-balanced. i.e., as balanced as it can
be.
We shall analyze this rebuilding scheme using the potential method. For a node x in a binary search tree
T , we define

∆(x) = |size[le f t[x]] − size[right[x]]|

and we define the potential of T as

Φ(T) = c ∗ Σ∆(x) for all x in T such that ∆(x) ≥ 2

where c is a sufficiently large constant that depends on α

9.A. Argue that any binary search tree has non-negative potential and that a 1/2-balanced tree has
potential 0.
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9.B. Suppose that m units of potential can pay for rebuilding an m-node subtree. How large must c be in
terms of α in order for it to take O(1) amortized time to rebuild a subtree that is not α-balanced?

9.C. Show that inserting a node into or deleting a node from an n-node α-balanced tree costs O(log n)
amortized time

Practice Problems

10 Suppose we are given two sorted arrays A[1 .. n] and B[1 .. n] and an integer k. Describe an algorithm to
find the kth smallest element in the union of A and B. (For example, if k = 1, your algorithm should
return the smallest element of A∪ B; if k = n, our algorithm should return the median of A∪ B.) You can
assume that the arrays contain no duplicates. For full credit, your algorithm should run in Θ(log n) time.
[Hint: First try to solve the special case k = n.]

11 Say that a binary search tree is augmented if every node v also stores |v |, the size of its subtree.

11.A. Show that a rotation in an augmented binary tree can be performed in constant time.
11.B. Describe an algorithm ScapegoatSelect(k) that selects the kth smallest item in an augmented

scapegoat tree in O(log n) worst-case time.
11.C. Describe an algorithm SplaySelect(k) that selects the kth smallest item in an augmented splay

tree in O(log n) amortized time.
11.D. Describe an algorithm TreapSelect(k) that selects the kth smallest item in an augmented treap

in O(log n) expected time.

12 Do the following:

12.A. Prove that only one subtree gets rebalanced in a scapegoat tree insertion.
12.B. Prove that I(v) = 0 in every node of a perfectly balanced tree. (Recall that I(v) = max {0, |T | − |s | − 1},

where T is the child of greater height and s the child of lesser height, and |v | is the number of nodes
in subtree v. A perfectly balanced tree has two perfectly balanced subtrees, each with as close to
half the nodes as possible.)
(HARD)

12.C. Show that you can rebuild a fully balanced binary tree from an unbalanced tree in O(n) time using
only O(log n) additional memory.

13 Suppose we can insert or delete an element into a hash table in constant time. In order to ensure that
our hash table is always big enough, without wasting a lot of memory, we will use the following global
rebuilding rules:

• After an insertion, if the table is more than 3/4 full, we allocate a new table twice as big as our
current table, insert everything into the new table, and then free the old table.

• After a deletion, if the table is less than 1/4 full, we allocate a new table half as big as our current
table, insert everything into the new table, and then free the old table.

Show that for any sequence of insertions and deletions, the amortized time per operation is still a constant.
Do not use the potential method (it makes it much more difficult).

14 A multistack consists of an infinite series of stacks S0,S1,S2, . . . , where the ith stack Si can hold up to
3i elements. Whenever a user attempts to push an element onto any full stack Si, we first move all the
elements in Si to stack Si+1 to make room. But if Si+1 is already full, we first move all its members to
Si+2, and so on. Moving a single element from one stack to the next takes O(1) time.
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×9

×3

Making room for one new element in a multistack.

1. [1 point] In the worst case, how long does it take to push one more element onto a multistack
containing n elements?

2. [9 points] Prove that the amortized cost of a push operation is O(log n), where n is the maximum
number of elements in the multistack. You can use any method you like.

15 Death knocks on your door one cold blustery morning and challenges you to a game. Death knows that
you are an algorithms student, so instead of the traditional game of chess, Death presents you with a
complete binary tree with 4n leaves, each colored either black or white. There is a token at the root of the
tree. To play the game, you and Death will take turns moving the token from its current node to one of
its children. The game will end after 2n moves, when the token lands on a leaf. If the final leaf is black,
you die; if it’s white, you will live forever. You move first, so Death gets the last turn.
You can decide whether it’s worth playing or not as follows. Imagine that the nodes at even levels (where
it’s your turn) are or gates, the nodes at odd levels (where it’s Death’s turn) are and gates. Each gate
gets its input from its children and passes its output to its parent. White and black stand for True and
False. If the output at the top of the tree is True, then you can win and live forever! If the output at
the top of the tree is False, you should challenge Death to a game of Twister instead.

15.A. (2 pts.) Describe and analyze a deterministic algorithm to determine whether or not you can win.
[Hint: This is easy!]

15.B. (8 pts.) Unfortunately, Death won’t let you even look at every node in the tree. Describe a
randomized algorithm that determines whether you can win in Θ(3n) expected time. [Hint: Consider
the case n = 1.]

∨

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

∧ ∧

∨ ∨ ∨

∨

16 1. Show that it is possible to transform any n-node binary search tree into any other n-node binary
search tree using at most 2n − 2 rotations.
(HARD)
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2. Use fewer than 2n − 2 rotations. Nobody knows how few rotations are required in the worst case.
There is an algorithm that can transform any tree to any other in at most 2n−6 rotations, and there
are pairs of trees that are 2n − 10 rotations apart. These are the best bounds known.

17 Faster Longest Increasing Subsequence(LIS)
Give an O(n log n) algorithm to find the longest increasing subsequence of a sequence of numbers. [Hint:
In the dynamic programming solution, you don’t really have to look back at all previous items. There
was a practice problem on HW 1 that asked for an O(n2) algorithm for this. If you are having difficulty,
look at the solution provided in the HW 1 solutions.]

18 Amortization

1. Modify the binary double-counter (see class notes Sept 12) to support a new operation Sign, which
determines whether the number being stored is positive, negative, or zero, in constant time. The
amortized time to increment or decrement the counter should still be a constant.
[Hint: Suppose p is the number of significant bits in P, and n is the number of significant bits in N.
For example, if P = 17 = 100012 and N = 0, then p = 5 and n = 0. Then p − n always has the same
sign as P − N. Assume you can update p and n in O(1) time.]
(HARD)

2. Do the same but now you can’t assume that p and n can be updated in O(1) time.

(HARD)

19 Amortization
Suppose instead of powers of two, we represent integers as the sum of Fibonacci numbers. In other words,
instead of an array of bits, we keep an array of ‘fits’, where the ith least significant fit indicates whether
the sum includes the ith Fibonacci number Fi. For example, the fit string 101110 represents the number
F6 + F4 + F3 + F2 = 8 + 3 + 2 + 1 = 14. Describe algorithms to increment and decrement a fit string in
constant amortized time. [Hint: Most numbers can be represented by more than one fit string. This is
not the same representation as on Homework 0.]

20 Detecting overlap

1. You are given a list of ranges represented by min and max (e.g., [1,3], [4,5], [4,9], [6,8], [7,10]). Give
an O(n log n)-time algorithm that decides whether or not a set of ranges contains a pair that overlaps.
You need not report all intersections. If a range completely covers another, they are overlapping,
even if the boundaries do not intersect.

2. You are given a list of rectangles represented by min and max x- and y-coordinates. Give an O(n log n)-
time algorithm that decides whet her or not a set of rectangles contains a pair that overlaps (with
the same qualifications as above). [Hint: sweep a vertical line from left to right, performing some
processing whenever an end-point is encountered. Use a balanced search tree to maintain any extra
info you might need.]

21 Comparison of Amortized Analysis Methods
A sequence of n operations is performed on a data structure. The ith operation costs i if i is an exact
power of 2, and 1 otherwise. That is operation i costs f (i), where:

f (i) =
{

i, i = 2k,
1, otherwise

Determine the amortized cost per operation using the following methods of analysis:

1. Aggregate method
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2. Accounting method (HARD)
3. Potential method

47.1.4. Homework 3

CS 373: Combinatorial Algorithms, Fall 2001
Homework 3 (due Thursday, October 18, 2001 at 11:59.99 p.m.)

Required Problems

1 Treaps revisited (10 pts.)
Modify a treap data-structure T so that it supports the following operations quickly. Implementing some
of those operations would require you to modify the information stored in each node of the treap, and
how insertions/deletions are being handled in the treap. For each of the following, describe separately the
changes made in detail, and the algorithms for answering those queries. (Note, that under the modified
version of the treap, insertion and deletion should still take O(log n) expected time.)

1. (2 pts.) Find the smallest element stored in T in O(log n) expected time.
2. (2 pts.) Find the largest element stored in T in O(log n) expected time.
3. (2 pts.) Given a query k, find the k-th smallest element stored in T in O(log n) expected time.
4. (2 pts.) Given a query [a, b], find the number of elements stored in T with their values being in the

range [a, b], in O(log n) expected time.
5. (2 pts.) Given a query [a, b], report (i.e., printout) all the elements stored in T in the range [a, b],

in O(log(n) + u) expected time, where u is the number of elements printed out.

2 The Pub Inspector Problem (10 pts.)
Jane is a Champaign pub inspector, and she have to visit all the pubs in Champaign starting from her
home and then coming back to her home. She knows the exact distances between any two pubs, and also
from any pub to her home. Help her find such a cycle that is no longer than twice of the optimal shortest
cycle.
Formally, you are given a undirected graph G = (V,E), where any two vertices a and b have an edge
ab connecting them (such a graph is called a clique), and for every edge e of G there is an associated
non-negative length d(e) ≥ 0. Furthermore, the triangle inequality holds for those distance; namely, for
any a, b, c ∈ V(G), we have d(ab) + d(bc) ≥ d(ac).
Show a polynomial time algorithm that computes a cycle which visits all the vertices (visiting every vertex
exactly once) and has a length at most twice of the optimal shortest cycle that visits all the vertices.
Hint: Use the minimal spanning tree and the fact that the triangle inequality holds for the distances in
the graph.
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3 The domino effect (20 pts.)
The graph G = (V,E) is a connected undirected graph with all vertices having even degrees.

1. (5 pts.) Show a linear time algorithm to find a set of cycles U = {c : c is a cycle of G , so that all
the cycles are disjoint and their union cover all the edges of G. A cycle might use an edge at most
once (however, a vertex might be used several time in the same cycle). Namely, if Ec is the set of
edges in the cycle c, then then

⋃
c∈U Ec = E, and Ec ∩ Ed = ∅ for c, d ∈ U, c , d.

2. (5 pts.) Show a linear time algorithm that computes a cycle c covering all the edges of G. Namely,
Ec = E.

3. (5 pts.) If there are exactly two vertices which have odd degree, and all the other vertices have
even degree, show a linear algorithm to find a single path π that covers all the edges in the graph.
Namely, Eπ = E.

4. (5 pts.) A domino is a 2×1 rectangle divided into two squares, with a certain number of pips (dots)
in each square. In most domino games, the players lay down dominos at either end of a single chain.
Adjacent dominos in the chain must have matching numbers. (See the figure below.)
Describe and analyze an efficient algorithm to determine whether a given set of n dominos can be
lined up in a single chain. For example, for the set of dominos shown below, the correct output is
True.

Top: A set of nine dominos
Bottom: The entire set lined up in a single chain

4 Going home (20 pts.)
Every evening, Jane walks from her office to her home. There are several buildings (i.e., obstacles) between
her home and the office. For simplicity, we assume that all the obstacles are triangles. Figure 2(a) is one
of the routes Jane may take, and Figure 2(b) is seemingly a shorter route from Jane’s home to her office.
Describe an algorithm for computing the shortest path from Jane home to her office.
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Formally, your are a given a set of n disjoint triangles
a

1, . . . ,
a

n in the plane, a starting point s, and
ending point t. Describe an algorithm that computes the Euclidean shortest path from s to t that avoids
the interior of triangles. Your algorithm should be no slower than O(n3).
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Separator

Figure 47.1: A tree T , a separator in T , and the forest of trees generated by the removal of the separator, and
all the edges adjacent to it.

5 Separators in trees (20 pts.)
T = (V,E) is a tree, a node v ∈ T is a separator of T , if v satisfies the following condition:

∀ f ∈ F | f | ≤
2
3n,

where F = T \ {v} is the forest resulting from T by removing v and all the edges attached to v from T ,
n = |T |, and |T | denotes the number of nodes in a tree T. Intuitively, a separator is a good vertex to use
in breaking a tree into subtrees. Figure 47.1 shows a tree and its separator.

1. (4 pts.) Prove that there exists a separator in any tree.
2. (8 pts.) Show a linear time algorithm to find a separator of a tree. (Hint: It is sometimes useful to

pick a arbitrary vertex of a tree, and designate it as a root, thus turning T into a rooted tree, and
thus oriented.)

3. (8 pts.) We assign a weight w(e) to each edge e of the tree. Design a data structure so that the
tree built using the data structure can answer the query "Which is the edge with the smallest weight
on the unique path between the nodes a and b?" in O(log n) time. The data-structure should use
O(n log n) space and preprocessing.
(HARD)

4. (5 pts.) [Extra credit question for graduate and undergraduates.] Show a data-structure to answer
the query in O(log log n) time, that uses O(n log log n) space and preprocessing.
(Really HARD)

5. (5 pts.) [Extra credit question for graduate and undergraduates.] Show that one can build a data-
structure that answer the query in O(1) time with O(n log n) space.
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6 Slot-size bound for chaining (20 pts.)
[This problem is required only for graduate students. Undergraduates can submit a solution for extra
credit.]
Suppose that we have a hash table with n slots, with collisions resolved by chaining, and suppose that
n keys are inserted into the table. Each key is equally likely to be hashed to each slot. Let M be the
maximum number of keys in any slot after all the keys have been inserted. Your mission is to prove an
O(lg n/lg lg n) upper bound on E[M], the expected value of M.

1. (4 pts.) Argue that the probability QK that exactly k keys hash to a particular slot is given by

Qk =

(
1
n

)k (
1 − 1

n

)n−k (n
k

)
.

2. (4 pts.) Let Pk be the probability that M = k, that is, the probability that the slot containing the
most keys contains k keys. Show that Pk ≤ nQk .

3. (4 pts.) Use Stirling’s approximation¬ to show that Qk < ek/kk . Hint: Use the inequality 1+ x ≤ ex,
for x ≥ 0.

4. (4 pts.) Show that there exists a constant c > 1 such that Qk0 < 1/n3, for k0 = c lg n/lg lg n.
Conclude that Pk < 1/n2 for k ≥ k0 = c lg n/lg lg n.

5. (4 pts.) Argue that

E[m] ≤ Pr
{

M >
c lg n
lg lg n

}
∗ n + Pr

{
M ≤

c lg n
lg lg n

}
∗

c lg n
lg lg n

Conclude that E[M] = O(lg n/lg lg n)

7 Slightly Faster MST (10 pts.)
[This problem is required only for graduate students. Undergraduates can submit a solution for extra
credit.]

1. (4 pts.) Suppose that all edge weights in a graph are integers in the range from 1 to |V |. How fast
can you make Kruskal’s algorithm run? What if the edge weights are integers in the range from 1
to W for some constant W?

2. (3 pts.) Suppose that the edge weights in a graph are uniformly distributed over the half-open
interval [0,1). Which algorithm, Kruskal’s or Prim’s, can you make run faster?

3. (3 pts.) Suppose that a graph G has a minimum spanning tree already computed. How quickly can
the minimum spanning tree be updated if a new vertex and incident edges are added to G?

8 The Dominator (10 pts.)
[This problem is required only for graduate students. Undergraduates can submit a solution for extra
credit.]
Let G = (V,E) be a directed graph represented by an adjacency list. So each node G[i] has list of all nodes
reachable in 1 step from i. Each node v of G also has a non-negative value associated with it w(v). Given
an O(|E |+ |V | log |V |) time algorithm that computes, for every node, the highest value reachable from that
node. A node w is reachable from v, if there is a directed path in G starting at v and ending in w.
For example, if there is a directed path in G from any vertex to any vertex (i.e., G is strongly-connected),
then the value computed for all the nodes of G would be the same in the entire graph.

¬Stirling’s approximation n! =
√

2πn
( n

e

)n (
1 + Θ

(
1
n

))
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Practice Problems

1 Hashing:
A hash table of size m is used to store n items with n ≤ m/2. Open addressing is used for collision
resolution.

1. Assuming uniform hashing, show that for i = 1,2, . . . ,n, the probability that the ith insertion requires
strictly more than k probes is at most 2−k .

2. Show that for i = 1,2, . . . ,n, the probability that the ith insertion requires more than 2 lg n probes is
at most 1/n2.

Let the random variable Xi denote the number of probes required by the ith insertion. You have shown
in part (b) that Pr{Xi > 2 lg n} ≤ 1/n2. Let the random variable X = max1≤i≤n Xi denote the maximum
number of probes required by any of the n insertions.

(c) Show that Pr{X > 2 lg n} ≤ 1/n.
(d) Show that the expected length of the longest probe sequence is E[X] = O(lg n).

2 Reliable Network:
Suppose you are given a graph of a computer network G = (V,E) and a function r(u, v) that gives a reliability
value for every edge (u, v) ∈ E such that 0 ≤ r(u, v) ≤ 1. The reliability value gives the probability that the
network connection corresponding to that edge will not fail. Describe and analyze an algorithm to find
the most reliable path from a given source vertex s to a given target vertex t.

3 Aerophobia:
After graduating you find a job with Aerophobes-R′-Us, the leading traveling agency for aerophobic
people. Your job is to build a system to help customers plan airplane trips from one city to another. All
of your customers are afraid of flying so the trip should be as short as possible.
In other words, a person wants to fly from city A to city B in the shortest possible time. S/he turns to
the traveling agent who knows all the departure and arrival times of all the flights on the planet. Give
an algorithm that will allow the agent to choose an optimal route to minimize the total time in transit.
Hint: rather than modify Dijkstra’s algorithm, modify the data. The total transit time is from departure
to arrival at the destination, so it will include layover time (time waiting for a connecting flight).

4 The Seven Bridges of Königsberg:
During the eighteenth century the city of Königsberg in East Prussia was divided into four sections by
the Pregel river. Seven bridges connected these regions, as shown below. It was said that residents spent
their Sunday walks trying to find a way to walk about the city so as to cross each bridge exactly once and
then return to their starting point.

1. Show how the residents of the city could accomplish such a walk or prove no such walk exists.
2. Given any undirected graph G = (V,E), give an algorithm that finds a cycle in the graph that visits

every edge exactly once, or says that it can’t be done.

5 Minimum Spanning Tree changes:
Suppose you have a graph G and an MST of that graph (i.e. the MST has already been constructed).

311



1. Give an algorithm to update the MST when an edge is added to G.
2. Give an algorithm to update the MST when an edge is deleted from G.
3. Give an algorithm to update the MST when a vertex (and possibly edges to it) is added to G.
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6 Nesting Envelopes
[This problem is required only for graduate students taking CS 373 for a full unit; anyone else can submit
a solution for extra credit.] You are given an unlimited number of each of n different types of envelopes.
The dimensions of envelope type i are xi × yi. In nesting envelopes inside one another, you can place
envelope A inside envelope B if and only if the dimensions A are strictly smaller than the dimensions of B.
Design and analyze an algorithm to determine the largest number of envelopes that can be nested inside
one another.

7 Makefiles:
In order to facilitate recompiling programs from multiple source files when only a small number of files
have been updated, there is a UNIX utility called ‘make’ that only recompiles those files that were changed
after the most recent compilation, and any intermediate files in the compilation that depend on those that
were changed. A Makefile is typically composed of a list of source files that must be compiled. Each of
these source files is dependent on some of the other files which are listed. Thus a source file must be
recompiled if a file on which it depends is changed.
Assuming you have a list of which files have been recently changed, as well as a list for each source file
of the files on which it depends, design an algorithm to recompile only those necessary. DO NOT worry
about the details of parsing a Makefile.
(Really HARD)

8 Let the hash function for a table of size m be

h(x) = bAmxc mod m

where A = φ̂ =
√

5−1
2 . Show that this gives the best possible spread, i.e. if the x are hashed in order, x + 1

will be hashed in the largest remaining contiguous interval.

9 The incidence matrix of an undirected graph G = (V,E) is a |V | × |E | matrix B = (bi j) such that

bi j =
{

1 (i, j) ∈ E,
0 (i, j) < E .

1. Describe what all the entries of the matrix product BBT represent (BT is the matrix transpose).
Justify.

2. Describe what all the entries of the matrix product BT B represent. Justify.
(Really HARD)

3. Let C = BBT − 2A. Let C ′ be C with the first row and column removed. Show that det C ′ is the
number of spanning trees. (A is the adjacency matrix of G, with zeroes on the diagonal).

10 o(V2) Adjacency Matrix Algorithms

1. Give an O(V) algorithm to decide whether a directed graph contains a sink in an adjacency matrix
representation. A sink is a vertex with in-degree V − 1.

2. An undirected graph is a scorpion if it has a vertex of degree 1 (the sting) connected to a vertex of
degree two (the tail) connected to a vertex of degree V − 2 (the body) connected to the other V − 3
vertices (the feet). Some of the feet may be connected to other feet.
Design an algorithm that decides whether a given adjacency matrix represents a scorpion by exam-
ining only O(V) of the entries.

3. Show that it is impossible to decide whether G has at least one edge in O(V) time.
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11 Shortest Cycle:
Given an undirected graph G = (V,E), and a weight function f : E → R on the edges, give an algorithm
that finds (in time polynomial in V and E) a cycle of smallest weight in G.

12 Longest Simple Path:
Let graph G = (V,E), |V | = n . A simple path of G, is a path that does not contain the same vertex
twice. Use dynamic programming to design an algorithm (not polynomial time) to find a simple path of
maximum length in G. Hint: It can be done in O(nc2n) time, for some constant c.

13 Minimum Spanning Tree:
Suppose all edge weights in a graph G are equal. Give an algorithm to compute an MST.

14 Transitive reduction:
Give an algorithm to construct a transitive reduction of a directed graph G, i.e. a graph GTR with the
fewest edges (but with the same vertices) such that there is a path from a to b in G iff there is also such
a path in GTR.

15 1. What is 522950
+2341

+1732
+1123

+514

mod 6?
2. What is the capital of Nebraska? Hint: It is not Omaha. It is named after a famous president of the

United States that was not George Washington. The distance from the Earth to the Moon averages
roughly 384,000 km.

16 k-universal hashing and authentication Let H = {h} be a class of hash function in which each h maps the
universe U of keys to {0,1, ...,m−1}. We say that H is k-universal if, for every fixed sequence of k distinct
keys

〈
x(1), x(2), ..., x(k)

〉
and for any h chosen at random from H, the sequence

〈
h(x(1)), h(x(2)), ..., h(x(k))

〉
is

equally likely to be any of the mk sequence of length k with elements drawn from {0,1, ...,m − 1}.

1. Show that if H is 2-universal, then it is universal.
2. Let U be the set of n-tuples of values drawn from Zp, and let B = Zp, where p is prime. For any

n-tuple a =< a0,a1, ...,an−1 > of values from Zp and from any b ∈ Zp, define the hash function
ha,b : U → B on an input n-tuple x =< x0, x1, ..., xn−1 > from U as

ha,b(x) =

(
n−1∑
j=0

ajbj + b

)
mod p

and let H = {ha,b}. Argue that H is 2-universal.
3. Suppose that Alice and Bob agree secretly on a hash function ha,b from a 2-universal family H of hash

function. Later, Alice sends a message m to Bob over the Internet, where m ∈ U. She authenticates
ther message to Bob by also sending an authentication tag t = ha,b(m), and Bob checks that the
pair (m, t) he receives satisfies t = ha,b(m). Suppose that an adversary intercepts (m,n) en route and
tries to fool Bob by replacing the pair with a different pair (m′, t ′). Argue that the probability that
the adversary succeeds in fooling Bob into accepting (m′, t ′) is at most 1/p, no matter how much
computing power the adversary has.

47.1.5. Homework 4

CS 373: Combinatorial Algorithms, Fall 2001
Homework 4, due Tuesday, October 30, 2001, at 23:59:59
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Required Problems

1 Range searching (10 pts.)
In the two dimensional plane, a vertical strip is an infinitely long closed region enclosed between two
vertical lines (a closed region contains its boundaries).

1. (4 pts.) Given n points in the plane (p1 . . . pn), design a data structure that when queried with a
vertical strip (specified by two numbers l,r, which specify the strip l ≤ x ≤ r), output the number of
points within the strip in O(log n) time. See Figure 47.2 (i).

l r

pl

pr

Figure 47.2: (i) A vertical strip containing four points, (ii) A rectangle containing five points

2. (6 pts.) Given n points in the plane (p1 . . . pn), design a data structure that when queried with
an axis parallel rectangular region R (specified by an upper left point pl = (xl, yl) and a lower right
point pr = (xr, yr )), can output the number of points within the rectangle R in O(log2 n) time (hint:
consider the rectangular region to be the intersection of a vertical strip and a horizontal strip). See
Figure 47.2 (ii).

2 Visibility polygon (10 pts.)

1. (5 pts.) Given a large square area (with upper left boundary point pl and lower right boundary point
pr) that contains a set of n obstacles (triangles T1 . . .Tn) and a location (i.e., a point s), compute the
set of all visible points in the square when looking FROM s in every direction. This set will be a
polygon P (with vertices p1, . . . , pk). The obstacles are opaque (i.e. one cannot see through them).
The following figure illustrates the situation. Your algorithm should run in O(n log n) time (hint:
perform a sweep while marking visible points).
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T1

T4

T3

T2

T1

T4

T3

T2

pl

prThe visible polygon from viewpoint S

s

pl

pr

s

A square region, a set of obstacles, and a viewpoint S

2. (5 pts.) Give an O(n2 log n) time version of the GoingHome algorithm in the last homework (Hw
3, problem 4).

3 Largest polygon (10 pts.)
Given a convex polygon P in the plane with n vertices p1, . . . , pn, and a parameter k, describe an algorithm
that computes the largest area polygon with k vertices from P. Namely, you have to compute 1 ≤ i1 <
i2 < i3 < · · · < ik ≤ n, such that the polygon pi1 pi2 . . . pik has maximum area. You can assume that you
have a function ∆(a, b, c) that computes the area of the triangle a, b, c. The following figure provides an
illustration.
Hint: First solve for the case that i1 = 1, i2 = 2, and then extend it to other cases.

p1

p2
p3

p4

p4
p6 p7

p8

A convex polygon, and the largest quadrangle in it (k = 4). The algorithm should output p2, p4, p6, p8

(HARD)

4 Fast tangents (10 pts.)
[This problem is required only for graduate students. Undergraduates can submit a solution for extra
credit.]
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Consider a convex polygon P and a point x that is outside P. The two tangents to P that pass through x
are defined as the two lines that pass through x, touch the polygon at a vertex, and are located completely
to one side of the polygon (except for the touched vertex). The following figure illustrates this.

A polygon, an outside point, and two tangents

x

P

The problem is as follows. You are given a convex polygon P in the plane (with n vertices p1, . . . , pn).
Design a data structure so that when given a query point x that is outside P it computes the two tangents
to P that pass through x. You are allowed linear preprocessing time to build the data structure, after
which, a query should be answered in logarithmic time. Hint: Use various forms of binary search several
times - the details are very messy.

Practice Problems

1 Suppose we have n points scattered inside a two-dimensional box. A kd-tree recursively subdivides the
rectangle as follows. First we split the box into two smaller boxes with a vertical line, then we split each
of those boxes with horizontal lines, and so on, always alternating between horizontal and vertical splits.
Each time we split a box, the splitting line partitions the rest of the interior points as evenly as possible
by passing through a median point inside the box (not on the boundary). If a box doesn’t contain any
points, we don’t split it any more; these final empty boxes are called cells.

=⇒ =⇒ =⇒

Successive divisions of a kd-tree for 15 points. The dashed line crosses four cells.

1. How many cells are there, as a function of n? Prove your answer is correct.
2. In the worst case, exactly how many cells can a horizontal line cross, as a function of n? Prove your

answer is correct. Assume that n = 2k − 1 for some integer k.
3. Suppose we have n points stored in a kd-tree. Describe an algorithm that counts the number of

points above a horizontal line (such as the dashed line in the figure) in O(
√

n) time.
(HARD)

4. Find an algorithm that counts the number of points that lie inside a rectangle R and show that it
takes O(

√
n) time. You may assume that the sides of the rectangle are parallel to the sides of the

box.
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An example staircase as in problem 3.

2 Circle Intersection
Describe an algorithm to decide, given n circles in the plane, whether any two of them intersect, in
O(n log n) time. Each circle is specified by three numbers: its radius and the x- and y-coordinates of its
center.
We only care about intersections between circle boundaries; concentric circles do not intersect. What
general position assumptions does your algorithm require? [Hint: Modify an algorithm for detecting line
segment intersections, but describe your modifications very carefully! There are at least two very different
solutions.]

3 Staircases
You are given a set of points in the first quadrant. A left-up point of this set is defined to be a point that
has no points both greater than it in both coordinates. The left-up subset of a set of points then forms a
staircase (see figure).

1. Prove that left-up points do not necessarily lie on the convex hull.
2. Give an O(n log n) algorithm to find the staircase of a set of points.
3. Assume that points are chosen uniformly at random within a rectangle. What is the average number

of points in a staircase? Justify. Hint: you will be able to give an exact answer rather than just
asymptotics. You have seen the same analysis before.

4 Convex Layers
Given a set Q of points in the plane, define the convex layers of Q inductively as follows: The first convex
layer of Q is just the convex hull of Q. For all i > 1, the ith convex layer is the convex hull of Q after the
vertices of the first i − 1 layers have been removed.
Give an O(n2)-time algorithm to find all convex layers of a given set of n points.
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A set of points with four convex layers.

5 Solve the travelling salesman problem for points in convex position (ie, the vertices of a convex polygon).
Finding the shortest cycle that visits every point is easy – it’s just the convex hull. Finding the shortest
path that visits evey point is a little harder, because the path can cross through the interior.

1. Show that the optimal path cannot be one that crosses itself.
2. Describe an O(n2) time dynamic programming algorithm to solve the problem.

6 Basic Computation (assume two dimensions and exact arithmetic)

1. Intersection: Extend the basic algorithm to determine if two line segments intersect by taking care
of all degenerate cases.

2. Simplicity: Give an O(n log n) algorithm to determine whether an n-vertex polygon is simple.
3. Area: Give an algorithm to compute the area of a simple n-polygon (not necessarily convex) in O(n)

time.
4. Inside: Give an algorithm to determine whether a point is within a simple n-polygon (not necessarily

convex) in O(n) time.

7 External Diagonals and Mouths

1. A pair of polygon vertices defines an external diagonal if the line segment between them is completely
outside the polygon. Show that every nonconvex polygon has at least one external diagonal.

2. Three consective polygon vertices p,q,r form a mouth if p and r define an external diagonal. Show
that every nonconvex polygon has at least one mouth.

An external diagonal A mouth

319



8 On-Line Convex Hull
We are given the set of points one point at a time. After receiving each point, we must compute the convex
hull of all those points so far. Give an algorithm to solve this problem in O(n2) (We could obviously use
Graham’s scan n times for an O(n2 log n) algorithm). Hint: How do you maintain the convex hull?

9 Reachability
Given an undirected graph G with n vertices, and two vertices s and t, describe a deterministic algorithm
that decides if s and t are in the same connected component (i.e., is there a path between s and t in G?)
of G using only O(log n) space. (The running time of this algorithm is quite bad, but we do not care.)

10 Another On-Line Convex Hull Algorithm

1. Given an n-polygon and a point outside the polygon, give an algorithm to find a tangent. (HARD)
2. Suppose you have found both tangents. Give an algorithm to remove the points from the polygon

that are within the angle formed by the tangents (as segments!) and the opposite side of the polygon.
3. Use the above to give an algorithm to compute the convex hull on-line in O(n log n)

11 Order of the size of the convex hull
The convex hull on n ≥ 3 points can have anywhere from 3 to n points. The average case depends on the
distribution.

1. Prove that if a set of points is chosen randomly within a given rectangle then the average size of the
convex hull is O(log n).
(Really HARD)

2. Prove that if a set of points is chosen randomly within a given circle then the average size of the
convex hull is O(n1/3).

12 Ghostbusters and Ghosts
A group of n ghostbusters is battling n ghosts. Each ghostbuster can shoot a single energy beam at a ghost,
eradicating it. A stream goes in a straight line and terminates when it hits a ghost. The ghostbusters
must all fire at the same time and no two energy beams may cross (it would be bad). The positions of
the ghosts and ghostbusters is fixed in the plane (assume that no three points are collinear).

1. Prove that for any configuration of ghosts and ghostbusters there exists such a non-crossing matching.
2. Show that there exists a line passing through one ghostbuster and one ghost such that the number of

ghostbusters on one side of the line equals the number of ghosts on the same side. Give an efficient
algorithm to find such a line.

3. Give an efficient divide and conquer algorithm to pair ghostbusters and ghosts so that no two streams
cross.

47.1.6. Homework 5

CS 373: Combinatorial Algorithms, Fall 2001
http://www-courses.cs.uiuc.edu/˜cs373

Homework 5 (due Thu. Nov. 15, 2001 at 11:59:59 pm)
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Required Problems

1 Closest-Pair (16 pts.)
In the following, you are given a set P of n points in the plane. We are interested in the closet-pair of
points in P. Those are the two points that realizes the distance CP(P) = minp,q∈P |pq |.

1. (2 pts.) Show that deciding if two points of P are equal takes Ω(n log n) time in the worst case in
the decision tree model with bounded degree. In particular, conclude that finding the closest-pair in
P requires Ω(n log n) time.

2. (4 pts.) Show that given a parameter r, you can decide whether CP(P) ≥ r in linear time. In
particular, if there exists two points, p′,q′ ∈ P such that |p′q′ | < r, then the algorithm would print
them out. Hint: Use a grid to partition the plane into squares of size r, and a hash table.

3. (2 pts.) Modify the above data-structure so that it supports insertions in O(1) time. Namely, when
we create it, we specify r. Next, we can perform insertions of points. The data-structure return
FALSE after an insertion as soon as there are two points that were inserted that have distance
smaller than r between them. It also provide those two points.

4. (2 pts.) For a random permutation of the points of P: p1, . . . , pn, let di = CP(p1, . . . , pi) be the
distance between the closest-pair in p1, . . . , pi.
Show that the probability that di , di−1 is O(1/i).

5. (2 pts.) Describe an algorithm that uses (c), that computes d1, . . . , dn in expected linear time.
6. (2 pts.) Show an expected linear-time algorithm that computes the closest-pair of points of P.
7. (2 pts.) (a) states that we can not solve the closest-pair problem in time faster than Ω(n log n) time,

and the other hand, (f) describes an algorithm that works in linear time. How do you explain those
contradictory results?

2 The convolution theorem (10 pts.)
Given two vectors A = [a0,a1, . . . ,an] and B = [b0, . . . , bn] it is sometimes useful to have all the dot products
of Ar and B, for r = 0, . . . ,2n, where Ar = [an−r,an+1−r,an+2−r, . . . ,a2n−r ], where aj = 0 if j < [0, . . . ,n].
(Namely, An is just A, and Ai is just a translation of A, where we pad with zero if needed. For example,
for A = [3,7,9,15], we have A2 = [7,9,15,0], and A5 = [0,0,3,7].
We would like to compute ci = Ai · B. The resulting vector [c0, . . . , c2n] is known as the convolution of A
and B.¬

• (4 pts.) Let p(x) =
∑n

i=0 αix
i, and q(x) =

∑n
i=0 βix

i. Write an explicit formula for the coefficient of
xi in the product polynomial r(x) = p(x)q(x).

• (6 pts.) Show how to compute the convolution of two vectors A and B of length n in time O(n log n).

3 Random string matching (10 pts.)
Suppose that pattern P and text T are randomly chosen strings of length m and n, respectively, from the d-
ary alphabet Σd = {0,1, . . . , d−1}, where d ≥ 2. Show that the expected number of character-to-character
comparisons made by the inner loop of the AlmostBruteForce algorithm is (n−m+1)1−d−m1−d−1 ≤ 2(n−m+1).

¬The standard definition is in fact slightly different, but let us ignore it for the sake of this exercise.
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AlmostBruteForce(T[1..n],P[1..m]):
for s← 1 to n − m + 1

equal ← true
i ← 1
while equal and i ≤ m

if T[s + i − 1] , P[i]
equal ← f alse

else
i ← i + 1

if equal
return s

return −1

4 Multi-string matching (10 pts.)
Assume that you are given a text T of length n, and k patterns P1, . . . ,Pk (assume that no pattern is a
prefix of another pattern), such that the total length of the patterns is m. Show how to find a single match
of one of the Pis with T in time O(n + m). (Hint: Build a finite automata for each pattern, and “merge”
this finite automata into a single large finite automata that works for all patterns simultaneously.)

5 Fast Classification (10 pts.)
You are given k numbers a1, . . . ,ak , and n numbers: b1, . . . , bn. For each bi you should output whether it
is equal to any of the ais, and if so the index of the ai it is equal to.

• (4 pts.) Show that any algorithm that falls under the decision tree model with bounded degree for
this problem (for k < n) must take Ω(n log k) time in the worst case.

• (2 pts.) Show an algorithm for this problem with O(n log k) running time.
• (4 pts.) Present a linear time algorithm for this problem, for the case where all of the ais and bis

are integer numbers.

6 Hamiltonian Graph (10 pts.)
Given an undirected graph G with n vertices, assume that you are given a subroutine Existence(G) that
decides whether there exists a cycle that passes through all the vertices of G exactly once in O(nc) time,
where c is a constant. Such a cycle is called Hamiltonian cycle.
Present an algorithm that computes this cycle in O(n2+c) time.
Conclude, that if all algorithms for computing the Hamiltonian cycle run in at least Ω(2n) time in the
worst case, then any algorithm for Existence must take at least Ω(2n/n2) time in the worst case.

Practice Problems

1 Prove that finding the second smallest of n elements takes EXACTLY n + dlg ne − 2 comparisons in the
worst case. Prove for both upper and lower bounds. Hint: find the (first) smallest using an elimination
tournament.

Be famous! Make money fast! Show that Hamiltonian cycle indeed requires Ω(2n) time in the worst case. I would even give
you an A+ in the course [although you would immediately get a PhD for that, so this might be slightly redundant.].
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2 Fibonacci strings are defined as follows:

F1 = “b”, F2 = “a”, and Fn = Fn−1Fn−2, (n > 2)

where the recursive rule uses concatenation of strings, so F3 is “ab”, F4 is “aba”. Note that the length of
Fn is the nth Fibonacci number.

1. Prove that in any Fibonacci string there are no two b’s adjacent and no three a’s.
2. Give the not-optimized and optimized ‘prefix’ (fail) function for F7.
3. Prove that, in searching for the Fibonacci string Fk , the unoptimized KMP algorithm can shift dk/2e

times in a row trying to match the last character of the pattern. In other words, prove that there
is a chain of failure links m → f ail[m] → f ail[ f ail[m]] → . . . of length dk/2e, and find an example
text T that would cause KMP to traverse this entire chain at a single text position.

4. Prove that the unoptimized KMP algorithm can shift k − 2 times in a row at the same text position
when searching for Fk . Again, you need to find an example text T that would cause KMP to traverse
this entire chain on the same text character.

5. How do the failure chains in parts (c) and (d) change if we use the optimized failure function instead?

3 Two-stage sorting

1. Suppose we are given an array A[1..n] of distinct integers. Describe an algorithm that splits A into
n/k subarrays, each with k elements, such that the elements of each subarray A[(i − 1)k + 1..ik] are
sorted. Your algorithm should run in O(n log k) time.

2. Given an array A[1..n] that is already split into n/k sorted subarrays as in part (a), describe an
algorithm that sorts the entire array in O(n log(n/k)) time.

3. Prove that your algorithm from part (a) is optimal.
4. Prove that your algorithm from part (b) is optimal.

4 14 7 3 1 20 11 9 5 13 12 19 10 16 17 2 8 6 18 15ww�(a)
1 3 4 7 14 5 9 11 13 20 10 12 16 17 19 2 6 8 15 18ww�(b)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

4 Show how to extend the Rabin-Karp fingerprinting method to handle the problem of looking for a given
m×m pattern in an n× n array of characters. (The pattern may be shifted horizontally and vertically, but
it may not be rotated.)

5 Death knocks on your door once more on a warm spring day. He remembers that you are an algorithms
student and that you soundly defeated him last time and are now living out your immortality. Death is
in a bit of a quandary. He has been losing a lot and doesn’t know why. He wants you to prove a lower
bound on your deterministic algorithm so that he can reap more souls. If you have forgotten, the game
goes like this: It is a complete binary tree with 4n leaves, each colored black or white. There is a toke at
the root of the tree. To play the game, you and Death took turns moving the token from its current node
to one of its children. The game ends after 2n moves, when the token lands on a leaf. If the final leaf is
black, the player dies; if it’s white, you will live forever. You move first, so Death gets the last turn.
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You decided whether it’s worth playing or not as follows. Imagine that the nodes at even levels (where
it’s your turn) are or gates, the nodes at odd levels (where it’s Death’s turn) are and gates. Each gate
gets its input from its children and passes its output to its parent. White and black stand for True and
False. If the output at the top of the tree is True, then you can win and live forever! If the output at
the top of the tree is False, you should’ve challenge Death to a game of Twister instead.
Prove that any deterministic algorithm must examine every leaf of the tree in the worst case. Since there
are 4n leaves, this implies that any deterministic algorithm must take Ω(4n) time in the worst case. Use
an adversary argument, or in other words, assume Death cheats.

∨

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

∧ ∧

∨ ∨ ∨

∨

6 [This problem is required only for graduate students taking CS 373 for a full unit; anyone else can submit
a solution for extra credit.]
Lower Bounds on Adjacency Matrix Representations of Graphs

1. Prove that the time to determine if an undirected graph has a cycle is Ω(V2).
2. Prove that the time to determine if there is a path between two nodes in an undirected graph is
Ω(V2).

7 String matching with wild-cards
Suppose you have an alphabet for patterns that includes a ‘gap’ or wild-card character; any length string
of any characters can match this additional character. For example if ‘∗’ is the wild-card, then the pattern
‘foo*bar*nad’ can be found in ‘foofoowangbarnad’. Modify the computation of the prefix function to
correctly match strings using KMP.

8 Prove that there is no comparison sort whose running time is linear for at least 1/2 of the n! inputs of
length n. What about at least 1/n? What about at least 1/2n?.

9 Prove that 2n − 1 comparisons are necessary in the worst case to merge two sorted lists containing n
elements each.

10 Find asymptotic upper and lower bounds to lg(n!) without Stirling’s approximation (Hint: use integration).

11 Given a sequence of n elements of n/k blocks (k elements per block) all elements in a block are less
than those to the right in sequence, show that you cannot have the whole sequence sorted in better than
Ω(n lg k). Note that the entire sequence would be sorted if each of the n/k blocks were individually sorted
in place. Also note that combining the lower bounds for each block is not adequate (that only gives an
upper bound).

12 Show how to find the occurrences of pattern P in text T by computing the prefix function of the string
PT (the concatenation of P and T).
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47.1.7. Homework 6

CS 373: Combinatorial Algorithms, Fall 2001
Homework 6 (due Thursday, Dec 6, 2001 at 11:59.99 p.m.)

Required Problems

1 Vertex Cover
(10 pts.)

VERTEX COVER
Instance: A graph G = (V,E) and a positive integer K ≤ |V |.
Question: Is there a vertex cover of size K or less for G, that is, a subset V ′ ⊆ V such that
|V ′ | ≤ K and for each edge {u, v} ∈ E, at least one of u and v belongs to V ′?

1.A. (2 pts.) Show that VERTEX COVER is NP-Complete. Hint: Do a reduction from INDEPEN-
DENT SET to VERTEX COVER.

1.B. (3 pts.) Show a polynomial approximation algorithm to the Vertex-Cover problem which is a
factor 2 approximation of the optimal solution. Namely, your algorithm should output a set X ⊆ V ,
such that X is a vertex cover, and |C | ≤ 2Kopt , where Kopt is the cardinality of the smallest vertex
cover of G.¬

1.C. (2 pts.) Present a linear time algorithm that solves this problem for the case that G is a tree.
1.D. (3 pts.) For a constant k, a graph G is k-separable, if there are k vertices of G, such that if we

remove them from G, each one of the remaining connected components has at most (2/3)n vertices,
and furthermore each one of those connected components is also k-separable. (More formally, a graph
G = (V,E) is k-separable, if for any subset of vertices S ⊆ V , there exists a subset M ⊆ S, such that
each connected component of GS\M has at most (2/3)|S | vertices, and |M | ≤ k.)
Show that given a graph G which is k-separable, one can compute the optimal VERTEX COVER
in nO(k) time.

2 Bin Packing
(14 pts.)

BIN PACKING
Instance: Finite set U of items, a size s(u) ∈ ZZ+ for each u ∈ U, an integer bin capacity B, and
a positive integer K.
Question: Is there a partition of U int disjoint sets U1, . . . ,UK such that the sum of the sizes
of the items inside each Ui is B or less?

2.A. (2 pts.) Show that the BIN PACKING problem is NP-Complete
¬It was very recently shown (I. Dinur and S. Safra. On the importance of being biased. Manuscript.

http://www.math.ias.edu/ iritd/mypapers/vc.pdf, 2001.) that doing better than 1.3600 approximation to VERTEX COVER
is NP-Hard. In your free time you can try and improve this constant. Good luck.
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2.B. (2 pts.) In the optimization variant of BIN PACKING one has to find the minimum number of
bins needed to contain all elements of U. Present an algorithm that is a factor two approximation
to optimal solution. Namely, it outputs a partition of U into M bins, such that the total size of each
bin is at most B, and M ≤ kopt , where kopt is the minimum number of bins of size B needed to store
all the given elements of U.

2.C. (4 pts.) Assume that B is bounded by an integer constant m. Describe a polynomial algorithm that
computes the solution that uses the minimum number of bins to store all the elements.

2.D. (2 pts.) Show that the following problem is NP-Complete.

TILING
Instance: Finite set R of rectangles and a rectangle R in the plane.
Question: Is there a way of placing the rectangles of R inside R, so that no pair of the
rectangles intersect, and all the rectangles have their edges parallel of the edges of R?

2.E. (4 pts.) Assume that R is a set of squares that can be arranged as to tile R completely. Present a
polynomial time algorithm that computes a subset T ⊆ R, and a tiling of T , so that this tiling of T
covers, say, 10% of the area of R.

3 Minimum Set Cover
(12 pts.)

MINIMUM SET COVER
Instance: Collection C of subsets of a finite set S and an integer k.
Question: Are there k sets S1, . . . ,Sk in C such that S ⊆ ∪ki=1Si?

1. (2 pts.) Prove that MINIMUM SET COVER problem is NP-Complete
2. (3 pts.) The greedy approximation algorithm for MINIMUM SET COVER, works by taking the

largest set in X ∈ C, remove all all the elements of X from S and also from each subset of C. The
algorithm repeat this until all the elements of S are removed. Prove that the number of elements not
covered after kopt iterations is at most n/2, where kopt is the smallest number of sets of C needed to
cover S, and n = |S |.

3. (2 pts.) Prove the greedy algorithm is O(log n) factor optimal approximation.
4. (1 pts.) Prove that the following problem is NP-Complete.

HITTING SET
Instance: A collection C of subsets of a set S, a positive integer K.
Question: Does S contain a hitting set for C of size K or less, that is, a subset S′ ⊆ S with
|S′ | ≤ K and such that S′ contains at least one element from each subset in C.

5. (4 pts.) Given a set I of n intervals on the real line, show a O(n log n) time algorithm that computes
the smallest set of points X on the real line, such that for every interval I ∈ I there is a point p ∈ X,
such that p ∈ I.

4 k-Center Problem
(20 pts.)
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k-CENTER
Instance: A set P of n points in the plane, and an integer k and a radius r.
Question: Is there a cover of the points of P by k disks of radius (at most) r?

1. (4 pts.) Describe an nO(k) time algorithm that solves this problem.
2. (3 pts.) There is a very simple and natural algorithm that achieves a 2-approximation for this

cover: First it select an arbitrary point as a center (this point is going to be the center of one of the
k covering disks). Then it computes the point that it furthest away from the current set of centers
as the next center, and it continue in this fashion till it has k-points, which are the resulting centers.
The smallest k equal radius disks centered at those points are the required k disks.
Show an implementation of this approximation algorithm in O(nk) time.

3. (3 pts.) Prove that that the above algorithm is a factor two approximation to the optimal cover.
Namely, the radius of the disks output ≤ 2ropt , where ropt is the smallest radius, so that we can find
k-disks that cover the point-set.

4. (4 pts.) Provide an ε-approximation algorithm for this problem. Namely, given k and a set of
points P in the plane, your algorithm would output k-disks that cover the points and their radius is
≤ (1 + ε)ropt , where ropt is the minimum radius of such a cover of P.

5. (2 pts.) Prove that dual problem r-DISK-COVER problem is NP-Hard. In this problem, given P
and a radius r, one should find the smallest number of disks of radius r that cover P.

6. (4 pts.) Describe an approximation algorithm to the r-DISK COVER problem. Namely, given
a point-set P and a radius r, outputs k disks, so that the k disks cover P and are of radius r, and
k = O(kopt ), where kopt is the minimal number of disks needed to cover P by disks of radius r.

5 MAX 3SAT Problem
(10 pts.)

MAX SAT
Instance: Set U of variables, a collection C of disjunctive clauses of literals where a literal is a
variable or a negated variable in U.
Question: Find an assignment that maximized the number of clauses of C that are being
satisfied.

1. (3 pts.) Prove that MAX SAT is NP-Hard.
2. (2 pts.) Prove that if each clause has exactly three literals, and we randomly assign to the variables

values 0 or 1, then the expected number of satisfied clauses is (7/8)M, where M = |C |.
3. (1 pts.) Show that for any instance of MAX SAT, where each clause has exactly three different

literals, there exists an assignment that satisfies at least 7/8 of the clauses.
4. (4 pts.) Let (U,C) be an instance of MAX SAT such that each clause has ≥ 10 · log n distinct

variables, where n is the number of clauses. Prove that there exists a satisfying assignment. Namely,
there exists an assignment that satisfy all the clauses of C.

Practice Problems

1 Complexity
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1. Prove that P ⊆ co-NP.
2. Show that if NP , co-NP, then every NP-complete problem is not a member of co-NP.

2 2-CNF-SAT
Prove that deciding satisfiability when all clauses have at most 2 literals is in P.

3 Graph Problems

1. SUBGRAPH-ISOMORPHISM
Show that the problem of deciding whether one graph is a subgraph of another is NP-complete.

2. LONGEST-PATH
Show that the problem of deciding whether an unweighted undirected graph has a path of length
greater than k is NP-complete.

4 PARTITION, SUBSET-SUM
PARTITION is the problem of deciding, given a set of numbers, whether there exists a subset whose
sum equals the sum of the complement, i.e. given S = s1, s2 . . . , sn, does there exist a subset S′ such that∑

s∈S′ s =
∑

t∈S−S′ t. SUBSET-SUM is the problem of deciding, given a set of numbers and a target sum,
whether there exists a subset whose sum equals the target, i.e. given S = s1, s2 . . . , sn and k, does there
exist a subset S′ such that

∑
s∈S′ s = k. Give two reduction, one in both directions.

5 BIN-PACKING Consider the bin-packing problem: given a finite set U of n items and the positive integer
size s(u) of each item u ∈ U, can U be partitioned into k disjoint sets U1, . . . ,Uk such that the sum of the
sizes of the items in each set does not exceed B? Show that the bin-packing problem is NP-Complete.
[Hint: Use the result from the previous problem.]

6 3SUM
[This problem is required only for graduate students taking CS 373 for a full unit; anyone else can submit
a solution for extra credit.]
Describe an algorithm that solves the following problem as quickly as possible: Given a set of n numbers,
does it contain three elements whose sum is zero? For example, your algorithm should answer True for
the set {−5,−17,7,−4,3,−2,4}, since −5 + 7 + (−2) = 0, and False for the set {−6,7,−4,−13,−2,5,13}.

7 Consider finding the median of 5 numbers by using only comparisons. What is the exact worst case
number of comparisons needed to find the median. Justify (exhibit a set that cannot be done in one less
comparisons). Do the same for 6 numbers.

8 EXACT-COVER-BY-4-SETS

The EXACT-COVER-BY-3-SETS problem is defines as the following: given a finite set X with |X | = 3q
and a collection C of 3-element subsets of X, does C contain an exact cover for X, that is, a subcollection
C ′ ⊆ C such that every element of X occurs in exactly one member of C ′?

Given that EXACT-COVEqR-BY-3-SETS is NP-complete, show that EXACT-COVER-BY-4-SETS is
also NP-complete.

9 PLANAR-3-COLOR
Using 3-COLOR, and the ‘gadget’ in Figure 47.3, prove that the problem of deciding whether a planar
graph can be 3-colored is NP-complete. Hint: show that the gadget can be 3-colored, and then replace
any crossings in a planar embedding with the gadget appropriately.
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Figure 47.3: Gadget for PLANAR-3-COLOR.

Figure 47.4: Gadget for DEGREE-4-PLANAR-3-COLOR.

10 DEGREE-4-PLANAR-3-COLOR
Using the previous result, and the ‘gadget’ in Figure 47.4, prove that the problem of deciding whether
a planar graph with no vertex of degree greater than four can be 3-colored is NP-complete. Hint: show
that you can replace any vertex with degree greater than 4 with a collection of gadgets connected in such
a way that no degree is greater than four.

11 Poly time subroutines can lead to exponential algorithms
Show that an algorithm that makes at most a constant number of calls to polynomial-time subroutines
runs in polynomial time, but that a polynomial number of calls to polynomial-time subroutines may result
in an exponential-time algorithm.

12 1. Prove that if G is an undirected bipartite graph with an odd number of vertices, then G is non-
hamiltonian. Give a polynomial time algorithm algorithm for finding a hamiltonian cycle in an
undirected bipartite graph or establishing that it does not exist.

2. Show that the hamiltonian-path problem can be solved in polynomial time on directed acyclic
graphs by giving an efficient algorithm for the problem.

3. Explain why the results in previous questions do not contradict the facts that both HAM-CYCLE
and HAM-PATH are NP-complete problems.

13 Consider the following pairs of problems:

13.A. MIN SPANNING TREE and MAX SPANNING TREE
13.B. SHORTEST PATH and LONGEST PATH
13.C. TRAVELING SALESMAN PROBLEM and VACATION TOUR PROBLEM (the longest tour is

sought).
13.D. MIN CUT and MAX CUT (between s and t)
13.E. EDGE COVER and VERTEX COVER
13.F. TRANSITIVE REDUCTION and MIN EQUIVALENT DIGRAPH

(all of these seem dual or opposites, except the last, which are just two versions of minimal representation
of a graph).
Which of these pairs are polytime equivalent and which are not? Why?
(Really HARD)
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14 GRAPH-ISOMORPHISM
Consider the problem of deciding whether one graph is isomorphic to another.

1. Give a brute force algorithm to decide this.
2. Give a dynamic programming algorithm to decide this.
3. Give an efficient probabilistic algorithm to decide this.
4. Either prove that this problem is NP-complete, give a poly time algorithm for it, or prove that neither

case occurs.

15 Prove that PRIMALITY (Given n, is n prime?) is in NP ∩ co-NP. Hint: co-NP is easy (what’s a certificate
for showing that a number is composite?). For NP, consider a certificate involving primitive roots and
recursively their primitive roots. Show that knowing this tree of primitive roots can be checked to be
correct and used to show that n is prime, and that this check takes poly time.

16 How much wood would a woodchuck chuck if a woodchuck could chuck wood?

330



47.2. Midterm
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47.3. Final

Chapter 48

Spring 2002

Chapter 49

Fall 2002

Chapter 50

Spring 2003

50.1. Homeworks

50.1.1. Homework 0

1 (10 pts.) Sort the following 25 functions from asymptotically smallest to asymptotically largest, indicating
ties if there are any. You do not need to turn in proofs (in fact, please don’t turn in proofs), but you
should do them anyway just for practice.

n3.5 − (n − 1)3.5 n n2.1 lg∗(n/2) 1 + lg n

sin n + 2 lg(lg∗ n) lg n! (lg n)lg
∗ n n3

lg∗ 2n 2lg∗ n en blg lg(n!)c
∑n!

i=1
1
i2

n3/(2n) n3/(2 lg n) (lg n)(n/2) (lg(7 + n))lg n
(
1 + 1

2000
)2000n

n1/lg lg n nlg lg n lg(200) n n1/1000 n(lg n)2

To simplify notation, write f (n) � g(n) to mean f (n) = o(g(n)) and f (n) ≡ g(n) to mean f (n) = Θ(g(n)). For
example, the functions n2, n,

(n
2
)
, n3 could be sorted either as n � n2 ≡

(n
2
)
� n3 or as n �

(n
2
)
≡ n2 � n3.

2 (10 pts.) Solve the following recurrences. State tight asymptotic bounds for each function in the form
Θ( f (n)) for some recognizable function f (n). You do not need to turn in proofs (in fact, please don’t turn
in proofs), but you should do them anyway just for practice. Assume reasonable but nontrivial base cases
if none are supplied. Extra credit will be given for more exact solutions.
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1. (1 pts.) A(n) = A(n/4) + n log log n

2. (1 pts.) B(n) = min
0<k<n

(
7B(k)B(n − k)

)
.

3. (1 pts.) C(n) = 3C(dn/2e − 5) + n log n

4. (1 pts.) D(n) = n
n−1 D(n − 1) + 1

5. (1 pts.) E(n) = E(b2n/3c) + 1/n
6. (1 pts.) F(n) = F(blog nc) + log n (HARD)
7. (1 pts.) G(n) =

√
n + 4

√
n · G(

⌊√
n
⌋
)

8. (1 pts.) H(n) = log(H(n − 1)) + 1
9. (1 pts.) I(n) = I(

⌊√
n
⌋
) + 1

10. (1 pts.) J(n) = J
( ⌊

n −
√

n
⌋ )
+ 1

3 (10 pts.)

1. Use induction to prove that in a simple graph, every walk between a pair of vertices, u, v, contains
a path between u and v. Recall that a walk is a list of the form v0, e1, v1, e2, v2, ..., ek, vk , in which
ei has endpoints vi−1 and vi.

2. Prove that a graph is connected if and only if for every partition of its vertices into two nonempty
sets, there exists an edge that has endpoints in both sets.

4 (10 pts.)
A random walk is a walk on a graph G, generated by starting from a vertex v0 = v ∈ V(G), and in the i-th
stage, for i > 0, randomly selecting one of the neighbors of vi−1 and setting vi to be this vertex. A walk
v0, v1, . . . , vm is of length m.

1. For a vertex u ∈ V(G), let Pu(m, v) be the probability that a random walk of length m, starting from
u, visits v (i.e., vi = v for some i).
Prove that a graph G with n vertices is connected, if and only if, for any two vertices u, v ∈ V(G), we
have Pu(n − 1, v) > 0.

2. Prove that a graph G with n vertices is connected if and only if for any pair of vertices u, v ∈ V(G),
we have limm→∞ Pu(m, v) = 1.

5 (10 pts.)

1. Let fi(n) be a sequence of functions, such that for every i, fi(n) = o(
√

n) (namely, limn→∞
fi (n)√
n
= 0).

Let g(n) =
∑n

i=1 fi(n). Prove or disprove: g(n) = o(n3/2).
2. If f1(n) = O(g1(n)) and f2(n) = O(g2(n)). Prove or disprove:

• f1(n) + f2(n) = O(g1(n) + g2(n))
• f1(n) ∗ f2(n) = O(g1(n) ∗ g2(n))
• f1(n) f2(n) = O(g1(n)g2(n))

6 (10 pts.)
Describe a data structure that supports storing temperatures. The operations on the data structure are
as follows:

Insert(t, d) — Insert the temperature t that was measured on date d. Each temperature is a real
number between −100 and 150. For example, insert(22,”1/20/03”).
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Average(d1, d2) report what is the average of all temperatures that were measured between date d1 and
date d2.

Each operation should take time O(log n), where n is the number of dates stored in the data structure.
You can assume that a date is just an integer which specifies the number of days since the first of January
1970.

7 (10 pts.)
We toss a fair coin n times. What is the expected number of “runs”? Runs are consecutive tosses with
the same result. For example, the toss sequence HHHTTHTH has 5 runs.

8 (10 pts.)
Consider a 2n × 2n chessboard with one (arbitrarily chosen) square removed, as in the following picture
(for n = 3):

Prove that any such chessboard can be tiled without gaps or overlaps by L-shapes consisting of 3 squares
each.
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Practice Problems
The remaining problems are entirely for your benefit; similar questions will appear in every homework. Don’t
turn in solutions—we’ll just throw them out—but feel free to ask us about practice questions during office hours
and review sessions. Think of them as potential exam questions (hint, hint). We’ll post solutions to some of
the practice problems after the homeworks are due.

1 Recall the standard recursive definition of the Fibonacci numbers: F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2
for all n ≥ 2. Prove the following identities for all positive integers n and m.

1. Fn is even if and only if n is divisible by 3.
2.

∑n
i=0 Fi = Fn+2 − 1

3. F2
n − Fn+1Fn−1 = (−1)n+1 (Really HARD)

4. If n is an integer multiple of m, then Fn is an integer multiple of Fm.

2 1. Prove the following identity by induction:(
2n
n

)
=

n∑
k=0

(
n
k

) (
n

n − k

)
.

2. Give a non-inductive combinatorial proof of the same identity, by showing that the two sides of the
equation count exactly the same thing in two different ways. There is a correct one-sentence proof.

3 A tournament is a directed graph with exactly one edge between every pair of vertices. (Think of the
nodes as players in a round-robin tournament, where each edge points from the winner to the loser.) A
Hamiltonian path is a sequence of directed edges, joined end to end, that visits every vertex exactly once.
Prove that every tournament contains at least one Hamiltonian path.

1
�

2
�

3
�

4
�

5
�

6
�

A six-vertex tournament containing the Hamiltonian path 6→ 4→ 5→ 2→ 3→ 1.

4 Solve the following recurrences. State tight asymptotic bounds for each function in the form Θ( f (n)) for
some recognizable function f (n). You do not need to turn in proofs (in fact, please don’t turn in proofs),
but you should do them anyway just for practice. Assume reasonable but nontrivial base cases if none
are supplied.

1. A(n) = A(n/2) + n

2. B(n) = 2B(n/2) + n (Really HARD)
3. C(n) = n + 1

2
(
C(n − 1) + C(3n/4)

)
4. D(n) = max

n/3<k<2n/3

(
D(k) + D(n − k) + n

)
(HARD)
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5. E(n) = 2E(n/2) + n/lg n (HARD)
6. F(n) = F(n−1)

F(n−2) , where F(1) = 1 and F(2) = 2. (HARD)

7. G(n) = G(n/2) + G(n/4) + G(n/6) + G(n/12) + n [Hint: 1
2 +

1
4 +

1
6 +

1
12 = 1.] (HARD)

8. H(n) = n +
√

n · H(
√

n) (HARD)
9. I(n) = (n − 1)(I(n − 1) + I(n − 2)), where F(0) = F(1) = 1 (HARD)

10. J(n) = 8J(n − 1) − 15J(n − 2) + 1

5 1. Prove that 2 dlg ne+ blg nc = Θ(n2).
2. Prove or disprove: 2 blg nc = Θ

(
2 dlg ne

)
.

3. Prove or disprove: 22blg lg nc
= Θ

(
22dlg lg ne ).

4. Prove or disprove: If f (n) = O(g(n)), then log( f (n)) = O(log(g(n))).
5. Prove or disprove: If f (n) = O(g(n)), then 2 f (n) = O(2g(n)).

(HARD)
6. Prove that logk n = o(n1/k) for any positive integer k.

6 This problem asks you to simplify some recursively defined boolean formulas as much as possible. In each
case, prove that your answer is correct. Each proof can be just a few sentences long, but it must be a
proof.

1. Suppose α0 = p, α1 = q, and αn = (αn−2 ∧ αn−1) for all n ≥ 2. Simplify αn as much as possible. [Hint:
What is α5?]

2. Suppose β0 = p, β1 = q, and βn = (βn−2 ⇔ βn−1) for all n ≥ 2. Simplify βn as much as possible. [Hint:
What is β5?]

3. Suppose γ0 = p, γ1 = q, and γn = (γn−2 ⇒ γn−1) for all n ≥ 2. Simplify γn as much as possible. [Hint:
What is γ5?]

4. Suppose δ0 = p, δ1 = q, and δn = (δn−2 on δn−1) for all n ≥ 2, where on is some boolean function with
two arguments. Find a boolean function on such that δn = δm if and only if n − m is a multiple of 4.
[Hint: There is only one such function.]

7 Suppose you have a pointer to the head of singly linked list. Normally, each node in the list only has
a pointer to the next element, and the last node’s pointer is Null. Unfortunately, your list might have
been corrupted by a bug in somebody else’s code¬, so that the last node has a pointer back to some other
node in the list instead.

Top: A standard linked list. Bottom: A corrupted linked list.

Describe an algorithm that determines whether the linked list is corrupted or not. Your algorithm must
not modify the list. For full credit, your algorithm should run in O(n) time, where n is the number of
nodes in the list, and use O(1) extra space (not counting the list itself).

¬After all, your code is always completely 100% bug-free. Isn’t that right, Mr. Gates?
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8 Every year, upon their arrival at Hogwarts School of Witchcraft and Wizardry, new students are sorted
into one of four houses (Gryffindor, Hufflepuff, Ravenclaw, or Slytherin) by the Hogwarts Sorting Hat.
The student puts the Hat on their head, and the Hat tells the student which house they will join. This
year, a failed experiment by Fred and George Weasley filled almost all of Hogwarts with sticky brown
goo, mere moments before the annual Sorting. As a result, the Sorting had to take place in the basement
hallways, where there was so little room to move that the students had to stand in a long line.
After everyone learned what house they were in, the students tried to group together by house, but there
was too little room in the hallway for more than one student to move at a time. Fortunately, the Sorting
Hat took CS 373 many years ago, so it knew how to group the students as quickly as possible. What
method did the Sorting Hat use?

1. More formally, you are given an array of n items, where each item has one of four possible values,
possibly with a pointer to some additional data. Describe an algorithm that rearranges the items
into four clusters in O(n) time using only O(1) extra space.

G H R R G G R G H H R S R R H G S H G G
Harry Ann Bob Tina Chad Bill Lisa Ekta Bart Jim John Jeff Liz Mary Dawn Nick Kim Fox Dana Melww�
G G G G G G G H H H H H R R R R R R S S

Harry Ekta Bill Chad Nick Mel Dana Fox Ann Jim Dawn Bart Lisa Tina John Bob Liz Mary Kim Jeff

2. Describe an algorithm for the case where there are k possible values (i.e., 1,2, . . . , k) that rearranges
the items using only O(log k) extra space. How fast is your algorithm? (A faster algorithm would
get more credit)

3. Describe a faster algorithm (if possible) for the case when O(k) extra space is allowed. How fast is
your algorithm?
(HARD)

4. Optional practice exercise - no credit: Provide a fast algorithm that uses only O(1) additional space
for the case where there are k possible values.

(HARD)

9 An ant is walking along a rubber band, starting at the left end. Once every second, the ant walks one
inch to the right, and then you make the rubber band one inch longer by pulling on the right end. The
rubber band stretches uniformly, so stretching the rubber band also pulls the ant to the right. The initial
length of the rubber band is n inches, so after t seconds, the rubber band is n + t inches long.

t=0

t=2

t=1

Every second, the ant walks an inch, and then the rubber band is stretched an inch longer.
Since you’ve read the Homework Instructions, you know what the phrase ‘describe an algorithm’ means. Right?
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1. How far has the ant moved after t seconds, as a function of n and t? Set up a recurrence and (for
full credit) give an exact closed-form solution. [Hint: What fraction of the rubber band’s length has
the ant walked?]

2. How long does it take the ant to get to the right end of the rubber band? For full credit, give an
answer of the form f (n) + Θ(1) for some explicit function f (n).

10 1. A domino is a 2 × 1 or 1 × 2 rectangle. How many different ways are there to completely fill a 2 × n
rectangle with n dominos? Set up a recurrence relation and give an exact closed-form solution.

2. A slab is a three-dimensional box with dimensions 1×2×2, 2×1×2, or 2×2×1. How many different
ways are there to fill a 2 × 2 × n box with n slabs? Set up a recurrence relation and give an exact
closed-form solution.

A 2 × 10 rectangle filled with ten dominos, and a 2 × 2 × 10 box filled with ten slabs.

11 Professor George O’Jungle has a favorite 26-node binary tree, whose nodes are labeled by letters of the
alphabet. The preorder and postorder sequences of nodes are as follows:

preorder: M N H C R S K W T G D X I Y A J P O E Z V B U L Q F
postorder: C W T K S G R H D N A O E P J Y Z I B Q L F U V X M

Draw Professor O’Jungle’s binary tree, and give the inorder sequence of nodes.

12 Alice and Bob each have a fair n-sided die. Alice rolls her die once. Bob then repeatedly throws his die
until he rolls a number at least as big as the number Alice rolled. Each time Bob rolls, he pays Alice $1.
(For example, if Alice rolls a 5, and Bob rolls a 4, then a 3, then a 1, then a 5, the game ends and Alice
gets $4. If Alice rolls a 1, then no matter what Bob rolls, the game will end immediately, and Alice will
get $1.)
Exactly how much money does Alice expect to win at this game? Prove that your answer is correct. If
you have to appeal to ‘intuition’ or ‘common sense’, your answer is probably wrong!

13 Penn and Teller have a special deck of fifty-two cards, with no face cards and nothing but clubs—the ace,
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, . . . , 52 of clubs. (They’re big cards.) Penn shuffles the deck until each
each of the 52! possible orderings of the cards is equally likely. He then takes cards one at a time from
the top of the deck and gives them to Teller, stopping as soon as he gives Teller the five of clubs.

1. On average, how many cards does Penn give Teller?
2. On average, what is the smallest-numbered card that Penn gives Teller? (HARD)
3. On average, what is the largest-numbered card that Penn gives Teller?

[Hint: Solve for an n-card deck and then set n = 52.] In each case, give exact answers and prove that they
are correct. If you have to appeal to “intuition” or “common sense”, your answers are probably wrong!

14 (10 pts.) Evaluate the following summations; simplify your answers as much as possible. Significant
partial credit will be given for answers in the form Θ( f (n)) for some recognizable function f (n).

14.A. (2 pts.)
n∑
i=1

i∑
j=1

i∑
k=j

1
i

(HARD)
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14.B. (2 pts.)
n∑
i=1

i∑
j=1

i∑
k=j

1
j

14.C. (2 pts.)
n∑
i=1

i∑
j=1

i∑
k=j

1
k

14.D. (2 pts.)
n∑
i=1

i∑
j=1

j∑
k=1

1
k

14.E. (2 pts.)
n∑
i=1

i∑
j=1

j∑
k=1

1
j · k

15 (10 pts.) Prove that for any nonnegative parameters a and b, the following algorithms terminate and
produce identical output. Also, provide bounds on the running times of those algorithms. Can you
imagine any reason why WeirdEuclid would be preferable to FastEuclid?

SlowEuclid(a, b) :
if b > a
return SlowEuclid(b,a)

else if b = 0
return a

else
return SlowEuclid(b,a − b)

FastEuclid(a, b) :
if b = 0

return a
else

return FastEuclid(b,a mod b)

WeirdEuclid(a, b) :
if b = 0

return a
if a = 0

return b
if a is even and b is even

return 2∗WeirdEuclid(a/2, b/2)
if a is even and b is odd

return WeirdEuclid(a/2, b)
if a is odd and b is even

return WeirdEuclid(a, b/2)
if b > a

return WeirdEuclid(b − a,a)
else

return WeirdEuclid(a − b, b)

16 (10 pts.) Suppose we have a binary search tree. You perform a long sequence of operations on the binary
tree (insertion, deletions, searches, etc), and the maximum depth of the tree during those operations is at
most h.
Modify the binary search tree T so that it supports the following operations. Implementing some of
those operations would require you to modify the information stored in each node of the tree, and the
way insertions/deletions are being handled in the tree. For each of the following, describe separately the
changes made in detail, and the algorithms for answering those queries. (Note, that under the modified
version of the binary search tree, insertion and deletion should still take O(h) time, where h is the maximum
height of the tree during all the execution of the algorithm.)
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1. (2 pts.) Find the smallest element stored in T in O(h) time.
2. (2 pts.) Given a query k, find the k-th smallest element stored in T in O(h) time.
3. (3 pts.) Given a query [a, b], find the number of elements stored in T with their values being in the

range [a, b], in O(h) time.
4. (3 pts.) Given a query [a, b], report (i.e., printout) all the elements stored in T in the range [a, b],

in O(h + u) time, where u is the number of elements printed out.

17 (10 pts.) There are n balls (numbered from 1 to n) and n boxes (numbered from 1 to n). We put each
ball in a randomly selected box.

1. (4 pts.) A box may contain more than one ball. Suppose X is the number on the box that has the
smallest number among all nonempty boxes. What is the expectation of X? (It’s OK to just give a
big expression.)

2. (4 pts.) We put the balls into the boxes in such a way that there is exactly one ball in each box. If
the number written on a ball is the same as the number written on the box containing the ball, we
say there is a match. What is the expected number of matches?

3. (2 pts.) What is the probability that there are exactly k matches? (1 ≤ k < n)

[Hint: If you have to appeal to “intuition” or “common sense”, your answers are probably wrong!]

50.1.2. Homework 1

1 Partition (10 pts.)
The Partition satyr, the uncle of the deduction fairy, had visited you on winter break and gave you, as a
token of appreciation, a black-box that can solve Partition in polynomial time (note that this black box
solves the decision problem). Let S be a given set of n integer numbers. Describe a polynomial time
algorithm that computes, using the black box, a partition of S if such a solution exists. Namely, your
algorithm should output a subset T ⊆ S, such that∑

s∈T

s =
∑

s∈S\T

s.

2 Partition revisited (10 pts.)
Let S be an instance of partition, such that n = |S |, and M = maxs∈S s. Show a polynomial time (in n and
M) algorithm that solves partition.

3 Poly time subroutines can lead to exponential algorithms (10 pts.)
Show that an algorithm that makes at most a constant number of calls to polynomial-time subroutines
runs in polynomial time, but that a polynomial number of calls to polynomial-time subroutines may result
in an exponential-time algorithm.

4 Why Mike can not get it. (10 pts.)

Not-3SAT
Instance: A 3CNF formula F
Question: Is F not satisfiable? (Namely, for all inputs for F, it evaluates to FALSE.)
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1. Prove that Not-3SAT is co − NP.
2. Here is a proof that Not-3SAT is in NP: If the answer to the given instance is Yes, we provide the

following proof to the verifier: We list every possible assignment, and for each assignment, we list the
output (which is FALSE). Given this proof, of length L, the verifier can easily verify it in polynomial
time in L. QED.
What is wrong with this proof?

3. Show that given a black-box that can solves Not-3SAT, one can find the satisfying assignment of
a formula F in polynomial time, using polynomial number of calls to the black-box (if such an
assignment exists).

5 NP-Completeness Collection (20 pts.)
Prove that the following problems are NP-Complete.

1.

MINIMUM SET COVER
Instance: Collection C of subsets of a finite set S and an integer k.
Question: Are there k sets S1, . . . ,Sk in C such that S ⊆ ∪ki=1Si?

2.

HITTING SET
Instance: A collection C of subsets of a set S, a positive integer K.
Question: Does S contain a hitting set for C of size K or less, that is, a subset S′ ⊆ S with
|S′ | ≤ K and such that S′ contains at least one element from each subset in C.

3.

Hamiltonian Path
Instance: Graph G = (V,E)
Question: Does G contains a Hamiltonian path? (Namely a path that visits all vertices of
G.)

4.

Max Degree Spanning Tree
Instance: Graph G = (V,E) and integer k
Question: Does G contains a spanning tree T where every node in T is of degree at most
k?

6 Independence (10 pts.)
Let G = (V,E) be an undirected graph over n vertices. Assume that you are given a numbering π : V →
{1, . . . ,n} (i.e., every vertex have a unique number), such that for any edge i j ∈ E, we have |π(i) − π( j)| ≤ 20.
Either prove that it is NP-Hard to find the largest independent set in G, or provide a polynomial time
algorithm.

Practice Problems

1 Partition (10 pts.)
We already know the following problem is NP-Complete

SUBSET SUM
Instance: A finite set A and a “size” s(a) ∈ ZZ+ for each a ∈ A, an integer B.
Question: Is there a subset A′ ⊆ A such that

∑
a∈A′ s(a) = B?
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Now let’s consider the following problem:

PARTITION
Instance: A finite set A and a “size” s(a) ∈ ZZ+ for each a ∈ A.
Question: Is there a subset A′ ⊆ A such that∑

a∈A′

s(a) =
∑

a∈A\A′

s(a)?

Show that PARTITION is NP-Complete.

2 Minimum Set Cover (15 pts.)

MINIMUM SET COVER
Instance: Collection C of subsets of a finite set S and an integer k.
Question: Are there k sets S1, . . . ,Sk in C such that S ⊆ ∪ki=1Si?

1. (5 pts.) Prove that MINIMUM SET COVER problem is NP-Complete
2. (5 pts.) Prove that the following problem is NP-Complete.

HITTING SET
Instance: A collection C of subsets of a set S, a positive integer K.
Question: Does S contain a hitting set for C of size K or less, that is, a subset S′ ⊆ S with
|S′ | ≤ K and such that S′ contains at least one element from each subset in C.

3. (5 pts.) Hitting set on the line
Given a set I of n intervals on the real line, show a O(n log n) time algorithm that computes the
smallest set of points X on the real line, such that for every interval I ∈ I there is a point p ∈ X,
such that p ∈ I.

3 Bin Packing (10 pts.)

BIN PACKING
Instance: Finite set U of items, a size s(u) ∈ ZZ+ for each u ∈ U, an integer bin capacity B, and
a positive integer K.
Question: Is there a partition of U into disjoint sets U1, . . . ,UK such that the sum of the sizes
of the items inside each Ui is B or less?

1. (5 pts.) Show that the BIN PACKING problem is NP-Complete
2. (5 pts.) Show that the following problem is NP-Complete.

TILING
Instance: Finite set RECTS of rectangles and a rectangle R in the plane.
Question: Is there a way of placing all the rectangles of RECTS inside R, so that no pair
of the rectangles intersect in their interior, and all the rectangles have their edges parallel
of the edges of R?

342



4 Graph Isomorphisms (10 pts.)

1. (5 pts.) Show that the following problem is NP-Complete.

SUBGRAPH ISOMORPHISM
Instance: Graphs G = (V1,E1),H = (V2,E2).
Question: Does G contain a subgraph isomorphic to H, i.e., a subset V ⊆ V1 and a subset
E ⊆ E1 such that |V | = |V2 |, |E | = |E2 |, and there exists a one-to-one function f : V2 → V
satisfying {u, v} ∈ E2 if and only if { f (u), f (v)} ∈ E?

2. (5 pts.) Show that the following problem is NP-Complete.

LARGEST COMMON SUBGRAPH
Instance: Graphs G = (V1,E1),H = (V2,E2), positive integer K.
Question: Do there exists subsets E ′1 ⊆ E1 and E ′2 ⊆ E2 with |E ′1 | = |E

′
2 | ≥ K such that the

two subgraphs G′ = (V1,E ′1) and H ′ = (V2,E ′2) are isomorphic?

5 Knapsack (15 pts.)

1. (5 pts.) Show that the following problem is NP-Complete.

KNAPSACK
Instance: A finite set U, a "size" s(u) ∈ ZZ+ and a "value" v(u) ∈ ZZ+ for each u ∈ U, a size
constraint B ∈ ZZ+, and a value goal K ∈ ZZ+.
Question: Is there a subset U ′ ⊆ U such that

∑
u∈U′ s(u) ≤ B and

∑
u∈U′ v(u) ≥ B.

2. (5 pts.) Show that the following problem is NP-Complete.

MULTIPROCESSOR SCHEDULING
Instance: A finite set A of "tasks", a "length" l(a) ∈ ZZ+ for each a ∈ A, a number m ∈ ZZ+
of "processors", and a "deadline" D ∈ ZZ+.
Question: Is there a partition A = A1

⋃
A2

⋃
· · ·

⋃
Am of A into m disjoint sets such that

max{
∑

a∈Ai
l(a) : 1 ≤ i ≤ m} ≤ D?

3. Scheduling with profits and deadlines (5 pts.)
Suppose you have one machine and a set of n tasks a1,a2, ...,an. Each task aj has a processing time
tj , a profit pj , and a deadline dj . The machine can process only one task at a time, and task aj

must run uninterruptedly for tj consecutive time units to complete. If you complete task aj by its
deadline dj , you receive a profit pj . But you receive no profit if you complete it after its deadline.
As an optimization problem, you are given the processing times, profits and deadlines for a set of n
tasks, and you wish to find a schedule that completes all the tasks and returns the greatest amount
of profit.
(a) (3 pts.) State this problem as a decision problem.
(b) (2 pts.) Show that the decision problem is NP-complete.

1 Vertex Cover

VERTEX COVER
Instance: A graph G = (V,E) and a positive integer K ≤ |V |.
Question: Is there a vertex cover of size K or less for G, that is, a subset V ′ ⊆ V such that
|V ′ | ≤ K and for each edge {u, v} ∈ E, at least one of u and v belongs to V ′?
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1. Show that VERTEX COVER is NP-Complete. Hint: Do a reduction from INDEPENDENT SET
to VERTEX COVER.

2. Show a polynomial approximation algorithm to the Vertex-Cover problem which is a factor 2
approximation of the optimal solution. Namely, your algorithm should output a set X ⊆ V , such
that X is a vertex cover, and |C | ≤ 2Kopt , where Kopt is the cardinality of the smallest vertex cover
of G.¬

3. Present a linear time algorithm that solves this problem for the case that G is a tree.
4. For a constant k, a graph G is k-separable, if there are k vertices of G, such that if we remove

them from G, each one of the remaining connected components has at most (2/3)n vertices, and
furthermore each one of those connected components is also k-separable. (More formally, a graph
G = (V,E) is k-separable, if for any subset of vertices S ⊆ V , there exists a subset M ⊆ S, such that
each connected component of GS\M has at most (2/3)|S | vertices, and |M | ≤ k.)
Show that given a graph G which is k-separable, one can compute the optimal VERTEX COVER
in nO(k) time.

2 Bin Packing

BIN PACKING
Instance: Finite set U of items, a size s(u) ∈ ZZ+ for each u ∈ U, an integer bin capacity B, and
a positive integer K.
Question: Is there a partition of U int disjoint sets U1, . . . ,UK such that the sum of the sizes
of the items inside each Ui is B or less?

1. Show that the BIN PACKING problem is NP-Complete
2. In the optimization variant of BIN PACKING one has to find the minimum number of bins needed

to contain all elements of U. Present an algorithm that is a factor two approximation to optimal
solution. Namely, it outputs a partition of U into M bins, such that the total size of each bin is at
most B, and M ≤ kopt , where kopt is the minimum number of bins of size B needed to store all the
given elements of U.

3. Assume that B is bounded by an integer constant m. Describe a polynomial algorithm that computes
the solution that uses the minimum number of bins to store all the elements.

4. Show that the following problem is NP-Complete.

TILING
Instance: Finite set R of rectangles and a rectangle R in the plane.
Question: Is there a way of placing the rectangles of R inside R, so that no pair of the
rectangles intersect, and all the rectangles have their edges parallel of the edges of R?

5. Assume that R is a set of squares that can be arranged as to tile R completely. Present a polynomial
time algorithm that computes a subset T ⊆ R, and a tiling of R, so that this tiling of T covers, say,
10% of the area of R.

3 Minimum Set Cover
¬It was very recently shown (I. Dinur and S. Safra. On the importance of being biased. Manuscript.

http://www.math.ias.edu/~iritd/mypapers/vc.pdf, 2001.) that doing better than 1.3600 approximation to VERTEX COVER
is NP-Hard. In your free time you can try and improve this constant. Good luck.

344

http://www.math.ias.edu/~iritd/mypapers/vc.pdf


MINIMUM SET COVER
Instance: Collection C of subsets of a finite set S and an integer k.
Question: Are there k sets S1, . . . ,Sk in C such that S ⊆ ∪ki=1Si?

1. Prove that MINIMUM SET COVER problem is NP-Complete
2. The greedy approximation algorithm for MINIMUM SET COVER, works by taking the largest

set in X ∈ C, remove all all the elements of X from S and also from each subset of C. The algorithm
repeat this until all the elements of S are removed. Prove that the number of elements not covered
after kopt iterations is at most n/2, where kopt is the smallest number of sets of C needed to cover S,
and n = |S |.

3. Prove the greedy algorithm is O(log n) factor optimal approximation.
4. Prove that the following problem is NP-Complete.

HITTING SET
Instance: A collection C of subsets of a set S, a positive integer K.
Question: Does S contain a hitting set for C of size K or less, that is, a subset S′ ⊆ S with
|S′ | ≤ K and such that S′ contains at least one element from each subset in C.

5. Given a set I of n intervals on the real line, show a O(n log n) time algorithm that computes the
smallest set of points X on the real line, such that for every interval I ∈ I there is a point p ∈ X,
such that p ∈ I.
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4 k-Center Problem

k-CENTER
Instance: A set P of n points in the plane, and an integer k and a radius r.
Question: Is there a cover of the points of P by k disks of radius (at most) r?

1. Describe an nO(k) time algorithm that solves this problem.
2. There is a very simple and natural algorithm that achieves a 2-approximation for this cover: First

it select an arbitrary point as a center (this point is going to be the center of one of the k covering
disks). Then it computes the point that it furthest away from the current set of centers as the
next center, and it continue in this fashion till it has k-points, which are the resulting centers. The
smallest k equal radius disks centered at those points are the required k disks.
Show an implementation of this approximation algorithm in O(nk) time.

3. Prove that that the above algorithm is a factor two approximation to the optimal cover. Namely,
the radius of the disks output ≤ 2ropt , where ropt is the smallest radius, so that we can find k-disks
that cover the point-set.

4. Provide an ε-approximation algorithm for this problem. Namely, given k and a set of points P in the
plane, your algorithm would output k-disks that cover the points and their radius is ≤ (1 + ε)ropt ,
where ropt is the minimum radius of such a cover of P.

5. Prove that dual problem r-DISK-COVER problem is NP-Hard. In this problem, given P and a
radius r, one should find the smallest number of disks of radius r that cover P.

6. Describe an approximation algorithm to the r-DISK COVER problem. Namely, given a point-set
P and a radius r, outputs k disks, so that the k disks cover P and are of radius r, and k = O(kopt ),
where kopt is the minimal number of disks needed to cover P by disks of radius r.

5 MAX 3SAT Problem

MAX SAT
Instance: Set U of variables, a collection C of disjunctive clauses of literals where a literal is a
variable or a negated variable in U.
Question: Find an assignment that maximized the number of clauses of C that are being
satisfied.

1. Prove that MAX SAT is NP-Hard.
2. Prove that if each clause has exactly three literals, and we randomly assign to the variables values 0

or 1, then the expected number of satisfied clauses is (7/8)M, where M = |C |.
3. Show that for any instance of MAX SAT, where each clause has exactly three different literals,

there exists an assignment that satisfies at least 7/8 of the clauses.
4. Let (U,C) be an instance of MAX SAT such that each clause has ≥ 10 · log n distinct variables, where

n is the number of clauses. Prove that there exists a satisfying assignment. Namely, there exists an
assignment that satisfy all the clauses of C.

6 Complexity

1. Prove that P ⊆ co-NP.
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Figure 50.1: Gadget for PLANAR-3-COLOR.

2. Show that if NP , co-NP, then every NP-complete problem is not a member of co-NP.

7 2-CNF-SAT
Prove that deciding satisfiability when all clauses have at most 2 literals is in P.

8 Graph Problems

1. LONGEST-PATH
Show that the problem of deciding whether an unweighted undirected graph has a path of length
greater than k is NP-complete.

9 PARTITION, SUBSET-SUM
PARTITION is the problem of deciding, given a set of numbers, whether there exists a subset whose
sum equals the sum of the complement, i.e. given S = s1, s2 . . . , sn, does there exist a subset S′ such that∑

s∈S′ s =
∑

t∈S−S′ t. SUBSET-SUM is the problem of deciding, given a set of numbers and a target sum,
whether there exists a subset whose sum equals the target, i.e. given S = s1, s2 . . . , sn and k, does there
exist a subset S′ such that

∑
s∈S′ s = k. Give two reduction, one in both directions.

10 3SUM
Describe an algorithm that solves the following problem as quickly as possible: Given a set of n numbers,
does it contain three elements whose sum is zero? For example, your algorithm should answer True for
the set {−5,−17,7,−4,3,−2,4}, since −5 + 7 + (−2) = 0, and False for the set {−6,7,−4,−13,−2,5,13}.

11 Consider finding the median of 5 numbers by using only comparisons. What is the exact worst case
number of comparisons needed to find the median. Justify (exhibit a set that cannot be done in one less
comparisons). Do the same for 6 numbers.

12 EXACT-COVER-BY-4-SETS
The EXACT-COVER-BY-3-SETS problem is defines as the following: given a finite set X with |X | = 3q
and a collection C of 3-element subsets of X, does C contain an exact cover for X, that is, a subcollection
C ′ ⊆ C such that every element of X occurs in exactly one member of C ′?

Given that EXACT-COVEqR-BY-3-SETS is NP-complete, show that EXACT-COVER-BY-4-SETS is
also NP-complete.

13 PLANAR-3-COLOR
Using 3-COLOR, and the ‘gadget’ in Figure 50.1, prove that the problem of deciding whether a planar
graph can be 3-colored is NP-complete. Hint: show that the gadget can be 3-colored, and then replace
any crossings in a planar embedding with the gadget appropriately.

14 DEGREE-4-PLANAR-3-COLOR
Using the previous result, and the ‘gadget’ in Figure 50.2, prove that the problem of deciding whether
a planar graph with no vertex of degree greater than four can be 3-colored is NP-complete. Hint: show
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Figure 50.2: Gadget for DEGREE-4-PLANAR-3-COLOR.

that you can replace any vertex with degree greater than 4 with a collection of gadgets connected in such
a way that no degree is greater than four.

15 Poly time subroutines can lead to exponential algorithms
Show that an algorithm that makes at most a constant number of calls to polynomial-time subroutines
runs in polynomial time, but that a polynomial number of calls to polynomial-time subroutines may result
in an exponential-time algorithm.

16 1. Prove that if G is an undirected bipartite graph with an odd number of vertices, then G is non-
hamiltonian. Give a polynomial time algorithm algorithm for finding a hamiltonian cycle in an
undirected bipartite graph or establishing that it does not exist.

2. Show that the hamiltonian-path problem can be solved in polynomial time on directed acyclic
graphs by giving an efficient algorithm for the problem.

3. Explain why the results in previous questions do not contradict the facts that both HAM-CYCLE
and HAM-PATH are NP-complete problems.

17 Consider the following pairs of problems:

1. MIN SPANNING TREE and MAX SPANNING TREE
2. SHORTEST PATH and LONGEST PATH
3. TRAVELING SALESMAN PROBLEM and VACATION TOUR PROBLEM (the longest tour is

sought).
4. MIN CUT and MAX CUT (between s and t)
5. EDGE COVER and VERTEX COVER
6. TRANSITIVE REDUCTION and MIN EQUIVALENT DIGRAPH

(all of these seem dual or opposites, except the last, which are just two versions of minimal representation
of a graph).
Which of these pairs are polytime equivalent and which are not? Why?
(Really HARD)

18 GRAPH-ISOMORPHISM
Consider the problem of deciding whether one graph is isomorphic to another.

1. Give a brute force algorithm to decide this.
2. Give a dynamic programming algorithm to decide this.
3. Give an efficient probabilistic algorithm to decide this.
4. Either prove that this problem is NP-complete, give a poly time algorithm for it, or prove that neither

case occurs.

19 Prove that PRIMALITY (Given n, is n prime?) is in NP ∩ co-NP. Hint: co-NP is easy (what’s a certificate
for showing that a number is composite?). For NP, consider a certificate involving primitive roots and
recursively their primitive roots. Show that knowing this tree of primitive roots can be checked to be
correct and used to show that n is prime, and that this check takes poly time.
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20 How much wood would a woodchuck chuck if a woodchuck could chuck wood?

50.1.3. Homework 2

CS 373: Combinatorial Algorithms, Spring 2003
Homework 2 (due Tuesday, Feb 18, 2003 at 11:59.99 p.m.)

Required Problems

1 Free lunch.
(10 pts.)

1.A. (3 pts.) Provide a detailed description of the procedure that computes the longest ascending subse-
quence in a given sequence of n numbers. The procedure should use only arrays, and should output
together with the length of the subsequence, the subsequence itself.

1.B. (4 pts.) Provide a data-structure, that store pairs (ai, bi) of numbers, such that an insertion/deletion
operation takes O(log n) time, where n is the total number of elements inserted. And furthermore,
given a query interval [α, β], it can output in O(log n) time, the pair realizing

max
(ai ,bi )∈S,ai ∈[α,β]

bi,

where S is the current set of pairs.
1.C. (3 pts.) Using (b), describe an O(n log n) time algorithm for computing the longest ascending

subsequence given a sequence of n numbers.

2 Greedy algorithm does not work for independent set.
(20 pts.)
A natural algorithm, GreedyIndependent, for computing maximum independent set in a graph, is to
repeatedly remove the vertex of lowest degree in the graph, and add it to the independent set, and remove
all its neighbors.

1. (5 pts.) Show an example, where this algorithm fails to output the optimal solution.
2. (5 pts.) Let G be a (k, k + 1)-uniform graph (this is a graph where every vertex has degree either k

or k + 1). Show that the above algorithm outputs an independent set of size Ω(n/k), where n is the
number of vertices in G.

3. (5 pts.) Let G be a graph with average degree δ (i.e., δ = 2 |E(G)| /|V(G)|). Prove that the above
algorithm outputs an independent set of size Ω(n/δ).

4. (5 pts.) For any integer k, present an example of a graph Gk , such that GreedyIndependent
outputs an independent set of size ≤ |OPT(Gk)| /k, where OPT(Gk) is the largest independent set in
Gk . How many vertices and edges does Gk has? What it the average degree of Gk?

3 Greedy algorithm does not work for VertexCover.
(10 pts.)
Extend the example shown in class for the greedy algorithm for Vertex Cover. Namely, for any n, show a
graph Gn, with n vertices, for which the greedy Vertex Cover algorithm, outputs a vertex cover which is
of size Ω(Opt(Gn) log n), where Opt(Gn) is the cardinality of the smallest Vertex Cover of Gn.
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4 Greedy algorithm does not work for TSP with the triangle inequality.
(10 pts.)
In the greedy Traveling Salesman algorithm, the algorithm starts from a starting vertex v1 = s, and in
i-th stage, it goes to the closest vertex to vi that was not visited yet.

1. (5 pts.) Show an example that prove that the greedy traveling salesman does not provide any
constant factor approximation to the TSP.
Formally, for any constant c > 0, provide a complete graph G and positive weights on its edges, such
that the length of the greedy TSP is by a factor of (at least) c longer than the length of the shortest
TSP of G.

2. (5 pts.) Show an example, that prove that the greedy traveling salesman does not provide any
constant factor approximation to the TSP with triangle inequality.
Formally, for any constant c > 0, provide a complete graph G, and positive weights on its edges,
such that the weights obey the triangle inequality, and the length of the greedy TSP is by a factor of
(at least) c longer than the length of the shortest TSP of G. (In particular, prove that the triangle
inequality holds for the weights you assign to the edges of G.)

5 Yes. Greedy algorithm does not work for coloring. Really.
(10 pts.)
Let G be a graph defined over n vertices, and let the vertices be ordered: v1, . . . , vn. Let Gi be the induced
subgraph of G on v1, . . . , vi. Formally, Gi = (Vi,Ei), where Vi = {v1, . . . , vi} and

Ei =
{
uv ∈ E

��� u, v ∈ Vi and uv ∈ E(G)
}
.

The greedy coloring algorithm, colors the vertices, one by one, according to their ordering. Let ki denote
the number of colors the algorithm uses to color the first i vertices.
In the i-th iteration, the algorithm considers vi in the graph Gi. If all the neighbors of vi in Gi are using
all the ki−1 colors used to color Gi−1, the algorithm introduces a new color (i.e., ki = ki−1 + 1) and assigns
it to vi. Otherwise, it assign vi one of the colors 1, . . . , ki−1 (i.e., ki = ki−1).
Give an example of a graph G with n vertices, and an ordering of its vertices, such that even if G can be
colored using O(1) (in fact, it is possible to do this with two) colors, the greedy algorithm would color it
with Ω(n) colors. (Hint: consider an ordering where the first two vertices are not connected.)

6 Greedy coloring does not work even if you do it in the right order.
(10 pts.)
Given a graph G, with n vertices, let us define an ordering on the vertices of G where the min degree vertex
in the graph is last. Formally, we set vn to be a vertex of minimum degree in G (breaking ties arbitrarily),
define the ordering recursively, over the graph G \ vn, which is the graph resulting from removing vn from
G. Let v1, . . . , vn be the resulting ordering, which is known as min last ordering.

1. (5 pts.) Prove that the greedy coloring algorithm, if applied to a planar graph G, which uses the
min last ordering, outputs a coloring that uses 6 colors.¬

2. (5 pts.) Give an example of a graph Gn with O(n) vertices which is 3-colorable, but nevertheless,
when colored by the greedy algorithm using min last ordering, the number of colors output is n.
(Hint: Extend your solution to 5.)

¬There is a quadratic time algorithm for coloring planar graphs using 4 colors (i.e., follows from a constructive proof of the four
color theorem). Coloring with 5 colors requires slightly more cleverness.
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Practice Problems

1 (10 pts.) Even More on Vertex Cover
(Based on CLRS 35.1-1 and 35.1-4)

1. (3 pts.) Give an example of a graph for which Approx-Vertex-Cover always yields a suboptimal
solution.

2. (2 pts.) Give an efficient algorithm that finds an optimal vertex cover for a tree in linear time.
3. (5 pts.) (Based on CLRS 35.1-3)

Professor Nixon proposes the following heuristic to solve the vertex-cover problem. Repeatedly select
a vertex of highest degree, and remove all of its incident edges. Give an example to show that the
professor’s heuristic does not have an approximation ratio of 2. [Hint: Try a bipartite graph with
vertices of uniform degree on the left and vertices of varying degree on the right.]

2 (10 pts.) Greedy Traveling
(Based on CLRS 35.2-3)
Consider the following closest-point heuristic for building an approximate traveling-salesman tour. Begin
with a trivial cycle consisting of a single arbitrary chosen vertex. At each step, identify the vertex u that
is not on the cycle but whose distance to any vertex on the cycle is minimum. Suppose that the vertex
on the cycle that is nearest u is vertex v. Extend the cycle to include u by inserting u just after v. Repeat
until all vertices are on the cycle. Prove that this heuristic returns a tour whose total cost is not more
than twice the cost of an optimal tour.

3 (10 pts.) Bin Packing
(Based on CLRS35-1)
Suppose that we are given a set of n objects, where the size si of the i-th object satisfies 0 < si < 1. We
wish to pack all the objects into the minimum number of unit-size bins. Each bin can hold any subset of
the objects whose total size does not exceed 1.

1. (4 pts.) Prove that the problem of determining the minimum number of bins required is NP-hard.
2. (6 pts.) Give a heuristic that has an approximation ratio of 2. And give an O(n log n) time algorithm

for the heuristic.

4 (10 pts.) Maximum Clique (Based on CLRS 35-2)
Let G = (V,E) be an undirected graph. For any k ≥ 1, define G(k) to be the undirected graph (V (k),E (k)),
where V (k) is the set of all ordered k-tuples of vertices from V and E (k) is defined so that (v1, v2, ..., vk) is
adjacent to (w1,w2, ...,wk) if and only if for each i (1 ≤ i ≤ k) either vertex vi is adjacent to wi in G, or
else vi = wi.

1. (5 pts.) Prove that the size of the maximum clique in G(k) is equal to the k-th power of the size of
the maximum clique in G.

2. (5 pts.) Argue that if there is an approximation algorithm that has a constant approximation ratio
for finding a maximum-size clique, then there is a fully polynomial time approximation scheme for
the problem.

5 (10 pts.) Approx Partition
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Approx Partition
Instance: A finite set A and a “size” s(a) for each a ∈ A, an approximation parameter ε > 0.
Question: Is there a subset A′ ⊆ A such that������∑a∈A′ s(a) − ∑

a∈A\A′

s(a)

������ < ε
∑
a∈A

s(a)?

1. (5 pts.) Suppose s(a) ∈ Z+ and s(a) ≤ k for each a ∈ A. Give an O(nkε ) time algorithm to find a
ε-partition.

2. (5 pts.) Suppose s(a) ∈ R+. Give an polynomial time algorithm to find a ε-partition.

6 (10 pts.) Just a little bit more about graph coloring

1. (2 pts.) Prove that a graph G with a chromatic number k (i.e., k is the minimal number of colors
needed to color G), must have Ω(k2) edges.

2. (2 pts.) Prove that a graph G with m edges can be colored using 4
√

m colors.
3. (6 pts.) Describe a polynomial time algorithm that given a graph G, which is 3-colorable, it computes

a coloring of G using, say, at most n/(5 log n) colors.

7 (10 pts.) Splitting and splicing
Let G = (V,E) be a graph with n vertices and m edges. A splitting of G is a partition of V into two sets
V1,V2, such that V = V1 ∪ V2, and V1 ∩ V2 = ∅. The cardinality of the split (V1,V2), denoted by m(V1,V2), is
the number of edges in G that has one vertex in V1, and one vertex in V2. Namely,

m(V1,V2) =
���{e

��� e = {uv} ∈ E(G),u ∈ V1, v ∈ V2
}��� .

Let sn(G) = max
V1

m(V1,V2) be the maximum cardinality of such a split. Describe a deterministic polynomial
time algorithm that computes a splitting (V1,V2) of G, such that m(V1,V2) ≥ sn(G)/2. (Hint: Start from
an arbitrary split, and continue in a greedy fashion to improve it.)

8 Vertex Cover

VERTEX COVER
Instance: A graph G = (V,E) and a positive integer K ≤ |V |.
Question: Is there a vertex cover of size K or less for G, that is, a subset V ′ ⊆ V such that
|V ′ | ≤ K and for each edge {u, v} ∈ E, at least one of u and v belongs to V ′?

1. Show that VERTEX COVER is NP-Complete. Hint: Do a reduction from INDEPENDENT SET
to VERTEX COVER.

2. Show a polynomial approximation algorithm to the Vertex-Cover problem which is a factor 2
approximation of the optimal solution. Namely, your algorithm should output a set X ⊆ V , such
that X is a vertex cover, and |C | ≤ 2Kopt , where Kopt is the cardinality of the smallest vertex cover
of G.

It was very recently shown (I. Dinur and S. Safra. On the importance of being biased. Manuscript.
http://www.math.ias.edu/~iritd/mypapers/vc.pdf, 2001.) that doing better than 1.3600 approximation to VERTEX COVER
is NP-Hard. In your free time you can try and improve this constant. Good luck.
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3. Present a linear time algorithm that solves this problem for the case that G is a tree.
4. For a constant k, a graph G is k-separable, if there are k vertices of G, such that if we remove

them from G, each one of the remaining connected components has at most (2/3)n vertices, and
furthermore each one of those connected components is also k-separable. (More formally, a graph
G = (V,E) is k-separable, if for any subset of vertices S ⊆ V , there exists a subset M ⊆ S, such that
each connected component of GS\M has at most (2/3)|S | vertices, and |M | ≤ k.)
Show that given a graph G which is k-separable, one can compute the optimal VERTEX COVER
in nO(k) time.

9 Bin Packing

BIN PACKING
Instance: Finite set U of items, a size s(u) ∈ Z+ for each u ∈ U, an integer bin capacity B, and
a positive integer K.
Question: Is there a partition of U int disjoint sets U1, . . . ,UK such that the sum of the sizes
of the items inside each Ui is B or less?

1. Show that the BIN PACKING problem is NP-Complete
2. In the optimization variant of BIN PACKING one has to find the minimum number of bins needed

to contain all elements of U. Present an algorithm that is a factor two approximation to optimal
solution. Namely, it outputs a partition of U into M bins, such that the total size of each bin is at
most B, and M ≤ kopt , where kopt is the minimum number of bins of size B needed to store all the
given elements of U.

3. Assume that B is bounded by an integer constant m. Describe a polynomial algorithm that computes
the solution that uses the minimum number of bins to store all the elements.

4. Show that the following problem is NP-Complete.

TILING
Instance: Finite set R of rectangles and a rectangle R in the plane.
Question: Is there a way of placing the rectangles of R inside R, so that no pair of the
rectangles intersect, and all the rectangles have their edges parallel of the edges of R?

5. Assume that R is a set of squares that can be arranged as to tile R completely. Present a polynomial
time algorithm that computes a subset T ⊆ R, and a tiling of T , so that this tiling of T covers, say,
10% of the area of R.

10 Minimum Set Cover

MINIMUM SET COVER
Instance: Collection C of subsets of a finite set S and an integer k.
Question: Are there k sets S1, . . . ,Sk in C such that S ⊆ ∪ki=1Si?

1. Prove that MINIMUM SET COVER problem is NP-Complete
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2. The greedy approximation algorithm for MINIMUM SET COVER, works by taking the largest
set in X ∈ C, remove all all the elements of X from S and also from each subset of C. The algorithm
repeat this until all the elements of S are removed. Prove that the number of elements not covered
after kopt iterations is at most n/2, where kopt is the smallest number of sets of C needed to cover S,
and n = |S |.

3. Prove the greedy algorithm is O(log n) factor optimal approximation.
4. Prove that the following problem is NP-Complete.

HITTING SET
Instance: A collection C of subsets of a set S, a positive integer K.
Question: Does S contain a hitting set for C of size K or less, that is, a subset S′ ⊆ S with
|S′ | ≤ K and such that S′ contains at least one element from each subset in C.

5. Given a set I of n intervals on the real line, show a O(n log n) time algorithm that computes the
smallest set of points X on the real line, such that for every interval I ∈ I there is a point p ∈ X,
such that p ∈ I.
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11 k-Center Problem

k-CENTER
Instance: A set P of n points in the plane, and an integer k and a radius r.
Question: Is there a cover of the points of P by k disks of radius (at most) r?

11.A. Describe an nO(k) time algorithm that solves this problem.
11.B. There is a very simple and natural algorithm that achieves a 2-approximation for this cover: First

it select an arbitrary point as a center (this point is going to be the center of one of the k covering
disks). Then it computes the point that it furthest away from the current set of centers as the
next center, and it continue in this fashion till it has k-points, which are the resulting centers. The
smallest k equal radius disks centered at those points are the required k disks.
Show an implementation of this approximation algorithm in O(nk) time.

11.C. Prove that that the above algorithm is a factor two approximation to the optimal cover. Namely,
the radius of the disks output ≤ 2ropt , where ropt is the smallest radius, so that we can find k-disks
that cover the point-set.

11.D. Provide an ε-approximation algorithm for this problem. Namely, given k and a set of points P in the
plane, your algorithm would output k-disks that cover the points and their radius is ≤ (1 + ε)ropt ,
where ropt is the minimum radius of such a cover of P.

11.E. Prove that dual problem r-DISK-COVER problem is NP-Hard. In this problem, given P and a
radius r, one should find the smallest number of disks of radius r that cover P.

11.F. Describe an approximation algorithm to the r-DISK COVER problem. Namely, given a point-set
P and a radius r, outputs k disks, so that the k disks cover P and are of radius r, and k = O(kopt ),
where kopt is the minimal number of disks needed to cover P by disks of radius r.

12 MAX 3SAT

MAX SAT
Instance: Set U of variables, a collection C of disjunctive clauses of literals where a literal is a
variable or a negated variable in U.
Question: Find an assignment that maximized the number of clauses of C that are being
satisfied.

12.A. Prove that MAX SAT is NP-Hard.
12.B. Prove that if each clause has exactly three literals, and we randomly assign to the variables values 0

or 1, then the expected number of satisfied clauses is (7/8)M, where M = |C |.
12.C. Show that for any instance of MAX SAT, where each clause has exactly three different literals,

there exists an assignment that satisfies at least 7/8 of the clauses.
12.D. Let (U,C) be an instance of MAX SAT such that each clause has ≥ 10 · log n distinct variables, where

n is the number of clauses. Prove that there exists a satisfying assignment. Namely, there exists an
assignment that satisfy all the clauses of C.
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50.1.4. Homework 3

Required Problems

1 Upside down
(10 pts.)
Suppose that in addition to the standard kind of comparator, we introduce an "upside-down" comparator
that produces its minimum output on the bottom wire and its maximum output on the top wire.

1. (6 pts.) An n-input sorting network with m comparators, is represented by a list of m pairs of
integers in the range from 1 to n. Thus, a comparator between the wire i and j is represented as
(i, j). If i < j then this is a regular comparator, and if i > j it is an upside-down comparator.
Describe an algorithm that converts a sorting network with n inputs, c upside-down gates and m
overall gates into an equivalent (i.e., with the same number of gates) sorting network that uses only
regular gates. How fast is your algorithm?

b1a

2a

3a

4a

b

b

1

2

3

4b
Suppose in the comparison network above, all comparators are regular ones except the
rightmost one, which is an upside-down comparator. This comparison network is repre-
sented as the following: (1,2), (3,4), (1,3), (2,4), (3,2).

2. (4 pts.) Prove that your algorithm is correct (i.e., it indeed outputs a network that uses only regular
comparators, it always terminate, and the output network is equivalent to the input network).

2 Merge those sequences
(20 pts.)

1. (10 pts.) Consider a merging network with inputs a1,a2, . . . ,an, for n an exact power of 2, in which
the two monotonic sequences to be merged are 〈a1,a3, . . . ,an−1〉 and 〈a2,a4, . . . ,an〉 (namely, the input
is a sequence of n numbers, where the odd numbers or sorted, and the even numbers are sorted).
Prove that the number of comparators in this kind of merging network is Ω(n log n). Why is this an
interesting lower bound? (Hint: Partition the comparators into three sets.)

2. (10 pts.) Prove that any merging network, regardless of the order of inputs, requires Ω(n log n)
comparators. (Hint: Use question 1.)

3 Permutations.
(20 pts.)
A permutation network on n inputs and n outputs has switches that allow it to connect its inputs to its
outputs according to any n! possible permutations. Figure 50.3 shows the 2-input, 2-output permutation
network P2, which consists of a single switch that can be set either to feed its inputs straight through to
its outputs or to cross them.
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Figure 50.3: Permutation Switch
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Figure 50.4: Permutation Network of Size 8

1. (5 pts.) Argue that if we replace each comparator in a sorting network with the switch of Figure 50.3,
the resulting network is a permutation network. That is, for any permutation π, there is a way to
set the switches in the network so that input i is connected to output π(i).

2. (2 pts.) Figure 50.4 shows the recursive construction of an 8-input, 8-output permutation network
P8 that uses two copies of P4 and 8 switches. The Switches have been set to realize the permutation
π = 〈π(1), π(2), . . . , π(8)〉 = 〈4,7,3,5,1,6,8,2〉, which requires (recursively) that the top P4 realize
〈4,2,3,1〉 and the bottom P4 realize 〈2,3,1,4〉.
Show how to realize the permutation 〈5,3,4,6,1,8,2,7〉 on P8 by drawing the switch settings and the
permutations performed by the two P4’s.

3. (5 pts.) Let n be an exact power of 2. Define Pn recursively in terms of two Pn/2’s in a manner
similar to the way we defined P8.
Describe an algorithm (ordinary random-access machine) that runs in O(n)-time that sets the n
switches connected to the inputs and outputs of Pn and specifies the permutations that must be
realized by each Pn/2 in order to accomplish any given n-element permutation. Prove that your
algorithm is correct.

4. (3 pts.) What are the depth size of Pn? How long does it take on an ordinary random-access
machine to compute all switch settings, including those within the Pn/2’s?

5. (5 pts.) Argue that for n > 2, any permutation network (not just Pn) must realize some permutation
by two distinct combinations of switch settings.

4 The Hard Life of a Journalist
(20 pts.)
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1. (2 pts.) A journalist, named Jane Austen, travels to Afghanistan, and unfortunately falls into the
hands of Bin Laden. Bin Laden offer Jane a game for her life – if she wins she can leave.
The game board is made out of 2 × 2 coins:

H

HT

T

At each round, Jane can decide to flip one or two coins, by specifying which coins she is flipping
(for example, flip the left bottom coin, and the right top coin), next Bin Laden goes and rotates the
board by either 90,180,270, or 0 degrees (of course, rotation by 0 degrees is just keeping the coins in
their current configuration).
The game is over when all the four coins are either all heads or all tails. To make things interesting,
Jane does not see the board, and does not know the starting configuration.
Describe an algorithm that Jane can deploy, so that she always win. How many rounds are required
by your algorithm?

2. (5 pts.)
After escaping from Bin Laden, and on her way to Kabul, Jane meets a peace loving, nuclear reactor
selling, French diplomat. The French diplomat is outraged to hear that Jane prefers Hummus to
French Fries, and instruct his bodyguards to arrest Jane immediately, accusing her of being a quisling
of the French cuisine (Jane has French citizenship). Again, the diplomat offers her a game for her
life, similar to the Bin Laden game, with the following twist: after Jane flips her coins, the diplomat
will reorder the coins in an arbitrary order (without flipping any coin). Describe an algorithm that
Jane can use to win the game. What is the expected number of rounds Jane has to play before
winning (the lower your bound, the better).

3. (5 pts.) After escaping from the French diplomat, Jane travels to Hanoi to investigate rumors that
the priests in charge of the Towers of Hanoi games, are spending all the money they get on buying
computer games and playing them, instead of playing the holy game of Towers of Hanoi, as they are
suppose to do.
However, the head priest is willing to do an interview with Jane, only if she plays the coin game
(using the French diplomat version), with n coins. Describe an algorithm that guarantees that Jane
wins. Provide an upper bound (as tight as possible) on the number of rounds Jane has to play before
winning. (Providing an exact bound here is probably hard. As such, a rough upper bound would be
acceptable.)

4. (5 pts.) Jane, tired of all those coin games, goes to Nashville for a vacation. Unfortunately for
her, she is kidnapped by an Elvis lookalike. Not surprisingly, he offers her to play the coin game for
her life, with the following variants: There are n coins, and at each round Jane can choose which
of the n coins she wants to flip. Before flipping the coin, the Elvis lookalike tells her whether the
coin is currently head or tail, and Jane can decide whether she wants to flip this coin or not. After
each round, the Elvis lookalike takes the coins and reorder them in any order he likes. Describe
an algorithm that guarantees that Jane wins. Provide an exact bound on the expected number of
rounds that Jane has to play before she wins. (The smaller your bound, the better.)

5 The Hard Hard Life of the IRS.
(10 pts.)
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The IRS receives, every year, n forms with personal tax returns. The IRS, of course, can not verify all n
forms, but they can check some of them. Describe an algorithm, as fast as possible, that decides whether
the number of incorrect tax forms is larger than εn, where ε is a prespecified constant between 0 and 1.
The decision of the algorithm is considered to be incorrect if it declares that the number of incorrect forms
is smaller than εn, but it is in fact larger than 2εn. Similarly, the algorithm is considered to be incorrect
if it claims that the number of incorrect forms is larger than 2εn, where it is in fact smaller than εn.
(Namely, if the number of incorrect forms is between εn and 2εn, any of the two answers are acceptable.)
Your algorithm should output a correct result with probability ≥ 1 − 1/n10. What is the running time of
your algorithm, assuming that verifying the correctness of a single tax form takes O(1) time? (Hint: Use
the Chernoff inequalities.)

6 Closest Numbers
Let P be a set of n real numbers. The purpose of this exercise is to develop a linear time algorithm
for deciding whether there are two equal numbers in P. Let x1, . . . , xn be a random permutation of the
numbers in P.

1. (5 pts.) Let πi = min
1≤k< j≤i

��xk − xj
�� be the distance between the closest pair of numbers in x1, . . . , xi.

Prove that P[πi , πi−1] ≤ 2/i.
2. (5 pts.) Given a parameter r, describe an algorithm, that decides in O(i) time, whether πi < r.

Furthermore, if πi−1 = r but πi < r, then it computes πi. (Hint: use hashing and the floor function.)
3. (5 pts.) Show how to modify the previous algorithm into a data-structure, so that after computing

πi, one can insert xi+1, . . . , xj into the data-structure in O(1) time per element, where πi+1 = πi+2 =
· · · = πj−1 > πj . And furthermore, the data-structure returns πj .

4. (5 pts.) Describe an algorithm, with O(n) expected running time, that computes πn. Clearly, if
πn = 0 then there are two identical numbers in P. (Hint: Use (a) and (c).)

(Note, that the algorithm of (d) is faster than one can achieve in the comparison model (i.e., we only only
to compare numbers). One can prove that the fastest algorithm for this problem in the comparison model
requires Ω(n log n) time. Namely, the only way to solve it is using sorting.)

Practice Problems

Sorting Networks

1. (10 pts.) (Based on CLRS 27.1-2 and 27.1-4, or CLR 28.1-2 and 28.1-4)

(a) (5 pts.) Let n be an exact power of 2. Show how to construct an n-input, n-output comparison
network of depth lg n in which the top output wire always carries the minimum input value and the
bottom output wire always carries the maximum input value.

(b) (5 pts.) Prove that any sorting network on n inputs has depth at least lg n.

2. (10 pts.) (Based on CLRS 27.2-5 or CLR 28.2-5)
Prove that an n-input sorting network must contain at least one comparator between the ith and (i + 1)st
lines for all i = 1,2, ...,n − 1.

3. (10 pts.) (Based on CLRS 27.5-1 and 27.5-2, or CLR 28.5-1 and 28.5-2)
The sorting network SORTER[n] was present in class (it is also shown in CLRS Figure 27.12 or CLR
Figure 28.12), where n is an exact power of 2. Answer the following questions about SORTER[n].

(a) (5 pts.) Give a tight bound for the number of comparators in SORTER[n].
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(b) (5 pts.) Show that the depth of SORTER[n] is exactly (lg n)(lg n + 1)/2.

4. (10 pts.) (Based on CLRS 27.5-3 or CLR 28.5-3)
Suppose that we have 2n elements < a1,a2, ...,a2n > and wish to partition them into the the n smallest
and the n largest. Prove that we can do this in constant additional depth after separately sorting <

a1,a2, ...,an > and < an+1,an+2, ...,a2n >.

5. (10 pts.) (Based on CLRS 27.5-4 or CLR 28.5-4)
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the depth of a merging network
with 2k inputs. Suppose that we have a sequence of n numbers to be sorted and we know that every
number is within k positions of its correct position in the sorted order, which means that we need to move
each number at most (k − 1) positions to sort the inputs. For example, in the sequence 3 2 1 4 5 8 7 6 9,
every number is within 3 positions of its correct position. But in sequence 3 2 1 4 5 9 8 7 6, the number
9 and 6 are outside 3 positions of its correct position.
Show that we can sort the n numbers in depth S(k) + 2M(k). (You need to prove your answer is correct.)

6. (20 pts.) (Based on CLRS 27.5-5 or CLR 28.5-5)
We can sort the entries of an m × m matrix by repeating the following procedure k times:

(a) Sort each odd-numbered row into monotonically increasing order.
(b) Sort each even-numbered row into monotonically decreasing order.
(c) Sort each column into monotonically increasing order.

(a) (8 pts.) Suppose the matrix contains only 0’s and 1’s. We repeat the above procedure again and
again until no changes occur. In what order should we read the matrix to obtain the sorted output
(m × m numbers in increasing order)? Prove that any m × m matrix of 0’s and 1’s will be finally
sorted.

(b) (8 pts.) Prove that by repeating the above procedure, any matrix of real numbers can be sorted.
[Hint:Refer to the proof of the zero-one principle.]

(c) (4 pts.) Suppose k iterations are required for this procedure to sort the m × m numbers. Give an
upper bound for k. The tighter your upper bound the better (prove you bound).

Randomized Algorithms

1 Tail Inequalities
(10 pts.)

1. Prove the following theorem:

Theorem 50.1.1. Let X1,X2, . . . ,Xn be independent coin flips such that for 1 ≤ i ≤ n, we have
P[Xi = 1] = pi, where 0 < pi < 1. Then, for X =

∑n
i=1 Xi, µ = E[X] =

∑
i pi and for any δ > 0,

P[X > (1 + δ)µ] <
[

eδ

(1 + δ)(1+δ)

]µ
,

and
P[X < (1 − δ)µ] < exp

(
−µδ2

2

)
.

2. Consider a collection of n random variables Xi drawn independently from the geometric distribution
with mean 2 – that is, Xi is the number of flips of an unbiased coin up to and including the first head.
Let X =

∑
Xi. Derive an upper bound as small as possible on the probability that X > (1+ δ)(2n) for

any fixed δ.
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2 Tournament without a winner
(10 pts.)
Consider a tournament on n teams, in which each pair of teams play against each other once and a winner
is always declared. Suppose we try to rank the teams in some total order based on the outcome of the
tournament. Say that a game agrees with the ranking we have chosen if the team we ranked better won.
Prove that for sufficiently large n, there is a possible set of outcomes such that no ranking agrees with
more than 51% of the games. (Hint: Pick the winner in a game randomly and use the results of exercise
1 above.)

3 Fuzzy Sorting of Intervals (Based on CLRS 7-6)
(10 pts.)
Consider a sorting problem in which the numbers are not known exactly. Instead, for each number, we
know an interval on the real line to which it belongs. That is, we are given n closed intervals of the form
[ai, bi], where ai ≤ bi. The goal is to fuzzy-sort these intervals, i.e., produce a permutation < i1, i2, . . . , in >
of the intervals such that there exist cj ∈ [ai j , bi j ] satisfying c1 ≤ c2 ≤ · · · ≤ cn.

1. (5 pts.) Design an algorithm for fuzzy-sorting n intervals. Your algorithm should have the general
structure of an algorithm that quicksort the left endpoints (the ai’s), but it should take advantage
of overlapping intervals to improve the running time. (As the intervals overlap more and more, the
problem of fuzzy-sorting the intervals gets easier and easier. Your algorithm should take advantage
of such overlapping, to the extent that it exists.)

2. (5 pts.) Argue that your algorithm runs in expected time Θ(n lg n) in general, but runs in expected
time Θ(n) when all of the intervals overlap (i.e., when there exists a value x such that x ∈ [ai, bi] for
all i). Your algorithm should not be checking for this case explicitly; rather, its performance should
naturally improve as the amount of overlap increases.

4 Approx Max Cut
(5 pts.)
Given a graph G = (V,E) with n vertices and m edges, describe an algorithm that runs in O(n) times, and
output a cut S ⊆ V , such that the expected number of edges in the cut is ≥ M/2, where M is the number
of edges in the maximum cut, where the number of edges in the cut is |(S × (V \ S)) ∩ E |.

5 Modified Partition (Based on CLRS 7.4-6)
(5 pts.)
Consider modifying the Partition procedure by randomly picking three elements from array A and
partitioning about their median. Approximate the probability of getting at worst an α-to-(1− α) split, as
a function of α in the range 0 < α < 1.

6 Sorting Random Input
(10 pts.)
Let a1, . . . ,an be n real numbers chosen independently and uniformly from the range [0,1].

• (5 pts.) Describe an algorithm with an expected linear running time that sorts the numbers.
• (5 pts.) Show that the linear running time is with high probability.

7 Estimating quantities
(10 pts.)

1. (5 pts.) Assume that you are given a function RandBit that returns a truly random bit. However,
you do not know what is the probability p that RandBit returns 1. Describe an algorithm (and prove
its correctness), as fast as possible, that receives parameters ε, δ, and outputs a number x, such that
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with probability ≥ 1 − δ we have p ≤ x ≤ p + ε. Namely, the program estimates the value of p
“reliably”.

2. (5 pts.) Let G = (V,E) be a graph with n vertices and m edges. Assume that the only way you can
know whether there is an edge between vertices u and v is to probe the graph G and ask whether
there is an edge uv ∈ E in constant time. You are given parameters ε > 0 and δ > 0. Describe an
algorithm, as fast as possible, that output a number k which is a good estimate of the number of
edges of G. Namely, such that m ≤ k ≤ m + εn2 with probability larger than 1 − δ.

8 Yeh, whatever.
Provide a sub-quadratic (o(n2) time) deterministic algorithm for the nuts and bolts matching problem.
Your solution should be self contained.

9 Random Bits in a Treap

Let’s analyze the number of random bits needed to implement the operations of a treap. Suppose we
pick a priority pi at random from the unit interval. Then the binary representation of each pi can be
generated as a potentially infinite series of bits that are the outcome of unbiased coin flips. The idea is
to generate only as many bits in this sequence as is necessary for resolving comparisons between different
priorities. Suppose we have only generated some prefixes of the binary representations of the priorities
of the elements in the treap T . Now, while inserting an item y, we compare its priority py to other’s
priorities to determine how y should be rotated. While comparing py to some pi, if their current partial
binary representation can resolve the comparison, then we are done. Otherwise, the have the same partial
binary representations (upto the length of the shorter of the two) and we keep generating more bits for
each until they first differ.

1. Compute a tight upper bound on the expected number of coin flips or random bits needed for a single
priority comparison. (Note that during insertion every time we decide whether or not to perform a
rotation, we perform a priority comparison. We are interested in the number of bits generated in
such a single comparison.)

2. Generating bits one at a time like this is probably a bad idea in practice. Give a more practical
scheme that generates the priorities in advance, using a small number of random bits, given an upper
bound n on the treap size. Describe a scheme that works correctly with probability ≥ 1− n−c, where
c is a prespecified constant.

10 Majority Tree
Consider a uniform rooted tree of height h (every leaf is at distance h from the root). The root, as well
as any internal node, has 3 children. Each leaf has a boolean value associated with it. Each internal node
returns the value returned by the majority of its children. The evaluation problem consists of determining
the value of the root; at each step, an algorithm can choose one leaf whose value it wishes to

1. [5 points] Describe a deterministic algorithm that runs in O(n) time, that computes the value of the
tree, where n = 3h.

2. [10 points] Consider the recursive randomized algorithm that evaluates two subtrees of the root
chosen at random. If the values returned disagree, it proceeds to evaluate the third sub-tree. Show
the expected number of leaves read by the algorithm on any instance is at most n0.9.
(HARD)

3. [5 points] Show that for any deterministic algorithm, there is an instance (a set of boolean values
for the leaves) that forces it to read all n = 3h leaves. (hint: Consider an adversary argument, where
you provide the algorithm with the minimal amount of information as it request bits from you. In
particular, one can devise such an adversary algorithm.).
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11 A Game of Death
Death knocks on your door one cold blustery morning and challenges you to a game. Death knows that
you are an algorithms student, so instead of the traditional game of chess, Death presents you with a
complete binary tree with 4n leaves, each colored either black or white. There is a token at the root of the
tree. To play the game, you and Death will take turns moving the token from its current node to one of
its children. The game will end after 2n moves, when the token lands on a leaf. If the final leaf is black,
you die; if it’s white, you will live forever. You move first, so Death gets the last turn.

∨

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

∧ ∧

∨ ∨ ∨

∨

You can decide whether it’s worth playing or not as follows. Imagine that the nodes at even levels (where
it’s your turn) are or gates, the nodes at odd levels (where it’s Death’s turn) are and gates. Each gate
gets its input from its children and passes its output to its parent. White and black stand for True and
False. If the output at the top of the tree is True, then you can win and live forever! If the output at
the top of the tree is False, you should challenge Death to a game of Twister instead.

11.A. Describe and analyze a deterministic algorithm to determine whether or not you can win. [Hint:
This is easy!]

11.B. Unfortunately, Death won’t let you even look at every node in the tree. Describe a randomized
algorithm that determines whether you can win in Θ(3n) expected time. [Hint: Consider the case
n = 1.]

50.1.5. Homework 4

CS 373: Algorithms, Spring 2003
Homework 4 (due Thursday, March 20, 2003 at 23:59:59)

Required Problems

1 Some number theory.
(10 pts.)

1. (5 pts.) Prove that if gcd(m,n) = 1, then mφ(n) + nφ(m) ≡ 1(modmn).
2. (5 pts.) Give two distinct proofs that there are an infinite number of prime numbers.
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2 Even More Number Theory
(10 pts.)

Prove that |P(n)| = Ω(n2), where P(n) =
{
(a, b)

��� a, b ∈ ZZ ,0 < a < b ≤ n,gcd(a, b) = 1
}
.

3 Yet Another Number Theory Question
(20 pts.)

1. (2 pts.) Prove that the product of all primes p, for m < p ≤ 2m is at most
(2m
m

)
.

2. (4 pts.) Using (a), prove that the number of all primes between m and 2m is O(m/ln m).
3. (3 pts.) Using (b), prove that the number of primes smaller than n is O(n/ln n).
4. (2 pts.) Prove that if 2k divides

(2m
m

)
then 2k ≤ 2m.

5. (5 pts.) (Hard) Prove that for a prime p, if pk divides
(2m
m

)
then pk ≤ 2m.

6. (4 pts.) Using (e), prove that that the number of primes between 1 and n is Ω(n/ln n). (Hint: use
the fact that

(2m
m

)
≥ 22m/(2m).)

4 And now for something completely different.
(10 pts.)
Prove that the following problems are NPC or provide a polynomial time algorithm to solve them:

1. Given a directly graph G, and two vertices u, v ∈ V(G), find the maximum number of edge disjoint
paths between u and v.

2. Given a directly graph G, and two vertices u, v ∈ V(G), find the maximum number of vertex disjoint
paths between u and v (the paths are disjoint in their vertices, except of course, for the vertices u
and v).

5 Minimum Cut
(10 pts.)
Present a deterministic algorithm, such that given an undirected graph G, it computes the minimum cut
in G. How fast is your algorithm? How does your algorithm compares with the randomized algorithm
shown in class?

6 Independence Matrix
(10 pts.)
Consider a 0 − 1 matrix H with n1 rows and n2 columns. We refer to a row or a column of the matrix H
as a line. We say that a set of 1’s in the matrix H is independent if no two of them appear in the same
line. We also say that a set of lines in the matrix is a cover of H if they include (i.e., “cover”) all the 1’s
in the matrix. Using the max-flow min-cut theorem on an appropriately defined network, show that the
maximum number of independent 1’s equals the minimum number of lines in the cover.

Practice Problems

1 Scalar Flow Product (10 pts.)
Let f be a flow in a network, and let α be a real number. The scalar flow product, denoted by α f , is a
function from V × V to R defined by

(α f )(u, v) = α · f (u, v).

Prove that the flows in a network form a convex set. That is, show that if f1 and f2 are flows, then so is
α f1 + (1 − α) f2 for all α in the range 0 ≤ α ≤ 1.
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2 (Based on CLRS 26.1-9)
(10 pts.)
Professor Adam has two children who, unfortunately, dislike each other. The problem is so severe that
not only they refuse to walk to school together, but in fact each one refuses to walk on any block that the
other child has stepped on that day. The children have no problem with their paths crossing at a corner.
Fortunately both the professor’s house and the school are on corners, but beyond that he is not sure if it
is going to be possible to send both of his children to the same school. The professor has a map of his
town. Show how to formulate the problem of determining if both his children can go to the same school
as a maximum-flow problem.

3 (Based on CLRS 26.2-8 and 26.2-10)
(10 pts.)

1. (5 pts.) Show that a maximum flow in a network G = (V,E) can always be found by a sequence of
at most |E | augmenting paths. [Hint: Determine the paths after finding the maximum flow.]

2. (5 pts.) Suppose that a flow network G = (V,E) has symmetric edges, that is, (u, v) ∈ E if and
only (v,u) ∈ E. Show that the Edmonds-Karp algorithm terminates after at most |V | |E |/4 iterations.
[Hint: For any edge (u,v), consider how both δ(s,u) and δ(v, t) change between times at which (u,v)
is critical.]

4 Edge Connectivity
(10 pts.) (Based on CLRS 26.2-9)
The edge connectivity of an undirected graph is the minimum number k of edges that must be removed
to disconnect the graph. For example, the edge connectivity of a tree is 1, and the edge connectivity of
a cyclic chain of vertices is 2. Show how the edge connectivity of an undirected graph G = (V,E) can
be determined by running a maximum-flow algorithm on at most |V | flow networks, each having O(V)
vertices and O(E) edges.

5 Perfect Matching
(20 pts.) (Based on CLRS 26.3-4 and 26.3-5)

1. (10 pts.) A perfect matching is a matching in which every vertex is matched. Let G = (V,E) be an
undirected bipartite graph with vertex partition V = L ∪ R, where |L | = |R|. For any X ⊆ V , define
the neighborhood of X as

N(X) =
{
y ∈ V

��� (x, y) ∈ E for some x ∈ X
}
,

that is, the set of vertices adjacent to some member of X. Prove Hall’s theorem: there exists a perfect
matching in G if and only if |A| ≤ |N(A)| for every subset A ⊆ L.

2. (10 pts.) We say that a bipartite graph G = (V,E), where V = L ∪ R, is d-regular if every vertex
v ∈ V has degree exactly d. Every d-regular bipartite graph has |L | = |R|. Prove that every d-regular
bipartite graph has a matching of cardinality |L | by arguing that a minimum cut of the corresponding
flow network has capacity |L |.

6 Maximum Flow By Scaling
(20 pts.) (Based on CLRS 26-5)
Let G = (V,E) be a flow network with source s, sink t, and an integer capacity c(u, v) on each edge
(u, v) ∈ E. Let C = max(u,v)∈Ec(u, v).

1. (2 pts.) Argue that a minimum cut of G has capacity at most C |E |.
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2. (5 pts.) For a given number K, show that an augmenting path of capacity at least K can be found
in O(E) time, if such a path exists.
The following modification of Ford-Fulkerson-Method can be used to compute a maximum flow
in G.

Max-Flow-By-Scaling(G, s, t)
1 C ← max(u,v)∈Ec(u, v)
2 initialize flow f to 0
3 K ← 2 blgC c
4 while K ≥ 1 do {
5 while (there exists an augmenting path p of

capacity at least K) do {
6 augment flow f along p

}
7 K ← K/2

}

8 return f

3. (3 pts.) Argue that Max-Flow-By-Scaling returns a maximum flow.
4. (4 pts.) Show that the capacity of a minimum cut of the residual graph G f is at most 2K |E | each

time line 4 is executed.
5. (4 pts.) Argue that the inner while loop of lines 5-6 is executed O(E) times for each value of K.
6. (2 pts.) Conclude that Max-Flow-By-Scaling can be implemented so that it runs in O(E2 lg C)

time.

7 The Hopcroft-Karp Bipartite Matching Algorithm
(20 pts.) (Based on CLRS 26-7)
In this problem, we describe a faster algorithm, due to Hopcroft and Karp, for finding a maximum
matching in a bipartite graph. The algorithm runs in O(

√
VE) time. Given an undirected, bipartite graph

G = (V,E), where V = L ∪ R and all edges have exactly one endpoint in L, let M be a matching in G.
We say that a simple path P in G is an augmenting path with respect to M if it starts at an unmatched
vertex in L, ends at an unmatched vertex in R, and its edges belong alternatively to M and E −M. (This
definition of an augmenting path is related to, but different from, an augmenting path in a flow network.)
In this problem, we treat a path as a sequence of edges, rather than as a sequence of vertices. A shortest
augmenting path with respect to a matching M is an augmenting path with a minimum number of edges.
Given two sets A and B, the symmetric difference A⊕ B is defined as (A−B)∪ (B− A), that is, the elements
that are in exactly one of the two sets.

7.A. (4 pts.) Show that if M is a matching and P is an augmenting path with respect to M, then the
symmetric difference M⊕P is a matching and |M⊕P | = |M |+1. Show that if P1, P2, ..., Pk are vertex-
disjoint augmenting paths with respect to M, then the symmetric difference M ⊕ (P1 ∪ P2 ∪ ... ∪ Pk)

is a matching with cardinality |M | + k.
The general structure of our algorithm is the following:
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Hopcroft-Karp(G)
1 M ← ∅
2 repeat
3 let P← {P1,P2, ...,Pk} be a maximum set of

vertex-disjoint shortest augmenting paths
with respect to M

4 M ← M ⊕ (P1 ∪ P2 ∪ . . . ∪ Pk)

5 until P = ∅

6 return M

The remainder of this problem asks you to analyze the number of iterations in the algorithm (that
is, the number of iterations in the repeat loop) and to describe an implementation of line 3.

7.B. (4 pts.) Given two matchings M and M∗ in G, show that every vertex in the graph G′ = (V,M ⊕M∗)
has degree at most 2. Conclude that G′ is a disjoint union of simple paths or cycles. Argue that
edges in each such simple path or cycle belong alternatively to M or M∗. Prove that if |M | ≤ |M∗ |,
then M ⊕ M∗ contains at least |M∗ | − |M | vertex-disjoint augmenting paths with respect to M.
Let l be the length of a shortest augmenting path with respect to a matching M, and let P1, P2,
..., Pk be a maximum set of vertex-disjoint augmenting paths of length l with respect to M. Let
M ′ = M ⊕ (P1 ∪ P2 ∪ ... ∪ Pk), and suppose that P is a shortest augmenting path with respect to M ′.

7.C. (2 pts.) Show that if P is vertex-disjoint from P1, P2, ..., Pk , then P has more than l edges.
7.D. (2 pts.) Now suppose P is not vertex-disjoint from P1, P2, ..., Pk . Let A be the set of edges

(M ⊕ M ′) ⊕ P. Show that A = (P1 ∪ P2 ∪ ... ∪ Pk) ⊕ P and that |A| ≥ (k + 1)l. Conclude that P has
more than l edges.

7.E. (2 pts.) Prove that if a shortest augmenting path for M has length l, the size of the maximum
matching is at most |M | + |V |/l.

7.F. (2 pts.) Show that the number of repeat loop iterations in the algorithm is at most 2
√

V . [Hint:
By how much can M grow after iteration number

√
V?]

7.G. (4 pts.) Give an algorithm that runs in O(E) time to find a maximum set of vertex-disjoint shortest
augmenting paths P1, P2, ..., Pk for a given matching M. Conclude that the total running time of
Hopcroft-Karp is O(

√
VE).

50.1.6. Homework 5

CS 373: Algorithms, Spring 2003
Homework 5 (due Thursday, April 17, 2003 at 23:59:59)

Required Problems

1 Hashing to Victory
(20 pts.)
In this question we will investigate the construction of hash table for a set W , where W is static, provided
in advance, and we care only for search operations.
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1. (2 pts.) Let U = {1, . . . ,m}, and p = m + 1 is a prime.
Let W ⊆ U, such that n = |W |, and s an integer number larger than n. Let gk(x, s) = (k x mod p)
mod s.
Let β(k, j, s) =

���{x
��� x ∈ W,gk(x, s) = j

}���. Prove that

p−1∑
k=1

s∑
j=1

(
β(k, j, s)

2

)
<
(p − 1)n2

s
.

2. (2 pts.) Prove that there exists k ∈ U, such that
s∑
j=1

(
β(k, j, s)

2

)
<

n2

s
.

3. (2 pts.) Prove that
∑n

j=1 β(k, j,n) = |W | = n.
4. (3 pts.) Prove that there exists a k ∈ U such that

∑n
j=1(β(k, j,n))2 < 3n.

5. (3 pts.) Prove that there exists a k ′ ∈ U, such that the function h(x) = (k ′x mod p) mod n2 is
one-to-one when restricted to W .

6. (3 pts.) Conclude, that one can construct a hash-table for W , of O(n2), such that there are no
collisions, and a search operation can be performed in O(1) time (note that the time here is worst
case, also note that the construction time here is quite bad - ignore it).

7. (3 pts.) Using (d) and (f), conclude that one can build a two-level hash-table that uses O(n) space,
and perform a lookup operation in O(1) time (worst case).

2 Find kth smallest number.
(20 pts.)
This question asks you to to design and analyze a randomized incremental algorithm to select the kth
smallest element from a given set of n elements (from a universe with a linear order).
In an incremental algorithm, the input consists of a sequence of elements x1, x2, . . . , xn. After any prefix
x1, . . . , xi−1 has been considered, the algorithm has computed the kth smallest element in x1, . . . , xi−1 (which
is undefined if i ≤ k), or if appropriate, some other invariant from which the kth smallest element could
be determined. This invariant is updated as the next element xi is considered.
Any incremental algorithm can be randomized by first randomly permuting the input sequence, with each
permutation equally likely.

1. (5 pts.) Describe an incremental algorithm for computing the kth smallest element.
2. (5 pts.) How many comparisons does your algorithm perform in the worst case?
3. (10 pts.) What is the expected number (over all permutations) of comparisons performed by the

randomized version of your algorithm? (Hint: When considering xi, what is the probability that xi
is smaller than the kth smallest so far?) You should aim for a bound of at most n + O(k log(n/k)).
Revise (a) if necessary in order to achieve this.

3 Another Lower Bound
(20 pts.)
Let b1 ≤ b2 ≤ b3 ≤ . . . ≤ bk be k given sorted numbers, and let A be a set of n arbitrary numbers
A = {a1, . . . ,an}, such that b1 < ai < bk , for i = 1, . . . ,n
The rank v = r(ai) of ai is the index, such that bv < ai < bv+1.
Prove, that in the comparison model, any algorithm that outputs the ranks r(a1), . . . ,r(an) must take
Ω(n log k) running time in the worst case.
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4 Ackermann Function
(20 pts.)
The Ackermann’s function Ai(n) is defined as follows:

Ai(n) =


4 if n = 1
4n if i = 1

Ai−1(Ai(n − 1)) otherwise

Here we define A(x) = Ax(x). And we define α(n) as a pseudo-inverse function of A(x). That is, α(n) is the
least x such that n ≤ A(x).

1. (4 pts.) Give a precise description of what are the functions: A2(n), A3(n), and A4(n).
2. (4 pts.) What is the number A(4)?

3. (4 pts.) Prove that lim
n→∞

α(n)
log∗(n) = 0.

4. (4 pts.) We define

log∗∗ n = min

i ≥ 1

������� log∗ . . . log∗︸         ︷︷         ︸
i times

n ≤ 2


(i.e., how many times do you have to take log∗ of a number before you get a number smaller than

2). Prove that lim
n→∞

√
α(n)

log∗∗(n) = 0.

5. (4 pts.) Prove that log(α(n)) ≤ α(log∗∗ n) for n large enough.

5 Divide-and-Conquer Multiplication
(20 pts.)

1. (7 pts.) Show how to multiply two linear polynomials ax + b and cx + d using only three multipli-
cations. (Hint: One of the multiplications is (a + b) · (c + d).)

2. (7 pts.) Give two divide-and-conquer algorithms for multiplying two polynomials of degree-bound
n that run in time Θ(nlg 3). The first algorithm should divide the input polynomial coefficients into
a high half and a low half, and the second algorithm should divide them according to whether their
index is odd or even.

3. (6 pts.) Show that two n-bit integers can be multiplied in O(nlg 3) steps, where each step operates
on at most a constant number of 1-bit values.

Practice Problems

1 (10 pts.)

1. (1 pts.) With path compression and union by rank, during the lifetime of a Union-Find data-
structure, how many elements would have rank equal to blg n − 5c, where there are n elements stored
in the data-structure?

2. (1 pts.) Same question, for rank b(lg n)/2c.
3. (2 pts.) Prove that in a set of n elements, a sequence of n consecutive Find operations take O(n)

time in total.
4. (1 pts.) (Based on CLRS 21.3-2)

Write a nonrecursive version of Find with path compression.
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5. (3 pts.) Show that any sequence of m MakeSet, Find, and Union operations, where all the Union
operations appear before any of the Find operations, takes only O(m) time if both path compression
and union by rank are used.

6. (2 pts.) What happens in the same situation if only the path compression is used?

2 (10 pts.) Off-line Minimum
(Based on CLRS 21-1)
The off-line minimum problem asks us to maintain a dynamic set T of elements from the domain {1,2, . . . ,n}
under the operations Insert and Extract-Min. We are given a sequence S of n Insert and m Extract-
Min calls, where each key in {1,2, . . . ,n} is inserted exactly once. We wish to determine which key is
returned by each Extract-Min call. Specifically, we wish to fill in an array extracted[1 . . .m], where for
i = 1,2, . . . ,m, extracted[i] is the key returned by the ith Extract-Min call. The problem is “off-line”
in the sense that we are allowed to process the entire sequence S before determining any of the returned
keys.

1. (2 pts.)
In the following instance of the off-line minimum problem, each Insert is represented by a number
and each Extract-Min is represented by the letter E:

4,8,E,3,E,9,2,6,E,E,E,1,7,E,5.

Fill in the correct values in the extracted array.
2. (4 pts.)

To develop an algorithm for this problem, we break the sequence S into homogeneous subsequences.
That is, we represent S by
I1,E, I2,E, I3, . . . , Im,E, Im+1,

where each E represents a single Extract-Min call and each Ij represents a (possibly empty)
sequence of Insert calls. For each subsequence Ij , we initially place the keys inserted by these
operations into a set Kj , which is empty if Ij is empty. We then do the following.

Off-Line-Minimum(m,n)
1 for i ← 1 to n
2 do determine j such that i ∈ Kj

3 if j , m + 1
4 then extracted[ j] ← i
5 let l be the smallest value greater than j for which set Kl exists
6 Kl ← Kj ∪ Kl, destroying Kj

7 return extracted

Argue that the array extracted returned by Off-Line-Minimum is correct.
3. (4 pts.)

Describe how to implement Off-Line-Minimum efficiently with a disjoint-set data structure. Give
a tight bound on the worst-case running time of your implementation.

3 (10 pts.) Tarjan’s Off-Line Least-Common-Ancestors Algorithm
(Based on CLRS 21-3)
The least common ancestor of two nodes u and v in a rooted tree T is the node w that is an ancestor of
both u and v and that has the greatest depth in T . In the off-line least-common-ancestors problem, we
are given a rooted tree T and an arbitrary set P = {{u, v}} of unordered pairs of nodes in T , and we wish
to determine the least common ancestor of each pair in P.
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To solve the off-line least-common-ancestors problem, the following procedure performs a tree walk of T
with the initial call LCA(root[T]). Each node is assumed to be colored white prior to the walk.

LCA(u)
1 MakeSet(u)
2 ancestor[Find(u)] ← u
3 for each child v of u in T
4 do LCA(v)
5 Union(u, v)
6 ancestor[Find(u)] ← u
7 color[u] ← black
8 for each node v such that {u, v} ∈ P
9 do if color[v] = black
10 then print “The least common ancestor of” u “and” v “is” ancestor[Find(v)]

3.A. (2 pts.) Argue that line 10 is executed exactly once for each pair {u, v} ∈ P.
3.B. (2 pts.) Argue that at the time of the call LCA(u), the number of sets in the disjoint-set data

structure is equal to the depth of u in T .
3.C. (3 pts.) Prove that LCA correctly prints the least common ancestor of u and v for each pair

{u, v} ∈ P.
3.D. (3 pts.) Analyze the running time of LCA, assuming that we use the implementation of the disjoint-

set data structure with path compression and union by rank.

50.1.7. Homework 6

CS 373: Algorithms, Spring 2003
Homework 6

Problems

1 Given a convex polygon P, its balanced triangulation is created by recursively triangulating the convex
polygon P′ defined by its even vertices, and finally adding consecutive diagonals between even points. For
example:

Alternative interpretation of this construction, is that we create a sequence of polygons where P0 is the
highest level polygon (a quadrangle in the above example), and Pi is the refinement of Pi−1 till Pdlog ne = P.

1. Given a polygon P, show how to compute its balanced triangulation in linear time.
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2. Let T be the dual tree to the balanced triangulation. Show how to use T and the balanced triangu-
lation to answer a query to decide whether point q is inside P or outside it. The query time should
be O(log n), where n is the number of vertices of P. (Hint: use T to maintain the closest point in Pi

to q, and use this to decide in constant time what is the closest point in Pi+1 to q.)

2 Given a x-monotone polygonal chain C with n vertices, show how to preprocess it in linear time, such that
given a query point q, one can decide, in O(log n) time, whether q is below and above C, and what is the
segment of C that intersects the vertical line that passes through q. Show how to use this to decide, in
O(log n) whether a point p is inside a x-monotone polygon P with n vertices. Why would this method be
preferable to the balanced triangulation used in the previous question (when used on a convex polygon)?

3 Sweeping

3.A. Given two x-monotone polygons, show how to compute their intersection polygon (which might be
made out of several connected components) in O(n) time, where n is the total number of vertices of
P and X.

3.B. You are given a set H of n half-planes (a half plane is the region defined by a line - it is either all the
points above a given line, or below it). Show an algorithm to compute the convex polygon ∩h∈Hh in
O(n log n) time. (Hint: use (a).)

3.C. Given two simple polygons P and Q, show how to compute their intersection polygon. How fast is
your algorithm?
What the maximum number of connected components of the polygon P ∩ Q (provide a tight upper
and lower bounds)?

4 Convexity revisited.

4.A. Prove that for any set S of four points in the plane, there exists a partition of S into two subsets
S1,S2, such that CH(S1) ∩ CH(S2) , ∅.

4.B. Prove that any point x which is a convex combination of n points p1, . . . , pn in the plane, can be
defined as a convex combination of three points of p1, . . . , pn. (Hint: use (a) and induction on the
number of points.)

4.C. Prove that for any set S of d + 2 points in Rd, there exists a partition of S into two subsets S1,S2,
such that CH(S1) ∩ CH(S2) , ∅, S = S1 ∪ S2, and S1 ∩ S2 = ∅. (Hint: Use (a) and induction on the
dimension.)

5 Robot Navigation
Given a set S of m simple polygons in the plane (called obstacles), with total complexity n, and start
point s and end point t, find the shortest path between s and t (this is the path that a robot would take
to move from s to t).

5.A. For a point q ∈ R2, which is not contained in any of the obstacles, the visibility polygon of q, is the
set of all the points in the plane that are visible form q. Show how to compute this visibility polygon
in O(n log n) time.

5.B. Show a O(n3) time algorithm for this problem. (Hint: Consider the shortest path, and analyze its
structure. Build an appropriate graph, and do a Dijkstra in this graph.)).

5.C. Show a O(n2 log n) time algorithm for this problem.

6 You are given a set of n triangles in the plane, show an algorithm, as fast as possible, that decides whether
the square [0,1] × [0,1] is completely covered by the triangles.
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7 Furthest Neighbor
Let P = {p1, . . . , pn} be a set of n points in the plane.

7.A. A partition P = (S,T) of P is a decomposition of P into two sets S,T ⊆ P, such that P = S ∪ T , and
S ∩ T = ∅.
Describe a deterministic¬ algorithm to compute m = O(log n) partitions P1, . . . ,Pm of P, such that
for any pair of distinct points p,q ∈ P, there exists a partition Pi = (Si,Ti), where 1 ≤ i ≤ m, such
that p ∈ Si and q ∈ Ti or vice versa (i.e., p ∈ Ti and q ∈ Si). The running time of your algorithm
should be O(n log n).

7.B. Assume that you are given a black-box B, such that given a point a set of points Q in the plane,
one can compute in O(|Q | log |Q |) time, a data-structure X, such that given any query point w in the
plane, one can compute, in O(log |Q |) time, using the data-structure, the furthest point in Q from w

(i.e., this is the point in Q with largest distance from w). To make things interesting, assume that if
q ∈ Q, then the data-structure does not work.
Describe an algorithm that uses B, and such that computes, in O(n log2 n) time, for any point p ∈ P,
its furthest neighbor in P \ {p}.

8 Nearest Neighbor.
Let P be a set of n points in the plane. For a point p ∈ P, its nearest neighbor in P, is the point in P \ {p}
which has the smallest distance to p. Show how to compute for every point in P its nearest neighbor in
O(n log n) time.

¬There is a very nice and simple randomized algorithm for this problem, you can think about it if you are interested.
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50.2. Midterm 1

1 Consider the following two problems:
Problem Π1: Given a graph G, what is the size of the largest clique in G?
Problem Π2: Given a graph G, what is the size of the smallest vertex cover of G

Which of the following best describes the relationship between problems Π1 and Π2?

1. Π1 can be reduced to Π2 in polynomial time.
2. Π2 can be reduced to Π1 in polynomial time.
3. A and B.
4. none of the above.

2 In the 2CNF-SAT problem, you are given a formula which is a conjunction of clauses, where each clause is
a ∨ (i.e., or) of two literals, and you have to decide whether there is a satisfying assignment. For example,
F = (x1 ∨ x2) ∧ (x3 ∨ x4) is a valid instance of 2CNF-SAT. Then:

1. 2CNF-SAT is in P and in NP.
2. 2CNF-SAT is NP-Complete.
3. 2CNF-SAT is NP-Hard.
4. 2CNF-SAT can be solved in sub-linear time, using random assignment.
5. None of the above.

3 A person goes into a grocery store, and decides to buy items with total weight as large as possible,
restricted only by the current amount of money he has. (Assume that the person knows the weight of
every item in the grocery store.) What of the following statements is correct?

1. This problem is not actually hard, there is a polynomial time algorithm.
2. This problem is NP-hard, and it can not be approximated.
3. This problem is NP-hard, but it can be solved in polynomial time if he is allowed to buy fractions of

items.
4. None of the above.

4 A tournament is a directed graph with exactly one edge between every pair of vertices. (Think of the
nodes as players in a round-robin tournament, where each edge points from the winner to the loser.) A
Hamiltonian path is a sequence of directed edges, joined end to end, that visits every vertex exactly once.

1

2 3

4

56

A six-vertex tournament containing the Hamiltonian path 6→ 4→ 5→ 2→ 3→ 1.

Given a tournament G, determining if it has a Hamiltonian path, takes:
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1. O(n2) time.
2. O(n2 log n) time.
3. This problem is NP-Hard.
4. Constant time, because all tournaments have a Hamiltonian path.

5 Given a graph G with n vertices, deciding if G has a simple path of length at least n/2:

1. Can be done in Θ(n3) time.
2. Can be done in Θ(n3 log n) time.
3. Can be done in Θ(n2 log n) time.
4. Can be done in Θ(n4 log n) time.
5. None of the above.

6 Let G = (V,E) be a directed acyclic graph with n vertices and at most one edge between any two distinct
nodes. What is the largest |E | can be?

1. n(n − 1)(n − 2)/6.
2. n3/2.
3. 7n + 6.
4. n(n−1)

2 .
5. n!.

7 Given a tree T with n vertices, finding the largest independent set in T is:

1. NP-Hard.
2. Can be done in O(n) time.
3. Can be done in O(n2) time and there is no faster algorithm.
4. Can be done in O(n log n) time and there is no faster algorithm.

8 If f (n) = O(F(n)) and g(n) = O(G(n)) (assume that g(n),G(n) ≥ 1 for all n) then

1. f (n)
g(n) = O

(
F(n)
G(n)

)
.

2. f (n)
g(n) = o

(
F(n)
G(n)

)
.

3. f (n)
g(n) = Θ

(
F(n)
G(n)

)
.

4. f (n)
g(n) = Ω

(
F(n)
G(n)

)
.

5. None of the above.

9 Consider the following problem:

Largest Subset
Instance: A set P of n real numbers, and parameters k and l.
Question: Is there a subset of k numbers of P such that their sum exceeds l?

The Largest Subset problem is
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1. NP-Complete.
2. NP-Hard.
3. Unsolvable.
4. In P.
5. None of the above.

10 Consider the following problem:

Subgraph embedding
Instance: A graph G and a graph H both with at most n vertices.
Question: Is there a mapping f : V(G) → V(H), such that uv ∈ E(G) implies that f (u) f (v) ∈
E(H), and for any u, v ∈ V(G) such that u , v, we have f (u) , f (v).

The problem Subgraph embedding is

1. Can be solved in O(n2) time.
2. Can be solved in O(n2 log n) time.
3. Can be solved in O(n3 log n) time.
4. None of the above.

11 Given a graph G, with positive weights on the edges. Computing the shortest path between two vertices
u, v ∈ V(G), is

1. NP-Complete.
2. Can be done in polynomial time.
3. None of the above.

12 Depressed after seeing a play by Arthur Miller, the traveling salesman, decided that the next time he
plans his tour, he would allow himself to visit a town more than once, if it means he can drive less. Let
us call the decision version of this problem TSP REVISIT. The problem TSP REVISIT is

1. Can be solved in O(n6) time using dynamic programming.
2. NP-Complete.
3. Equivalent to computing MST of the weighted graph.
4. None of the above.

13 You are given a standard chessboard with a specific configuration of white and black pieces. You are
asked to decide whether if the white moves first, it wins the game. This can be determined by a program
in:

1. Constant time.
2. Linear time.
3. Quadratic time.
4. Cubic time.
5. none of the above.

14 The Knapsack problem, is the following:
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Knapsack
Instance: A set U of n elements, for each u ∈ U a size s(u) ∈ Z+ and a value v(u) ∈ Z+, and
B,V ∈ Z+. (Note, that all the numbers are positive integers.)
Question: Is there a subset U ′ ⊆ U such that

∑
u∈U′

s(u) ≤ B and
∑
u∈U′

v(u) ≥ V? .

1. The Knapsack problem can be solved in polynomial time.
2. The Knapsack problem can not be solved in polynomial time, unless P = NP. It remains NP-complete

even if B = V = O(n).
3. The Knapsack problem is NPC. However, it can be solved in polynomial time if B = V = O(n).
4. None of the above.

15 Given two sorted arrays A and B (containing all distinct values), given a number x, determining how
many elements of A[1..n] ∪ B[1..m] are smaller than x can be done in:

1. O(log (nm)) time.
2. Linear time (i.e., O(m + n)).
3. O(nm) time.
4. None of the above.

16 Consider the following closest-point heuristic for building an approximate traveling-salesman tour. Begin
with a trivial cycle consisting of a single arbitrary chosen vertex. At each step, identify the vertex u that
is not on the cycle but whose distance to any vertex on the cycle is minimum. Suppose that the vertex
on the cycle that is nearest u is vertex v. Extend the cycle to include u by inserting u just after v. Repeat
until all vertices are on the cycle.
This heuristic returns a path of length

1. at most O(log n) longer than optimal.
2. arbitrarily longer than the optimal TSP.
3. at most twice the optimal.
4. None of the above.

17 Given an instance of Max 5SAT (every clause has five literals), one can α-approximate it in polynomial
time. Where α is

1. O(n2).
2. 1/4.
3. 7/8.
4. 31/32.

18 Joe Smith was asked during a previous exam in 373 to prove that Min Edge Coloring is NP-Complete.

Min Edge Coloring
Instance: An undirected graph G = (V,E), and a parameter k.
Question: Can one find a coloring χ, of the edges of G using k colors, such that for any two
edges e, e′ that share an endpoint, we have χ(e) , χ(e′).

And here is the proof that Joe Smith provided:
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Proof: Clearly, the problem is in NP, as given a coloring, we can verify that it is valid by just scanning
the graph. As for the reduction, we will reduce it from Graph Coloring. Indeed, given an instance G, k
of the Min Edge Coloring problem, we construct a graph H = (E(G),W), where every edge of G is a vertex
in the new graph, and two vertices of H are connected iff the two corresponding edges in G share an
endpoint. Clearly, there is a valid coloring of the vertices of H using k colors, iff there is a valid coloring
of the edges of G using k colors. Thus, Min Edge Coloring is NP-Complete.

This proof is

1. Correct.
2. Incorrect because there was never a student name Joe Smith in cs373, he does not own the Brooklyn

bridge, and Min Edge Coloring is not NP-Complete.
3. Incorrect.
4. None of the above.

19 During your visit to Greece, the oracle of Delphi had given you a black-box that can output, in constant
time, given a circuit, the smallest circuit that is equivalent to it (i.e., circuit with minimum number of
gates). Using this black box, you can:

1. Solve 3SAT in polynomial time.
2. Solve all problems in NP in linear time.
3. Solve all problems in co-NP in linear time.
4. Solve the Halting problem in polynomial time (namely, given a program and an input, decide whether

the program stops on the given input).
5. None of the above.

20 What is the solution to the recurrence f (n) = f (bn/6c) + f (bn/3c) + f (bn/2c) + 5?

1. 42.
2. Θ(n2/log∗ n).
3. Θ(n).
4. Θ(nlog2 6).
5. Θ(

√
n).
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50.3. Midterm 2

1 Matchings
(25 pts.)
Let be a matching M in an undirected graph G, such that M is not a maximum matching. A fixup path
is a path v1, v2, . . . , vk in G, such that v1 and vk are unmatched by M (i.e., there is no edge in M adjacent
to v1 and vk), the edges v2v3, v4v5, v6v7, . . . , vk−2vk−1 are in M, and v1v2, v3v4, v5v6, . . . , vk−1vk are not in M.
For example, in the following graph:

v1

v2

v3

v4

v1v2v3v4 is a fixup path.

1.A. (10 pts.) Given a matching M, and a fixup path π for M, describe an algorithm that computes a
matching M ′ such that |M ′ | > |M |.

1.B. (15 pts.) Prove that for a non-maximum matching M in a graph G, there always exists a fixup path
for M.
(You can not assume that G is bipartite. However, partial credit would be given for a proof that
works only for the special case that G is bipartite.)

2 Sort those Numbers
(25 pts.)
You had decided to build a sorting network, and you bought enough gates from your supplier Cheap
Gates. Unfortunately, instead of the high quality comparators you expected, you got random comparators.
Formally, a random comparator, receives two inputs, and with probability half, do nothing (i.e., passes
the inputs directly to the outputs), and with probability half, it works correctly outputting the maximum
number on the max output, and the minimum on the min output.
Describe a construction of a sorting network, that uses only random comparators, and sort correctly the
n inputs, with probability ≥ 1 − 1/n. How many gates does your sorting network have? Provide a proof
that your sorting network works with this required confidence.

3 Almost Magic Square
(25 pts.)
You are asked to fill the entries of an n × n matrix A by integers between 0 and a bound k, so that the
sum of all entries in each row, and each column, comes to one of 2n numbers prespecified in advance. For
example, the following instance
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17 5 4
6 (? ? ?)
9 (? ? ?)
11 (? ? ?)

with k = 9 has a solution
17 5 4

6 (6 0 0)
9 (2 3 4)
11 (9 2 0)

Assume that the sum of the rows be specified in an array R[1..n], and the sum of the columns specified
in an array C[1..n].

3.A. (15 pts.) Formulate this problem as a network flow problem.
3.B. (10 pts.) Write an algorithm for this problem and analyze its running time.

4 Numbers.
(25 pts.)
Prove that if p is prime, then (p − 1)! ≡ −1 (mod p).
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50.4. Final

CS 373: Combinatorial Algorithms, Spring 2003
Final — 1:30-4:30 PM, Thursday, May 15, 2003

1 Sweeping
(20 pts.)

1.A. (10 pts.) Given two x-monotone polygons P and Q, show how to compute their intersection polygon
(which might be made out of several connected components) in O(n) time, where n is the total number
of vertices of P and Q. (300 words)

1.B. (10 pts.) You are given a set H = {h1, . . . , hn} of n half-planes (a half plane is the region defined by
a line - it is either all the points above a given line, or below it). Using (A), show an algorithm to
compute the convex polygon ∩ni=1hi in O(n log n) time.

2 Vertex Cover
(20 pts.)

VERTEX COVER
Instance: A graph G = (V,E) and a positive integer K ≤ |V |.
Question: Is there a vertex cover of size K or less for G, that is, a subset V ′ ⊆ V such that
|V ′ | ≤ K and for each edge {u, v} ∈ E, at least one of u and v belongs to V ′?

2.A. (9 pts.) Prove that VERTEX COVER is NP-Complete.
2.B. (6 pts.) Show a polynomial approximation algorithm to the Vertex-Cover problem which is a

factor 2 approximation of the optimal solution. Namely, your algorithm should output a set X ⊆ V ,
such that X is a vertex cover, and |C | ≤ 2Kopt , where Kopt is the cardinality of the smallest vertex
cover of G.

2.C. (5 pts.) Prove that your approximation algorithm from (B) indeed provides a factor 2 approximation.

3 Majority Tree
(20 pts.)
Consider a uniform rooted tree of height h (every leaf is at distance h from the root). The root, as well
as any internal node, has 3 children. Each leaf has a boolean value associated with it. Each internal node
returns the value returned by the majority of its children. The evaluation problem consists of determining
the value of the root; at each step, an algorithm can choose one leaf whose value it wishes to read.

3.A. (5 pts.) Describe a deterministic algorithm that runs in O(n) time, that computes the value of the
tree, where n = 3h.

3.B. (5 pts.) Describe (i.e., provide pseudo-code) a randomized algorithm for this problem, which is
faster than the deterministic algorithm.

Your solution for this subquestion should not exceed 300 words. One line of text is about ten words. Note that the limit is
quite conservative. Much shorter answers (that would get full credit) are possible and would cause us infinite happiness.
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3.C. (10 pts.) Prove that the expected number of leaves read by your randomized algorithm on any
instance is at most O(nc) (modify your randomized algorithm to achieve this if necessary), where c
is a constant smaller than 1. (Of course, no credit would be given to an algorithm with expected
linear running time.)

4 Union Find
(20 pts.)
In the following, we consider a union-find data-structure constructed for n elements.

4.A. (5 pts.) For an element x in the union-find data-structure, describe how rank(x) is being computed.
4.B. (5 pts.) Prove that during the execution of union-find there are at most n/2k elements that are

assigned rank k.
4.C. (5 pts.) Prove that in a set of n elements, a sequence of n consecutive Find operations take O(n)

time in total.
4.D. (5 pts.) Prove that in the worst case, the time to perform a single find operation is O(log n).

5 Add Them Up
(20 pts.)
Consider two sets A = {a1, . . . ,ak} and B = {b1, . . . , bm}, each having at most n integers in the range from
0 to 10n. We wish to compute the Cartesian sum of A and B, defined by

C =
{
x + y

��� x ∈ A and y ∈ B
}
.

Note that the integers in C are in the range from 0 to 20n. We want to find the elements of C and the
number of times each element of C is realized as a sum of elements in A and B.

5.A. (10 pts.) Show how to reduce this problem to the problem of polynomial multiplication.
5.B. (10 pts.) Present an algorithm that solves this problem in O(n log n) time. (Partial credit would be

given for a subquadratic algorithm for this problem. Slower algorithms would not get any points.)

382



Chapter 51

Fall 2003

Chapter 52

Spring 2005

Chapter 53

Spring 2006

Chapter 54

Fall 2007

Chapter 55

Fall 2009

Chapter 56

Spring 2011

Chapter 57

Fall 2011

Chapter 58

Fall 2012

Chapter 59

Fall 2013

Chapter 60

Spring 2013: CS 473: Fundamental algo-
rithms

60.1. Homeworks

60.1.1. Homework 0

383



CS 473: Fundamental Algorithms, Spring 2013
HW 0 (due Tuesday, at noon, January 22, 2018)
Version: 1.12.

Required problems

1 (50 pts.) The multi-trillion dollar game.

You are given k piles having in total n identical coins (each coin is a trillion dollar coin, of course, see
picture above). In every step of the game, you take a coin from a pile P, and you can put it in any pile
Q, if Q has at least 2 less coins than P. In particular, if P has two coins, you are allowed to take one of
the coins of P and create a new pile. If a pile has only a single coin, you are allowed to take the coin and
remove it from the game¬. The game is over when there are no more coins left. Note, that you can start
a new pile by taking a coin from any pile that has at least 2 coins. As an example, consider the following
sequence of moves in a game:

{4,2,1} =⇒ {4,1,1,1} =⇒ {3,2,1,1} =⇒ {2,2,2,1} =⇒ {2,2,1,1,1}
=⇒ {2,1,1,1,1,1} =⇒ {2,1,1,1,1} =⇒ {2,1,1,1} =⇒ {2,1,1}
=⇒ {2,1} =⇒ {2} =⇒ {1,1} =⇒ {1} =⇒ {} .

1.A. (25 pts.) Prove, formally, that this game always terminates after a finite number of steps.
1.B. (25 pts.) Unfortunately, the world economy is suffering from hyper-inflation. A trillion dollar bucks

do not go as far as they used to go. To keep you interested in the game, the rules have changed –
every time you remove a coin from a pile, you are required to insert two coins into two different piles
(again, these new piles need to have 2 less coins than the original pile before the move) [you get the
extra coin for such a move from the IMF]. Again, if a pile has a single coin, you can take the coin.
Prove, formally, that this game always terminates after a finite number of steps. A valid game in
this case might look like:

{4,2,1} =⇒ {3,3,2} =⇒ {3,2,2,1,1} =⇒ {3,2,2,1} =⇒ {3,2,2}
=⇒ {3,2,1,1,1} =⇒ {2,2,2,2,1} =⇒ {2,2,2,2} =⇒ {2,2,2,1,1,1}
=⇒ {2,2,2,1,1} =⇒ {2,2,2,1} =⇒ {2,2,2} =⇒ {2,2,1,1,1}
=⇒ {2,2,1,1} =⇒ {2,2,1} =⇒ {2,2} =⇒ {2,1,1,1}
=⇒ {1,1,1,1,1,1} =⇒ {1,1,1,1,1} =⇒ {1,1,1,1} =⇒ {1,1,1}
=⇒ {1,1} =⇒ {1} =⇒ {} .

2 (50 pts.) The baobab tree.
¬And then you can buy whatever banana republic you want with it.
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(A) Good tree. (B) A corrupted tree.

Figure 60.1: A good & bad trees. For clarity, the figure does show the parent pointers that each node has
.

You are given a pointer to the root of a binary tree. The tree is stored in a read only memory, and you can
not modify it in any way. Now, normally, each node in the tree has a pointer to its left child, right child,
and its parent (these pointers are NULL if they have nothing to point to). Unfortunately, your tree might
have been corrupted by a bug in somebody else code, so that some of the pointers, now either point to
some other node in the tree or contain NULL, or vice versa (i.e., potentially any pointer in the tree [or
potentially all of them] might be corrupted [including parent, left and right pointers]). See Figure 60.1.

Describe an algorithm® that determines whether the tree is corrupted or not. Your algorithm must not
modify the tree. For full credit, your algorithm should run in O(n) time, where n is the number of nodes
in the tree, and use O(1) extra space (not counting the tree itself).

Observe that a regular recursive algorithm uses a stack, and the space it uses for the stack might be
unbounded if the depth of the recursion is not bounded by a constant. Similarly, using arrays or stacks
of unbounded size violates the requirement that the space used is O(1).

60.1.2. Homework 1

CS 473: Fundamental Algorithms, Spring 2013
HW 1 (due Monday, at noon, January 28, 2018)
Version: 1.01.

1 (30 pts.) The closet mayhem problem.
A new broom closet was built for the Magical Science department of the Unseen University. The depart-
ment has n students, and every student has a broom. The closet has m ≥ n slots where one can place
a broom. The ith broom bi, can be placed only into two possible slots, denoted by xi and x ′i , where
xi, x ′i ∈ {1, . . . ,m}, for i = 1, . . . ,n. Given these locations, design an algorithm that decides in polynomial
time if there is a legal way to place all of them in the closet, such that no two brooms share a slot. To
this end, answer the following.

After all, your code is always completely 100% bug-free. Isn’t that right, Mr. Gates?
®Since you’ve read the Homework Instructions, so you know what the phrase ‘describe an algorithm’ means. Right?
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1.A. (5 pts.) Consider the graph G with 2n nodes, where for every broom there are two nodes [i : xi] or
[i : x ′i ]. For α ∈ {xi, x

′
i } and β ∈ {xj, x ′j}, place an edge from [i : α] to [ j : β], if placing the ith broom

at α implies that the jth broom must be placed in the slot β because the other placement of the jth
broom is α. How many edges can this graph has in the worst case? What is the running time of
your algorithm to compute this graph?

1.B. (5 pts.) If there is a path in G from [i : α] to [ j : β], then we say that bi = α forces bj = β. Prove
that if bi = xi forces bj = xj then the “reverse” must hold; that is, bj = x ′j forces bi = x ′i .

1.C. (5 pts.) Prove that if [i : xi] and [i : x ′i ] are in the same strong connected component of G, then
there is no legal way to place the brooms in the closet.

1.D. (5 pts.) Assume that there is a legal solution, and consider a strong connected component X of G
involving brooms, say, b1, . . . , bt in G; that is, X is a set of vertices of the form [1 : x1], . . . , [t : xt ].
Then, prove that [1 : x ′1], . . . , [t : x ′t ] form their own connected component in G. Let this component
be the mirror of X.

1.E. (5 pts.) Prove that if X is a strong connected component of G that is a sink in the meta graph
GSCC, then the mirror of X is a source in the meta graph GSCC.

1.F. (5 pts.) Consider the algorithm that takes the sink X of the meta-graph GSCC, use the associated
slots as specified by the nodes in X, remove the vertices of X from G and the mirror of X from G, and
repeating this process on the remaining graph. Prove that this algorithm generates a legal placement
of the brooms in the closet (or otherwise outputs that no such placement exists). Also, describe how
to implement this algorithm efficiently.
What is the running time of your algorithm in the worst case as a function of n and m.

BTW, for this specific problem, there is a significantly simpler solution. However, the above solution is
more general and can be used to solve other problems.

2 (30 pts.) Heavy time.
Consider a DAG G with n vertices and m edges.

2.A. (5 pts.) Assume that s is a sink in G. Describe how to compute in linear time a set of new edges
such that s is the only sink in the resulting graph G (G has to be a DAG). How many edges does your
algorithm add (the fewer, the better)?

2.B. (10 pts.) Assume G has a sink vertex s. Some of the vertices of G are marked as being significant.
Show an algorithm that in linear time computes all the vertices that can reach s via a path that goes
through at least t significant vertices, where t is a prespecified parameter. (Hint: Solve the problem
first for t = 1 and then generalize.)

2.C. (10 pts.) Assume the edges of G have weights assigned to them. Show an algorithm, as fast as
possible, that computes for all the vertices v in G the weight of the heaviest path from v to s.

2.D. (5 pts.) Using the above, describe how to compute, in linear time, a path that visits all the vertices
of G if such a path exists.

3 (40 pts.) Wishful graph.
Let G = (V,E) be a directed graph. Define a relation R on the nodes V as follows: uRv iff u can reach v

or v can reach u.

3.A. (10 pts.) Is R an equivalence relation? If yes, give a proof, otherwise give an example to show it is
false.

3.B. (30 pts.) Call G uselessly-connected if for every pair of nodes u, v ∈ V , we have that there is either
a path from u to v in G, or a path from v to u in G. Give a linear time algorithm to determine if G
is uselessly-connected, here linear time is O(m + n), where m = |E | and n = |V |.
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60.1.3. Homework 2

HW 2 (due Monday, at noon, February 4, 2018)
CS 473: Fundamental Algorithms, Spring 2013

1 (30 pts.) Climb On.
Kris is a professional rock climber who is competing in the U.S. climbing nationals. The competition
requires him to complete the following task: He is given a set of n holds that he might use to create a
route while climbing, and a list of m pairs (xi, x ′i ) of holds indicating that it is possible to move from xi
to x ′i (but it might not be possible to move in the other direction). Kris needs to figure out his climbing
sequence so that he uses as many holds as possible, since using each hold earns him points. The rules of
the competition are that he has to figure out the start and end of his climbing route, he can only move
between pre-specified pairs of holds and he is allowed to use each hold as many times as he needs, but
reusing holds doesn’t earn him any more points (and makes his arms more tired).

1.A. (15 pts.) Define the natural graph representing the input. Describe an algorithm to solve the
problem if the graph is a DAG. How fast is your algorithm? (The faster, the better.)

1.B. (15 pts.) Describe an algorithm to solve this problem for a general directed graph. How fast is your
algorithm? (The faster, the better.)
Note, that your algorithm should output the number of holds by the optimal solution. What is the
running time of your algorithm for this?
You also need a way to output the solution itself. Observe that finding the shortest solution in the
number of edges is NP-Hard. As such, it is enough if your algorithm output any solution, that has
polynomial length in the graph size. How fast is your algorithm in the worst case for outputting
this path (which is formally a walk since it potentially visits vertices more than once)? (We are not
expecting a fast algorithm for outputting the path itself - any solution that works in polynomial time
would be acceptable. In particular, a short intuitive explanation for your algorithm would be enough
for the part outputting the path.)

2 (30 pts.) Climb Off.
Many years later, in a land far far away, Kris retired from competitive climbing (after he won all the
U.S. national competitions for 10 years in a row), he became a route setter for competitions. However, as
the years passed, the rules changed. Climbers now, along with the set of n holds and valid moves (xi, x ′i )
between them (as before), are also given a start hold s and a finish hold t. To get full points, they are
required to climb the route using the shortest path from s to t, where the distance between two holds
is specified by the route setter. Suppose the directed graph that corresponds to a route is G = (V,E)
where the non-negative number `(e) is the length of e ∈ E. The way Kris chooses to set competition
routes is by revisiting the ones he competed on in the past (and setting s and t to be the start and end
holds he had used). For one of the routes, he noticed that the existing shortest path distance between s
and t in G is too tiring, and he proposed to add exactly one move (one edge to the graph) to improve
the situation. The candidate edges from which he had to choose is given by E ′ = {e1, e2, . . . , ek} and you
can assume that E ∩ E ′ = ∅. The length of the ei is αi ≥ 0. Your goal is to help out Kris (he is too
old now for these computations, after all) and figure out which of these k edges will result in the most
reduction in the shortest path distance from s to t. Describe an algorithm for this problem that runs in
time O(m + n log n + k), where m = |E | and n = |V |.
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(Note that one can easily solve this problem, in O(k(m + n log n)) time, by running Dijkstra’s algorithm k
times, one for each Gi where Gi is the graph obtained by adding ei to G.)

3 (40 pts.) Only two negative length edges.
You are given a directed graph G = (V,E) where each edge e has a length/cost ce and you want to find
shortest path distances from a given node s to all the nodes in V . Suppose there are at most two edges
f1 = (u, v) and f2 = (w, z) that have negative length and the rest have non-negative lengths. The Bellman-
Ford algorithm for shortest paths with negative length edges takes O(nm) time where n = |V | and m = |E |.
Show that you can take advantage of the fact that there are only at most two negative length edges to
find shortest path distances from s in O(n log n+m) time — effectively this is the running time for running
Dijkstra’s algorithm. Your algorithm should output the following: either that the graph has a negative
length cycle reachable from s, or the shortest path distances from s to all the nodes v ∈ V .
Hint: Solve first the case that you have only a single negative edge.

(For fun and for no credit [and definitely not for the exam], think about how to solve this algorithm for
the case when there are k negative edges. You want an algorithm that is faster than Bellman-Ford if k is
sufficiently small.)

60.1.4. Homework 3

HW 3 (due Monday, at noon, February 11, 2018)
CS 473: Fundamental Algorithms, Spring 2013

1 (50 pts.) The vampire strike back.
Several years back vampires took over Champaign, IL (this story did not get sufficient coverage in the
lamestream media). It turns out that there are several kinds of vampires. The only way to decide if two
vampires V1 and V2 are of the same kind, is to ask them to bite each other (biteEachOther(V1,V2)) – if
they both get sick they are of different kinds, otherwise, they are of the same kind. This check takes
constant time. Specifically, biteEachOther(V1,V2) returns true if V1 and V2 are of the same kind, and false
otherwise.
As is usual in such cases, there is one kind that is dominant and form the majority of the Vampires.
Given the n vampires V1, . . . ,Vn living in Champaign, describe an algorithm that uses the biteEachOther
operation and discovers all the vampires that belongs to the majority type. Formally, n ≥ 4, and there are
at least 3 different kinds of vampires, and you have to discover all the vampires that belong to the kind
that has at least n/2 members. You have to describe a deterministic algorithm that solves this problem
in O(n log n) time (a faster algorithm is possible, but it is hard). An algorithm that runs in O(n2) time
(or slower) would get at most 25% of the points, but you might want to first verify you know how to do
it with this running time bound.

2 (50 pts.) Liberty towers.
A German mathematician developed a new variant of the Towers of Hanoi game, known in the US
literature as the “Liberty Towers” game¬. Here, there are n disks placed on the first peg, and there are
k ≥ 3 pegs, numbered from 1 to k. You are allowed to move disks only on adjacent pegs (i.e., for peg i
to peg i + 1, or vice versa). Naturally, you are not allowed to put a bigger disk on a smaller disk. Your
mission is to move all the disks from the first peg to the last peg.

¬From Wikipedia: “During World War I, due to concerns the American public would reject a product with a German name,
American sauerkraut makers relabeled their product as "Liberty cabbage" for the duration of the war.”
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2.A. (15 pts.) Describe a recursive algorithm for the case k = 3. How many moves does your algorithm
do?

2.B. (15 pts.) Describe a recursive algorithm for the case k = n+1. How many moves does your algorithm
do? (The fewer, the better, naturally. For partial credit, the number of moves has to be at least
polynomial in n.)

2.C. (20 pts.) Describe a recursive algorithm for the general case. How many moves does your algorithm
do? (The fewer, the better, naturally.) In particular, how many moves does your algorithm do for
n = k2? A good solution should yield a solution that is as good as your solution for the (A) and (B)
parts.

This question is somewhat more open ended – we have no specific solution at mind – do your best –
but don’t spend the rest of your life on this problem.

60.1.5. Homework 4

HW 4 (due Monday, at noon, February 25, 2018)
CS 473: Fundamental Algorithms, Spring 2013

1 (30 pts.) Goodbye, and thanks for all the negative cycles.
You are given a directed graph G with (possibly negative) weights on the edges, and a source vertex s.

1.A. (20 pts.) Show how to modify Bellman-Ford so that it outputs a negative cycle it had found in the
graph reachable from the source s. Prove that your algorithm indeed outputs a negative cycle in
the graph.

1.B. (10 pts.) Describe an algorithm that computes for all the vertices in the given graph their distance
from s.
Notice, that your algorithm needs to correctly handle vertices in G whose distance from s is −∞
(there is a walk from s to such a vertex that includes a negative cycle).
For full credit, the running time of your algorithm must be O(mn). (You do not have to use (A) to
do this part.)

2 (30 pts.) Longest common palindrome.
You are given two strings S and T of length n. Describe an algorithm, as fast as possible, that output the
longest palindrome that appears, as a substring (a substring here might not necessarily a contiguous in
the original string), in both S and T . For example, for

S = aobracadabora T = ahomalo graphica,

the longest common palindrome, seems to be “aoaoa”.

3 (40 pts.) Recovering a message.
You are given a binary string S of length n that was transmitted using a new transmitted. Unfortunately,
there is noise in the received string - new fake bits were added to it. Because of the way the message was
encoded, you know that certain strings s1, . . . , st can not appear consecutively in the original string.
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Compute the longest substring (not necessarily consecutive) in S that does not contain any of the forbidden
strings (consecutively). Formally, each of the forbidden strings can not appear as (consecutive) substrings
of the output string. For example, consider the input string 11000011100000111000000111, and the
forbidden substrings s1 = 00 and s2 = 11. Clearly, the longest legal output string here is 1010101.
(Hint: You might want to use material you learned in CS 373 in solving this question.)

3.A. (20 pts.) (This part is significantly harder than the other part – you might want to solve the other
part first.) Describe an algorithm for the case that t is small (i.e., think about t as being a constant
[hint: Solve the case t = 1 and t = 2 first]), but the strings s1, . . . , st might be arbitrarily long. How
fast is your algorithm? (Faster is better, naturally.)
For full credit for this part, it is enough if you solve the problem for t = 1 (the problem
turned out to be harder than expected).

3.B. (20 pts.) Describe an algorithm for the case that t might be large, but the strings s1, . . . , st are of
length at most `, and ` is relatively small (i.e., think about ` as being, say, 5). How fast is your
algorithm? (Faster is better, naturally.)

60.1.6. Homework 5

HW 5 (due Monday, at noon, March 4, 2018)
CS 473: Fundamental Algorithms, Spring 2013

1 (40 pts.) Simultaneous Climbs.
One day, Kris (whom you all know and love from past climbing competitions) got tired of climbing in

a gym and decided to take a very large group of climber friends (after, all he is a popular guy) outside to
climb. The climbing area where they went, had a huge wide boulder, not very tall, with various marked
hand and foot holds. Kris took a look and quickly figured out an "allowed" set of moves that his group
of friends would do so that they get from one hold to another. He also figured out the difficulty of each
individual move and assigned a grade (weight) to it. The higher the weight, the harder the move. Let
G = (V,E) be the (undirected) graph with a vertex for each hold and an edge between two holds (u, v) if v
can be reached from u (and vice versa) by one of the moves that Kris decided. For an edge (u, v) ∈ E, we
have a weight w(uv) associated with (u, v) which represents the difficulty that he assigned to that particular
move (it is always positive, negative weights would mean that climbers can defy gravity).

A k-climb is a sequence where a climber performs k moves in sequence. In graph G it is represented
by a simple path with exactly k edges in it. Two k-climbs are disjoint if they do not share any vertex. A
collection M of k-climbs is a k-climb packing if all pairs of climbs of M are disjoint (for k = 1 the set M
is a matching in the graph). The total weight of a k-climb packing is the total weight of the edges used
by the climbers.

Kris and his friends decided to play a game (they are all very good climbers), where as many climbers
as possible are simultaneously on the wall and each climber needs to perform a set of k moves in sequence.
In other words, they are interested in the problem of computing the maximum weight k-climb packing in
G. In general, this problem seems hard.
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Describe an efficient algorithm (i.e., provide pseudo-code, etc), as fast as possible, for computing the
maximum weight k-climb packing when G is a rooted tree (fortunately for the tree case this is much
easier) or a forest (collection of rooted trees).

Your algorithm should be recursive and use memoization to achieve efficiency. (You can not assume
G is a binary tree - a node might have arbitrary number of children.) What is the running time of your
algorithm as function of n = |V(G)| and k?

For an example, the figure shows a tree with a possible 3-climb packing.

2 (40 pts.) Help Fellow Climber Out and ARC Scheduling.

2.A. (20 pts.) Since Kris is a professional climber, the moves he had in mind for his friends to climb,
unfortunately, did not result to the graph G from the previous question being a tree (or a collection
of trees). In order for his friends to have fun on the boulder, you need to help Kris (who hasn’t
brushed up his algorithms in a long time) reduce his set of moves (edges in G)so that G ends up
being a tree or a forest but also that the total difficulty of moves he ignores is as small as possible
(he doesn’t want to be too easy on his friends). Formally, for the graph G = (V,E) that appears in
the previous question, describe an algorithm that removes the smallest weight subset of edges such
that the remaining graph is a tree or a forest.

2.B. (20 pts.) Consider a variant of interval scheduling except now the intervals are arcs on a circle. The
goal is to find the maximum number of arcs that do not overlap. More formally, let C be the circle
on the plane centered at the origin with unit radius. Let A1, . . . , An be a collection of arcs on the
circle where an arc Ai is specified by two angles αi ∈ [0,2π] and βi ∈ [0,2π]: the arc starts at the
point on the circle C with angle αi and goes counter-clockwise till the point on C at angle βi (the
end points are part of the arc). Two arcs overlap if they share a point on the circle. Describe an
algorithm to find the maximum number of non-overlapping arcs in the given set of arcs.

3 (20 pts.) Process these words.
In a word processor the goal of “pretty-printing” is to take text with a ragged right margin, like this

I guess it takes two
to progress
from an apprentice to a
legitimate surfer. Two digits
in front of the
size in feet of the
wave one needs to take, two double overhead waves that holds
one under after
the wipeout, and two equally sized pieces that
one’s previously intact board comes up
on the surface as.

and turn it into text whose right margin is as “even” as possible, like this
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I guess it takes two to progress
from an apprentice to a legitimate
surfer. Two digits in front of
the size in feet of the wave one
needs to take, two double overhead
waves that holds one under after
the wipeout, and two equally sized
pieces that one’s previously intact
board comes up on the surface as.

To make this precise enough for us to start thinking about how to write a pretty-printer for text, we
need to figure out what it means for the right margins to be “even”. So suppose our text consists of a
sequence of words, W = {w1,w2, . . . ,wn}, where wi consists of ci characters. We have a maximum line
length of L. We will assume we have a fixed-width font and ignore issues of punctuation or hyphenation.

A formatting of W consists of an ordered partition of the words in W into lines. In the words assigned
to a single line, there should be a space after each word except the last; and so if wj,wj+1, . . . ,wk are
assigned to one line, then we should have[

k−1∑
i=j

(ci + 1)
]
+ ck ≤ L.

We will call an assignment of words to a line valid if it satisfies this inequality. The difference between
the left-hand side and the right-hand side will be called the slack of the line-that is, the number of spaces
left at the right margin.

Given a partition of a set of words W , the penalty of the formatting is the sum of the squares of the
slacks of all lines (including the last line). Give an efficient algorithm to find a partition of a set of words
W into valid lines, so that the penalty of the formatting becomes minimized.

60.1.7. Homework 6

HW 6 (due Monday, at noon, March 11, 2018)
CS 473: Fundamental Algorithms, Spring 2013

1 (30 pts.) The climbing vampires of Champaign.
Every year the vampires of Champaign elect their leader using a somewhat bizarre process. They all

go and travel to Peru and try to climb Siula Grande¬. The rule of the game is that they all start from
the base camp and climb for 5 hours, and then they stop (it is a competition, so each vampire probably
reached a different location in the mountain). After that, the base station start calling the vampires one
after the other, and ask them for their location, and more significantly how high are they in the mountain
(the vampires have each a unique ID between 1 and n which they can use to call them). The vampire
that is highest on the mountain is the new leader.

To avoid a vacuum in leadership, the leader is being updated as the results come in. Specifically, if
after contacting the first i vampires the last vampire contacted is the highest, then the base station sends
n messages to all the vampires telling them that this vampire is the new leader, where n is the number of
vampires participating.

¬See http://en.wikipedia.org/wiki/Touching_the_Void_%28film%29.
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1.A. (10 pts.) Given that the given vampires are v1, . . . , vn, describe a strategy that minimizes the overall
number of messages sent. How many messages does you scheme sends in the worst case? If you
decide on a randomized strategy, how many messages does your scheme sends in expectation? The
smaller the number of messages, the better. Prove your answer.

1.B. (10 pts.) How many times does the leader changes in the worst case (and also in expectation if your
scheme is randomized) under your scheme (the fewer the better). Prove your answer.

1.C. (10 pts.) A new scheme was suggested that minimizes the number of messages sent: Whenever a
new leader is discovered, you announce it only to the vampires already contacted. Describe a scheme
that orders the vampires, such that the number of messages sent is minimized. What is the number
of messages sent by your scheme (either in the worst case, and in expectation if your scheme is
randomized). The fewer the better.

For this question, if you have two bounds x and y, then if x < y then x is preferable to y, even if x holds
only in expectation, and y is a worst case bound.

2 (40 pts.) Collapse and shrink.

2.A. (5 pts.) Consider the procedure that receives as input an undirected weighted graph G with n
vertices and m edges, and weight x, and outputs the graph G<x that results from removing all the
edges in G that have weight larger than (or equal to) x. Describe (shortly – no need for pseudo code)
an algorithm for computing G<x. How fast is your algorithm?
The graph G<x might not be connected – how would you compute its connected components?

2.B. (5 pts.) Consider the procedure that receives as input an undirected weighted graph G, and a
partition V of the vertices of G into k disjoint sets V1, . . . ,Vk . The meta graph G(V) of G induces
by V is a graph having k vertices, v1, . . . , vk , where vivj has an edge if and only if, there is an edge
between some vertex of Vi and some vertex of Vj . The weight of such an edge vivj is the minimum
weight of any edge between vertices in Vi and vertices in Vj .
Describe an algorithm, as fast as possible, for computing the meta-graph G(V). You are not allowed
to use hashing for this question, but you can use that RadixSort works in linear time (see wikipedia
if you do not know RadixSort). How fast is your algorithm?

2.C. (10 pts.) Consider the randomized algorithm that starts with a graph G with m edges and n vertices.
Initially it sets G0 = G. In the ith iteration, it checks if Gi−1 is a single edge. If so, it stops and outputs
the weight of this edge. Otherwise, it randomly choose an edge ei ∈ E(Gi−1). It then computes the
graph Hi = (Gi−1)<w(ei ), as described above.
• If the graph Hi is connected then it sets Gi = Hi and continues to the next iteration.
• Otherwise, Hi is not connected, then it computes the connected components of Hi, and their

partition Vi of the vertices of Gi−1 (the vertices of each connected component are a set in this
partition). Next, it sets Gi to be the meta-graph Gi−1(Vi).

Let mi be the number of edges of the graph Gi. Prove that if you know the value of mi−1, then
E[mi] ≤ (7/8)mi−1 (a better constant is probably true). Conclude that E[mi] ≤ (7/8)im.

2.D. (15 pts.) What is the expected running time of the algorithm describe above? Prove your answer.
(The better your bound is, the better it is.)

2.E. (5 pts.) What does the above algorithm computes, as far as the original graph G is concerned?

3 (30 pts.) Selection revisited.
You are given two arrays of numbers X[1 . . . n] and Y [1 . . .m], where n is smaller than m.

3.A. (20 pts.) Given a number k, and assuming both X and Y are sorted (say in increasing order),
describe an algorithm, as fast as possible, for finding the k smallest number in the set X ∪Y (assume
all the numbers in X and Y are distinct).
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3.B. (10 pts.) Solve the same problem for the case that X is not sorted, but Y is sorted.

60.1.8. Homework 7

HW 7 (due Wednesday, at noon, March 27, 2018)
CS 473: Fundamental Algorithms, Spring 2013

1 (40 pts.) Surf’s up.
The Illinois (Vampire) Surfing Association decided to send a few teams to the surfing competition that
happens every year in Kauai. It is decided that each team of surfers will satisfy the following: for every
surfer in the Association, either she has to be in the team or one of her friends has to be in the team.
Such a team is called valid. The president of the Association would like to send as many teams as possible
to Kauai in order to maximize the chances of some Illinois team to win. His goal is to find the maximum
number (surfout number) of mutually disjoint valid teams that can compete.
Let G = (V,E) be an undirected graph where V consists of all the Illinois surfers and an edge (u, v) indicates
that surfer u is friends with surfer v. Let δ be the degree of a minimum degree node in G. It is easy
to see that the surfout number of G is at most (δ + 1) since each valid team has to contain u or some
neighbor of u where u is a node with degree δ. In this problem we will see that the surfout number of an
association of n surfers where the representing graph G has minimum degree δ is at least as large as d δ+1

c ln n e

for some sufficient large universal constant c. Note that this guarantees to send only 1 valid team in the
competition if δ < c ln n (the entire group of surfers can be chosen as the team). Let k = d δ+1

c ln n e. Consider
the following randomized algorithm. To each surfer u independently give a team shirt with number g(u)
written on it, that is chosen uniformly at random from the numbers {1,2, . . . , k}.

1.A. (20 pts.) For a fixed surfer v and a fixed number i show that with probability at least 1 − 1/n2

there is a surfer with shirt number i that is either v or a neighbor of v. Choose c sufficiently large to
ensure this.

1.B. (10 pts.) Using the above show that for a fixed number i the set of surfers that are given shirts with
number i form a valid surf team for G with probability at least 1 − 1/n.

1.C. (10 pts.) Using the above two parts argue that the surfout number of G is at least k.

2 (30 pts.) Random walk.
Consider a full binary tree of height h. You start from the root, and at every stage you flip a coin and go
the left subtree with probability half (if you get a head), and to the right subtree with probability half (if
you get a tail). You arrive to a leaf, and let’s assume you took k turns to the left (and h − k turns to the
right) traversing from the root to this leaf. Then the value written in this leaf is αk , where α < 1 some
parameter.
Let Xh be the random variable that is the returned value.

2.A. (10 pts.) Prove that E[Xh] = (
1+α

2 )
h by stating a recursive formula on this value, and solving this

recurrence. Alternatively, you can prove this by a direct calculation.
2.B. (10 pts.) Consider flipping a fair coin h times independently and interpret them as a path in the

above tree. Let E be the event that we get at most h/4 heads in these coin flips. Argue that E
happens if and only if Xh ≥ α

h/4.
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2.C. (10 pts.) Markov’s inequality states that for a positive random variable X we have that P[X ≥ t] ≤
E[X/t]. Let Y be the number of heads when flipping a fair coin h times. Using Markov’s inequality,
(A) and (B) prove that

P[Out of h coin flips getting at most h/4 heads] ≤
(
1 + α
2α1/4

)h
.

In particular, by picking the appropriate value of α, prove that

P[Out of h coin flips getting at most h/4 heads] ≤ 0.88h .

What is your value of α?

3 (30 pts.) Conditional probabilities and expectations.
Assume there are two random variable X and Y , and you know the value of Y (say it is y). The conditional
probability of X given Y , written as P

[
X

���Y ]
, is the probability of X getting the value x, given that you

know that Y = y. Formally, it is

P
[
X = x

���Y = y
]
=
P[X = x ∩ Y = y]

P[Y = y]
.

The conditional expectation of X given Y , written as E
[
X

���Y = y
]
is the expected value of X if you know

that Y = y. Formally, it is the function

f (y) = E
[
X

���Y = y
]
=

∑
x∈Ω

x P
[
X = x

���Y = y
]
.

3.A. (2 pts.) Prove that if X and Y are independent then P
[
X = x

���Y = y
]
= P[X = x].

3.B. (2 pts.) Let Xi be the number of elements in QuickSelect in the ith recursive call, when starting
with X0 = n elements. Prove that E

[
Xi

��� Xi−1
]
≤ (3/4)Xi−1.

3.C. (2 pts.) Prove that for any discrete random variables X and Y it holds E[E[X |Y ]] = E[X].
3.D. (10 pts.) Prove that, in expectation, the ith recursive call made by QuickSelect has at most (3/4)in

elements in the sub-array it is being called on.
3.E. (4 pts.) Let X be a random variable that can take on only non-negative values. Assume that

E[X] = µ, where µ > 0 is a real number (for example, µ might be 0.01). Prove that P[X ≥ 1] ≤ µ.
3.F. (10 pts.) Using (D) and (E) prove that with probability ≥ 1 − 1/n10 the depth of the recursion of

QuickSelect when executed on an array with n elements is bounded by M = c lg n, where c is some
sufficiently larger constant (figure out the value of c for which your claim holds!).
(Hint: Consider the random variable which is the size of the subproblem that QuickSelect handles if
it reaches the problem in depth M, and 0 if QuickSelect does not reach depth M in the recursion.)
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60.1.9. Homework 8

HW 8 (due Monday, at noon, April 8, 2018)
CS 473: Fundamental Algorithms, Spring 2013

1 (30 pts.) Kris and the Climbing Vampires of CS @ Illinois
After Kris (your well-known professional climber) got tired of living in Colorado, he moved to Champaign,
Illinois. Once the climbing community of this little town found out that Kris was living here, they felt
honored and elected him president of “CS @ Illinois Climbing Club”, also known as “The Club”. The
Computer Science Department at UIUC has n (semi-professional, vampire) climbers, who are members of
The Club. In order for them to retain their membership, they need to participate in various competitions
yearly. There are m competitions each year and the j’th competition needs k j participants from The
Club. Kris, trying to fulfil his president duties, asked each member to volunteer to participate in a few
competitions. Let Si ⊆ {1,2, . . . ,m} be the set of competitions that a computer scientist vampire climber
i has volunteered for. A competition assignment consists of sets S′1,S

′
2, . . . ,S

′
n where S′i ⊆ {1,2, . . . ,m} is

the set of competitions that club member i will participate in. A valid competition assignment has to
satisfy two constraints: (i) for each club member i, S′i ⊆ Si, that is each member is only participating in
competitions that he/she has volunteered for, and (ii) each competition j has k j club members assigned
to it, or in other words j occurs in at least k j of the sets S′1,S

′
2, . . . ,S

′
n. Kris noticed that often there is

no valid competition assignment because computer scientist vampire climbers naturally are inclined to
volunteer for as few competitions as possible (stemming from the lazy nature of computer scientists and
vampires). To overcome this, the definition of a valid assignment is relaxed as follows. Let ` be some
integer. An assignment S′1,S

′
2, . . . ,S

′
n is now said to be valid if (i) |S′i − Si | ≤ ` and (ii) each competition j

has k j club members participating at it. The new condition (i) means that a member i may participate
up to ` competitions not on the list Si that he/she volunteered for. Describe an algorithm to check if
there is a valid competition assignment with the relaxed definition.

2 (40 pts.) Augmenting Paths in Residual Networks.
You are given an integral instance G of network flow. Let C be the value of the maximum flow in G.

2.A. (8 pts.) Given a flow f in G, and its residual network G f , describe how to compute, as fast as
possible, the highest capacity augmenting path flow from s to t. Prove the correctness of your
algorithm.

2.B. (8 pts.) Prove, that if the maximum flow in G f has value T , then the augmenting path you found
in (A) has capacity at least T/m.

2.C. (8 pts.) Consider the algorithm that starts with the empty flow f , and repeatedly applies (A) to
G f (recomputing it after each iteration) until s and t are disconnected. Prove that this algorithm
computes the maximum flow in G.

2.D. (8 pts.) Consider the algorithm from (C), and the flow g it computes after m iterations. Prove that
|g | >= C/10 (here 10 is not tight).

2.E. (8 pts.)Give a bound, as tight as possible, on the running time of your algorithm, as a function of
n, m, and C.

3 (30 pts.) Edge-Disjoint Paths.
You are given a directed graph G = (V,E) and a natural number k.

3.A. We can define a relation →G,k on pairs of vertices of G as follows. If x, y ∈ V we say that x →G,k y

if there exist k mutually edge disjoint paths from x to y in G. Is it true that for every G and every
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k ≥ 0 the relation →G,k is transitive? That is, is it always the case that if x →G,k y and y →G,k z
then we have x →G,k z? Give a proof or a counterexample.

3.B. Suppose that for each node v of G the number of edges into v is equal to the number of edges out of
v. Let x, y be two nodes and suppose there exist k mutually edge-disjoint paths from x to y. Does
it follow that there exist k mutually disjoint paths from y to x? Give a proof or a counterexample.

60.1.10. Homework 9

HW 9 (due Monday, at noon, April 15, 2018)
CS 473: Fundamental Algorithms, Spring 2013

1 (50 pts.) We want a proof!
The following question is long, but not very hard, and is intended to make sure you understand the
following problems, and the basic concepts needed for proving NP-Completeness.

For each of the following problems, you are given an instance of the problem of size n. Imagine that
the answer to this given instance is “yes”. Imagine that you need to convince somebody that indeed the
answer to the given instance is yes – to this end, describe:
(I) The format of the proof that the instance is correct.
(II) A bound on the length of the proof (its have to be of polynomial length in the input size).
(III) An efficient algorithm (as fast as possible [it has to be polynomial tie]) for verifying, given the instance

and the proof, that indeed the given instance is indeed positive.
We solve the first such question, so that you understand what we want.¬

1.A. (0 pts.)

Shortest Path
Instance: A weighted undirected graph G, vertices s and t and a threshold w.
Question: Is there a path between s and t in G of length at most w?

Solution: A “proof” in this case would be a path π in G (i.e., a sequence of at most n vertices)
connecting s to t, such that its total weight is at most w. The algorithm to verify this solution,
would verify that all the edges in the path are indeed in the graph, the path starts at s and ends at
t, and that the total weight of the edges of the path is at most w. The proof has length O(n) in this
case, and the verification algorithm runs in O(n2) time. if we assume graph is given to us using an
adjacency lists.

1.B. (5 pts.)
Independent Set
Instance: A graph G, integer k
Question: Is there an independent set in G of size k?

¬We trust that the reader can by now readily translate all the following questions to questions about climbing vampires from
Champaign. The reader can do this translation in their spare time for their own amusement.

397



1.C. (5 pts.)
3Colorable
Instance: A graph G.
Question: Is there a coloring of G using three colors?

1.D. (5 pts.)
TSP
Instance: A weighted undirected graph G, and a threshold w.
Question: Is there a TSP tour of G of weight at most w?

1.E. (5 pts.)
Vertex Cover
Instance: A graph G, integer k
Question: Is there a vertex cover in G of size k?

1.F. (5 pts.)
Subset Sum
Instance: S - set of positive integers,t: - an integer number (target).
Question: Is there a subset X ⊆ S such that

∑
x∈X x = t?

1.G. (5 pts.)
3DM
Instance: X,Y, Z sets of n elements, and T a set of triples, such that (a, b, c) ∈ T ⊆ X×Y×Z.
Question: Is there a subset S ⊆ T of n disjoint triples, s.t. every element of X ∪ Y ∪ Z is
covered exactly once.?

1.H. (5 pts.)
Partition
Instance: A set S of n numbers.
Question: Is there a subset T ⊆ S s.t.

∑
t∈T t =

∑
s∈S\T s?

1.I. (5 pts.)
SET COVER
Instance: (S,F, k):

S: A set of n elements
F: A family of subsets of S, s.t.

⋃
X∈F X = S.

k: A positive integer.
Question: Are there k sets S1, . . . ,Sk ∈ F that cover S. Formally,

⋃
i Si = S?
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1.J. (5 pts.)
CYCLE HATER.
Instance: An undirected graph G = (V,E), and an integer k > 0.
Question: Is there a subset X ⊆ V of at most k vertices, such that all cycles in G contain
at least one vertices of X.

1.K. (5 pts.)
CYCLE LOVER.
Instance: An undirected graph G = (V,E), and an integer k > 0.
Question: Is there a subset X ⊆ V of at most k vertices, such that all cycles in G contain
at least two vertices of X.

2 (50 pts.) Beware of Greeks bearing gifts.

The woodland deity, the brother of the induction fairy, came to visit you on labor day, and left you
with two black boxes.

2.A. (25 pts.) The first black-box can solve Partition in polynomial time (note that this black box solves
the decision problem). Let S be a given set of n integer numbers. Describe a polynomial time
algorithm that computes, using the black box, a partition of S if such a solution exists. Namely, your
algorithm should output a subset T ⊆ S, such that∑

s∈T

s =
∑

s∈S\T

s.

2.B. (25 pts.) The first box was a black box for solving Subgraph Isomorphism.

Subgraph Isomorphism
Instance: Two graphs, G = (V1,E1) and H = (V2,E2).
Question: Does G contain a subgraph isomorphic to H, that is, a subset V ⊆ V1 and
a subset E ⊆ E1 such that |V | = |V2 |, |e| = |E2 |, and there exists a one-to-one function
f : V2 → V satisfying {u, v} ∈ E2 if and only if { f (u), f (v)} ∈ E?

Show how to use this black box, to compute the subgraph isomorphism (i.e., you are given G and H,
and you have to output f ) in polynomial time. (You can assume that a call to this black box, takes
polynomial time.)

60.1.11. Homework 10

HW 10 (due Monday, at noon, April 22, 2018)
CS 473: Fundamental Algorithms, Spring 2013

The expression “beware of Greeks bearing gifts” is based on Virgil’s Aeneid: “Quidquid id est, timeo Danaos et dona ferentes”,
which means literally “Whatever it is, I fear Greeks even when they bring gifts.”
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1 (45 pts.) Coolest path
After Kris moved to Illinois, he started dating a computer scientist vampire climber girl Oinoe that he
met at the climbing gym. Kris is a multi-dimensional personality and apart from climbing he also enjoys
and excels at snowboarding. To his pleasant surprise, Oinoe was also a decent snowboarder and so they
decided to take a trip to the backcountry mountains of New Zealand. They packed a few days worth of
supplies, got their snowboarding gear on and hired a helicopter from the mountain base (hereafter referred
to as the Base) to drop them off at the peak of a far away mountain called Death Peak. Kris and Oinoe’s
goal was to make their way from Death Peak back to the Base. The mountain was covered in powder and
there was nobody else on it. The only thing that would reassure them that they were on a path back to
the Base were some red poles planted in the snow at various parts of the mountain, called Stations. We
can view the mountain as an undirected graph G = (V,E) where each node is a Station and an edge (u, v)
indicated that one can travel directly from station u to station v by snowboard (Kris and Oinoe carried
with them a new kind of snowboard which was enhanced by a motor and allowed them to travel through
flat parts of the mountain easily). The Death Peak is represented by a node s and the Base by a node t.
Each edge e has a length le ≥ 0 which represents distance from one Station to another. Also, some edges
represent paths that are higher risk than others, in the sense that they are more avalanche-prone, have
more tree-wells or obstacles along the way. So each edge e also has an integer risk re ≥ 0, indicating the
expected amount of damage in their health or equipment, if one traverses this edge.
It would be safest to travel by traversing the ridge of the mountain till they reach the end of the Sierra
and then go downhill a very easy slope, but that would take them many days and they will run out of
food. It would be fastest to just go down the steepest slope from Death Peak to the base of the mountain
but that is very dangerous to create an avalanche. In general, for every path p from s to t, we define its
total length to be the sum of the lengths of all its edges and its total risk to be the sum of the risks of all
its edges.
Kris and Oinoe are looking for a complex type of shortest path in that graph that they name the Coolest
Path: they need to get from s to t along a path whose total length and total risk is reasonably small. In
concrete terms, the problem they want to solve is the following: given a graph with lengths and risks as
above and integers L and R, is there a path from s to t whose total length is at most L and whose total
risk is at most R?
Show that the Coolest Path problem is NP-Complete.

2 (30 pts.) Brooklyn is learning how to speak
Your friend’s pre-school age daughter Brooklyn has recently learned to spell some simple words. To
help encourage this, her parents got her a colorful set of refrigerator magnets featuring the letters of the
alphabet (some number of copies of each letter), and the last time you saw her, the two of you spent a
while arranging the magnets to spell out words that she knows.
Somehow with you and Brooklyn, things end up getting more elaborate than originally planned, and soon
the two of you were trying to spell out words so as to use up all the magnets int he full set-that is, picking
words that she knows how to spell, so that they were all spelled out, each magnet was participating in
the spelling of exactly one word. Multiple copies of words are okay here.
This turned out to be pretty difficult, and it was only later that you realized a plausible reason for this.
Suppose we consider a general version of the problem of Using Up All the Refrigerator Magnets, where we
replace the English alphabet by an arbitrary collection of symbols, and we model Brooklyn’s vocabulary
as an arbitrary set of strings over this collection of symbols. The goal is the same. Prove that the problem
of Using Up All the Refrigerator Magnets is NP-Complete.

3 (25 pts.) Path Selection
Consider the following problem. You are managing a communication network, modeled by a directed
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graph G = (V,E). There are c users who are interested in making use of this network. User i (for each
i = 1,2, . . . , c) issues a request to reserve a specific path Pi in G on which to transmit data.
You are interested in accepting as many of these path requests as possible, subject to the following
restriction: if you accept both Pi and Pj , then Pi and Pj can not share any nodes.
Thus the Path Selection Problem asks: Given a directed graph G = (V,E), a set of requests P1, . . . ,Pc-each
of which must be a path in G- and a number k, is it possible to select at least k of the paths so that no
two of the selected paths share any nodes?
Find a polynomial time algorithm for Path Selection or show that the problem is NP-Complete.
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60.2. Midterm 1

CS 473: Fundamental Algorithms, Spring 2013
Midterm 1: February 19, 2013

12:30-13:45 section in Everit Lab 151
14:00-15:15 section in Loomis 151

1 Recurrences. (10 pts.)

Give a tight asymptotic bound for the following recurrences. No justification necessary.

1.A. A(n) = A(
√

n) + A(n/2) + A(n/3) + n, for n ≥ 2 and A(1) = 1.
1.B. B(n) = 4B(n/3) + log log n, for n ≥ 2 and B(n) = 1 for 0 ≤ n < 2.

2 Short Questions. (15 pts.)

2.A. (5 pts.) For the following directed graph, indicate what are the pre/post numbers for each vertex,
when the DFS starts from the vertex A. To make things unique, assume that the DFS visits the
neighbors of a vertex in alphabetical increasing order. Also, draw the resulting DFS tree/forest on
the right side.

A
B

C
D E

F

G
H

I

Vertex pre # post #
A
B
C
D
E
F
G
H
I

A
B

C
D E

F

G
H

I

2.B. (5 pts.) List the strong connected components in the above graph.

2.C. (5 pts.) For the graph below (yes, it is undirected) draw the shortest path tree rooted at s, and for
each node indicate its distance from s.
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s

3
8

4

5
8

3

1

2

13
11

7

3

9

3 Sorting Unimodal Sequences.(25 pts.)
A sequence of distinct numbers x1, x2, . . . , xn is increasing if xi < xi+1, for 1 ≤ i < n. Similarly it is
decreasing if xi > xi+1 for 1 ≤ i < n. It is unimodal if there is an index p, 1 ≤ p ≤ n such that either:
(I) The subsequence x1, x2, . . . , xp is an increasing sequence and the subsequence xp, xp+1, . . . , xn is a

decreasing sequence.
(II) The subsequence x1, x2, . . . , xp is a decreasing sequence and the subsequence xp, xp+1, . . . , xn is an

increasing sequence.
Observe that increasing (or decreasing) sequences are also unimodal. For example,

−10,−3,2,5,25,13,12,−1

is a unimodal sequence with a maximum at 25. Similarly, the sequence

10,3,−20,−13,−12,1

is a unimodal sequence with a minimum at −20.
Suppose you are given a sequence of n distinct numbers stored in an array X (X[i] holds xi) and are told
that it is a unimodal sequence. Describe an algorithm that sorts the sequence in increasing order and
runs in time O(n).

4 Forever alone vampire. (25 pts.)
There are n vampires in Champaign¬. You know for each vampire all the vampires that he/she/it had
bitten (you can assume that, overall, there are m bites known). A vampire v is popular if there is a
sequence of distinct vampires v1, . . . , vk , such that v had bitten v1, v1 had bitten v2, ..., vk−1 had bitten
vk , and vk had bitten v (note, that k can be 1).
Describe an algorithm, as fast as possible, that outputs all the lonely vampires in Champaign (a vampire
is lonely if it is not popular, naturally).

5 Shortest cycle. (25 pts.)
You are given a directed weighted graph G (the weights are positive). Design an algorithm that finds the
shortest cycle in G. How fast is your algorithm? (The faster, the better.)

6 Compute a good vertex. (25 pts.)
Given an unweighted rooted tree T with n nodes, the distance between two vertices u and v in T is the
number of edges in the unique path between u and v in T . The price of a vertex v is the total sum of the
distances of v to all the vertices of T .

¬If you live in Urbana then you are safe.
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6.A. Describe an algorithm, as fast as possible, for computing the price of the root of T . How fast is your
algorithm? (The faster, the better.)

6.B. In a tree T , a separator is a node v such that if we remove it T breaks into a collection of trees, each
one of them having at most n/2 vertices. Describe, an algorithm, as fast as possible, that computes a
separator in T (such a separator always exists). How fast is your algorithm? (The faster, the better.)

60.3. Midterm 2

CS 473: Fundamental Algorithms, Spring 2013
Midterm 2: April 2, 2013
12:30-13:45 section in Noyes Laboratory 217
14:00-15:15 section in Mumford Hall 103

1 Flow, flow, flow.

Consider the network flow on the right. Here M is a large positive integer,
and α = (

√
5 − 1)/2. One can verify that (i) α < 1, (ii) α2 = 1 − α, and

(iii) 1 − α < α. We will be interested in running mtdFordFulkerson on
this graph.

1.A. (2 pts.) What is the value of the maximum flow in this network?

1.B. (3 pts.) Prove that αi − αi+1 = αi+2, for all i ≥ 0.

z y x
α11

t

s

w

M
M

M

M
M

M

1.C. (10 pts.) We next specify the sequence of augmenting paths used by the algorithm. In the table
below, specify the residual capacities for the designated edges after each step (the residual graph
would have also other edges which we do not care about). We start here from the 0 flow.
Please simplify the numbers involved as much as possible, using the relation from (B). Hint: All the
numbers you have to write below are either 0,1 or αi, for some i.
You want to be careful about the calculations - it is easy to make mistakes here.
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step augmenting path
amount
pushed residual capacity

0. z y x
α11

t

s

w 1
xyw z

1 1 α

1. z y x
α11

t

s

p1

w α
xyw z

1 1 α

2. z y x
α11

t

s

p2

w α
xyw z

1 1 α

3. z y x
α11

t

s

p1

w α2

xyw z
1 1 α

4. z y x
α11

t

s

p3
w α2

xyw z
1 1 α
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1.D. (5 pts.) Imagine that we now repeat steps 1,2,3,4 above (i.e., we augment along p1, p2, p1, p3 repeat-
edly. What would be the residual capacities in the graph after the ith such repetition, starting with
the results in the step 4 above?

4i. z y x
α11

t

s

p3
w

xyw z
1 1 α

1.E. (5 pts.) How many iterations would it take this algorithm to terminate, if we repeat the steps in
(D)?

2 Take these intervals. (25 pts.)

You are given a set of n intervals I1, . . . , In, where Ij = [xj, yj], for j = 1, . . . ,n. Describe an algorithm that
colors the intervals with a minimum number of colors. Here, two intervals that intersect must be assigned
different colors. What is the running time of your algorithm? (Faster is better – your algorithm must
have polynomial running time.)
Prove the correctness of your algorithm.

3 Spanning it robustly. (25 pts.)

You are given an undirected weighted graph G = (V,E) with n vertices
and m edges (think about it as describing a network). We are interested
in computing a spanning tree for G. However, you are given a set U of
“untrustable” vertices – for example, on the graph depicted on the right,
the “circle” nodes are untrustable. Such an untrustable vertex might be
suddenly deleted from the graph (and all the edges adjacent to it). You

want to build a spanning tree for G, such that even if this happens, the
remaining spanning tree, is still a spanning tree for the remaining graph.
We will refer to such a spanning tree as a robust spanning tree. For
example, the figure on the right depicts one possible robust spanning tree
for the example shown above.

3.A. (10 pts.) Describe an algorithm, as efficient as possible, for computing a robust spanning tree if it
exists. What is the running time of your algorithm? (Faster is better.)

3.B. (15 pts.) Describe an algorithm, as efficient as possible, for computing the cheapest robust spanning
tree, if such a tree exists. What is the running time of your algorithm?

4 Independent vampires.
As you know by now, there are n vampires in Champaign, IL. Furthermore, you know all the m pairs of
vampires that know each other. The climbing vampire club of Champaign had decided to organize a rock
climbing trip to the Netherlands, and they would like to choose as many vampires as possible to this trip,
under the constraint that no two vampires in the group know each other.
To this end, the club had ordered the vampires in a random order v1, . . . , vn. In the ith iteration, the
vampire vi is invited to the trip, if none of the vampires it knows are already invited to the trip.

4.A. (5 pts.) What is the probability of a vampire that knows all the other n − 1 vampires to be invited
to the trip. Explain your answer.
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4.B. (5 pts.) Give a lower bound on the probability of a vampire that knows k other vampires to be invited
to the trip. (Your lower bound should be a function of k only – computing the exact probability is
hard here.) [Hint: Think about (A).]

4.C. (10 pts.) Assume that a vampire v ∈ V knows d(v) other vampires, where V denotes the set of
vampires. Give a closed form simple formula which is a lower bound on the expected number of
vampires that are going to be in the trip. (Hint: Use (B).)

4.D. (5 pts.) Given a lower bound on the expected number of vampires going on the trip, if every vampire
knows exactly k other vampires? (Your lower bound should be a function of n and k.)

5 Distance between point sets.(25 pts.)
You are given two sequences of points in the plane: p1, . . . , pn and q1, . . . ,qn. You start with two players
standing on p1 and q1, respectively. At each step, exactly one of the players can move to the next point
on its sequence (or stay where it is, but the other player must move then). In the end of the process,
the players need to be both located at pn and qn, respectively. During this process, if the two players are
located at pi and qj then their distance is | |pi − qj | |.
Given a valid solution to this problem (i.e., the sequence of moves), the value of the solution is the
maximum distance of the two players (from each other) at any point in time during the process. See the
following example:

p1

p2

p3 p4

q1
q2

q3

q4

p1

p2

p3 p4

q1
q2

q3

q4

p1

p2

p3 p4

q1
q2

q3

q4

The input.

One possible solution:
(p1,q1) ⇒ (p1,q2) ⇒ (p1,q3) ⇒
(p2,q3) ⇒ (p3,q3) ⇒ (p3,q4)
⇒ (p4,q4). The value of this
solution is the distance between
p2 and q3.

Another possible solution:
(p1,q1) ⇒ (p2,q1) ⇒ (p2,q2)
⇒ (p3,q2) ⇒ (p3,q3) ⇒ (p4,q3)
⇒ (p4,q4). The value of this
solution is the distance between
p3 and q2. The other solution
is slightly better, as its value is
smaller.

Describe an algorithm, as fast as possible, that computes the optimal solution (i.e., the solution with
minimum value). Describe how to modify your algorithm so it outputs the sequence of moves realizing
the optimal solution. What is the running time of your algorithm?
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60.4. Final

CS 473: Fundamental Algorithms, Spring 2013
Final Exam: 7pm-10pm, May 3, 2018 David Kinley Hall, Room 114

1 Multiple choice. (8 pts.)
For each of the questions below choose the most appropriate answer. No IDK credit for this question!

1.A. Given a graph G. Deciding if there is an independent set X in G, such that G \ X (i.e., the graph G
after we remove the vertices of X from it) is bipartite can be solved in polynomial time.
False: True: Answer depends on whether P = NP:

1.B. Consider any two problems X and Y both of them in NPC. There always exists a polynomial time
reduction from X to Y .
False: True: Answer depends on whether P = NP:

1.C. Given a graph represented using adjacency lists, it can be converted into matrix representation in
linear time in the size of the graph (i.e., linear in the number of vertices and edges of the graph).
False: True: Answer depends on whether P = NP:

1.D. Given a 2SAT formula F, there is always an assignment to its variables that satisfies at least (7/8)m
of its clauses.
False: True: Answer depends on whether P = NP:

1.E. Given a graph G, deciding if contains a clique made out of 165 vertices is NP-Complete. False:
True: Answer depends on whether P = NP:

1.F. Given a network flow G with lower bounds and capacities on the edges (say all numbers are integers
that are smaller than n). Assume f and g are two different maximum flows in G that complies with
the lower bounds and capacity constraints. Then, the flow 0.7 f + 0.3g is always a valid maximum
flow in G. False: True:

1.G. Given a directed graph G with positive weights on the edges, and a number k, finding if there is
simple path in G from s to t (two given vertices of G) with weight ≥ k, can be done in polynomial
time.
False: True: Answer depends on whether P = NP:

1.H. Given a directed graph G with (positive or negative) weights on its edges, computing the shortest
walk from s to t in G can be done in polynomial time.
False: True: Answer depends on whether P = NP:

2 Short Questions. (16 pts.)

2.A. (8 pts.) Give a tight asymptotic bound for each of the following recurrences.
(I) (4 pts.) A(n) = A(n − 3 dlog ne) + A(dlog ne) + log n, for n > 2

and A(1) = A(2) = 1.
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(II) (4 pts.) B(n) = 12B(bn/4c) + B(bn/2c) + n2, for n > 10 and B(i) = 1 for 1 ≤ i ≤ 10.
2.B. (8 pts.) Convert the following boolean circuit (i.e., an instance of Circuit-SAT) into a CNF formula

(i.e., an instance of SAT) such that the resulting formula is satisfiable if and only if the circuit sat
instance is satisfiable. Use xa, xb, xc, xd, . . . as the variable names for the corresponding gates in the

drawing. (You may need additional variables.) Note, that a node
∧, g

in the figure below denotes
an and gate, where g is its label.

?,a ?,b ?,c ?,d ?,eInputs:

Output: ∨, k

¬, i ∧, j

∨, f ∧, g ∨, h

3 Balancing vampires. (24 pts.)
Sadly, there are n vampires p1, . . . , pn in Champaign. The ith vampire has a score wi ≥ 0 describing how
well it can climb mountains. You want to divide the vampires into two teams, and you want the division
of teams to be as fair as possible. The score of a team is the sum of the scores of all the vampires in that
team. We want to minimize the differences of the scores of the two teams. Assume that for all i, wi ≤ W .

3.A. (12 pts.) Given integers α, β ≥ 0, and Tα,Tβ, such that α + β = n, describe an algorithm, as fast
as possible, to compute the partition into two teams, such that the first team has α players of total
score Tα, and the second team has β players with total score Tβ. What is the running time of your
algorithm? (For any credit, it has to be polynomial in n and W .)
(To simplify things, you can solve the decision version problem first, and describe shortly how to
modify it to yield the desired partition.)

3.B. (4 pts.) Describe an algorithm, as fast as possible, to compute the scores of the two teams
in an optimal division that is as balanced as possible, when requiring that the two teams have
exactly the same number of players (assume n is even). What is the running time of your algorithm?

3.C. (8 pts.) State formally the decision version of the problem in (B), and prove that it is NP-
Complete. (There are several possible solutions for this part – pick the one you find most natural.
Note, that the teams must have the same number of players.)

4 MAX Cut and MAX 2SAT. (13 pts.)
The Max CUT problem is the following:

MAX Cut
Instance: Undirected graph G with n vertices and m edges, and an integer k.
Question: Is there an undirected cut in G that cuts at least k edges?

409



MAX 2SAT
Instance: A 2CNF formula F, and an integer k.
Question: Is there a truth assignment in F that satisfies at least k clauses.

You are given that MAX Cut is NP-Complete. Prove that MAX 2SAT is NP-Complete by a reduction
to/from MAX Cut (be sure to do the reduction in the right direction! [and please do not ask us what is
the right direction – this is part of the problem]).
Hint: Think about how to encode a cut, by associating a boolean variable with each vertex of the graph.
It might be a good idea to verify your answer by considering a graph with two vertices and a single edge
between them and checking all possibilities for this case.

5 Billboards are forever.
(From discussion 5.) (13 pts.)
Consider a stretch of Interstate-57 that is m miles long. We are given an ordered list of mile markers,
x1, x2, . . . , xn in the range 0 to m, at each of which we are allowed to construct billboards (suppose they are
given as an array X[1 . . . n]). Suppose we can construct billboards for free, and that we are given an array
R[1 . . . n], where R[i] is the revenue we would receive by constructing a billboard at location X[i]. Given
that state law requires billboards to be at least 5 miles apart, describe an algorithm, as fast as possible,
to compute the maximum revenue we can acquire by constructing billboards.
What is the running time of your algorithm? (For full credit, your algorithm has to be as fast as possible.)

6 Best edge ever. (13 pts.)
(Similar to homework problem.)
You are given a directed graph G with n vertices and m edges. For every edge e ∈ E(G), there is an
associated weight w(e) ∈ R. For a path (not necessarily simple) π in G, its quality is W(π) = maxe∈π w(e).
We are interested in computing the highest quality walk in G between two given vertices (say s and t).
Either prove that computing such a walk is NP-Hard, or alternatively, provide an algorithm (and prove
its correctness) for this problem (the algorithm has to be as fast as possible – what is the running time of
your algorithm?).

7 Dominate this. (13 pts.)
(Similar problems were covered in class/homework/discussion.)
You are given a set of intervals I = {I1, . . . , In} on the real line (assume all with distinct endpoints) – they
are given in arbitrary order (i.e., you can not assume anything on the ordering). Consider the problem of
finding a set of intervals K ⊆ I, as small as possible, that dominates all the other intervals. Formally, K
dominates I, if for every interval I ∈ I, there is an interval K ∈ K, such that I intersects K.
Describe an algorithm (as fast as possible) that computes such a minimal dominating set of I. What is
the running time of your algorithm? Prove the correctness of your algorithm.

8 Network flow. (13 pts.)
(Similar problems were covered in class/homework/discussion.)
You are given a network flow G (with integer capacities on the edges, and a source s and a sink t), and
a maximum flow f on it (you can assume f is integral). You want increase the maximum flow in G by
one unit by applying a single augmenting path to f . Naturally, to be able to do that, you must increase
the capacity of some of the edges of G. In particular, for every edge e ∈ E(G), there is an associated cost
cost(e) of increasing its capacity by one unit. Describe an algorithm, that computes (as fast as possible),
the cheapest collection of edges of G, such that if we increase the capacity on each of these edges by 1,
then one can find an augmenting path to f that increases its flow by one unit. How fast is your algorithm?
Provide an argument that explains why your algorithm is correct.
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Chapter 61

Fall 2014: CS 573 – Graduate algorithms

61.1. Homeworks

61.1.1. Homework 0

1 (60 pts.) The numbers dance.

1.A. (30 pts.) The input is a multiset X of n positive integer numbers. Consider the following famous
algorithm:

PlayItBen(X) :
while X contains more than two elements do

two distinct elements x1, x2 are chosen arbitrarily from X,
such that x1 ≤ x2

if x1 = x2 or x1 + 1 = x2 then
X ← (X \ {x1, x2}) ∪ {x1 + x2}

else
X ← (X \ {x1, x2}) ∪ {x1 + 1, x2 − 1}

Prove (maybe using induction, but you do not have to) that PlayItBen always terminates.
1.B. (30 pts.) (Harder.) Let N =

∑
x∈X x, and let n = |X |. Provide an upper bound, as tight as possible,

using n and N on the running time of PlayItBen.

2 (40 pts.) Random walk.
A random walk is a walk on a graph G, generated by starting from a vertex v0 = v ∈ V(G), and in the i-th
stage, for i > 0, randomly selecting one of the neighbors of vi−1 and setting vi to be this vertex. A walk
v0, v1, . . . , vm is of length m.

2.A. (20 pts.) For a vertex u ∈ V(G), let Pu(m, v) be the probability that a random walk of length m,
starting from u, visits v (i.e., vi = v for some i).
Prove that a graph G with n vertices is connected, if and only if, for any two vertices u, v ∈ V(G), we
have Pu(n − 1, v) > 0.

2.B. (20 pts.) Prove that a graph G with n vertices is connected if and only if for any pair of vertices
u, v ∈ V(G), we have limm→∞ Pu(m, v) = 1.
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61.1.2. Homework 1

1 (10 pts.) Poly time subroutines can lead to exponential algorithms.
Show that an algorithm that makes at most a constant number of calls to polynomial-time subroutines
runs in polynomial time, but that a polynomial number of calls to polynomial-time subroutines may result
in an exponential-time algorithm.

2 (70 pts.) Beware of algorithms carrying oracles.
Consider the following optimization problems, and for each one of them do the following:
(I) (2 pts.) State the natural decision problem corresponding to this optimization problem.
(II) (3 pts.) Either: (A) prove that this decision problem is NP-Complete by showing a reduction

from one of the NP-Complete problems seen in class (if you already seen this problem in class state
“seen in class” and move on with your life). (B) Alternatively, provide an efficient algorithm to solve
this problem.

(III) (5 pts.) Assume that you are given an algorithm that can solve the decision problem in polynomial
time. Show how to solve the original optimization problem using this algorithm in polynomial time.

Prove that the following problems are NP-Complete.

2.A. (10 pts.)

NOT SET COVER
Instance: Collection C of subsets of a finite set S.
Target: Compute the maximum k, and the sets S1, . . . ,Sk in C, such that S * ∪ki=1Si.

2.B. (10 pts.)

MAX BIN PACKING
Instance: Finite set U of items, size s(u) ∈ ZZ+ for u ∈ U, an integer bin capacity B.
Target: Compute the maximum k, and a partition of U into disjoint sets U1, . . . ,Uk , such
that the sum of the sizes of the items inside each Ui is B or more.

2.C. (10 pts.)

DOUBLE HITTING SET
Instance: A ground set U = {1, . . . ,n}, and a set F = {U1, . . . ,Um} of subsets of U.
Target: Find the smallest set S′ ⊆ U, such that S′ hits all the sets of F at least twice.
Specifically, S′ ⊆ U is a double hitting set if for all Ui ∈ F, we have that S′ contains at
least two element of Ui.

2.D. (10 pts.)

Min Leaf Spanning Tree
Instance: Graph G = (V,E).
Target: Compute the spanning tree T in G where the number of vertices in T of degree
one is minimized.

2.E. (10 pts.)

412



Cover by paths (edge disjoint).
Instance: Graph G = (V,E).
Target: Compute the minimum number k of paths π1, . . . , πk that are edge disjoint, and
their union cover all the edges in G.

2.F. (10 pts.)

Cover by paths (vertex disjoint).
Instance: Graph G = (V,E).
Target: Compute the minimum number k of paths π1, . . . , πk that are vertex disjoint, and
their union cover all the vertices in G.

2.G. (10 pts.)

Partition graph into not so bad, and maybe even good, sets (PGINSBMEGS).
Instance: Graph G = (V,E) and k.
Target: Compute the partition of V into k sets V1, . . . ,Vk , such that the number of edges
uv of G that have distinct indices i and j, such that u ∈ Vi, and v ∈ Vj is maximized.

3 (20 pts.) Independence.
Let G = (V,E) be an undirected graph over n vertices. Assume that you are given a numbering π : V →
{1, . . . ,n} (i.e., every vertex have a unique number), such that for any edge i j ∈ E, we have |π(i) − π( j)| ≤ 20.
Either prove that it is NP-Hard to find the largest independent set in G, or provide a polynomial time
algorithm.

61.1.3. Homework 2

1 (40 pts.) Breakable graphs.
In the following, let c1, c2 be some absolute, sufficiently large constants. Consider a graph G = (V,E)

with n vertices. A subset Y ⊆ V is en isolator if:

(I) In the graph G \Y (i.e., the induced graph on V \Y) is disconnected, and every connected component
of this graph has at most (3/4)n vertices.

(II) |Y | ≤ c2 |n|2/3 (i.e., Y is significantly smaller than n).

1.A. (10 pts.)

A grid graph is a graph where the vertices are points (x, y) in the
plane, where x, y are integer numbers, and two vertices (x, y) and (x ′, y′)
can be connected only if |x− x ′ |+ |y− y′ | = 1. See picture on the right.
Prove that there is always an isolator in such a graph. Your proof
must be self contained, elementary and short.

(Hint: Start thinking about the case where the vertices of G are contained in JNK × JNK, where
N = 4

⌈
n2/3⌉ and JNK = {1, . . . ,N}. Then solve the case the vertices of G are contained in JNK × JnK,

and finally solve the general case where the vertices are contained in JnK × JnK.)
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1.B. (10 pts.) A graph is breakable, if for any subset X ⊆ V, of size at least c1, we have that there is an
isolator in the induced graph GX , and furthermore the isolator can be computed in polynomial time
in X.
Prove that in a breakable graph, there is always a vertex of constant degree.
(This part is pretty hard, so do not be surprised if you can not do this part. If can not do this part,
just assume it is correct, and continue to the next part of the question.)

1.C. (10 pts.) Given a breakable graph G, provide a polynomial time constant approximation algorithm
for the largest independent set in G.

1.D. (10 pts.) For an arbitrary fixed ε > 0, provide a polynomial time algorithm that computes (1 − ε)-
approximation to the largest independent set in a breakable graph. What is the running time of
your algorithm? Prove both the bound on the running time of your algorithm, and the quality of
approximation it provides.
(This part is also hard, do not be surprised if you can not do this part.)

2 (30 pts.) Greedy algorithm does not work for coloring. Really.
Let G be a graph defined over n vertices, and let the vertices be ordered: v1, . . . , vn. Let Gi be the

induced subgraph of G on v1, . . . , vi. Formally, Gi = (Vi,Ei), where Vi = {v1, . . . , vi} and

Ei =
{
uv ∈ E

��� u, v ∈ Vi and uv ∈ E(G)
}
.

The greedy coloring algorithm, colors the vertices, one by one, according to their ordering. Let ki
denote the number of colors the algorithm uses to color the first i vertices.

In the ith iteration, the algorithm considers vi in the graph Gi. If all the neighbors of vi in Gi are
using all the ki−1 colors used to color Gi−1, the algorithm introduces a new color (i.e., ki = ki−1 + 1) and
assigns it to vi. Otherwise, it assign vi one of the colors 1, . . . , ki−1 (i.e., ki = ki−1).

Give an example of a graph G with n vertices, and an ordering of its vertices, such that even if G can
be colored using O(1) (in fact, it is possible to do this with two) colors, the greedy algorithm would color
it with Ω(n) colors. (Hint: consider an ordering where the first two vertices are not connected.)

3 (30 pts.) Maximum Clique
Let G = (V,E) be an undirected graph. For any k ≥ 1, define G(k) to be the undirected graph

(
V(k),E(k)

)
,

where V(k) = V × V × · · · × V is the set of all ordered k-tuples of vertices from V and E(k) is defined so
that (v1, v2, ..., vk) is adjacent to (w1,w2, ...,wk) if and only if for each i (for i = 1, . . . , k) either vertex vi is
adjacent to wi in G, or else vi = wi.

3.A. (10 pts.) Prove that the size of the maximum clique in G(k) is equal to the kth power of the size of
the maximum clique in G. That is, if the largest clique in G has size α, then the largest clique in G(k)
is αk , and vice versa.

3.B. (10 pts.) Show an algorithm that is given a clique of size β in G(k) and outputs a clique of size
⌈
β1/k⌉

in G.
3.C. (5 pts.) Argue that if there is an c-approximation algorithm for maximum clique (i.e., it returns

in polynomial time a clique of size ≥ opt/c) then there is a polynomial time c1/k-approximation
algorithm for maximum clique, for any constant k. What is the running time of your algorithm, if
the running time of the original algorithm is T(n). (Hint: use (A) and (B).)

3.D. (5 pts.) Prove that if there is a constant approximation algorithm for finding a maximum-size clique,
then there is a polynomial time approximation scheme for the problem.¬

¬Can one prove that there is FPTAS in this case? I do not know.
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61.1.4. Homework 3

CS 573: Graduate algorithms, Fall 2015
Homework 3, due Monday, November 3, 23:59:59, 2018

Version 1.01

Required Problems

1 (20 pts.) Euclidean three dimensional matching.
You are given three disjoint sets R,G,B of n points in the plane. Our purposes is to output a set T of n
disjoint triplets of points (ri,gi, bi) ∈ R×G×B, such that all the points in R∪G∪B are included in exactly
one such triplet, and furthermore, the price function

f (T ) =
nmax
i=1

(
‖ri − gi ‖ + ‖gi − bi ‖ + ‖bi − ri ‖

)
is minimized (i.e., you are minimizing the maximum perimeter of the triangles you choose), where ‖p − q‖
denotes the Euclidean distance between p and q. Provide a polynomial time constant approximation
algorithm for this problem. Prove the correctness and the quality of approximation of your algorithm.
The better the constant of approximation in your algorithm, the better your solution is.
(Hint: You would need to use network flow somewhere.)

2 (20 pts.) Can you hear me?
You are given a set P of n points in the plane (i.e., location of n clients with phones), and a set Q of m
points (i.e., base stations). The ith base station bi, can serve at most αi clients, and each client has to be
in distance at most ri from it, for i = 1, . . . ,m. Describe a polynomial time algorithm that computes for
each client which base station it should use, and no base station is assigned more clients that it can use.
What is the running time of your algorithm?

3 (20 pts.) Unique Cut.

3.A. (10 pts.) Let G = (V,E) be a directed graph, with source s ∈ V , sink t ∈ V , and nonnegative edge
capacities {ce}. Give a polynomial-time algorithm to decide whether G has a unique minimum s-t
cut (i.e., an s-t of capacity strictly less than that of all other s-t cuts).

3.B. (10 pts.) The good, the bad, and the middle.
Suppose you’re looking at a flow network G with source s and sink t, and you want to be able to
express something like the following intuitive notion: Some nodes are clearly on the “source side” of
the main bottlenecks; some nodes are clearly on the “sink side” of the main bottlenecks; and some
nodes are in the middle. However, G can have many minimum cuts, so we have to be careful in how
we try making this idea precise.
Here’s one way to divide the nodes of G into three categories of this sort.
• We say a node v is upstream if, for all minimum s-t cuts (A,B), we have v ∈ A – that is, v lies

on the source side of every minimum cut.

415



• We say a node v is downstream if, for all minimum s-t cuts (A,B), we have v ∈ B – that is, v
lies on the sink side of every minimum cut.

• We say a node v is central if it is neither upstream nor downstream; there is at least one
minimum s-t cut (A,B) for which v ∈ A, and at least one minimum s-t cut (A′,B′) for which
v ∈ B′.

Give an algorithm that takes a flow network G and classifies each of its nodes as being upstream,
downstream, or central. The running time of your algorithm should be within a constant factor of
the time required to compute a single maximum flow.

4 (20 pts.) Prove infeasibility.
You are trying to solve a circulation problem, but it is not feasible. The problem has demands, but
no capacity limits on the edges. More formally, there is a graph G = (V,E), and demands dv for each
node v (satisfying

∑
v∈V dv = 0), and the problem is to decide if there is a flow f such that f (e) ≥ 0

and f in(v) − f out (v) = dv for all nodes v ∈ V . Note that this problem can be solved via the circulation
algorithm by setting ce = +∞ for all edges e ∈ E. (Alternately, it is enough to set ce to be an extremely
large number for each edge – say, larger than the total of all positive demands dv in the graph.)
You want to fix up the graph to make the problem feasible, so it would be very useful to know why the
problem is not feasible as it stands now. On a closer look, you see that there is a subset U of nodes
such that there is no edge into U, and yet

∑
v∈U dv > 0. You quickly realize that the existence of such a

set immediately implies that the flow cannot exist: The set U has a positive total demand, and so needs
incoming flow, and yet U has no edges into it. In trying to evaluate how far the problem is from being
solvable, you wonder how big the demand of a set with no incoming edges can be.
Give a polynomial-time algorithm to find a subset S ⊂ V of nodes such that there is no edge into S and
for which

∑
v∈S dv is as large as possible subject to this condition.

(Hint: Think about strong connected components, and ho to use them in this case.)

5 (20 pts.) Maximum Flow By Scaling
Let G = (V,E) be a flow network with source s, sink t, and an integer capacity c(u, v) on each edge
(u, v) ∈ E. Let C = max(u,v)∈Ec(u, v).

5.A. (3 pts.) Argue that a minimum cut of G has capacity at most C |E |.
5.B. (3 pts.) For a given number K, show that an augmenting path of capacity at least K can be found

in O(E) time, if such a path exists.
The following modification of Ford-Fulkerson-Method can be used to compute a maximum flow
in G.

maxFlow-By-Scaling(G, s, t)
1 C ← max(u,v)∈Ec(u, v)
2 initialize flow f to 0
3 K ← 2 blgC c
4 while K ≥ 1 do {
5 while (there exists an augmenting path p of

capacity at least K) do {
6 augment flow f along p

}
7 K ← K/2

}

8 return f
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5.C. (3 pts.) Argue that maxFlow-By-Scaling returns a maximum flow.
5.D. (3 pts.) Show that the capacity of a minimum cut of the residual graph G f is at most 2K |E | each

time line 4 is executed.
5.E. (4 pts.) Argue that the inner while loop of lines 5-6 is executed O(|E |) times for each value of K.
5.F. (4 pts.) Conclude that maxFlow-By-Scaling can be implemented so that it runs in O(E2 lg C) time.

61.1.5. Homework 4

CS 573: Graduate algorithms, Fall 2015
Homework 4, due Monday, November 17, 23:59:59, 2018

Version 1.0

1 (20 pts.) Slack form
Let L be a linear program given in slack form, with n nonbasic variables N, and m basic variables B.
Let N ′ and B′ be a different partition of N ∪ B, such that |N ′ ∪ B′ | = |N ∪ B|. Show a polynomial time
algorithm that computes an equivalent slack form that has N ′ as the nonbasic variables and b′ as the
basic variables. How fast is your algorithm?

2 (20 pts.) Tedious Computations
Provide detailed solutions for the following problems, showing each pivoting stage separately.

2.A. (5 pts.)
maximize 6x1 + 3x2 + 5x3 + 2x4
subject to
x1 + x2 + x3 + x4 = 1
x1, x2, x3, x4 ≥ 0.

2.B. (5 pts.)
maximize 2x1 + 4x2
subject to
2x1 + x2 ≤ 4
2x1 + 3x2 ≤ 3
4x1 + x2 ≤ 5
x1 + 5x2 ≤ 1
x1, x2 ≥ 0.

2.C. (5 pts.)
maximize 6x1 + 2x2 + 8x3 + 9x4
subject to
2x1 + x2 + x3 + 3x4 ≤ 5
x1 + 3x2 + x3 + 2x4 ≤ 3
x1, x2, x3, x4 ≥ 0.

2.D. (5 pts.)
minimize 2x12 + 8x13 + 3x14 + 2x23 + 7x24 + 3x34
subject to
x12 + x13 + x14 ≥ 1
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−x12 + x23 + x24 = 0
−x13 − x23 + x34 = 0
x14 + x24 + x34 ≤ 1
x12, x13, . . . , x34 ≥ 0.

3 (20 pts.) Linear Programming for a Graph
In theminimum-cost multicommodity-flow problem, we are given a directed graph G = (V,E), in which each
edge (u, v) ∈ E has a nonnegative capacity c(u, v) ≥ 0 and a cost α(u, v). As in the multicommodity-flow
problem (Chapter 29.2, CLRS), we are given k different commodities, K1, K2, . . . , Kk , where commodity
i is specified by the triple Ki = (si, ti, di). Here si is the source of commodity i, ti is the sink of commodity
i, and di is the demand, which is the desired flow value for commodity i from si to ti. We define a flow for
commodity i, denoted by fi, (so that fi(u, v) is the flow of commodity i from vertex u to vertex v) to be a
real-valued function that satisfies the flow-conservation, skew-symmetry, and capacity constraints. We now
define f (u, v), the aggregate flow to be sum of the various commodity flows, so that f (u, v) =

∑k
i=1 fi(u, v).

The aggregate flow on edge (u, v) must be no more than the capacity of edge (u, v).
The cost of a flow is

∑
u,v∈V f (u, v)α(u, v), and the goal is to find the feasible flow of minimum cost. Express

this problem as a linear program.

4 (20 pts.) Linear programming

4.A. (10 pts.) Show the following problem in NP-hard.

Integer Linear Programming
Instance: A linear program in standard form, in which A and B contain only integers.
Question: Is there a solution for the linear program, in which the x must take integer
values?

4.B. (5 pts.) A steel company must decide how to allocate next week’s time on a rolling mill, which
is a machine that takes unfinished slabs of steel as input and produce either of two semi-finished
products: bands and coils. The mill’s two products come off the rolling line at different rates:

Bands 200 tons/hr
Coils 140 tons/hr.

They also produce different profits:

Bands $ 25/ton
Coils $ 30/ton.

Based on current booked orders, the following upper bounds are placed on the amount of each
product to produce:

Bands 6000 tons
Coils 4000 tons.

Given that there are 40 hours of production time available this week, the problem is to decide
how many tons of bands and how many tons of coils should be produced to yield the greatest profit.
Formulate this problem as a linear programming problem. Can you solve this problem by inspection?

4.C. (5 pts.) A small airline, Ivy Air, flies between three cities: Ithaca (a small town in upstate New
York), Newark (an eyesore in beautiful New Jersey), and Boston (a yuppie town in Massachusetts).
They offer several flights but, for this problem, let us focus on the Friday afternoon flight that departs
from Ithaca, stops in Newark, and continues to Boston. There are three types of passengers:
1. Those traveling from Ithaca to Newark (god only knows why).
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2. Those traveling from Newark to Boston (a very good idea).
3. Those traveling from Ithaca to Boston (it depends on who you know).
The aircraft is a small commuter plane that seats 30 passengers. The airline offers three fare classes:
1. Y class: full coach.
2. B class: nonrefundable.
3. M class: nonrefundable, 3-week advanced purchase.
Ticket prices, which are largely determined by external influences (i.e., competitors), have been set
and advertised as follows:

Ithaca-Newark Newark-Boston Ithaca-Boston
Y 300 160 360
B 220 130 280
M 100 80 140

Based on past experience, demand forecasters at Ivy Air have determined the following upper bounds
on the number of potential customers in each of the 9 possible origin-destination/fare-class combi-
nations:

Ithaca-Newark Newark-Boston Ithaca-Boston
Y 4 8 3
B 8 13 10
M 22 20 18

The goal is to decide how many tickets from each of the 9 origin/destination/fare-class combinations
to sell. The constraints are that the place cannot be overbooked on either the two legs of the flight
and that the number of tickets made available cannot exceed the forecasted maximum demand. The
objective is to maximize the revenue. Formulate this problem as a linear programming problem.

5 (20 pts.) Some duality required.

5.A. (5 pts.) What is the dual of the following LP?

maximize x1 − 2x2

subject to x1 + 2x2 − x3 + x4 ≥ 0
4x1 + 3x2 + 4x3 − 2x4 ≤ 3
− x1 − x2 + 2x3 + x4 = 1
x2, x3 ≥ 0

5.B. (7 pts.) Solve the above LP in detail, providing the state of the LP after each pivot step. What is
the value of the target function of your LP?

5.C. (8 pts.) Solve the dual of the above LP in detail, providing the state of the LP after each pivot step.

6 (20 pts.) Strong duality.
Consider a directed graph G with source vertex s and target vertex t and associated costs c· ≥ 0 on the
edges. Let P denote the set of all the directed (simple) paths from s to t in G.
Consider the following (very large) integer program:

minimize
∑

e∈E(G)
cexe

subject to xe ∈ {0,1} ∀e ∈ E(G)∑
e∈π

xe ≥ 1 ∀π ∈ P.
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6.A. (5 pts.) What does this IP computes?
6.B. (5 pts.) Write down the relaxation of this IP into a linear program.
6.C. (5 pts.) Write down the dual of the LP from (B). What is the interpretation of this new LP? What

is it computing for the graph G (prove your answer)?
6.D. (5 pts.) The strong duality theorem states the following.

Theorem 61.1.1. If the primal LP problem has an optimal solution x∗ =(
x∗1, . . . , x

∗
n

)
then the dual also has an optimal solution, y∗ =

(
y∗1, . . . , y

∗
m

)
, such

that ∑
j

cj x∗j =
∑
i

biy∗i .

In the context of (A)-(C) what result is implied by this theorem if we apply it to the primal LP and
its dual above? (For this, you can assume that the optimal solution to the LP of (B) is integral –
which is not quite true – things are slightly more complicated than that.)

61.1.6. Homework 5

1 (20 pts.) Sorting networks stuff

1.A. (2 pts.) Prove that an n-input sorting network must contain at least one comparator between the
ith and (i + 1)st lines for all i = 1,2, ...,n − 1.

1.B. (10 pts.) Prove that in a sorting network for n inputs, there must be at least Ω(n log n) gates. For
full credit, your answer should be short, and self contained (i.e., no reduction please).
[As an exercise, you should think why your proof does not imply that a regular sorting algorithm
takes Ω(n log n) time in the worst case.]

1.C. (3 pts.)
Suppose that we have 2n elements 〈a1,a2, ...,a2n〉 and wish to partition them into the n smallest
and the n largest. Prove that we can do this in constant additional depth after separately sorting
〈a1,a2, ...,an〉 and 〈an+1,an+2, ...,a2n〉.

1.D. (5 pts.)
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the depth of a merging
network with 2k inputs. Suppose that we have a sequence of n numbers to be sorted and we know
that every number is within k positions of its correct position in the sorted order, which means that
we need to move each number at most (k − 1) positions to sort the inputs. For example, in the
sequence 3 2 1 4 5 8 7 6 9, every number is within 3 positions of its correct position. But in sequence
3 2 1 4 5 9 8 7 6, the number 9 and 6 are outside 3 positions of its correct position.
Show that we can sort the n numbers in depth S(k) + 2M(k). (You need to prove your answer is
correct.)

2 (10 pts.) Computing Polynomials Quickly
In the following, assume that given two polynomials p(x),q(x) of degree at most n, one can compute the
polynomial remainder of p(x) mod q(x) in O(n log n) time. The remainder of r(x) = p(x) mod q(x) is the
unique polynomial of degree smaller than this of q(x), such that p(x) = q(x) ∗ d(x) + r(x), where d(x) is a
polynomial.
Let p(x) =

∑n−1
i=0 aixi be a given polynomial.
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2.A. (2 pts.) Prove that p(x) mod (x − z) = p(z), for all z.
2.B. (2 pts.) We want to evaluate p(·) on the points x0, x1, . . . , xn−1. Let

Pi j(x) =
j∏

k=i

(x − xk)

and
Qi j(x) = p(x) mod Pi j(x).

Observe that the degree of Qi j is at most j − i.
Prove that, for all x, Qkk(x) = p(xk) and Q0,n−1(x) = p(x).

2.C. (4 pts.) Prove that for i ≤ k ≤ j, we have

∀x Qik(x) = Qi j(x) mod Pik(x)

and
∀x Qk j(x) = Qi j(x) mod Pk j(x).

2.D. (4 pts.) Given an O(n log2 n) time algorithm to evaluate p(x0), . . . , p(xn−1). Here x0, . . . , xn−1 are n
given real numbers.

3 (20 pts.) Linear time Union-Find.

3.A. (2 pts.) With path compression and union by rank, during the lifetime of a Union-Find data-
structure, how many elements would have rank equal to blg n − 5c, where there are n elements stored
in the data-structure?

3.B. (2 pts.) Same question, for rank b(lg n)/2c.
3.C. (4 pts.) Prove that in a set of n elements, a sequence of n consecutive Find operations take O(n)

time in total.
3.D. (4 pts.) Write a non-recursive version of Find with path compression.
3.E. (4 pts.) Show that any sequence of m MakeSet, Find, and Union operations, where all the Union

operations appear before any of the Find operations, takes only O(m) time if both path compression
and union by rank are used.

3.F. (4 pts.) What happens in the same situation if only the path compression is used?

4 (10 pts.) Naive.
We wish to compress a sequence of independent, identically distributed random variables X1,X2, . . .. Each
Xj takes on one of n values. The ith value occurs with probability pi, where p1 ≥ p2 ≥ . . . ≥ pn. The
result is compressed as follows. Set

Ti =
i−1∑
j=1

pj,

and let the ith codeword be the first dlg(1/pi)e bits (in the binary representation) of Ti. Start with an
empty string, and consider Xj in order. If Xj takes on the ith value, append the ith codeword to the end
of the string.

4.A. Show that no codeword is the prefix of any other codeword.
4.B. Let Z be the average number of bits appended for each random variable Xj . Show that

H
(
Xj

)
≤ z ≤ H

(
Xj

)
+ 1.
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5 (20 pts.) Codification.
Arithmetic coding is a standard compression method. In the case when the string to be compressed is
a sequence of biased coin flips, it can be described as follows. Suppose that we have a sequence of bits
X = (X1,X2, . . . ,Xn), where each Xi is independently 0 with probability p and 1 with probability 1− p. The
sequences can be ordered lexicographically, so for x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), we say that
x < y if xi = 0 and yi = 1 in the first coordinate i such that xi , yi. If z(x) is the number of zeroes in the
string x, then define p(x) = pz(x)(1 − p)n−z(x) and

q(x) =
∑
y<x

p(y).

5.A. Suppose we are given X = (X1,X2, . . . ,Xn). Explain how to compute q(X) in time O(n) (assume that
any reasonable operation on real numbers takes constant time).

5.B. Argue that the intervals [q(x),q(x) + p(x)) are disjoint subintervals of [0,1).
5.C. Given (A) and (B), the sequence X can be represented by any point in the interval I(X) = [q(X),q(X) + p(X)).

Show that we can choose a codeword in I(X) with dlg(1/p(X))e + 1 binary digits to represent X in
such a way that no codeword is the prefix of any other codeword.

5.D. Given a codeword chosen as in (C), explain how to decompress it to determine the corresponding
sequence (X1,X2, . . . ,Xn).

5.E. (Extra credit.) Using the Chernoff inequality, argue that lg(1/p(X)) is close to nH(p) with high
probability. Thus, this approach yields an effective compression scheme.

6 (20 pts.) Entropy stuff.

6.A. (5 pts.) Maximizing Entropy
Consider an n-sided die, where the ith face comes up with probability pi. Show that the entropy of
a die roll is maximized when each face comes up with equal probability 1/n.

6.B. (5 pts.) Extraction to the limit,
We have shown that we can extract, on average, at least blg mc −1 independent, unbiased bits from a
number chosen uniformly at random from {0, . . . ,m − 1}. It follows that if we have k numbers chosen
independently and uniformly at random from {0, . . . ,m − 1} then we can extract, on average, at least
k blg mc − k independent, unbiased bits from them. Give a better procedure that extracts, on average,
at least k blg mc − 1 independent, unbiased bits from these numbers.

6.C. (2 pts.) Assume you have a (valid) prefix code with n codewords, where the ith codeword is made
out of `i bits. Prove that

n∑
i=1

1
2li
≤ 1.

6.D. (2 pts.) Let S =
∑10

i=1 1/i2. Consider a random variable X such that P[X = i] = 1/(Si2), for i =
1, . . . ,10. Compute H(X).

6.E. (2 pts.) Let S =
∑10

i=1 1/i3. Consider a random variable X such that P[X = i] = 1/(Si3), for i =
1, . . . ,10. Compute H(X).

6.F. (2 pts.) Let S(α) =
∑10

i=1 1/iα, for α > 1. Consider a random variable X such that P[X = i] =
1/(S(α)iα), for i = 1, . . . ,10. Prove that H(X) is either increasing or decreasing as a function of α (you
can assume that α is an integer).
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6.G. (2 pts.) The conditional entropy H(Y |X) is defined by

H(Y |X) =
∑
x,y

P[(X = x) ∩ (Y = y)] lg 1
P[Y = y |X = x]

.

If Z = (X,Y ), prove that

H(Z) = H(X) + H(Y |X).
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61.2. Midterm

1 Coloring graphs. (25 pts.)
For a set S, a balanced coloring φ assigns every element in S a label that is either −1 or +1. For a set
F ⊆ S, its balance is φ(F) =

∑
x∈F φ(x).

Prove that the following problem is NP-Complete:

Balanced coloring of a set system.
Instance: (S,F): S is a set of n elements, and F is a family of subsets of S.
Question: Is there a balanced coloring φ of S, such that for any set F ∈ F, we have;
• If |F | is even then φ(F) = 0.
• If |F | is odd then φ(F) ≥ −1.

(Hint: Think what a balanced coloring means for sets of size two and three.)

2 Independence in a hypergraph. (25 pts.)
Let (V,F) be a set system, with n = |V|, and F is a family (i.e., set) of m subsets of V. Here, every set
F ∈ F is of size exactly three. A set of S ⊆ V is independent, if for all F ∈ F, not all the elements of F
are contained in S (i.e., at most two elements of F are in S).

2.A. (5 pts.) Let S ⊆ V be a random sample generated by picking every element of V into the sample,
independently, with probability 1/t, for some parameter t. A set F ∈ F is bad if all its elements are
in S (i.e., F ⊆ S). What is the probability of a specific set F ∈ F to be bad?

2.B. (5 pts.) Let X be the random variable that is the number of bad sets in F in relation to the random
sample S. What is µ = E[X]?

2.C. (5 pts.) Prove that P[X ≥ 2µ] ≤ 1/2.
2.D. (10 pts.) Consider the algorithm that now fixes S to be an independent set as follows: scan all the

bad sets, and for each such bad set F ∈ F, randomly throw away one element from S such that F is
no longer contained in S.
Verify that the resulting set S′ is an independent set. Provide a lower bound, as good as possible,
as a function of t, on the expected size of S′. What is the choice of t (as a function of n and m)
for which the algorithm (in expectation) outputs the largest possible independent set? What is the
expected size of the independent set in this case? (Bigger is better.)

3 Fire stations. (25 pts.)
Let C = {c1, . . . , cn} be the set of locations of n small towns living on the real axis (it is a straight road in
the middle of nowhere, and these are the locations of the tiny towns starting from one of its endpoints).
Being in America, we would like to build k fire stations to serve their gas needs. Specifically, for a set of
locations Y = {y1, . . . , yk} of the gas stations, the cost of this solution to the ith customer is the squared
distance of ci to its nearest neighbor in Y . Formally, it is price(ci,Y ) = |ci − nn(ci,Y )|2, where nn(ci,Y ) is
the location of the nearest point to ci in Y .
(This might seem strange, but the further the fire station is, the more damage caused by the fire before
help shows up. This pricing model just try to capture this intuition.)
The price of the solution Y is price(C,Y ) =

∑
i price(ci,Y ).
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Given C and k, provide a polynomial time algorithm (in n and k) that computes the price of the cheapest
possible solution (i.e., the price of the optimal solution). What is the running time of your algorithm?
[You can assume in your solution that Y ⊆ C.]

4 Greedy hitting set. (25 pts.)
Consider the following problem:

Hitting Set
Instance: (S,F):

S - a set of n elements
F - a family of m subsets of S.

Question: Compute a set S ⊆ S such that S contains as few elements as possible, and S “hits”
all the sets in F. Formally, for all F ∈ F, we have |S ∩ F | ≥ 1.

The greedy algorithm GreedyHit computes a solution by repeatedly computing the element in S, that is
contained in the largest number of sets of F that are not hit yet, adding it to the current solution, and
repeating this till all the sets of F are hit. Let k be the number of elements in the optimal cover. Prove
the following:

4.A. (5 pts.) In the beginning of the ith iteration, if there are βi sets in F not hit yet, then there is a an
element in S that hits at least βi/k of these sets.

4.B. (10 pts.) Prove that for any i, we have that βi+k ≤ βi/c, where c > 1 is some positive constant
(what is the value of c - provide a reasonable lower bound).

4.C. (8 pts.) Using the above, provide an upper bound (as small as possible) on the number of iterations
performed by GreedyHit before it stops.

4.D. (2 pts.) What is the quality of approximation provided by GreedyHit?
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61.3. Final

1 Strong duality.
(20 pts.)

Consider a directed graph G with source vertex s and target vertex t and associated costs cost(·) ≥ 0
on the edges. Let P denote the set of all the directed (simple) paths from s to t in G.

Consider the following (very large) integer program:

minimize
∑

e∈E(G)
cost(e)xe

subject to xe ∈ {0,1} ∀e ∈ E(G)∑
e∈π

xe ≥ 1 ∀π ∈ P.

1.A. (5 pts.) What does this IP compute?
1.B. (5 pts.) Write down the relaxation of this IP into a linear program.
1.C. (5 pts.) Write down the dual of the LP from (B). What is the interpretation of this new LP? What

is it computing for the graph G (prove your answer)?
1.D. (5 pts.) The strong duality theorem states the following.

Theorem 61.3.1. If the primal LP problem has an optimal solution x∗ =(
x∗1, . . . , x

∗
n

)
then the dual also has an optimal solution, y∗ =

(
y∗1, . . . , y

∗
m

)
, such

that ∑
j

cj x∗j =
∑
i

biy∗i .

In the context of (A)–(C) what result is implied by this theorem if we apply it to the primal LP and
its dual above? (For this, you can assume that the optimal solution to the LP of (B) is integral.)

2 Sequences and consequences.
(20 pts.)

Let X = 〈X1,X2, . . . ,Xn〉 be a sequence of n numbers generated by picking each Xi independently and
uniformly from the range {1, . . . ,n}.

2.A. (5 pts.) What is the entropy of X?
2.B. (5 pts.) Consider the sequence Y = 〈Y1, . . . ,Yn〉 that results from sorting the sequence X in increasing

order. For example, if X = 〈4,1,4,1〉 then Y = 〈1,1,4,4〉.
Describe an encoding scheme that takes the sequence Y and encodes it as a sequence of 2n binary
bits (you will lose points if your scheme uses more bits). Given this encoded sequence of bits, how do
you recover the sequence Y? (Hint: Consider the differences sequence Y1,Y2 −Y1,Y3 −Y2, . . . ,Yn −Yn−1.
And do not use Huffman’s encoding.)
Demonstrate how your encoding scheme works for the sequence Y = 〈1,1,4,6,6,6〉.

2.C. (5 pts.) Consider the set U of all sequences Y that can be generated by the above process (i.e., it is
the set of all monotonically non-decreasing sequences of length n using integer numbers in the range
1 to n). Provide (and prove) an upper bound on the number of elements in U. Your bound should
be as small as possible. (Hint: Use (B).)
(Note, that we are not asking for the exact bound on the size of U, which is doable but harder.)

2.D. (5 pts.) Prove an upper bound (as low as possible) on the entropy of Y. (Proving a lower bound
here seems quite hard and you do not have to do it.)
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3 Find kth smallest number. (20 pts.)
This question asks you to design and analyze a randomized incremental algorithm to select the kth

smallest element from a given set of n elements (from a universe with a linear order).
We assume the numbers are given to you one at a time, and your algorithm has only O(k) space in

its disposal that it can use (in particular, the algorithm can not just read all the input and only then
compute the desired quantity). Specifically, in an incremental algorithm, the input consists of a sequence
of elements x1, x2, . . . , xn. After any prefix x1, . . . , xi−1 has been read, the algorithm has computed the kth
smallest element in x1, . . . , xi−1 (which is undefined if i ≤ k), or if appropriate, some other invariant from
which the kth smallest element could be determined. This invariant is updated as the next element xi is
read.

We assume that before it is given to us, the input sequence has been randomly permuted, with each
permutation equally likely. Note that this case is of interest in analyzing real world situations, where the
input arrives as a stream, and we believe that this stream behaves like a random stream of numbers.

3.A. (5 pts.) Describe an efficient incremental algorithm for computing the kth smallest element (the
more efficient it is, the better).

3.B. (5 pts.) How many comparisons does your algorithm perform in the worst case?
3.C. (10 pts.) Consider the problem of computing the k smallest numbers in a given stream. Describe

an algorithm that outputs these k numbers in sorted order, assuming that k and n are provided
in advance, the algorithm has O(k) space, and the input is provided in a stream that is randomly
permuted.
What is the expected number (over all permutations) of comparisons performed by your algorithm?
For full credit, the expected number of comparisons performed by your algorithm should be as small
as possible. Prove your answer.

4 Stab these rectangles (in the back, if possible).
(20 pts.)

You are given a set R = {R1, . . . ,Rn} of n rectangles in the plane, and a set P = {p1, . . . ,pn} of n points
in the plane. For every point p ∈ P, there is an associated weight wp > 0. Your purpose in this problem is
to select a minimum weight subset X ⊆ P, such that for any rectangle R of R there is at least one point
of X that is contained in R.

Under the assumption that no rectangle of R contains more than k points, describe a polynomial
time approximation algorithm for this problem. What is the approximation quality of your algorithm?
(Naturally, your approximation algorithm should have the best possible approximation quality.) Prove
your stated bound on the quality of approximation.

5 Sorting in Ω(n log n) time.
(20 pts.)

Prove that any sorting algorithm in the comparison model for sorting n numbers takes Ω(n log n) time.

This question would be graded strictly – there is no partial credit for this question.
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Chapter 62

Fall 2015: CS 473 – Theory II

62.1. Homeworks

62.1.1. Homework 0

HW 0 (due Monday, at noon, August 31, 2018)
CS 473: Theory II, Fall 2015

1 (50 pts.) Some probability required.
Consider an undirected graph G = (V,E) with n vertices and m edges, with m ≥ n.

1.A. (10 pts.) Let p = n/(2m). For every vertex v ∈ V, pick it to be in the set X with probability p.
What is the expected number of vertices in X?

1.B. (10 pts.) Let GX be the induced graph by G on X. Formally, V(GX) = X, and an edge uv ∈ E is
in E(GX) if and only if both u and v are in X. Provide and prove an exact bound for the expected
number of edges in GX . (Hint: Linearity of expectations.)

1.C. (10 pts.) Set Y ← X. Next, for every edge xy ∈ E(GX), remove, say, the vertex x from the set Y
(i.e., you remove at most one vertex for every edge of GX). Let Z be the resulting set of vertices.
Prove, that induced graph GZ has no edges.

1.D. (10 pts.) Provide a lower upper bound, as tight as possible, on the expected size of Z.
1.E. (10 pts.) Prove, using the above (and only the above), that in any graph G with n vertices and m

edges, there is always an independent set of size Ω(n2/m). (Proving this argument formally is easy
but surprisingly subtle - be careful.)

2 (50 pts.) My point is shrinking. (50 pts.)

2.A. (40 pts.) Let p = (p1, . . . , pd) be a point in Rd, with all the coordinate being positive integers.
Consider the following fabulous algorithm.
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shrink(p) :
if p1 = p2 = · · · = pd then return p1
f ← 1
for i = 1, . . . , d do

if pi is odd then f ← 0
if f = 1 then

return 2∗shrink
(
(p1/2, p2/2, . . . , pd/2)

)
. (*)

q← p
for i = 1, . . . , d do

if pi is even then
qi ← qi/2
return shrink(q)

α← arg mini qi
β← arg maxi qi
qβ = qβ − qα
return shrink(q) (**)

Here is an example of the execution of play
(
(14,2048,1022)

)
.

(14,2048,1022) →∗ (7,1024,511) → (7,512,511) → (7,256,511) → (7,128,511) → (7,64,511) →
(7,32,511) → (7,16,511) → (7,8,511) → (7,4,511) → (7,2,511) → (7,1,511) →
(7,1,510) → (7,1,255) → (7,1,254) → (7,1,127) → (7,1,126) → (7,1,63) → (7,1,62) →
(7,1,31) → (7,1,30) → (7,1,15) → (7,1,14) → (7,1,7) → (7,1,6) → (7,1,3) → (6,1,3) →

(3,1,3) → (2,1,3) → (1,1,3) → (1,1,2) → (1,1,1) → Output: 2 .

Prove (maybe using induction, but you do not have to) that shrink always terminates.
(Hint: Come up with an argument why in each step some non-trivial progress is being made. As a
warm-up exercise, prove that the algorithm always terminates if the initial input has three numbers.)

2.B. (5 pts.) Assuming that the input p is given using the (standard) binary representation, let N be
the number of bits needed to represent p. Provide a tight bound, to the value of N as a function of
the values of p1, . . . , pd.

2.C. (5 pts.) Provide a bound, as tight as possible, on the running time of shrink as a function of N and
d. (Hint: First analyze the algorithm when (**) never happened. Then, extend your analysis to the
case that (**) does happen.)

62.1.2. Homework 1

HW 1 (due Monday, Noon, September 7, 2018)
CS 473: Theory II, Fall 2015

Collaboration Policy: For this homework, Problems 1–2 can be worked in groups of up to three students.
Submission is online on moodle.
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1 (50 pts.) Reduction, deduction, induction, and abduction.
The following question is long, but not very hard, and is intended to make sure you understand the
following problems, and the basic concepts needed for proving NP-Completeness.
All graphs in the following have n vertices and m edges.
For each of the following problems, you are given an instance of the problem of size n. Imagine that the
answer to this given instance is “yes”, and that you need to convince somebody that indeed the answer
to the given instance is yes. To this end, describe:
(I) An algorithm for solving the given instance (not necessarily efficient). What is the running time of

your algorithm?
(II) The format of the certificate that the instance is correct.
(III) A bound on the length of the certificate (its have to be of polynomial length in the input size).
(IV) An efficient algorithm (as fast as possible [it has to be polynomial time]) for verifying, given the

instance and the proof, that indeed the given instance is indeed yes. What is the running time of
your algorithm?

We solve the first such question as an example.

(EXAMPLE)

Shortest Path
Instance: A weighted undirected graph G, vertices s and t and a threshold w.
Question: Is there a path between s and t in G of length at most w?

Solution:
(I) We seen in class the Dijkstra algorithm for solving the shortest path problem in O(n log n+m) =

O(n2) time. Given the shortest path, we can just compare its price to w, and return yes/no
accordingly.

(II) A “proof” in this case would be a path π in G (i.e., a sequence of at most n vertices) connecting
s to t, such that its total weight is at most w.

(III) The proof here is a list of O(n) vertices, and can be encoded as a list of O(n) integers. As such,
its length is O(n).

(IV) The verification algorithm for the given solution/proof, would verify that all the edges in the path
are indeed in the graph, the path starts at s and ends at t, and that the total weight of the edges
of the path is at most w. The proof has length O(n) in this case, and the verification algorithm
runs in O(n2) time, if we assume the graph is given to us using adjacency lists representation.

(A) (5 pts.)

Semi-Independent Set
Instance: A graph G, integer k
Question: Is there a semi-independent set in G of size k? A set X ⊆ V(G) is semi-
independent if no two vertices of X are connected by an edge, or a path of length 2.

(B) (5 pts.)
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3EdgeColorable
Instance: A graph G.
Question: Is there a coloring of the edges of G using three colors, such that no two edges
of the same color are adjacent?

Subset Sum
Instance: S: Set of positive integers. t: An integer number (target).
Question: Is there a subset X ⊆ S such that

∑
x∈X x = t?

(C) (5 pts.)

3DM
Instance: X,Y, Z sets of n elements, and T a set of triples, such that (a, b, c) ∈ T ⊆ X×Y×Z.
Question: Is there a subset S ⊆ T of n disjoint triples, s.t. every element of X ∪ Y ∪ Z is
covered exactly once.?

(See https://en.wikipedia.org/wiki/3-dimensional_matching#Example for an example.)

(D) (10 pts.)

SET COVER
Instance: (S,F, k):

S: A set of n elements
F: A family of m subsets of S, s.t.

⋃
X∈F X = S.

k: A positive integer.
Question: Are there k sets S1, . . . ,Sk ∈ F that cover S. Formally,

⋃
i Si = S?

(E) (10 pts.)

CYCLE HATER.
Instance: An undirected graph G = (V,E), and an integer k > 0.
Question: Is there a subset X ⊆ V of at least k vertices, such that no cycle in G contains
any vertex of X.

(F) (10 pts.)

Many Meta-Spiders.
Instance: An undirected graph G = (V,E) and an integer k.
Question: Are there k vertex-disjoint meta-spiders that visits all the vertices of G?

A meta-spider in a graph G is defined by two vertices u, v (i.e., the head and tail of the meta-
spider), and a collection Π of simple paths all starting in v and ending at u, that are vertex disjoint
(except for u and v). The vertex set of such a spider is all the vertices that the paths of Π visit
(including, of course, u and v).
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2 (50 pts.) Beware of algorithms carrying oracles.
Consider the following optimization problems, and for each one of them do the following:
(I) (2 pts.) State the natural decision problem corresponding to this optimization problem.
(II) (3 pts.) Either: (A) prove that this decision problem is NP-Complete by showing a reduction

from one of the NP-Complete problems seen in class (if you already seen this problem in class state
“seen in class” and move on with your life). (B) Alternatively, provide an efficient algorithm to solve
this problem.

(III) (5 pts.) (You have to do this part only if you proved that the given problem is NPC, since otherwise
this is not interesting.) Assume that you are given an algorithm that can solve the decision problem
in polynomial time. Show how to solve the original optimization problem using this algorithm in
polynomial time, and output the solution that realizes this optimal solution.

An example for the desired solution and how it should look like is provided in the last page.

(A) (10 pts.)

NO COVER
Instance: Collection C of subsets of a finite set S.
Target: Compute the maximum k, and the sets S1, . . . ,Sk in C, such that S * ∪ki=1Si.

(B) (10 pts.)

TRIPLE HITTING SET
Instance: A ground set U = {1, . . . ,n}, and a set F = {U1, . . . ,Um} of subsets of U.
Target: Find the smallest set S′ ⊆ U, such that S′ hits all the sets of F at least three times.
Specifically, S′ ⊆ U is a triple hitting set if for all Ui ∈ F, we have that S′ contains at
least three elements of Ui.

(Hint: Think about the NPC problem HITTING SET.)
(C) (15 pts.)

Max Inner Spanning Tree
Instance: Graph G = (V,E).
Target: Compute the spanning tree T in G where the number of vertices in T of degree
two or more is maximized.

(Hint: Think about the NPC problem Hamiltonian Path.)
(D) (15 pts.)

Cover by paths (edge disjoint).
Instance: Graph G = (V,E).
Target: Compute the minimum number k of paths (not necessarily simple) π1, . . . , πk that
are edge disjoint, and their union cover all the edges in G.

(Hint: Think about the Eulerian path problem.)

Example for a solution for the second problem
You are given the following optimization problem:
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Max 3SAT
Instance: A boolean 3CNF formula F with n variables and m clauses.
Target: Compute the assigned to the variables of F, such that the number of clauses of F that are
satisfied is maximized.

Solution:
(I) The corresponding decision problem:

SAT Partial
Instance: A boolean CNF formula F with n variables and m clauses, and a parameter k.
Question: Is there an assignment to the variables of F that at least k clauses of F are satisfied
(i.e., evaluate to true).

(II) The decision problem SAT Partial is NPC. Indeed, given a positive instance, a certifier would be the
desired assignment, and this assignment can be verified in polynomial time, as such the problem is in NP.
As for the completeness part, observe that there is an immediate reduction from SAT to this problem.

(III) Let algSAT∂Sol be the given solver for SAT Partial. Let F be the given input for Max SAT (i.e., the
formula with n variables x1, . . . , xn and m clauses).
Let algCount(F ′) be a function that performs a binary search for the largest number k, such that
algSAT∂Sol(F ′, k) returns true. This requires O(log m) calls to algSAT∂Sol, given that F ′ has m clauses.

The new algorithm algMaxSAT (F) is the following:
(i) If F is an empty formula, then return.
(ii) k ← algCount(F),
(iii) Temporarily set x1 = 0, and compute the resulting formula Fx1=0 (all appearances of x1 disappear,

and all clauses that contain x1 are satisfied. Let k0 be the number of clauses satisfied by this.
(iv) r0 ← algCount(Fx1=0).
(v) If k0+r0 = k then print “x1 = 0”, compute the remaining optimal assignment by calling algMaxSAT(Fx1=0),

Return.
(vi) Temporarily set x1 = 1, and compute the resulting formula Fx1=1 (all appearances of x1 disappear,

and all clauses that contain x1 are satisfied.
(vii) print “x1 = 1”
(viii) Call recursively algMaxSAT(Fx1=0), Return.

The correctness of this algorithm is easy to see, so we do not elaborate. As for the running time, observe that
algMaxSAT calls only a single recursive call (i.e., it is a tail recursion, which implies that the main body of this
function is performed n times. Clearly, all other operations in this function, ignoring the time to call algCount
takes O(|F |) time, where |F | is the length of F. algCount calls O(log m) calls to the oracle. As such, overall, the
running time of this algorithm is O(n|F | + Tn log m), where T is the running time of the oracle.

62.1.3. Homework 2

HW 2 (due Monday, 6pm, September 14, 2018)
CS 473: Theory II, Fall 2015

1 (50 pts.) Is your overlap in vain? (Dynamic programming.)
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Let I be a set of n closed intervals on the real line (assume they all have distinct endpoints). A set of
intervals B ⊆ I is admissible if no point on the real line is covered by more than 3 intervals of B. Let
C(B) be the the set of all points on the real line that are covered by two or more intervals of B. The
profit of B, denoted by φ(B), is total length of C(B).
Describe an algorithm, as fast as possible, that outputs the subset of I that maximizes the profit, and is
admissible.
(Hint: Look on the class slides for dynamic programming.)

=⇒ C(X)

Figure 62.1: The set X, with profit | |C(X)| | = 3 + 3 + 5 = 11.

2 (50 pts.) Diagonals and points. (Dynamic programming + DAGs and topological sort.¬)

2.A. (10 pts.) The rank of a vertex v in a DAG G, is the length of the longest path in DAG that starts
in v. Describe a linear time algorithm (in the number of edges and vertices of G) that computes for
all the vertices in G their rank.

2.B. (10 pts.) Prove that if two vertices u, v ∈ V(G) have the same rank (again, G is a DAG), then the
edges (u, v) and (v,u) are not in G.

2.C. (10 pts.) Using (B), prove that in any DAG G with n vertices, for any k, either there is a path of
length k, or there is a set B of bn/kc vertices in G that is independent; that is, there is no edge
between any pair of vertices of B.

2.D. (10 pts.) Consider a set of P of n points in the plane. The points of P are in general position –
no two points have the same x or y coordinates. Consider a sequence S of points p1,p2, . . . ,pk of P,
where pi = (xi, yi), for i = 1, . . . , k. The sequence S is diagonal, if either
• for all i = 1, . . . , k − 1, we have xi < xi+1 and yi < yi+1, or
• for all i = 1, . . . , k − 1, we have xi < xi+1 and yi > yi+1.
Prove using (C) that there is always a diagonal of length

⌊√
n
⌋
in P. Describe an algorithm, as fast

as possible, that computes the longest diagonal in P.
2.E. (10 pts.) Using the algorithm of (D), describe a polynomial time algorithm that decomposes P into

a set of O(
√

n) disjoint diagonals. Prove the correctness of your algorithm.

62.1.4. Homework 3

HW 3 (due Monday, 6pm, September 21, 2018)
CS 473: Theory II, Fall 2015

1 (50 pts.) Packing heavy snakes on a tree.
Let G = (V,E) be a given rooted tree with n vertices. You are given also t snakes s1, . . . , st , where a snake
is just a simple path in the tree (with fixed vertices – a snake has only a single location where it can be

¬If you do not know what topological sort is, and how to compute it in linear time, then you need read on this stuff – you are
suppose to know this, and you might be tested on this stuff.
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placed). Every snake si has associated weight wi, and your purpose is to pick the maximum weight subset
S of snakes (of the given snakes) such that (i) the weight of the set is maximized, and (ii) no two snakes
of S share a vertex. We refer to such a set S as a packing of snakes.
Describe an efficient algorithm (i.e., provide pseudo-code, etc), as fast as possible, for computing the
maximum weight snake packing. (You can not assume G is a binary tree - a node might have arbitrary
number of children.) What is the running time of your algorithm as function of n?
For example, the following shows a tree with a possible snake packing.

(A) The tree (B) Input snakes (C) Possible solution.

2 (50 pts.) Coloring silly graphs.
A graph G with V(G) = {1, . . . ,n} is k-silly, if for every edge i j ∈ E(G), we have that |i − j | ≤ k (note, that
it is not true that if |i − j | ≤ k then i j must be an edge in the graph!). Here are a few examples of a 3-silly
graph:

1 2

3

4

6

5
7 9

8

1

2

4

3

5

6

7

8 9

1

2

3

4 5 6

7

9

8

Note, that only the last graph in the above example is 3-colorable.
Consider the decision problem 3COLORSillyGraph of deciding if a given k-silly graphs is 3-colorable.

2.A. (20 pts.) Prove that 3COLORSillyGraph is NP-Complete.
2.B. (30 pts.) Provide an algorithm, as fast as possible, for solving 3COLORSillyGraph. What is the

dependency of the running time of your algorithm on the parameter k?
In particular, for credit, your solution for this problem should be have polynomial time for k which
is a constant. For full credit, the running time of your algorithm should be O( f (k)n), where f (k) is
some function of k.
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Hint: (A) Think about the vertices as ordered from left to right as above. Start with k = 2. Then,
solve the problem for k = 3,4, . . .. Hopefully, by the time you hit k = 5 you would be able to describe
an algorithm for the general case.

62.1.5. Homework 4

HW 4 (due Monday, 6pm, October 5, 2018)
CS 473: Theory II, Fall 2015

1 (30 pts.) TSP for k-silly graphs.
You are given the a graph G over the set of vertex V = JnK, with the edge i j having weight w(i, j) > 0, for
all i < j.
Given a parameter k > 0, describe an algorithm, as fast as possible, that computes the exact shortest
TSP in G, assuming that the TSP can use an edge i j only if |i − j | ≤ k. (For a fixed k the running time of
your algorithm should be polynomial.)
[The recursive subproblem here is somewhat messy, but should be doable after the last homework. Figure
it out, and the rest should be easy.]

2 (70 pts.) Packing things.

2.A. (10 pts.) Let I be a given set of n closed intervals on the real line, and let k > 0 be a parameter. A
k-packing of I is a set of intervals J ⊆ I, such that no point is contained in more than k intervals
of J .
Describe an algorithm, as efficient as possible, that computes the largest subset of I that is a k-
packing. (For full credit your algorithm has to run in polynomial time in k and n.)
[Hint: Use a greedy algorithm and prove that it indeed outputs the optimal solution in this case. If
you are unable to do the proof (which is a bit subtle) – no worries, you can still use the algorithm
as a black box in the later parts of this problem.]

2.B. (30 pts.) Let R be a given set of axis-parallel rectangles in the plane, where the ith rectangle is of
the form [ai, bi] × [ci, di].
A k-packing is a set of rectangles Q ⊆ R, such that no point is contained in more than k rectangles
of Q.
Describe an approximation algorithm, as efficient as possible, that outputs a k-packing of R of size
≥ opt/t, where t is as small as possible and opt is the size of the largest k-packing of R. What is the
value of t of your algorithm in the worst case? What is the running time of your algorithm?
Provide a self contained proof of the approximation quality of your algorithm.
[Hint: See lecture slides.]

2.C. (30 pts.) Let B be a given set of axis-parallel boxes in three dimensions, where the ith box is of the
form [ai, bi] × [ci, di] × [ei, fi].
A k-packing is a set of boxes C ⊆ B, such that no point is contained in more than k boxes of C.
Describe an approximation algorithm, as efficient as possible, that outputs a k-packing of B of size
≥ opt/t, where t is as small as possible and opt is the size of the maximum k-packing of B. What is
the value of t of your algorithm in the worst case? What is the running time of your algorithm?
Provide a self contained proof of the approximation quality of your algorithm.
[Hint: Use (B).]
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62.1.6. Homework 5

HW 5 (due Monday, 6pm, October 12, 2018)

Collaboration Policy: This homework can be worked in groups of up to three students.
Submission is online on moodle.

1 (40 pts.) Collapse and shrink.

1.A. (5 pts.) You are given an undirected graph with n vertices and m edges, with positive weights on
the edges (for simplicity, you can assume all the weights are distinct). Consider the procedure that
given a weight x, outputs the graph G<x that results from removing all the edges in G that have
weight larger than (or equal to) x. Describe (shortly – no need for pseudo code) an algorithm for
computing G<x. How fast is your algorithm?
The graph G<x might not be connected – how would you compute its connected components?

1.B. (5 pts.) Consider the procedure that receives as input an undirected weighted graph G, and a
partition V of the vertices of G into k disjoint sets V1, . . . ,Vk . The meta graph G(V) of G induces
by V is a graph having k vertices, v1, . . . , vk , where vivj has an edge if and only if, there is an edge
between some vertex of Vi and some vertex of Vj . The weight of such an edge vivj is the minimum
weight of any edge between vertices in Vi and vertices in Vj .
Describe an algorithm, as fast as possible, for computing the meta-graph G(V). You are not allowed
to use hashing for this question, but you can use that RadixSort works in linear time (see wikipedia
if you do not know RadixSort). How fast is your algorithm?

1.C. (10 pts.) Consider the randomized algorithm that starts with a graph G with m edges and n vertices.
Initially it sets G0 = G. In the ith iteration, it checks if Gi−1 is a single edge. If so, it stops and outputs
the weight of this edge. Otherwise, it randomly choose an edge ei ∈ E(Gi−1). It then computes the
graph Hi = (Gi−1)<w(ei ), as described above.
• If the graph Hi is connected then it sets Gi = Hi and continues to the next iteration.
• Otherwise, Hi is not connected, then it computes the connected components of Hi, and their

partition Vi of the vertices of Gi−1 (the vertices of each connected component are a set in this
partition). Next, it sets Gi to be the meta-graph Gi−1(Vi).

Let mi be the number of edges of the graph Gi. Prove that if you know the value of mi−1, then
E[mi] ≤ (7/8)mi−1 (a better constant is probably true). Conclude that E[mi] ≤ (7/8)im.

1.D. (15 pts.) What is the expected running time of the algorithm describe above? Prove your answer.
(The better your bound is, the better it is.)

1.E. (5 pts.) What does the above algorithm computes, as far as the original graph G is concerned?

2 (30 pts.) Majority tree
Consider a uniform rooted tree of height h (every leaf is at distance h from the root). The root, as well
as any internal node, has 3 children. Each leaf has a boolean value associated with it. Each internal node
returns the value returned by the majority of its children. The evaluation problem consists of determining
the value of the root; at each step, an algorithm can choose one leaf whose value it wishes to read.

2.A. (15 pts.) Show that for any deterministic algorithm, there is an instance (a set of boolean values
for the leaves) that forces it to read all n = 3h leaves. (hint: Consider an adversary argument, where
you provide the algorithm with the minimal amount of information as it request bits from you. In
particular, one can devise such an adversary algorithm.).
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2.B. (10 pts.) Consider the recursive randomized algorithm that evaluates two subtrees of the root chosen
at random. If the values returned disagree, it proceeds to evaluate the third sub-tree. If they agree,
it returns the value they agree on.
Write an explicit exact formula for the expected number of leaves being read, for a tree of height
h = 1, and height h = 2.

2.C. (5 pts.) Using (B), prove that the expected number of leaves read by the algorithm on any instance
is at most n0.9.

3 (30 pts.) Attack of the edge killers.
Let Th denote the full balanced binary tree with 2h leaves. Due to eddies in the space-time continuum,
every edge get deleted with probability half (independently) – let T′

h
= leftover(Th) denote the remaining

tree (rooted at the original root). The remaining tree T′
h
is usable, if there is a path from the root of the

tree to one of the original leaves of the tree.

3.A. (10 pts.) Let ρ1 be the probability that leftover(T1) is a usable. What is the value of ρ1? Prove
your answer.

3.B. (10 pts.) Let ρh be the probability that a tree T′
h
is usable. Give a recursive formula for the value

of ρh as a function of ρh−1.
3.C. (10 pts.) Prove, by induction, that ρh ≥ 1/(h + 1).

62.1.7. Homework 6

HW 6 (due Monday, 6pm, October 19, 2018)
CS 473: Theory II, Fall 2015

Collaboration Policy: This homework can be worked in groups of up to three students.
Submission is online on moodle.

1 (50 pts.) Collect the min-cut.
Consider the algorithm that given a graph G = (V,E) with n vertices and m edges, starts with the empty
forest H0 = (V,∅) where every vertex is a single node tree.
In the ith epoch, the algorithm picks an edge e randomly and uniformly from the original set of edges E,
and check:
• If the vertices of e belong to different trees of the forest Hi−1, then it is useful. If so the algorithm

adds e to this graph, to form the new forest Hi, and continues to the next epoch.
• If the edge connects two vertices that are already in the same tree of Hi−1, then this edge is useless.

The algorithm continues in this fashion, till it computes Hn−2, which has exactly two trees.

1.A. (5 pts.) Let Hi−1 be as above. Assume that the minimum cut in G is of size k, and Hi−1 does not
contain any edges of this min-cut. Let Ui be the set of edges of G that are useful as far as Hi−1 is
concerned. Prove, a lower bound, as large as possible, on Ui as a function of i, k,n and m.

1.B. (5 pts.) Provide a lower bound, as large as possible, on the probability that a random edge of G is
useful for Hi−1. (Use (A).)

438



1.C. (10 pts.) Let Ni be the number of edges sampled in the ith epoch till a useful edge for Hi−1 is found.
Prove an upper bound, as small as possible, on E[Ni]. (Use (B).)

1.D. (10 pts.) Consider the forest Hn−2. Prove a lower bound as large as possible, on the probability
that Hn−2 (with its two trees), represents a min-cut of G. Provide a full and self contained proof of
this lower bound (i.e., you can not refer to the class notes/web/the universe for a proof of this).

1.E. (10 pts.) The expected number of edges inspected by the above algorithm to construct Hn−2 is

α = E[N1 + N2 + . . . + Nn−2] .

Provide and prove an upper bound, as small as possible, on the value of α (as a function of k,n and
m.

1.F. (10 pts.) (Hard.) Provide a randomized algorithm, as fast as possible, that computes the connected
components of Hn−2 (and its associated vertex cut [i.e., it does not compute the edges in the cut
themselves]). Prove a bound on the expected running time of your algorithm.
For full credit, the expected running time of your algorithm should be O(α), and should not use
union-find and hashing¬. A slower algorithm would get half the points (and then this part is not
that hard).
(Computing the edges of the cut themselves, onces the vertex cut is known, can be easily done in
O(m) time.)
Note: You do not know what the value of k is!

2 (50 pts.) Disjoint paths.
Let G = (V,E) be a directed graph, with n vertices and m edges. Let s and t be two vertices in G. For

the sake of simplicity, assume that there are no u, v such that (u, v) and (v,u) are in G.
A set of paths P in G is edge disjoint if no two paths in P share an edge.

2.A. (10 pts.) Let P be a set of k edge disjoint paths from s to t. Let π be a path from s to t (which is
not in P). Prove or disprove: There is a set P ′ of k edge disjoint paths from s to t in G that contains
π as one of the paths.

2.B. (10 pts.) Let P be a given set of edge disjoint paths from s to t. Let E(P) be the set of edges used
by the paths of P. The leftover graph GP is the graph where (u, v) ∈ E(GP) if (u, v) ∈ E(G) \ E(P)
or (v,u) ∈ E(P) (note that the edge (u, v) is the reverse edge of (v,u)).

Describe how to compute the leftover graph in O(m) time (no hashing please).
2.C. (5 pts.) Let P be a set of k edge disjoint paths from s to t. Let π be a path in GP from s to t.

Prove that there is a set of P ′ of k + 1 edge disjoint paths from s to t in G. In particular, show how
to compute P ′ given P and π in O(m) time. (For credit, your solution should be self contained and
not use min-cut max-flow theorem or network flow algorithms.)

2.D. (5 pts.) The natural greedy algorithm for computing the maximum number of edge disjoint paths
in G, works by starting from an empty set of paths P0, then in the ith iteration, it finds a path πi
in the leftover graph GPi−1 from s to t, and then compute a set of i edge-disjoint paths Pi, by using
the algorithm of (C) on Pi−1 and πi.

Assume the algorithm stops in the (k + 1)th iteration, because there is not path from s to t in
GPk . We want to prove that the k edge-disjoint paths computed (i.e., Pk) is optimal, in the sense
that there is no larger set of edge-disjoint paths from s to t in G.

To this end, let S be the set of vertices that are reachable from s in GPk . Let T = V(G)\S (observe
that t ∈ T). Prove, that every path in Pk contains exactly one edge of

(S,T) = {(u, v) ∈ E(G) | u ∈ S, v ∈ T} .

¬Note that I see how hashing helps here.
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(Hint: Prove first that no path of Pk can use an edge of the “reverse” set (T,S).)
2.E. (5 pts.) Consider the setting of (D). Prove that k = |Pk | = |(S,T)|.
2.F. (5 pts.) Consider any set X of edge-disjoint paths in G from s to t. Prove that any path π of X

must contain at least one edge of (S,T).
2.G. (5 pts.) Prove that the greedy algorithm described in (D) indeed computes the largest possible set

of edge-disjoint paths from s to t in G.
2.H. (5 pts.) What is the running time of the algorithm in (D), if there are at most k edge-disjoint path

in G?

62.1.8. Homework 7

HW 7 (due Monday, 6pm, October 26, 2018)
CS 473: Theory II, Fall 2015

1 (100 pts.) Much matching about nothing.

1.A. (20 pts.) Read about Hall’s theorem and its proof (for example, on wikipedia). A graph is regular
if every vertex has the same number of edges incident to it (and this number is non-zero). Prove that
every regular bipartite graph has a perfect matching using Hall’s theorem. A matching is perfect if
all vertices are incident on a matching edge.

1.B. (20 pts.) Prove that the edges of a k-regular bipartite graph (i.e., a graph where every vertex has
degree k) can be colored using k colors, such that no two edges of the same color share a vertex.
Describe an efficient algorithm for computing this coloring.

1.C. (20 pts.) Given a bipartite graph G = (V,E), describe an algorithm, as efficient as possible, for
computing a k-regular bipartite graph that is contained in G, and uses all the vertices of G. Naturally,
the algorithm has to return the largest k for which such a graph exists, together with this regular
subgraph. Prove the correctness of your algorithm.
(Hint: Modify the simple algorithm seen in class for computing maximum matching in bipartite
graphs. Other natural algorithms do not seem to work for this problem.)

1.D. (20 pts.) You are given an algorithm alg that in T(n,m) time, can return the largest cardinality
matching in a graph with n vertices and m edges. You are given a complete graph G on n vertices,
with distinct weights on the edges. Describe an algorithm, as fast as possible, that uses (and does
relatively little else) alg, and computes the minimum weight w, such that if we remove from G all
the edges heavier than w, then the remaining graph G≤w contains a perfect matching.

1.E. (20 pts.) You are given a set of n clients, and m shops. A specific shop i can serve at most ci clients.
Every client, has the set of shops they are willing to shop in. Describe an algorithm, as efficient as
possible, that decides for a client which shop to use, such that no shop exceeds its capacity [if such
a solution exists, naturally]. (You are not allowed to use hashing or network flow in solving this
problem.
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62.1.9. Homework 8

HW 8 (due Monday, 6pm, November 9, 2018)
CS 473: Theory II, Fall 2015

1 (25 pts.) LP I
Let L be a linear program given in slack form, with n nonbasic variables N, and m basic variables B.
Let N ′ and B′ be a different partition of N ∪ B, such that |N ′ ∪ B′ | = |N ∪ B|. Show a polynomial time
algorithm that computes an equivalent slack form that has N ′ as the nonbasic variables and B′ as the
basic variables. How fast is your algorithm?

2 (25 pts.) Multi mini flowy.
In theminimum-cost multicommodity-flow problem, we are given a directed graph G = (V,E), in which each
edge (u, v) ∈ E has a nonnegative capacity c(u, v) ≥ 0 and a cost α(u, v). As in the multicommodity-flow
problem (Chapter 29.2, CLRS), we are given k different commodities, K1, K2, . . . , Kk , where commodity
i is specified by the triple Ki = (si, ti, di). Here si is the source of commodity i, ti is the sink of commodity
i, and di is the demand, which is the desired flow value for commodity i from si to ti. We define a flow for
commodity i, denoted by fi, (so that fi(u, v) is the flow of commodity i from vertex u to vertex v) to be a
real-valued function that satisfies the flow-conservation, skew-symmetry, and capacity constraints. We now
define f (u, v), the aggregate flow to be sum of the various commodity flows, so that f (u, v) =

∑k
i=1 fi(u, v).

The aggregate flow on edge (u, v) must be no more than the capacity of edge (u, v).
The cost of a flow is

∑
u,v∈V f (u, v)α(u, v), and the goal is to find the feasible flow of minimum cost. Express

this problem as a linear program.

3 (25 pts.) Some calculations required,
Provide detailed solutions for the following problems, showing each pivoting stage separately.
maximize 6x1 + 8x2 + 5x3 + 9x4
subject to
2x1 + x2 + x3 + 3x4 ≤ 5
x1 + 3x2 + x3 + 2x4 ≤ 3
x1, x2, x3, x4 ≥ 0.

4 (25 pts.) Some calculations required,
minimize 4x12 + 6x13 + 9x14 + 2x23 + 7x24 + 3x34
subject to
x12 + x13 + x14 ≥ 1
−x12 + x23 + x24 = 0
−x13 − x23 + x34 = 0
x14 + 3x24 + x34 ≤ 1
x12, x13, . . . , x34 ≥ 0.

62.1.10. Homework 9

HW 9 (due Monday, 6pm, November 16, 2018)
CS 473: Theory II, Fall 2015
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1 (50 pts.) Many cover problem.
Let (X,F) be a set system with n = |X | elements, and m = |F | sets. Furthermore, for every elements u ∈ X,
there is a positive integer cu. In the ManyCover problem, you need to find a minimum number of sets
K ⊆ F, such that every element of u ∈ X is covered at least cu times. (You are not allowed to use the
same set more than once in the cover K.)

1.A. (10 pts.) Let y1, . . . , yn be numbers in [0,1], such that t =
∑n

i=1 yi ≥ 3. Let Yi be a random variable
that is one with probability yi (and zero otherwise), for all i. Prove, that P[t/2 ≤

∑
i Yi ≤ 3t/2] ≥

1 − f (t), where f (t) is a function that goes to zero as t increases (the smaller the f (t) is, the better
your solution is).

1.B. (20 pts.) Describe in detail a polynomial approximation algorithms that provides a O(log n) approxi-
mation to the optimal solution for this problem (as usual, you can assume that solving a polynomially
sized LP takes polynomial time). (Hint: See the algorithm provided in class for set Cover.)

1.C. (20 pts.) Provide a polynomial time algorithm, that provides a O(1) approximation to the problem,
if we know that cu ≥ log n, for all u ∈ X.

2 (50 pts.) Independent set via interference.
Let G = (V,E) be a graph with n vertices, and m edges. Assume we have a feasible solution to the natural
independent set for G:

max
∑
v∈V

xv

s.t. xv + xu ≤ 1 ∀uv ∈ E
xu ≥ 0 ∀u ∈ V.

This solution assigns the value x̂v to xv, for all v. Furthermore, assume that α =
∑

v∈V x̂v and, importantly,∑
uv∈E x̂u x̂v ≤ α/8.

2.A. (10 pts.) Let S be a subset of the vertices of the graph being generated by picking (independently)
each vertex u ∈ V to be in S with probability x̂u.
Prove, that with probability at least 9/10, we have |S | ≥ α/2 (you can safely assume that α ≥ n0,
where n0 is a sufficiently large constant).

2.B. (20 pts.) Let GS be the induced subgraph of G on S. Prove that P
[
|E(GS)| ≥ α/4

]
≤ 1/2.

2.C. (20 pts.) Present an algorithm, as fast as possible, that outputs an independent set in G of size at
least cα, where c > 0 is some fixed constant. What is the running time of your algorithm? What is
the value of c for your algorithm?

62.1.11. Homework 10

HW 10 (due Monday, 6pm, November 30, 2018)
CS 473: Theory II, Fall 2015

1 (50 pts.) Adding numbers.
In the following we work with multisets. For an element x in a multiset X, we denote by #X(x) its

multiplicity in X. For a multiset S, we denote by set(S) the set of distinct elements appearing in S. The
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size of a multiset S is the number of distinct elements in S (i.e., |set(S)|. The cardinality of S, denoted
by card(S) =

∑
s∈S #S(s).

¬

We use Jx : yK = {x, x + 1, . . . , y} to denote the set of integers in the interval [x, y]. Similarly, JUK =
J1 : UK.

Abusing notation, we denote by S∩Jx : yK the multiset resulting from removing from S all the elements
that are outside Jx : yK. We denote that a multiset S has all its elements in the interval Jx : yK by S ⊆ Jx : yK.

For two multisets X and Y , we denote by X ⊕ Y the multiset with the ground set being

{x + y | x ∈ X and y ∈ Y } ,

where the multiplicity of x + y is the number of different ways to get this sum (in particular, x ∈ X and
y ∈ Y contribute the element x + y with multiplicity #X(x) ·#Y (y) to the resulting multiset).

For a multiset S of integers, let ΣS =
∑
α∈S #S(α) ∗ α denote the total sum of the elements of S. The

multiset of all subset sums is ∑
(S) = set

(
{ΣT | T ⊆ S}

)
.

Here, we would be interested in the subset sums up to U; that is
∑
≤U(S) =

∑
(S) ∩ J0 : UK. Formally, we

want to compute set
(∑
≤U(S)

)
.

1.A. (5 pts.) Let S ⊆ JuK be a multiset of cardinality n. Describe an algorithm that computes, in O(nU)
time, the set of subset sums up to U; that is, set

(∑
≤U(S)

)
.

1.B. (5 pts.) Given two sets S,T ⊆ JUK, present an algorithm that computes S ⊕ T in O(U logU) time.
1.C. (5 pts.) Given a multiset S of non-negative integers of cardinality n, present an algorithm that, in

O(n log n) time, computes a multiset T , such that set(
∑
(S)) = set(

∑
(T)), and no number appears in T

more than twice.
1.D. (5 pts.) Given a multiset X ⊆ J∆K, of cardinality n, show how to compute the

∑
(X) in time

O(n∆ log(n∆) log n).
1.E. (5 pts.) Given a multiset S ⊆ Jx : 2xK of cardinality n′, which is at most bU/xc, show how to compute

all possible subset sums of S, in time O(U logU log n′).
1.F. (5 pts.) Given a multiset S ⊆ Jx : 2xK of cardinality n ≥ U/x, show how to compute all possible

subset sums of S that are at most U (i.e.,
∑
≤U(S)). The running time of your algorithm should be

O(nx log2 U). (Hint: Use 1.E..)
1.G. (10 pts.) [Hard.] Given a set S ⊆ Jx : x + `K of cardinality n, show an algorithm that compute all

possible subset sums of multisets of cardinality at most t in S, in time O(n`t log(n`t) log n).
1.H. (10 pts.) [Hard.] Given a multiset S ⊆ JUK of cardinality n, show how to compute

∑
≤U(S) in

O(U
√

n log2 U) time. For credit, your solution has to be self contained, and use the above.
(Hint: Partition the set S into intervals Ii = Jai : biK, for i = 1, . . . t (for some t), and compute the
subset sums of the sets Si = S ∩ Jai : biK using the above. Then combine them into subsets sums of
all the numbers of S, again using the above. Observe that for Si we care only about subsets sums
involving at most U/ai terms (why?).)

In the above, you can assume that n < U.

2 (25 pts.) Sorting networks stuff
¬For more information about multisets, see wikipedia.
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2.A. (5 pts.) Prove that an n-input sorting network must contain at least one comparator between the
ith and (i + 1)st lines for all i = 1,2, ...,n − 1.

2.B. (10 pts.) Prove that in a sorting network for n inputs, there must be at least Ω(n log n) gates. For
full credit, your answer should be short, and self contained (i.e., no reduction please).
[As an exercise, you should think why your proof does not imply that a regular sorting algorithm
takes Ω(n log n) time in the worst case.]

2.C. (5 pts.)
Suppose that we have 2n elements 〈a1,a2, ...,a2n〉 and wish to partition them into the n smallest
and the n largest. Prove that we can do this in constant additional depth after separately sorting
〈a1,a2, ...,an〉 and 〈an+1,an+2, ...,a2n〉.

2.D. (5 pts.)
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be the depth of a merging
network with 2k inputs. Suppose that we have a sequence of n numbers to be sorted and we know
that every number is within k positions of its correct position in the sorted order, which means that
we need to move each number at most (k − 1) positions to sort the inputs. For example, in the
sequence 3 2 1 4 5 8 7 6 9, every number is within 3 positions of its correct position. But in sequence
3 2 1 4 5 9 8 7 6, the number 9 and 6 are outside 3 positions of its correct position.
Show that we can sort the n numbers in depth S(k) + 2M(k). (You need to prove your answer is
correct.)

3 (25 pts.) Computing Polynomials Quickly
In the following, assume that given two polynomials p(x),q(x) of degree at most n, one can compute

the polynomial remainder of p(x) mod q(x) in O(n log n) time. The remainder of r(x) = p(x) mod q(x) is
the unique polynomial of degree smaller than this of q(x), such that p(x) = q(x) ∗ d(x) + r(x), where d(x)
is a polynomial.

Let p(x) =
∑n−1

i=0 aixi be a given polynomial.

3.A. (6 pts.) Prove that p(x) mod (x − z) = p(z), for all z.
3.B. (6 pts.) We want to evaluate p(·) on the points x0, x1, . . . , xn−1. Let

Pi j(x) =
j∏

k=i

(x − xk)

and
Qi j(x) = p(x) mod Pi j(x).

Observe that the degree of Qi j is at most j − i.
Prove that, for all x, Qkk(x) = p(xk) and Q0,n−1(x) = p(x).

3.C. (6 pts.) Prove that for i ≤ k ≤ j, we have

∀x Qik(x) = Qi j(x) mod Pik(x)

and
∀x Qk j(x) = Qi j(x) mod Pk j(x).

3.D. (7 pts.) Given an O(n log2 n) time algorithm to evaluate p(x0), . . . , p(xn−1). Here x0, . . . , xn−1 are n
given real numbers.
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62.1.12. Homework 11

HW 11 (due Monday, 6pm, December 7, 2018)
CS 473: Theory II, Fall 2015

Collaboration Policy: For this homework, every student should do this homework on their own. Submis-
sions should be done individually.

We will not provide a solution for this homework. Also, we do not provide the latex file for this
homework.

1 (10 pts.) Multiple choice
For each of the questions below choose the most appropriate answer. No IDK credit for this question!

1.A. Given a graph G. Deciding if there is an independent set X in G, such that G \ X (i.e., the graph G
after we remove the vertices of X from it) is bipartite can be solved in polynomial time.
False: True: Answer depends on whether P = NP:

1.B. Consider any two problems X and Y both of them in NPC. There always exists a polynomial time
reduction from X to Y .
False: True: Answer depends on whether P = NP:

1.C. Given a graph represented using adjacency lists, it can be converted into matrix representation in
linear time in the size of the graph (i.e., linear in the number of vertices and edges of the graph).
False: True: Answer depends on whether P = NP:

1.D. Given a 2SAT formula F, there is always an assignment to its variables that satisfies at least (7/8)m
of its clauses. False: True: Answer depends on whether P = NP:

1.E. Given a graph G, deciding if contains a clique made out of 165 vertices is NP-Complete. False:
True: Answer depends on whether P = NP:

1.F. Given a directed graph G with positive weights on the edges, and a number k, finding if there is
simple path in G from s to t (two given vertices of G) with weight ≥ k, can be done in polynomial
time.
False: True: Answer depends on whether P = NP:

1.G. Given a directed graph G with (positive or negative) weights on its edges, computing the shortest
walk from s to t in G can be done in polynomial time. False: True: Answer depends
on whether P = NP:

2 (10 pts.) Short Questions.

2.A. (8 pts.) Give a tight asymptotic bound for each of the following recurrences.
2.A.i. (4 pts.) A(n) = A(n − 3 dlog ne) + A(dlog ne) + log n, for n > 2

and A(1) = A(2) = 1.
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2.A.ii. (4 pts.) B(n) = 12B(bn/4c) + B(bn/2c) + n2, for n > 10 and B(i) = 1 for 1 ≤ i ≤ 10.
2.B. (8 pts.) Convert the following boolean circuit (i.e., an instance of Circuit-SAT) into a CNF formula

(i.e., an instance of SAT) such that the resulting formula is satisfiable if and only if the circuit sat
instance is satisfiable. Use xa, xb, xc, xd, . . . as the variable names for the corresponding gates in the

drawing. (You may need additional variables.) Note, that a node
∧, g

in the figure below denotes
an and gate, where g is its label.

?,a ?,b ?,c ?,d ?,eInputs:

Output: ∨, k

¬, i ∧, j

∨, f ∧, g ∨, h

3 (20 pts.) Balancing vampires.
Sadly, there are n vampires p1, . . . , pn in Champaign. The ith vampire has a score wi ≥ 0 describing how
well it can climb mountains. You want to divide the vampires into two teams, and you want the division
of teams to be as fair as possible. The score of a team is the sum of the scores of all the vampires in that
team. We want to minimize the differences of the scores of the two teams. Assume that for all i, wi ≤ W .

3.A. (10 pts.) Given integers α, β ≥ 0, and Tα,Tβ, such that α + β = n, describe an algorithm, as fast
as possible, to compute the partition into two teams, such that the first team has α players of total
score Tα, and the second team has β players with total score Tβ. What is the running time of your
algorithm? (For any credit, it has to be polynomial in n and W .)
(To simplify things, you can solve the decision version problem first, and describe shortly how to
modify it to yield the desired partition.)

3.B. (5 pts.) Describe an algorithm, as fast as possible, to compute the scores of the two teams
in an optimal division that is as balanced as possible, when requiring that the two teams have
exactly the same number of players (assume n is even). What is the running time of your algorithm?

3.C. (5 pts.) State formally the decision version of the problem in (B), and prove that it is NP-
Complete. (There are several possible solutions for this part – pick the one you find most natural.
Note, that the teams must have the same number of players.)

4 (12 pts.) MAX Cut and MAX 2SAT.
The Max CUT problem is the following:

MAX Cut
Instance: Undirected graph G with n vertices and m edges, and an integer k.
Question: Is there an undirected cut in G that cuts at least k edges?
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MAX 2SAT
Instance: A 2CNF formula F, and an integer k.
Question: Is there a truth assignment in F that satisfies at least k clauses.

You are given that MAX Cut is NP-Complete. Prove that MAX 2SAT is NP-Complete by a reduction
to/from MAX Cut (be sure to do the reduction in the right direction! [and please do not ask us what is
the right direction – this is part of the problem]).
Hint: Think about how to encode a cut, by associating a boolean variable with each vertex of the graph.
It might be a good idea to verify your answer by considering a graph with two vertices and a single edge
between them and checking all possibilities for this case.

5 (10 pts.) Billboards are forever.
Consider a stretch of Interstate-57 that is m miles long. We are given an ordered list of mile markers,
x1, x2, . . . , xn in the range 0 to m, at each of which we are allowed to construct billboards (suppose they are
given as an array X[1 . . . n]). Suppose we can construct billboards for free, and that we are given an array
R[1 . . . n], where R[i] is the revenue we would receive by constructing a billboard at location X[i]. Given
that state law requires billboards to be at least 5 miles apart, describe an algorithm, as fast as possible,
to compute the maximum revenue we can acquire by constructing billboards.
What is the running time of your algorithm? (For full credit, your algorithm has to be as fast as possible.)

6 (10 pts.) Best edge ever.
You are given a directed graph G with n vertices and m edges. For every edge e ∈ E(G), there is an
associated weight w(e) ∈ R. For a path (not necessarily simple) π in G, its quality is W(π) = maxe∈π w(e).
We are interested in computing the highest quality walk in G between two given vertices (say s and t).
Either prove that computing such a walk is NP-Hard, or alternatively, provide an algorithm (and prove
its correctness) for this problem (the algorithm has to be as fast as possible – what is the running time of
your algorithm?).

7 (10 pts.) Dominate this.
You are given a set of intervals I = {I1, . . . , In} on the real line (assume all with distinct endpoints) – they
are given in arbitrary order (i.e., you can not assume anything on the ordering). Consider the problem of
finding a set of intervals K ⊆ I, as small as possible, that dominates all the other intervals. Formally, K
dominates I, if for every interval I ∈ I, there is an interval K ∈ K, such that I intersects K.
Describe an algorithm (as fast as possible) that computes such a minimal dominating set of I. What is
the running time of your algorithm? Prove the correctness of your algorithm.
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62.2. Midterm

1 Coloring graphs. (25 pts.)
For a set S, a balanced coloring φ assigns every element in S a label that is either −1 or +1. For a set
F ⊆ S, its balance is φ(F) =

∑
x∈F φ(x).

Prove that the following problem is NP-Complete:

Balanced coloring of a set system.
Instance: (S,F): S is a set of n elements, and F is a family of subsets of S.
Question: Is there a balanced coloring φ of S, such that for any set F ∈ F, we have;
• If |F | is even then φ(F) = 0.
• If |F | is odd then φ(F) ≥ −1.

(Hint: Think what a balanced coloring means for sets of size two and three.)

2 Independence in a hypergraph. (25 pts.)
Let (V,F) be a set system, with n = |V|, and F is a family (i.e., set) of m subsets of V. Here, every set
F ∈ F is of size exactly three. A set of S ⊆ V is independent, if for all F ∈ F, not all the elements of F
are contained in S (i.e., at most two elements of F are in S).

2.A. (5 pts.) Let S ⊆ V be a random sample generated by picking every element of V into the sample,
independently, with probability 1/t, for some parameter t. A set F ∈ F is bad if all its elements are
in S (i.e., F ⊆ S). What is the probability of a specific set F ∈ F to be bad?

2.B. (5 pts.) Let X be the random variable that is the number of bad sets in F in relation to the random
sample S. What is µ = E[X]?

2.C. (5 pts.) Prove that P[X ≥ 2µ] ≤ 1/2.
2.D. (10 pts.) Consider the algorithm that now fixes S to be an independent set as follows: scan all the

bad sets, and for each such bad set F ∈ F, randomly throw away one element from S such that F is
no longer contained in S.
Verify that the resulting set S′ is an independent set. Provide a lower bound, as good as possible,
as a function of t, on the expected size of S′. What is the choice of t (as a function of n and m)
for which the algorithm (in expectation) outputs the largest possible independent set? What is the
expected size of the independent set in this case? (Bigger is better.)

3 Fire stations. (25 pts.)
Let C = {c1, . . . , cn} be the set of locations of n small towns living on the real axis (it is a straight road in
the middle of nowhere, and these are the locations of the tiny towns starting from one of its endpoints).
Being in America, we would like to build k fire stations to serve their gas needs. Specifically, for a set of
locations Y = {y1, . . . , yk} of the gas stations, the cost of this solution to the ith customer is the squared
distance of ci to its nearest neighbor in Y . Formally, it is price(ci,Y ) = |ci − nn(ci,Y )|2, where nn(ci,Y ) is
the location of the nearest point to ci in Y .
(This might seem strange, but the further the fire station is, the more damage caused by the fire before
help shows up. This pricing model just try to capture this intuition.)
The price of the solution Y is price(C,Y ) =

∑
i price(ci,Y ).
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Given C and k, provide a polynomial time algorithm (in n and k) that computes the price of the cheapest
possible solution (i.e., the price of the optimal solution). What is the running time of your algorithm?
[You can assume in your solution that Y ⊆ C.]

4 Greedy hitting set. (25 pts.)
Consider the following problem:

Hitting Set
Instance: (S,F):

S - a set of n elements
F - a family of m subsets of S.

Question: Compute a set S ⊆ S such that S contains as few elements as possible, and S “hits”
all the sets in F. Formally, for all F ∈ F, we have |S ∩ F | ≥ 1.

The greedy algorithm GreedyHit computes a solution by repeatedly computing the element in S, that is
contained in the largest number of sets of F that are not hit yet, adding it to the current solution, and
repeating this till all the sets of F are hit. Let k be the number of elements in the optimal cover. Prove
the following:

4.A. (5 pts.) In the beginning of the ith iteration, if there are βi sets in F not hit yet, then there is a an
element in S that hits at least βi/k of these sets.

4.B. (10 pts.) Prove that for any i, we have that βi+k ≤ βi/c, where c > 1 is some positive constant
(what is the value of c - provide a reasonable lower bound).

4.C. (8 pts.) Using the above, provide an upper bound (as small as possible) on the number of iterations
performed by GreedyHit before it stops.

4.D. (2 pts.) What is the quality of approximation provided by GreedyHit?
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62.3. Final

1 Strong duality.
(20 pts.)

Consider a directed graph G with source vertex s and target vertex t and associated costs cost(·) ≥ 0
on the edges. Let P denote the set of all the directed (simple) paths from s to t in G.

Consider the following (very large) integer program:

minimize
∑

e∈E(G)
cost(e)xe

subject to xe ∈ {0,1} ∀e ∈ E(G)∑
e∈π

xe ≥ 1 ∀π ∈ P.

1.A. (5 pts.) What does this IP compute?
1.B. (5 pts.) Write down the relaxation of this IP into a linear program.
1.C. (5 pts.) Write down the dual of the LP from (B). What is the interpretation of this new LP? What

is it computing for the graph G (prove your answer)?
1.D. (5 pts.) The strong duality theorem states the following.

Theorem 62.3.1. If the primal LP problem has an optimal solution x∗ =(
x∗1, . . . , x

∗
n

)
then the dual also has an optimal solution, y∗ =

(
y∗1, . . . , y

∗
m

)
, such

that ∑
j

cj x∗j =
∑
i

biy∗i .

In the context of (A)–(C) what result is implied by this theorem if we apply it to the primal LP and
its dual above? (For this, you can assume that the optimal solution to the LP of (B) is integral.)

2 Sequences and consequences.
(20 pts.)

Let X = 〈X1,X2, . . . ,Xn〉 be a sequence of n numbers generated by picking each Xi independently and
uniformly from the range {1, . . . ,n}.

2.A. (5 pts.) What is the entropy of X?
2.B. (5 pts.) Consider the sequence Y = 〈Y1, . . . ,Yn〉 that results from sorting the sequence X in increasing

order. For example, if X = 〈4,1,4,1〉 then Y = 〈1,1,4,4〉.
Describe an encoding scheme that takes the sequence Y and encodes it as a sequence of 2n binary
bits (you will lose points if your scheme uses more bits). Given this encoded sequence of bits, how do
you recover the sequence Y? (Hint: Consider the differences sequence Y1,Y2 −Y1,Y3 −Y2, . . . ,Yn −Yn−1.
And do not use Huffman’s encoding.)
Demonstrate how your encoding scheme works for the sequence Y = 〈1,1,4,6,6,6〉.

2.C. (5 pts.) Consider the set U of all sequences Y that can be generated by the above process (i.e., it is
the set of all monotonically non-decreasing sequences of length n using integer numbers in the range
1 to n). Provide (and prove) an upper bound on the number of elements in U. Your bound should
be as small as possible. (Hint: Use (B).)
(Note, that we are not asking for the exact bound on the size of U, which is doable but harder.)

2.D. (5 pts.) Prove an upper bound (as low as possible) on the entropy of Y. (Proving a lower bound
here seems quite hard and you do not have to do it.)

450



3 Find kth smallest number. (20 pts.)
This question asks you to design and analyze a randomized incremental algorithm to select the kth

smallest element from a given set of n elements (from a universe with a linear order).
We assume the numbers are given to you one at a time, and your algorithm has only O(k) space in

its disposal that it can use (in particular, the algorithm can not just read all the input and only then
compute the desired quantity). Specifically, in an incremental algorithm, the input consists of a sequence
of elements x1, x2, . . . , xn. After any prefix x1, . . . , xi−1 has been read, the algorithm has computed the kth
smallest element in x1, . . . , xi−1 (which is undefined if i ≤ k), or if appropriate, some other invariant from
which the kth smallest element could be determined. This invariant is updated as the next element xi is
read.

We assume that before it is given to us, the input sequence has been randomly permuted, with each
permutation equally likely. Note that this case is of interest in analyzing real world situations, where the
input arrives as a stream, and we believe that this stream behaves like a random stream of numbers.

3.A. (5 pts.) Describe an efficient incremental algorithm for computing the kth smallest element (the
more efficient it is, the better).

3.B. (5 pts.) How many comparisons does your algorithm perform in the worst case?
3.C. (10 pts.) Consider the problem of computing the k smallest numbers in a given stream. Describe

an algorithm that outputs these k numbers in sorted order, assuming that k and n are provided
in advance, the algorithm has O(k) space, and the input is provided in a stream that is randomly
permuted.
What is the expected number (over all permutations) of comparisons performed by your algorithm?
For full credit, the expected number of comparisons performed by your algorithm should be as small
as possible. Prove your answer.

4 Stab these rectangles (in the back, if possible).
(20 pts.)

You are given a set R = {R1, . . . ,Rn} of n rectangles in the plane, and a set P = {p1, . . . ,pn} of n points
in the plane. For every point p ∈ P, there is an associated weight wp > 0. Your purpose in this problem is
to select a minimum weight subset X ⊆ P, such that for any rectangle R of R there is at least one point
of X that is contained in R.

Under the assumption that no rectangle of R contains more than k points, describe a polynomial
time approximation algorithm for this problem. What is the approximation quality of your algorithm?
(Naturally, your approximation algorithm should have the best possible approximation quality.) Prove
your stated bound on the quality of approximation.

5 Sorting in Ω(n log n) time.
(20 pts.)

Prove that any sorting algorithm in the comparison model for sorting n numbers takes Ω(n log n) time.

This question would be graded strictly – there is no partial credit for this question.
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BIN PACKING, 247, 250, 252, 325, 342, 344, 353
bin packing
min, 62

Circuit Satisfiability, 14
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CYCLE HATER., 399, 431
CYCLE LOVER., 399
DOUBLE HITTING SET, 412
Hamiltonian Cycle, 25
Hamiltonian Path, 125, 249, 341
HITTING SET, 247, 249, 250, 253, 326, 341, 342,

345, 354
Hitting Set, 425, 449
Independent Set, 21, 397
Integer Linear Programming, 280, 418
KNAPSACK, 251, 343
Knapsack, 377
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2CNF-SAT, 374
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3DM, 27
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A, 20
AFWLB, 125
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co-NP, 378
CSAT, 17, 18
EDGE COVER, 254
EXACT-COVER-BY-3-SETS, 248
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Halting, 378
Hamiltonian Cycle, 25, 47
Hamiltonian Path, 125, 432
Hamiltonian path, 125
HITTING SET, 432
Independent Set, 21, 22, 255
independent set, 442
Knapsack, 376
Largest Subset, 375
LONGEST PATH, 254
ManyCover, 442
MAX 2SAT, 410, 447
Max 3SAT, 50, 51
Max 5SAT, 377
MAX CUT, 176, 254
MAX Cut, 410, 447
Max CUT, 409, 446
MAX SAT, 253
Max SAT, 433
MAX SPANNING TREE, 254
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MIN CUT, 254
Min Edge Coloring, 377, 378
MIN EQUIVALENT DIGRAPH, 254
MIN SPANNING TREE, 254
minimization, 42
Not-3SAT, 249, 341
NP, 374, 378
NPC, 26
Partition, 28, 62, 63, 246, 340, 399
PRIMALITY, 255
PROB, 59
reduction, 246
SAT, 16–18, 433
SAT Partial, 433
Set Cover, 43, 52, 54, 147, 154
SetCover, 54
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Sorting Nuts and Bolts, 65
Subgraph embedding, 376
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Subset Sum, 26–28, 58–60, 248
TRANSITIVE REDUCTION, 254
TRAVELING SALESMAN PROBLEM, 254
TSP, 26, 47, 48

TSP Path, 41
TSP REVISIT, 376
Uniqueness, 218
uniqueness, 224
VACATION TOUR PROBLEM, 254
Vec Subset Sum, 26–28
VERTEX COVER, 254
Vertex Cover, 22, 25, 42, 152, 255, 273, 349
VertexCover, 273, 349
VertexCover, 43
Weighted Vertex Cover, 152, 153
X, 20

profit, 112, 434
PTAS, 59

quality, 410, 447
Quick Sort

lucky, 70
quotation

– A Scanner Darkly, Philip K. Dick, 195
– Defeat, Arkady and Boris Strugatsky, 193
– The first world war, John Keegan., 29
– The roots of heaven, Romain Gary, 36
–Romain Gary, The talent scout., 190
A confederacy of Dunces, John Kennedy Toole, 13

quotient, 80

random variable, 64
random variables

independent, 64
rank, 66, 68, 434
real, 163
rearrangeable, 260
reduced cost, 122
regular, 440
relaxation, 153
remainder, 80, 268, 420, 444
residual capacity, 96, 97
residual graph, 119
robust spanning tree, 406
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running-time

amortized, 170
expected, 66

see, 52
separator, 404
set system, 52
shortcutting, 48
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significant, 386
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simplex, 131
sink, 94, 95
size, 78, 88, 443
slack form, 136
snake, 434
sorting network

bitonic sorter, 167
running time, 165
size, 165
zero-one principle, 165

source, 94, 95
Static, 78
stem, 213
streaming, 233
strong duality theorem, 145
subset sums, 443
sum, 443
Swapping, 260

target function, 129
theorem

Helly’s, 129
training, 179
transportation problem, 127
treap, 75
tree

code trees, 185
prefix tree, 185

triangle inequality, 48
triple hitting set, 432
TSP, 40, 41, 436

unimodal, 403
union bound, 70
union-find

block of a node, 174
jump, 174
internal, 174

path compression, 171
rank, 171
union by rank, 171

Unique Games Conjecture, 46
unsupervised learning, 56
upper envelope, 228
usable, 438
useful, 438
useless, 438
uselessly-connected, 386

value, 95, 407
Vandermonde, 160

variable gadget, 23
vertex, 229
vertex cover, 21
visibility polygon, 52

weak circulation, 119
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weighted point, 226
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