CS 473: Algorithms, Fall 2018
Approximation
Algorithms III
Lecture 10
September 24, 2018
10.1: Subset Sum

Subset Sum

Subset Sum

Instance: $\boldsymbol{X}=\left\{x_{1}, \ldots, x_{n}\right\}-n$ integer positive numbers, t - target number
Question: \exists subset of X s.t. sum of its elements is t ?

Assume x_{1}, \ldots, x_{n} are all $\leq \boldsymbol{n}$. Then this problem can be solved in
(A) The problem is still NP-Hard, so probably exponential time.
(B) $O\left(n^{3}\right)$.
(C) $2^{O\left(\log ^{2} n\right)}$.
(D) $n(m 10 m m)$

Subset Sum

Subset Sum

Instance: $\boldsymbol{X}=\left\{x_{1}, \ldots, x_{n}\right\}-n$ integer positive numbers, \boldsymbol{t} - target number
Question: \exists subset of \boldsymbol{X} s.t. sum of its elements is t ?

Subset Sum

Subset Sum

Instance: $X=\left\{x_{1}, \ldots, x_{n}\right\}-n$ integer positive numbers, t - target number
Question: \exists subset of \boldsymbol{X} s.t. sum of its elements is t ?

for $j=M n$ down to x_{i} do

Subset Sum

Subset Sum

Instance: $X=\left\{x_{1}, \ldots, x_{n}\right\}-n$ integer positive numbers, t - target number
Question: \exists subset of \boldsymbol{X} s.t. sum of its elements is t ?

Subset Sum

Subset Sum

Instance: $X=\left\{x_{1}, \ldots, x_{n}\right\}-n$ integer positive numbers, t - target number
Question: \exists subset of \boldsymbol{X} s.t. sum of its elements is t ?

Subset Sum

Efficient algorithm???

1. Algorithm solving Subset Sum in $O\left(M n^{2}\right)$.
2. M might be prohibitly large...
3. if $M=2^{n} \Longrightarrow$ algorithm is not polynomial time.
4. Subset Sum is NPC.
5. Still want to solve quickly even if M huge.
6. Optimization version:

Subset Sum

1. Algorithm solving Subset Sum in $O\left(M n^{2}\right)$.
2. M might be prohibitly large...
3. if $M=2^{n} \Longrightarrow$ algorithm is not polynomial time.
4. Subset Sum is NPC.
5. Still want to solve quickly even if M huge.

Subset Sum

1. Algorithm solving Subset Sum in $\boldsymbol{O}\left(M n^{2}\right)$.
2. M might be prohibitly large...
3. if $M=2^{n} \Longrightarrow$ algorithm is not polynomial time.
4. Subset Sum is NPC.
5. Still want to solve quickly even if M huge.
6. Optimization version:

Subset Sum Optimization

Instance: (X, t) : A set X of n positive integers, and a target number \boldsymbol{t}.
Question: The largest number $\gamma_{\text {opt }}$ one can represent as a subset sum of \boldsymbol{X} which is smaller

Subset Sum

2

-approximation

Lemma

1. (X, t); Given instance of Subset Sum. $\gamma_{\mathrm{opt}} \leq t$: Opt.
2. \Longrightarrow Compute legal subset with sum $\geq \gamma_{\text {opt }} / 2$.
3. Running time $O(n \log n)$.

Proof.

1. Sort numbers in X in decreasing order.
2. Greedily - add numbers from largest to smallest (if possible).

Subset Sum

2

Lemma

1. (X, t); Given instance of Subset Sum. $\gamma_{\mathrm{opt}} \leq t$: Opt.
2. \Longrightarrow Compute legal subset with sum $\geq \gamma_{\mathrm{opt}} / 2$.
3. \quad Running time $O(n \log n)$.

Proof.

1. Sort numbers in X in decreasing order.
2. Greedily - add numbers from largest to smallest (if possible).

Subset Sum

2
Lemma

1. (X, t); Given instance of Subset Sum. $\gamma_{\mathrm{opt}} \leq t$: Opt.
2. \Longrightarrow Compute legal subset with sum $\geq \gamma_{\mathrm{opt}} / 2$.
3. Running time $O(n \log n)$.

Proof.

1. Sort numbers in \boldsymbol{X} in decreasing order.
2. Greedily - add numbers from largest to smallest (if possible).

Subset Sum

2
-approximation
Lemma

1. (X, t); Given instance of Subset Sum. $\gamma_{\mathrm{opt}} \leq t$: Opt.
2. \Longrightarrow Compute legal subset with sum $\geq \gamma_{\mathrm{opt}} / 2$.
3. Running time $O(n \log n)$.

Proof.

1. Sort numbers in \boldsymbol{X} in decreasing order.
2. Greedily - add numbers from largest to smallest (if possible).

Subset Sum

2
2 -approximation
Lemma

1. (X, t); Given instance of Subset Sum. $\gamma_{\mathrm{opt}} \leq t$: Opt.
2. \Longrightarrow Compute legal subset with sum $\geq \gamma_{\mathrm{opt}} / 2$.
3. Running time $O(n \log n)$.

Proof.

1. Sort numbers in \boldsymbol{X} in decreasing order.
2. Greedily - add numbers from largest to smallest (if possible).
3. s : Generates sum.

10.1.1: On the complexity of ε-approximation algorithms

Polynomial Time Approximation Schemes

Definition ()
PROB: Maximization problem.
$\varepsilon>0$: approximation parameter.
$\mathcal{A}(I, \varepsilon)$ is a polynomial time approximation scheme (PTAS) for PROB:

1. $\forall I:(1-\varepsilon)|\operatorname{opt}(I)| \leq|\mathcal{A}(I, \varepsilon)| \leq|\operatorname{opt}(I)|$,
2. $|\mathbf{o p t}(I)|:$ opt price,
3. $|\mathcal{A}(I, \varepsilon)|$: price of solution of \mathcal{A}.
4. \mathcal{A} running time polynomial in \boldsymbol{n} for fixed ε.

For minimization problem:
$|\operatorname{opt}(I)| \leq|\mathcal{A}(I, \varepsilon)| \leq(1+\varepsilon)|\operatorname{opt}(I)|$

Polynomial Time Approximation Schemes

Definition ()
PROB: Maximization problem.
$\varepsilon>0$: approximation parameter.
$\mathcal{A}(I, \varepsilon)$ is a polynomial time approximation scheme (PTAS) for PROB:

1. $\forall I:(1-\varepsilon)|\operatorname{opt}(I)| \leq|\mathcal{A}(I, \varepsilon)| \leq|\operatorname{opt}(I)|$,
2. $|\mathbf{o p t}(I)|:$ opt price,
3. $|\mathcal{A}(I, \varepsilon)|$: price of solution of \mathcal{A}.
4. \mathcal{A} running time polynomial in \boldsymbol{n} for fixed ε.

For minimization problem: $|\operatorname{opt}(I)| \leq|\mathcal{A}(I, \varepsilon)| \leq(1+\varepsilon)|\operatorname{opt}(I)|$.

Polynomial Time Approximation Schemes

1. Example: Approximation algorithm with running time $\boldsymbol{O}\left(n^{1 / \varepsilon}\right)$ is a PTAS.
Algorithm with running time $O\left(1 / \varepsilon^{n}\right)$ is not.
2. Fully polynomial...

Definition (
An approximation algorithm is fully polynomial time
approximation scheme (FPTAS) if it is a PTAS, and
its running time is polynomial both in n and $1 / \varepsilon$.
3. Example: PTAS with running time $O\left(n^{1 / \varepsilon}\right)$ is not
a FPTAS
4. Example: PTAS with running time $O\left(n^{2} / \varepsilon^{3}\right)$ is a

Polynomial Time Approximation Schemes

1. Example: Approximation algorithm with running time $\boldsymbol{O}\left(n^{1 / \varepsilon}\right)$ is a PTAS.
Algorithm with running time $O\left(1 / \varepsilon^{n}\right)$ is not.
2. Fully polynomial...

Definition ()
An approximation algorithm is fully polynomial time approximation scheme (FPTAS) if it is a PTAS, and its running time is polynomial both in n and $1 / \varepsilon$.

Polynomial Time Approximation Schemes

1. Example: Approximation algorithm with running time $\boldsymbol{O}\left(n^{1 / \varepsilon}\right)$ is a PTAS.
Algorithm with running time $O\left(1 / \varepsilon^{n}\right)$ is not.
2. Fully polynomial...

Definition ()
An approximation algorithm is fully polynomial time approximation scheme (FPTAS) if it is a PTAS, and its running time is polynomial both in n and $1 / \varepsilon$.
3. Example: PTAS with running time $O\left(n^{1 / \varepsilon}\right)$ is not a FPTAS.

Polynomial Time Approximation Schemes

1. Example: Approximation algorithm with running time $\boldsymbol{O}\left(\boldsymbol{n}^{1 / \varepsilon}\right)$ is a PTAS.
Algorithm with running time $O\left(1 / \varepsilon^{n}\right)$ is not.
2. Fully polynomial...

Definition ()
An approximation algorithm is fully polynomial time approximation scheme (FPTAS) if it is a PTAS, and its running time is polynomial both in n and $1 / \varepsilon$.
3. Example: PTAS with running time $O\left(n^{1 / \varepsilon}\right)$ is not a FPTAS.
4. Example: PTAS with running time $O\left(n^{2} / \varepsilon^{3}\right)$ is a FPTAS.

Approximating Subset Sum

Subset Sum Approx

Instance: (X, t, ε) : A set X of n positive integers, a target number \boldsymbol{t}, and parameter $\varepsilon>0$.
Question: A number \boldsymbol{z} that one can represent as a subset sum of \boldsymbol{X}, such that $(1-\varepsilon) \gamma_{\mathrm{opt}} \leq z \leq$ $\gamma_{\mathrm{opt}} \leq t$.

Approximating Subset Sum

ExactSubsetSum(S, t)

$$
\begin{aligned}
& n \leftarrow|S| \\
& P_{0} \leftarrow\{0\} \\
& \text { for } i=1 \ldots n \text { do }
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{P}_{i} \leftarrow \boldsymbol{P}_{i-1} \cup\left(\boldsymbol{P}_{i-1}+x_{i}\right) \\
& \text { Remove from } \boldsymbol{P}_{i} \text { all elements }>\boldsymbol{t}
\end{aligned}
$$

return largest element in $\boldsymbol{P}_{\boldsymbol{n}}$

1. $S=\left\{a_{1}, \ldots, a_{n}\right\}$
$x+S=\left\{a_{1}+x, a_{2}+x, \ldots a_{n}+x\right\}$
2. Lists might explode in size.

Trim the lists...

Definition

L^{\prime} : Inc. sorted list of num-For two positive real bers numbers $z \leq y$, the

Trim ($\left.L^{\prime}, \delta\right)$	number y is a
$L=\left\langle y_{1} \ldots y_{m}\right\rangle$	δ-approximation to z if $y \leq z \leq y$
$\begin{aligned} & \text { curr } \leftarrow y_{1} \\ & \boldsymbol{L}_{\text {out }} \leftarrow\left\{y_{1}\right\} \end{aligned}$	$\overline{1+\delta} \leq z \leq y$.
for $i=2 \ldots m$ do	Observation
if $y_{i}>$ curr .	$\delta) f x \in L^{\prime}$ then there
Append y_{i} to	exists a number
curr $\leftarrow y_{i}$	$y \in L_{\text {out }}$ such that
return $L_{\text {out }}$	$y \leq x \leq y(1+\delta)$,

where

Trim the lists...

\boldsymbol{E}_{i} : Computed by merging two sorted lists in linear time.

Understanding trimming

14/41

Remark

1. Can assume that trimmed lists \boldsymbol{L}_{i} are sorted...
2. Algorithm: $E_{i} \leftarrow L_{i-1} \cup\left(L_{i-1}+x_{i}\right)$
3. So, this is just copy, shift, and merge of two sorted lists.
4. ... resulting in a sorted lest.
5. takes linear time in size of lists.

Remark

1. Can assume that trimmed lists \boldsymbol{L}_{i} are sorted...
2. Algorithm: $\boldsymbol{E}_{i} \leftarrow \boldsymbol{L}_{i-1} \cup\left(\boldsymbol{L}_{i-1}+\boldsymbol{x}_{i}\right)$
3. So, this is just copy, shift, and merge of two sorted lists.
4. ... resulting in a sorted lest.
5. takes linear time in size of lists.

Remark

1. Can assume that trimmed lists \boldsymbol{L}_{i} are sorted...
2. Algorithm: $\boldsymbol{E}_{i} \leftarrow \boldsymbol{L}_{i-1} \cup\left(\boldsymbol{L}_{i-1}+\boldsymbol{x}_{i}\right)$
3. So, this is just copy, shift, and merge of two sorted lists.
4. ... resulting in a sorted lest.
5. takes linear time in size of lists.

Remark

1. Can assume that trimmed lists \boldsymbol{L}_{i} are sorted...
2. Algorithm: $\boldsymbol{E}_{i} \leftarrow \boldsymbol{L}_{i-1} \cup\left(\boldsymbol{L}_{i-1}+\boldsymbol{x}_{i}\right)$
3. So, this is just copy, shift, and merge of two sorted lists.
4. ... resulting in a sorted lest.
5. takes linear time in size of lists.

Remark

1. Can assume that trimmed lists \boldsymbol{L}_{i} are sorted...
2. Algorithm: $\boldsymbol{E}_{i} \leftarrow \boldsymbol{L}_{i-1} \cup\left(\boldsymbol{L}_{i-1}+\boldsymbol{x}_{i}\right)$
3. So, this is just copy, shift, and merge of two sorted lists.
4. ... resulting in a sorted lest.
5. takes linear time in size of lists.

Analysis

1. \boldsymbol{E}_{i} list generated by algorithm in i th iteration.
2. \boldsymbol{P}_{i} : list of numbers (no trimming).

Claim
For any $\boldsymbol{x} \in \boldsymbol{P}_{\boldsymbol{i}}$ there exists $\boldsymbol{y} \in \boldsymbol{L}_{i}$ such that $y \leq x \leq(1+\delta)^{i} y$.
Proof

1. If $\boldsymbol{x} \in \boldsymbol{P}_{1}$ then follows by observation above.
. By observation $\exists y \in L_{i}$ s.t. $y \leq y^{\prime} \leq(1+\delta) y$, As such,

Analysis

1. \boldsymbol{E}_{i} list generated by algorithm in \boldsymbol{i} th iteration.
2. \boldsymbol{P}_{i} : list of numbers (no trimming).

Claim
For any $\boldsymbol{x} \in \boldsymbol{P}_{\boldsymbol{i}}$ there exists $\boldsymbol{y} \in \boldsymbol{L}_{i}$ such that $y \leq x \leq(1+\delta)^{i} y$.
Proof

1. If $\boldsymbol{x} \in \boldsymbol{P}_{\mathbf{1}}$ then follows by observation above.
2. If $\boldsymbol{x} \in \boldsymbol{P}_{i-1} \Longrightarrow$ (induction) $\exists \boldsymbol{y}^{\prime} \in \boldsymbol{L}_{i-1}$ s.t.
$y^{\prime} \leq x \leq(1+\delta)^{i-1} y^{\prime}$.
3. By observation $\exists y \in L_{i}$ s.t. $y \leq y^{\prime} \leq(1+\delta) y$, As such,

Analysis

1. \boldsymbol{E}_{i} list generated by algorithm in \boldsymbol{i} th iteration.
2. \boldsymbol{P}_{i} : list of numbers (no trimming).

Claim
For any $\boldsymbol{x} \in \boldsymbol{P}_{i}$ there exists $\boldsymbol{y} \in \boldsymbol{L}_{i}$ such that $y \leq x \leq(1+\delta)^{i} y$.
Proof

1. If $\boldsymbol{x} \in \boldsymbol{P}_{\mathbf{1}}$ then follows by observation above.
2. If $\boldsymbol{x} \in \boldsymbol{P}_{i-1} \Longrightarrow$ (induction) $\exists \boldsymbol{y}^{\prime} \in \boldsymbol{L}_{i-1}$ s.t.
$y^{\prime} \leq x \leq(1+\delta)^{i-1} y^{\prime}$.
3. By observation $\exists y \in L_{i}$ s.t. $y \leq y^{\prime} \leq(1+\delta) y$, As such,

Proof continued

Proof continued

1. If $\boldsymbol{x} \in \boldsymbol{P}_{i} \backslash \boldsymbol{P}_{i-1} \Longrightarrow \boldsymbol{x}=\boldsymbol{\alpha}+\boldsymbol{x}_{i}$, for some $\alpha \in P_{i-1}$.
2. By induction, $\exists \alpha^{\prime} \in L_{i-1}$ s.t.

3. Thus, $\boldsymbol{\alpha}^{\prime}+x_{i} \in \boldsymbol{E}_{i}$.
4. $\exists \boldsymbol{x}^{\prime} \in \boldsymbol{L}_{i}$ s.t. $\boldsymbol{x}^{\prime} \leq \boldsymbol{\alpha}^{\prime}+x_{i} \leq(1+\delta) x^{\prime}$.
5. Thus,

Proof continued

Proof continued

1. If $\boldsymbol{x} \in \boldsymbol{P}_{\boldsymbol{i}} \backslash \boldsymbol{P}_{i-1} \Longrightarrow \boldsymbol{x}=\boldsymbol{\alpha}+\boldsymbol{x}_{\boldsymbol{i}}$, for some $\alpha \in P_{i-1}$.
2. By induction, $\exists \alpha^{\prime} \in L_{i-1}$ s.t. $\alpha^{\prime} \leq \alpha \leq(1+\delta)^{i-1} \alpha^{\prime}$.
3. Thus, $\boldsymbol{\alpha}^{\prime}+\boldsymbol{x}_{i} \in \boldsymbol{E}_{\boldsymbol{i}}$.

4. Thus,

Proof continued

Proof continued

1. If $\boldsymbol{x} \in \boldsymbol{P}_{\boldsymbol{i}} \backslash \boldsymbol{P}_{i-1} \Longrightarrow \boldsymbol{x}=\boldsymbol{\alpha}+\boldsymbol{x}_{\boldsymbol{i}}$, for some $\alpha \in P_{i-1}$.
2. By induction, $\exists \alpha^{\prime} \in L_{i-1}$ s.t. $\alpha^{\prime} \leq \alpha \leq(1+\delta)^{i-1} \alpha^{\prime}$.
3. Thus, $\boldsymbol{\alpha}^{\prime}+\boldsymbol{x}_{\boldsymbol{i}} \in \boldsymbol{E}_{\boldsymbol{i}}$.
4. $\exists x^{\prime} \in L_{i}$ s.t. $x^{\prime} \leq \alpha^{\prime}+x_{i} \leq(1+\delta) x^{\prime}$.

Proof continued

Proof continued

1. If $\boldsymbol{x} \in \boldsymbol{P}_{i} \backslash \boldsymbol{P}_{i-1} \Longrightarrow \boldsymbol{x}=\boldsymbol{\alpha}+\boldsymbol{x}_{i}$, for some $\alpha \in P_{i-1}$.
2. By induction, $\exists \alpha^{\prime} \in L_{i-1}$ s.t.

$$
\alpha^{\prime} \leq \alpha \leq(1+\delta)^{i-1} \alpha^{\prime}
$$

3. Thus, $\boldsymbol{\alpha}^{\prime}+\boldsymbol{x}_{\boldsymbol{i}} \in \boldsymbol{E}_{\boldsymbol{i}}$.
4. $\exists x^{\prime} \in L_{i}$ s.t. $x^{\prime} \leq \alpha^{\prime}+x_{i} \leq(1+\delta) x^{\prime}$.
5. Thus,

$$
x^{\prime} \leq \alpha^{\prime}+x_{i} \leq \alpha+x_{i}
$$

Proof continued

Proof continued

1. If $\boldsymbol{x} \in \boldsymbol{P}_{i} \backslash \boldsymbol{P}_{i-1} \Longrightarrow \boldsymbol{x}=\boldsymbol{\alpha}+\boldsymbol{x}_{i}$, for some $\alpha \in P_{i-1}$.
2. By induction, $\exists \alpha^{\prime} \in L_{i-1}$ s.t.

$$
\alpha^{\prime} \leq \alpha \leq(1+\delta)^{i-1} \alpha^{\prime}
$$

3. Thus, $\boldsymbol{\alpha}^{\prime}+\boldsymbol{x}_{\boldsymbol{i}} \in \boldsymbol{E}_{\boldsymbol{i}}$.
4. $\exists x^{\prime} \in L_{i}$ s.t. $x^{\prime} \leq \alpha^{\prime}+x_{i} \leq(1+\delta) x^{\prime}$.
5. Thus,

$$
x^{\prime} \leq \alpha^{\prime}+x_{i} \leq \alpha+x_{i}=x
$$

Proof continued

Proof continued

1. If $\boldsymbol{x} \in \boldsymbol{P}_{\boldsymbol{i}} \backslash \boldsymbol{P}_{i-1} \Longrightarrow \boldsymbol{x}=\boldsymbol{\alpha}+\boldsymbol{x}_{\boldsymbol{i}}$, for some $\alpha \in P_{i-1}$.
2. By induction, $\exists \alpha^{\prime} \in L_{i-1}$ s.t.

$$
\alpha^{\prime} \leq \alpha \leq(1+\delta)^{i-1} \alpha^{\prime}
$$

3. Thus, $\boldsymbol{\alpha}^{\prime}+\boldsymbol{x}_{i} \in \boldsymbol{E}_{\boldsymbol{i}}$.
4. $\exists x^{\prime} \in L_{i}$ s.t. $x^{\prime} \leq \alpha^{\prime}+x_{i} \leq(1+\delta) x^{\prime}$.
5. Thus,

$$
x^{\prime} \leq \alpha^{\prime}+x_{i} \leq \alpha+x_{i}=x \leq(1+\delta)^{i-1} \alpha^{\prime}+x_{i}
$$

Proof continued

Proof continued

1. If $\boldsymbol{x} \in \boldsymbol{P}_{\boldsymbol{i}} \backslash \boldsymbol{P}_{i-1} \Longrightarrow \boldsymbol{x}=\boldsymbol{\alpha}+\boldsymbol{x}_{\boldsymbol{i}}$, for some $\alpha \in \boldsymbol{P}_{i-1}$.
2. By induction, $\exists \alpha^{\prime} \in L_{i-1}$ s.t.

$$
\alpha^{\prime} \leq \alpha \leq(1+\delta)^{i-1} \alpha^{\prime}
$$

3. Thus, $\boldsymbol{\alpha}^{\prime}+\boldsymbol{x}_{i} \in \boldsymbol{E}_{\boldsymbol{i}}$.
4. $\exists x^{\prime} \in L_{i}$ s.t. $x^{\prime} \leq \alpha^{\prime}+x_{i} \leq(1+\delta) x^{\prime}$.
5. Thus,

$$
\begin{aligned}
& x^{\prime} \leq \alpha^{\prime}+x_{i} \leq \alpha+x_{i}=x \leq(1+\delta)^{i-1} \alpha^{\prime}+x_{i} \leq \\
& (1+\delta)^{i-1}\left(\alpha^{\prime}+x_{i}\right) \leq(1+\delta)^{i} x^{\prime}
\end{aligned}
$$

Proof continued

Proof continued

1. If $\boldsymbol{x} \in \boldsymbol{P}_{i} \backslash \boldsymbol{P}_{i-1} \Longrightarrow \boldsymbol{x}=\boldsymbol{\alpha}+\boldsymbol{x}_{i}$, for some $\alpha \in P_{i-1}$.
2. By induction, $\exists \alpha^{\prime} \in L_{i-1}$ s.t.

$$
\alpha^{\prime} \leq \alpha \leq(1+\delta)^{i-1} \alpha^{\prime}
$$

3. Thus, $\boldsymbol{\alpha}^{\prime}+\boldsymbol{x}_{i} \in \boldsymbol{E}_{i}$.
4. $\exists x^{\prime} \in L_{i}$ s.t. $x^{\prime} \leq \alpha^{\prime}+x_{i} \leq(1+\delta) x^{\prime}$.
5. Thus,

$$
\begin{aligned}
& x^{\prime} \leq \alpha^{\prime}+x_{i} \leq \alpha+x_{i}=x \leq(1+\delta)^{i-1} \alpha^{\prime}+x_{i} \leq \\
& (1+\delta)^{i-1}\left(\alpha^{\prime}+x_{i}\right) \leq(1+\delta)^{i} \boldsymbol{x}^{\prime}
\end{aligned}
$$

10.1.1.1:Running time

Running time of ApproxSubsetSum

Lemma
For $x \in[0,1]$, it holds $\exp (x / 2) \leq(1+x)$.
Lemma
For $0<\delta<1$, and $x \geq 1$, we have

$$
\log _{1+\delta} x \leq \frac{2 \ln x}{\delta}=O\left(\frac{\ln x}{\delta}\right)
$$

See notes for a proof of lemmas.

Running time of ApproxSubsetSum

Observation
In a list generated by Trim, for any number x, there are no two numbers in the trimmed list between x and $(1+\delta) x$.
Lemma
$\left|L_{i}\right|=O((n / \varepsilon) \log n)$, for $i=1, \ldots, n$.

Running time of ApproxSubsetSum

Proof.

1. $L_{i-1}+x_{i} \subseteq\left[x_{i}, \boldsymbol{i} x_{i}\right]$.
2. Trimming $L_{i-1}+x_{i}$ results in list of size

$$
\log _{1+\delta} \frac{i x_{i}}{x_{i}}=O\left(\frac{\ln i}{\delta}\right)=O\left(\frac{\ln n}{\delta}\right)
$$

3. Now, $\delta=\varepsilon / 2 n$, and

Running time of ApproxSubsetSum

Proof.

1. $\boldsymbol{L}_{i-1}+\boldsymbol{x}_{i} \subseteq\left[\boldsymbol{x}_{i}, \boldsymbol{i} \boldsymbol{x}_{i}\right]$.
2. Trimming $L_{i-1}+x_{i}$ results in list of size

$$
\log _{1+\delta} \frac{i x_{i}}{x_{i}}=O\left(\frac{\ln i}{\delta}\right)=O\left(\frac{\ln n}{\delta}\right)
$$

3. Now, $\delta=\varepsilon / 2 n$, and

$$
\begin{aligned}
\left|L_{i}\right| & \leq\left|L_{i-1}\right|+O\left(\frac{\ln n}{\delta}\right) \leq\left|L_{i-1}\right|+O\left(\frac{n \ln n}{\varepsilon}\right) \\
& -\cap\left(n^{2} \log n\right.
\end{aligned}
$$

Running time of ApproxSubsetSum

Lemma
The running time of ApproxSubsetSum is $O\left(\frac{n^{3}}{\varepsilon} \log n\right)$.
Proof.

1. Running time of ApproxSubsetSum dominated by total length of L_{1}, \ldots, L_{n}.
2. Above lemma implies

$$
\sum_{i}\left|L_{i}\right|=O\left(n \times \frac{n^{2}}{\varepsilon} \log n\right)=O\left(\frac{n^{3}}{\varepsilon} \log n\right)
$$

3. Trim runs in time proportional to size of lists.

ApproxSubsetSum

Theorem
ApproxSubsetSum returns $\boldsymbol{u} \leq t$, s.t.
$\frac{\gamma_{\mathrm{opt}}}{1+\varepsilon} \leq u \leq \gamma_{\mathrm{opt}} \leq t$,
γ_{opt} : opt solution.
Running time is $O\left(\left(n^{3} / \varepsilon\right) \log n\right)$.
Proof.

1. Running time from above.
2. $\gamma_{\text {opt }} \in P_{n}$: optimal solution.
3. $\exists z \in L_{n}$, such that $z \leq$ opt $\leq(1+\delta)^{n} z$

ApproxSubsetSum

Theorem
ApproxSubsetSum returns $u \leq t$, s.t.
$\frac{\gamma_{\mathrm{opt}}}{1+\varepsilon} \leq u \leq \gamma_{\mathrm{opt}} \leq t$,
γ_{opt} : opt solution.
Running time is $O\left(\left(n^{3} / \varepsilon\right) \log n\right)$.
Proof.

1. Running time from above.
2. $\gamma_{\mathrm{opt}} \in \boldsymbol{P}_{n}$: optimal solution.
3. $\exists z \in L_{n}$, such that $z \leq$ opt $\leq(1+\delta)^{n} z$

ApproxSubsetSum

Theorem
ApproxSubsetSum returns $u \leq t$, s.t.
$\frac{\gamma_{\mathrm{opt}}}{1+\varepsilon} \leq u \leq \gamma_{\mathrm{opt}} \leq t$,
γ_{opt} : opt solution.
Running time is $O\left(\left(n^{3} / \varepsilon\right) \log n\right)$.
Proof.

1. Running time from above.
2. $\gamma_{\mathrm{opt}} \in \boldsymbol{P}_{n}$: optimal solution.
3. $\exists z \in L_{n}$, such that $z \leq$ opt $\leq(1+\delta)^{n} z$

ApproxSubsetSum

Theorem
ApproxSubsetSum returns $u \leq t$, s.t.
$\frac{\gamma_{\mathrm{opt}}}{1+\varepsilon} \leq u \leq \gamma_{\mathrm{opt}} \leq t$,
γ_{opt} : opt solution.
Running time is $O\left(\left(n^{3} / \varepsilon\right) \log n\right)$.
Proof.

1. Running time from above.
2. $\gamma_{\mathrm{opt}} \in \boldsymbol{P}_{n}$: optimal solution.
3. $\exists z \in L_{n}$, such that $z \leq$ opt $\leq(1+\delta)^{n} z$
4. $(1+\delta)^{n}=(1+\varepsilon / 2 n)^{n} \leq \exp \left(\frac{\varepsilon}{2}\right) \leq 1+\varepsilon$, since $1+\boldsymbol{x} \leq e^{x}$ for $\boldsymbol{x} \geq 0$.

ApproxSubsetSum

Theorem
ApproxSubsetSum returns $u \leq t$, s.t.
$\frac{\gamma_{\mathrm{opt}}}{1+\varepsilon} \leq u \leq \gamma_{\mathrm{opt}} \leq t$,
γ_{opt} : opt solution.
Running time is $O\left(\left(n^{3} / \varepsilon\right) \log n\right)$.
Proof.

1. Running time from above.
2. $\gamma_{\mathrm{opt}} \in \boldsymbol{P}_{n}$: optimal solution.
3. $\exists z \in L_{n}$, such that $z \leq$ opt $\leq(1+\delta)^{n} z$
4. $(1+\delta)^{n}=(1+\varepsilon / 2 n)^{n} \leq \exp \left(\frac{\varepsilon}{2}\right) \leq 1+\varepsilon$, since $1+\boldsymbol{x} \leq e^{x}$ for $\boldsymbol{x} \geq 0$.

50 $/(1,1-0)<\pi<\operatorname{lnt}<t$
10.2: Maximal matching

Maximal matching

1. $\mathbf{G}=(\mathbf{V}, \mathbf{E})$
2. Compute maximal matching...
3. $\boldsymbol{X} \subseteq \mathbf{E}$ which is maximal and independent.
4. Maximal $=$ can not improved by adding an edge.
5. Maximum $=$ largest possible set among all possible sets.
6. Computing the maximum is hard then computing maximal solution.
7. Q: Find maximal matching quickly and of large size...

An example of the greedy algorithm...

An example of the greedy algorithm...
(1)

An example of the greedy algorithm...
(1)

An example of the greedy algorithm...
(1)

An example of the greedy algorithm...

An example of the greedy algorithm...

An example of the greedy algorithm...

An example of the greedy algorithm...

Maximal matching: Algorithm

1. Algorithm: Repeatedly pick an arbitrary edge and remove it.
2. \boldsymbol{M} : Generated matching. \boldsymbol{X} : Maximal matching.
3. Clearly a maximal matching.
4. This is a 2 -approximation to the maximum
matching.
5. Because..
6. Every edge in M "kills" two edges of \boldsymbol{X} in the worst case.

Maximal matching: Algorithm

1. Algorithm: Repeatedly pick an arbitrary edge and remove it.
2. \boldsymbol{M} : Generated matching. \boldsymbol{X} : Maximal matching.
3. Clearly a maximal matching...
4. This is a 2 -approximation to the maximum
matching.
5. Because.
6. Every edge in M "kills" two edges of X in the worst case.

Maximal matching: Algorithm

1. Algorithm: Repeatedly pick an arbitrary edge and remove it.
2. \boldsymbol{M} : Generated matching. \boldsymbol{X} : Maximal matching.
3. Clearly a maximal matching...
4. This is a 2 -approximation to the maximum matching.
5. Because.
6. Every edge in \boldsymbol{M} "kills" two edges of \boldsymbol{X} in the worst case.

Maximal matching: Algorithm

1. Algorithm: Repeatedly pick an arbitrary edge and remove it.
2. \boldsymbol{M} : Generated matching. \boldsymbol{X} : Maximal matching.
3. Clearly a maximal matching...
4. This is a 2 -approximation to the maximum matching.
5. Because...
6. Every edge in M "kills" two edges of X in the worst case.

Maximal matching: Algorithm

1. Algorithm: Repeatedly pick an arbitrary edge and remove it.
2. \boldsymbol{M} : Generated matching. \boldsymbol{X} : Maximal matching.
3. Clearly a maximal matching...
4. This is a 2 -approximation to the maximum matching.
5. Because...
6. Every edge in \boldsymbol{M} "kills" two edges of \boldsymbol{X} in the worst case.

Maximal matching: Result

Theorem
Given a graph G one can compute in $\boldsymbol{O}(n+m)$ time, a maximal matching with at least $|\boldsymbol{X}| / 2$ edges, where \boldsymbol{X} is the size of the maximum (optimal) matching.
10.2.1: Bin packing

Bin packing

Problem definition

Bin Packing

Instance: v : Bin size. $S=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}: n$ items
α_{i} : size of i th item.
Target: Find $\min \# \boldsymbol{B}$, and a decomposition S_{1}, \ldots, S_{B} of S, such that $\forall \boldsymbol{j} \quad \sum_{x \in S_{j}} \leq v$.

Bin packing

Problem definition

Bin Packing

Instance: v : Bin size. $S=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$: n items
α_{i} : size of i th item.
Target: Find min \# B, and a decomposition S_{1}, \ldots, S_{B} of S, such that $\forall j \quad \sum_{x \in S_{j}} \leq v$.

1. $\cup_{i} S_{i}=S$ and $\forall i \neq j \quad S_{i} \cap S_{j}=\emptyset$.
2. NP-Hard from Partition.
3. NP-Hard to approximate within $3 / 2$.
4. Natural problem...
5. How to approximate?

Bin packing

Problem definition

Bin Packing

Instance: v : Bin size. $S=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$: n items
α_{i} : size of i th item.
Target: Find $\min \# \boldsymbol{B}$, and a decomposition S_{1}, \ldots, S_{B} of S, such that $\forall j \quad \sum_{x \in S_{j}} \leq v$.

1. $\cup_{i} S_{i}=S$ and $\forall i \neq j \quad S_{i} \cap S_{j}=\emptyset$.
2. NP-Hard from Partition.
3. NP-Hard to approximate within $3 / 2$.
4. Natural problem...
5. How to approximate?

Bin packing

Problem definition

Bin Packing

Instance: v : Bin size. $S=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$: n items
α_{i} : size of i th item.
Target: Find min \# B, and a decomposition S_{1}, \ldots, S_{B} of S, such that $\forall j \quad \sum_{x \in S_{j}} \leq v$.

1. $\cup_{i} S_{i}=S$ and $\forall i \neq j \quad S_{i} \cap S_{j}=\emptyset$.
2. NP-Hard from Partition.
3. NP-Hard to approximate within $3 / 2$.

Bin packing

Problem definition

Bin Packing

Instance: v : Bin size. $S=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}: n$ items
α_{i} : size of i th item.
Target: Find min \# B, and a decomposition S_{1}, \ldots, S_{B} of S, such that $\forall j \quad \sum_{x \in S_{j}} \leq v$.

1. $\cup_{i} S_{i}=S$ and $\forall i \neq j \quad S_{i} \cap S_{j}=\emptyset$.
2. NP-Hard from Partition.
3. NP-Hard to approximate within $3 / 2$.
4. Natural problem...

Bin packing

Bin Packing

Instance: v : Bin size. $S=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$: n items
α_{i} : size of i th item.
Target: Find min $\# B$, and a decomposition S_{1}, \ldots, S_{B} of S, such that $\forall j \quad \sum_{x \in S_{j}} \leq v$.

1. $\cup_{i} S_{i}=S$ and $\forall i \neq j \quad S_{i} \cap S_{j}=\emptyset$.
2. NP-Hard from Partition.
3. NP-Hard to approximate within $3 / 2$.
4. Natural problem...
5. How to approximate?

Bin packing

Problem definition

Bin Packing

Instance: v : Bin size. $S=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$: n items
α_{i} : size of i th item.
Target: Find min \# B, and a decomposition S_{1}, \ldots, S_{B} of S, such that $\forall j \quad \sum_{x \in S_{j}} \leq v$.

1. $\cup_{i} S_{i}=S$ and $\forall i \neq j \quad S_{i} \cap S_{j}=\emptyset$.
2. NP-Hard from Partition.
3. NP-Hard to approximate within $3 / 2$.
4. Natural problem...
5. How to approximate?

Bin packing

Problem definition

Bin Packing

Instance: v : Bin size. $S=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$: n items
α_{i} : size of i th item.
Target: Find min \# B, and a decomposition S_{1}, \ldots, S_{B} of S, such that $\forall j \quad \sum_{x \in S_{j}} \leq v$.

1. $\cup_{i} S_{i}=S$ and $\forall i \neq j \quad S_{i} \cap S_{j}=\emptyset$.
2. NP-Hard from Partition.
3. NP-Hard to approximate within $3 / 2$.
4. Natural problem...
5. How to approximate?

Bin packing: First fit

Analysis

Lemma
First fit is a 2 -approximation.
Proof.
Observe that only one bin can have less than $\boldsymbol{v} / \mathbf{2}$ content in it...
10.3: Independent set of axis-parallel rectangles

An example

Input

Independent set of rectangles.
Assume: Open rectangles.

An example

Input

Independent set of rectangles.

Assume: Open rectangles.

Independent set of intervals

Clicker question

Given n intervals on the real line, computing the largest independent set of intervals on the real line, can be done in:
(A) $O(n)$ time.
(B) $O(n \log n)$ time.
(C) $O\left(n^{3 / 2}\right)$ time.
(D) $O\left(n^{2}\right)$ time.
(E) NP-Hard.

Independent set of rectangles

Algorithm: Divide \& Conquer

Independent set of rectangles

Algorithm: Divide \& Conquer

Independent set of rectangles

Algorithm: Divide \& Conquer

Independent set of rectangles

Algorithm: Divide \& Conquer

Independent set of rectangles

Algorithm: Divide \& Conquer

Independent set of rectangles

Algorithm: Divide \& Conquer

Independent set of rectangles

Algorithm: Divide \& Conquer

Independent set of rectangles

Algorithm: Divide \& Conquer

Independent set of rectangles

\mathcal{R} : A set of axis parallel rectangles.
RectIndep (\mathcal{R}) :
if $|\mathcal{R}| \leq 10$ then
Solve by brute force
return size of solution
\boldsymbol{x}_{M} : Median of right \boldsymbol{x}-coordinate of rects in $\boldsymbol{\mathcal { R }}$
ℓ : Vertical line through \boldsymbol{x}_{M}.
$\boldsymbol{\mathcal { R }}_{M}$: Rects of $\boldsymbol{\mathcal { R }}$ intersecting ℓ
$\mathcal{R}_{L}, \mathcal{R}_{R}$: Rectangles in \mathcal{R} left/ right of ℓ.
$S_{L} \Leftarrow \operatorname{Rect} \operatorname{lndep}\left(\mathcal{R}_{L}\right)$
$S_{R} \Leftarrow \operatorname{Rect} \operatorname{Indep}\left(\mathcal{R}_{R}\right)$
$\boldsymbol{S}_{M} \Leftarrow$ compute opt solution for $\boldsymbol{\mathcal { R }}_{M}$ (intervals!)

Analysis

1. If $S_{M} \geq \mathrm{Opt} /(2 \lg n) \ldots$ done.
2. $\mathrm{Opt}_{L}+\mathrm{Opt}_{R} \geq(1-1 /(2 \lg n))$ Opt.
3. By induction: $S_{L} \geq \mathrm{Opt}_{L} /(2 \lg (n / 2))$ and
$S_{R} \geq \mathrm{Opt}_{R} /(2 \lg (n / 2))$.
4. $S_{L}+S_{R} \geq \frac{(1-1 /(2 \lg n)) \text { Opt }}{2 \lg (n / 2)}$
$(1-1 /(2 \lg n))$
$2 \lg (n / 2)$
$2 \lg n-2 \quad(2 \lg n)(2 \lg n-2)$
$2 \lg n-1$
$\geq \frac{(2 \lg n)(2 \lg n-2)}{2 \lg n-2}$

Analysis

1. If $S_{M} \geq$ Opt/($\left.2 \lg n\right) \ldots$ done.
2. $\mathrm{Opt}_{L}+\mathrm{Opt}_{R} \geq(1-1 /(2 \lg n)) \mathrm{Opt}$.

Analysis

1. If $S_{M} \geq$ Opt/(2 $\left.\lg n\right) \ldots$ done.
2. $\mathrm{Opt}_{L}+\mathrm{Opt}_{R} \geq(1-1 /(2 \lg n)) \mathrm{Opt}$.
3. By induction: $S_{L} \geq \mathrm{Opt}_{L} /(2 \lg (n / 2))$ and $S_{R} \geq \mathrm{Opt}_{R} /(2 \lg (n / 2))$.
$\overline{2 \lg n-2}-\overline{(2 \lg n)(2 \lg n-2)}$

Analysis

1. If $S_{M} \geq \mathrm{Opt} /(2 \lg n) \ldots$ done.
2. $\mathrm{Opt}_{L}+\mathrm{Opt}_{R} \geq(1-1 /(2 \lg n)) \mathrm{Opt}$.
3. By induction: $S_{L} \geq \mathrm{Opt}_{L} /(2 \lg (n / 2))$ and $S_{R} \geq \mathrm{Opt}_{R} /(2 \lg (n / 2))$.
4. $S_{L}+S_{R} \geq \frac{(1-1 /(2 \lg n)) \text { Opt }}{2 \lg (n / 2)}$
$\overline{2 \lg n-2}-\overline{(2 \lg n)(2 \lg n-2)}$

Analysis

1. If $S_{M} \geq \mathrm{Opt} /(2 \lg n) \ldots$ done.
2. $\mathrm{Opt}_{L}+\mathrm{Opt}_{R} \geq(1-1 /(2 \lg n)) \mathrm{Opt}$.
3. By induction: $S_{L} \geq \mathrm{Opt}_{L} /(2 \lg (n / 2))$ and $S_{R} \geq \mathrm{Opt}_{R} /(2 \lg (n / 2))$.
4. $S_{L}+S_{R} \geq \frac{(1-1 /(2 \lg n)) \text { Opt }}{2 \lg (n / 2)}$
5. $\frac{(1-1 /(2 \lg n))}{2 \lg (n / 2)}=$
$\frac{1}{2 \lg n-2}-\frac{1}{(2 \lg n)(2 \lg n-2)}$

Analysis

1. If $S_{M} \geq \mathrm{Opt} /(2 \lg n) \ldots$ done.
2. $\mathrm{Opt}_{L}+\mathrm{Opt}_{R} \geq(1-1 /(2 \lg n)) \mathrm{Opt}$.
3. By induction: $S_{L} \geq \mathrm{Opt}_{L} /(2 \lg (n / 2))$ and $S_{R} \geq \mathrm{Opt}_{R} /(2 \lg (n / 2))$.
4. $S_{L}+S_{R} \geq \frac{(1-1 /(2 \lg n)) \text { Opt }}{2 \lg (n / 2)}$
5. $\frac{(1-1 /(2 \lg n))}{2 \lg (n / 2)}=$
$\frac{1}{2 \lg n-2}-\frac{1}{(2 \lg n)(2 \lg n-2)}$
$\geq \frac{2 \lg n-1}{(2 \lg n)(2 \lg n-2)}$

Analysis

1. If $S_{M} \geq \mathrm{Opt} /(2 \lg n) \ldots$ done.
2. $\mathrm{Opt}_{L}+\mathrm{Opt}_{R} \geq(1-1 /(2 \lg n)) \mathrm{Opt}$.
3. By induction: $S_{L} \geq \mathrm{Opt}_{L} /(2 \lg (n / 2))$ and $S_{R} \geq \mathrm{Opt}_{R} /(2 \lg (n / 2))$.
4. $S_{L}+S_{R} \geq \frac{(1-1 /(2 \lg n)) \text { Opt }}{2 \lg (n / 2)}$
5. $\frac{(1-1 /(2 \lg n))}{2 \lg (n / 2)}=$
$\frac{1}{2 \lg n-2}-\frac{1}{(2 \lg n)(2 \lg n-2)}$
$2 \lg n-1$
$\geq \frac{2 \lg n-1}{(2 \lg n)(2 \lg n-2)} \geq$
$\frac{2 \lg n-2}{(01 \infty)(01 \infty m} \quad$ o) $\geq \frac{1}{21 \infty m}$

Analysis

1. If $S_{M} \geq \mathrm{Opt} /(2 \lg n) \ldots$ done.
2. $\mathrm{Opt}_{L}+\mathrm{Opt}_{R} \geq(1-1 /(2 \lg n)) \mathrm{Opt}$.
3. By induction: $S_{L} \geq \mathrm{Opt}_{L} /(2 \lg (n / 2))$ and $S_{R} \geq \mathrm{Opt}_{R} /(2 \lg (n / 2))$.
4. $S_{L}+S_{R} \geq \frac{(1-1 /(2 \lg n)) \text { Opt }}{2 \lg (n / 2)}$
5. $\frac{(1-1 /(2 \lg n))}{2 \lg (n / 2)}=$
$\frac{1}{2 \lg n-2}-\frac{1}{(2 \lg n)(2 \lg n-2)}$
$2 \lg n-1$
$\geq \frac{2 \lg n-1}{(2 \lg n)(2 \lg n-2)} \geq$
$\frac{2 \lg n-2}{(01 \infty)(01 \infty m} \quad$ o) $\geq \frac{1}{21 \infty m}$

Analysis

1. If $S_{M} \geq \mathrm{Opt} /(2 \lg n) \ldots$ done.
2. $\mathrm{Opt}_{L}+\mathrm{Opt}_{R} \geq(1-1 /(2 \lg n)) \mathrm{Opt}$.
3. By induction: $S_{L} \geq \mathrm{Opt}_{L} /(2 \lg (n / 2))$ and $S_{R} \geq \mathrm{Opt}_{R} /(2 \lg (n / 2))$.
4. $S_{L}+S_{R} \geq \frac{(1-1 /(2 \lg n)) \text { Opt }}{2 \lg (n / 2)}$
5. $\frac{(1-1 /(2 \lg n))}{2 \lg (n / 2)}=$
$\frac{1}{2 \lg n-2}-\frac{1}{(2 \lg n)(2 \lg n-2)}$
$2 \lg n-1$
$\geq \frac{2 \lg n-1}{(2 \lg n)(2 \lg n-2)} \geq$
$\frac{2 \lg n-2}{(01 \infty)(01 \infty m} \quad$ o) $\geq \frac{1}{21 \infty m}$

Notes

38/41

Notes

Notes

Notes

41/41

