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10.1: Subset Sum
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Subset Sum

Subset Sum
Instance: X = {x1, . . . , xn} – n integer positive
numbers, t - target number
Question: ∃ subset of X s.t. sum of its elements
is t?

Assume x1, . . . , xn are all ≤ n. Then this problem can
be solved in
(A) The problem is still NP-Hard, so probably

exponential time.
(B) O(n3).
(C) 2O(log2 n).
(D) O(n log n).
(E) None of the above.
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Subset Sum
Subset Sum
Instance: X = {x1, . . . , xn} – n integer positive
numbers, t - target number
Question: ∃ subset of X s.t. sum of its elements
is t?

M : Max
value input
numbers.

SolveSubsetSum (X, t, M)
b[0 . . .Mn]⇐ false

// b[x] is true if x can be
// realized by subset of X.

b[0]← true.
for i = 1, . . . ,n do

for j = Mn down to xi do
b[j]← B[j − xi] ∨ B[j]

return B[t]
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Subset Sum
Subset Sum
Instance: X = {x1, . . . , xn} – n integer positive
numbers, t - target number
Question: ∃ subset of X s.t. sum of its elements
is t?

M : Max
value input
numbers.

R.T.
O(Mn2).

SolveSubsetSum (X, t, M)
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for j = Mn down to xi do
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Subset Sum
Efficient algorithm???

1. Algorithm solving Subset Sum in O(Mn2).
2. M might be prohibitly large...
3. if M = 2n =⇒ algorithm is not polynomial time.
4. Subset Sum is NPC.
5. Still want to solve quickly even if M huge.
6. Optimization version:

Subset Sum Optimization
Instance: (X, t): A set X of n positive inte-
gers, and a target number t.
Question: The largest number γopt one can
represent as a subset sum of X which is smaller
or equal to t.

5/41
8



Subset Sum
Efficient algorithm???

1. Algorithm solving Subset Sum in O(Mn2).
2. M might be prohibitly large...
3. if M = 2n =⇒ algorithm is not polynomial time.
4. Subset Sum is NPC.
5. Still want to solve quickly even if M huge.
6. Optimization version:

Subset Sum Optimization
Instance: (X, t): A set X of n positive inte-
gers, and a target number t.
Question: The largest number γopt one can
represent as a subset sum of X which is smaller
or equal to t.

5/41
9



Subset Sum
Efficient algorithm???

1. Algorithm solving Subset Sum in O(Mn2).
2. M might be prohibitly large...
3. if M = 2n =⇒ algorithm is not polynomial time.
4. Subset Sum is NPC.
5. Still want to solve quickly even if M huge.
6. Optimization version:

Subset Sum Optimization
Instance: (X, t): A set X of n positive inte-
gers, and a target number t.
Question: The largest number γopt one can
represent as a subset sum of X which is smaller
or equal to t.

5/41
10



Subset Sum
2-approximation

Lemma
1. (X, t); Given instance of Subset Sum. γopt ≤ t:

Opt.
2. =⇒ Compute legal subset with sum ≥ γopt/2.
3. Running time O(n log n).

Proof.
1. Sort numbers in X in decreasing order.
2. Greedily - add numbers from largest to smallest (if

possible).
3. s: Generates sum.
4. u: First rejected number. s′: sum before rejection.
5. s′ > u > 0, s′ < t, and s′ + u > t =⇒

t < s′ + u < s′ + s′ = 2s′ =⇒ s′ ≥ t/2.
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10.1.1: On the complexity of
ε-approximation algorithms
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Polynomial Time Approximation Schemes
Definition (PTAS)
PROB: Maximization problem.
ε > 0: approximation parameter.
A(I , ε) is a polynomial time approximation
scheme (PTAS) for PROB:

1. ∀I : (1− ε)
∣∣∣opt(I )

∣∣∣ ≤ ∣∣∣A(I , ε)
∣∣∣ ≤ ∣∣∣opt(I )

∣∣∣ ,
2. |opt(I )|: opt price,
3. |A(I , ε)|: price of solution of A.
4. A running time polynomial in n for fixed ε.

For minimization problem:
|opt(I )| ≤ |A(I , ε)| ≤ (1 + ε)|opt(I )|.
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Polynomial Time Approximation Schemes
1. Example: Approximation algorithm with running

time O(n1/ε) is a PTAS.
Algorithm with running time O(1/εn) is not.

2. Fully polynomial...
Definition (FPTAS)
An approximation algorithm is fully polynomial time
approximation scheme (FPTAS) if it is a PTAS, and
its running time is polynomial both in n and 1/ε.

3. Example: PTAS with running time O(n1/ε) is not
a FPTAS.

4. Example: PTAS with running time O(n2/ε3) is a
FPTAS.
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Approximating Subset Sum

Subset Sum Approx
Instance: (X, t, ε): A set X of n positive inte-
gers, a target number t, and parameter ε > 0.
Question: A number z that one can represent as
a subset sum of X, such that (1− ε)γopt ≤ z ≤
γopt ≤ t.

10/41
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Approximating Subset Sum
Looking again at the exact algorithm

ExactSubsetSum(S, t)
n ← |S|
P0 ← {0}
for i = 1 . . .n do

Pi ← Pi−1 ∪ (Pi−1 + xi)
Remove from Pi all elements > t

return largest element in Pn

1. S = {a1, . . . , an}
x + S = {a1 + x, a2 + x, . . . an + x}

2. Lists might explode in size.

11/41
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Trim the lists...

L′: Inc. sorted list of num-
bers
Trim(L′, δ)

L = 〈y1 . . . ym〉
curr ← y1
Lout ← {y1}
for i = 2 . . .m do

if yi > curr · (1 + δ)
Append yi to Lout
curr ← yi

return Lout

Definition
For two positive real
numbers z ≤ y, the
number y is a
δ-approximation to z if

y
1 + δ

≤ z ≤ y.

Observation
If x ∈ L′ then there
exists a number
y ∈ Lout such that
y ≤ x ≤ y(1 + δ),
where
Lout ← Trim(L′, δ).
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Trim the lists...

Trim(L′, δ)
L = 〈y1 . . . ym〉
curr ← y1
Lout ← {y1}
for i = 2 . . .m do

if yi > curr · (1 + δ)
Append yi to Lout
curr ← yi

return Lout

ApproxSubsetSum(S, t)
// S = {x1, . . . , xn},
// x1 ≤ x2 ≤ . . . ≤ xn
n ← |S|, L0 ← {0},
δ = ε/2n
for i = 1 . . .n do

Ei ← Li−1 ∪ (Li−1 + xi)
Li ← Trim(Ei, δ)
Remove from Li elems > t.

return largest element in Ln

Ei : Computed by merging two sorted lists in linear time.

13/41
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Understanding trimming
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Understanding trimming
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Remark
1. Can assume that trimmed lists Li are sorted...
2. Algorithm: Ei ← Li−1 ∪ (Li−1 + xi)

3. So, this is just copy, shift, and merge of two sorted
lists.

4. ... resulting in a sorted lest.
5. takes linear time in size of lists.
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Analysis
1. Ei list generated by algorithm in ith iteration.
2. Pi : list of numbers (no trimming).

Claim
For any x ∈ Pi there exists y ∈ Li such that
y ≤ x ≤ (1 + δ)iy.
Proof

1. If x ∈ P1 then follows by observation above.
2. If x ∈ Pi−1 =⇒ (induction) ∃y′ ∈ Li−1 s.t.

y′ ≤ x ≤ (1 + δ)i−1y′.
3. By observation ∃y ∈ Li s.t. y ≤ y′ ≤ (1 + δ)y,

As such,

y ≤ y′ ≤ x ≤ (1 + δ)i−1y′ ≤ (1 + δ)iy.
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Proof continued
Proof continued

1. If x ∈ Pi \ Pi−1 =⇒ x = α + xi , for some
α ∈ Pi−1.

2. By induction, ∃α′ ∈ Li−1 s.t.
α′ ≤ α ≤ (1 + δ)i−1α′.

3. Thus, α′ + xi ∈ Ei .
4. ∃x′ ∈ Li s.t. x′ ≤ α′ + xi ≤ (1 + δ)x′.

5. Thus,
x′ ≤ α′+xi ≤ α+xi = x ≤ (1+δ)i−1α′+xi ≤
(1 + δ)i−1(α′ + xi) ≤ (1 + δ)ix′.
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Running time of ApproxSubsetSum
Lemma
For x ∈ [0, 1], it holds exp(x/2) ≤ (1 + x).

Lemma
For 0 < δ < 1, and x ≥ 1, we have

log1+δ x ≤
2 ln x
δ

= O
(
ln x
δ

)
.

See notes for a proof of lemmas.
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Running time of ApproxSubsetSum
Observation
In a list generated by Trim, for any number x, there are
no two numbers in the trimmed list between x and
(1 + δ)x.

Lemma
|Li| = O

(
(n/ε) log n

)
, for i = 1, . . . ,n.

20/41
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Running time of ApproxSubsetSum
Proof.
1. Li−1 + xi ⊆ [xi, ixi].
2. Trimming Li−1 + xi results in list of size

log1+δ

ixi

xi
= O

(
ln i
δ

)
= O

(
lnn
δ

)
,

3. Now, δ = ε/2n, and

|Li| ≤ |Li−1|+ O
(
lnn
δ

)
≤ |Li−1|+ O

(n lnn
ε

)
= O

(n2 log n
ε

)
.
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Running time of ApproxSubsetSum
Lemma
The running time of ApproxSubsetSum is
O
(

n3

ε
log n

)
.

Proof.
1. Running time of ApproxSubsetSum dominated by

total length of L1, . . . ,Ln.
2. Above lemma implies∑

i

|Li| = O
(

n ×
n2

ε
log n

)
= O

(n3

ε
log n

)
.

3. Trim runs in time proportional to size of lists.
4. Overall, R.T. O

(
n3

ε
log n

)
.
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ApproxSubsetSum
Theorem
ApproxSubsetSum returns u ≤ t, s.t.
γopt
1+ε
≤ u ≤ γopt ≤ t,

γopt: opt solution.
Running time is O((n3/ε) log n).
Proof.

1. Running time from above.
2. γopt ∈ Pn: optimal solution.
3. ∃z ∈ Ln, such that z ≤ opt ≤ (1 + δ)nz
4. (1 + δ)n = (1 + ε/2n)n ≤ exp

(
ε
2

)
≤ 1 + ε,

since 1 + x ≤ ex for x ≥ 0.
5. γopt/(1 + ε) ≤ z ≤ opt ≤ t.
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10.2: Maximal matching
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Maximal matching
1. G = (V,E)
2. Compute maximal matching...
3. X ⊆ E which is maximal and independent.
4. Maximal = can not improved by adding an edge.
5. Maximum = largest possible set among all possible

sets.
6. Computing the maximum is hard then computing

maximal solution.
7. Q: Find maximal matching quickly and of large

size...
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An example of the greedy algorithm...
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Maximal matching: Algorithm
1. Algorithm: Repeatedly pick an arbitrary edge and

remove it.
2. M : Generated matching. X: Maximal matching.
3. Clearly a maximal matching...
4. This is a 2-approximation to the maximum

matching.
5. Because...
6. Every edge in M “kills” two edges of X in the

worst case.

27/41
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Maximal matching: Result
Theorem
Given a graph G one can compute in O(n + m) time, a
maximal matching with at least |X|/2 edges, where X
is the size of the maximum (optimal) matching.
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10.2.1: Bin packing
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Bin packing
Problem definition

Bin Packing
Instance: v: Bin size. S = {α1, . . . , αn}: n
items
αi : size of ith item.
Target: Find min # B, and a decomposition
S1, . . . ,SB of S, such that ∀j

∑
x∈Sj
≤ v.

1. ∪iSi = S and ∀i 6= j Si ∩ Sj = ∅.
2. NP-Hard from Partition.
3. NP-Hard to approximate within 3/2.
4. Natural problem...
5. How to approximate?
6. First fit: Have a row of bins, insert items greedily

into the first bin that fits them.
7. First fit decreasing: Sort the elements first...
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Bin packing: First fit
Analysis

Lemma
First fit is a 2-approximation.

Proof.
Observe that only one bin can have less than v/2
content in it...
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10.3: Independent set of
axis-parallel rectangles
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An example

Input Independent set of rectangles.
Assume: Open rectangles.

33/41

116



An example

Input Independent set of rectangles.
Assume: Open rectangles.

33/41

117



Independent set of intervals
Clicker question

Given n intervals on the real line, computing the largest
independent set of intervals on the real line, can be done
in:
(A) O(n) time.
(B) O(n log n) time.
(C) O(n3/2) time.
(D) O(n2) time.
(E) NP-Hard.
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Independent set of rectangles
Algorithm: Divide & Conquer
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Independent set of rectangles
Algorithm: Divide & Conquer
R: A set of axis parallel rectangles.

RectIndep(R):
if |R| ≤ 10 then

Solve by brute force
return size of solution

xM : Median of right x-coordinate of rects in R
`: Vertical line through xM .
RM : Rects of R intersecting `
RL, RR: Rectangles in R left/ right of `.
SL ⇐ RectIndep(RL)
SR ⇐ RectIndep(RR)
SM ⇐ compute opt solution for RM (intervals!)
return max(SM ,SL + SR)

36/41
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Analysis
1. If SM ≥ Opt/(2 lg n)... done.
2. OptL + OptR ≥ (1− 1/(2 lg n))Opt.
3. By induction: SL ≥ OptL/(2 lg(n/2)) and

SR ≥ OptR/(2 lg(n/2)).
4. SL + SR ≥ (1−1/(2 lg n))Opt

2 lg(n/2)

5.
(1− 1/(2 lg n))

2 lg(n/2)
=

1
2 lg n − 2

−
1

(2 lg n)(2 lg n − 2)

≥
2 lg n − 1

(2 lg n)(2 lg n − 2)
≥

2 lg n − 2
(2 lg n)(2 lg n − 2)

≥
1

2 lg n
.

6. Conclude: If SM ≤ Opt/(2 lg n), then
SL + SR ≥ Opt/(2 lg n).

7. Algorithm is 2 lg n approximation.
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