CS 473: Algorithms, Fall 2018
Linear Programming II min xi
Lecture 19
October 29, 2018

$$
x^{N}+\sum \alpha_{i} x_{1} \geqslant c
$$

$$
\sum X_{c} \geqslant c_{i}^{1 / 26}
$$

LP feasibility...

Clicker question

Let \mathcal{L} be an instance of LP with \boldsymbol{n} variables and \boldsymbol{m} constraints. Then we have the following:
(1) \mathcal{L} is always feasible.
(2) \mathcal{L} might not be feasible, but it can be made feasible by changing the value of one of the variables.
(3) \mathcal{L} might not be feasible, but can be fixed by adding a single variable with the appropriate value.
(4) \mathcal{L} might not be feasible, but can be fixed by adding two variable with the correct value (one need two variables because of the equality constraints).
(6) \mathcal{L} might not be feasible, and this can not be fixed.

19.1: The Simplex Algorithm in Detail

Simplex algorithm

```
Simplex( \widehat{L}}\mathrm{ a LP )
    Transform }\widehat{L}\mathrm{ into slack form.
    Let L}\mathrm{ be the resulting slack form.
    L'}\leftarrowF\mp@code{Feasible(L)
    x}\leftarrow LPStartSolution( L'
    x'}\leftarrow\mathrm{ SimplexInner (L',}\boldsymbol{L})\quad(*
    z\leftarrow objective function value of }\mp@subsup{x}{}{\prime
    if z>0 then
                return "No solution"
    \mp@subsup{x}{}{\prime\prime}}\leftarrow\mathrm{ SimplexInner (L, 竹)
    return x"
```


Simplex algorithm...

(1) Simplex Inner: solves a LP if the trivial solution of assigning zero to all the nonbasic variables is feasible.
(2) $L^{\prime}=\operatorname{Feasible}(\boldsymbol{L})$ returns a new LP with feasible solution.
(3) Done by adding new variable x_{0} to each equality.
(4) Set target function in L^{\prime} to $\min x_{0}$.
(5) original LP L feasible \Longleftrightarrow LP L^{\prime} has feasible solution with $x_{0}=0$.
(0) Apply Simplex Inner to L^{\prime} and solution computed (for L^{\prime}) by LPStartSolution $\left(L^{\prime}\right)$.
(3) If $x_{0}=0$ then have a feasible solution to L.
(8) Use solution in SimplexInner on L.
(9) need to describe Simplex Inner: solve LP in slack form given a feasible solution (all nonbasic vars assigned value 0).

Notations

B - Set of indices of basic variables
N - Set of indices of nonbasic variables
$n=|N|$ - number of original variables
b, c - two vectors of constants
$m=|B|$ - number of basic variables (i.e., number of inequalities)
$A=\left\{a_{i j}\right\}$ - The matrix of coefficients
$N \cup B=\{1, \ldots, n+m\}$
\boldsymbol{v} - objective function constant.
LP in slack form is specified by a tuple (N, B, A, b, c, v).

The corresponding LP

$\max \quad z=v+\sum_{j \in N} c_{j} x_{j}$,
s.t. $\quad x_{i}=b_{i}-\sum_{j \in N} a_{i j} x_{j}$ for $i \in B$,

$$
x_{i} \geq 0, \quad \forall i=1, \ldots, n+m
$$

7/26

Reminder - basic/nonbasic

Basic variables

19.2: The SimplexInner Algorithm

The SimplexInner Algorithm

Description SimplexInner algorithm:
(1) LP is in slack form.
(2) Trivial solution $x=\tau$ (i.e., all nonbasic variables zero), is feasible.
(0) objective value for this solution is \boldsymbol{v}.
(1) Reminder: Objective function is $z=v+\sum_{j \in N} c_{j} x_{j}$.
(x_{e} : nonbasic variable with positive coefficient in objective function.
(- Formally: e is one of the indices of $\left\{j \mid c_{j}>0, j \in N\right\}$.
(0) x_{e} is the entering variable (enters set of basic variables).
(If increase value x_{e} (from current value of 0 in τ)...

- ... one of basic variables is going to vanish (i.e., become zero).

Choosing the leaving variable

(1) x_{e} : entering variable
(2) x_{l} : leaving variable - vanishing basic variable.
(3) increase value of x_{e} till x_{l} becomes zero.
(9) How do we now which variable is x_{l} ?
(5) set all nonbasic to 0 zero, except $\boldsymbol{x}_{\boldsymbol{e}}$
(6) $x_{i}=b_{i}-a_{i e} x_{e}$, for all $i \in B$.
(7) Require: $\forall i \in B \quad x_{i}=b_{i}-a_{i e} x_{e} \geq 0$.
($\mathbf{0} \Longrightarrow x_{e} \leq\left(\hat{b}_{j} / a_{i e}\right)$
(0) $l=\arg \min _{i} b_{i} / a_{i e}$
(10) If more than one achieves $\min _{i} \boldsymbol{b}_{i} / \boldsymbol{a}_{i e}$, just pick one.

Pivoting on $\mathrm{x}_{\mathrm{e}} \ldots$

(1) Determined x_{e} and x_{l}.
(2) Rewrite equation for x_{l} in LP.
(1) (Every basic variable has an equation in the LP!)
(2) $x_{l}=b_{l}-\sum_{j \in N} a_{l j} x_{j}$
$\Longrightarrow \quad x_{e}=\frac{b_{l}}{a_{l e}}-\sum_{j \in N \cup\{l\}} \frac{a_{l j}}{a_{l e}} x_{j}, \quad$ where $a_{l l}=1$.
(3) Cleanup: remove all appearances (on right) in LP of \boldsymbol{x}_{e}.
(9) Substituting x_{e} into the other equalities, using above.
(5) Alternatively, do Gaussian elimination remove any appearance of x_{e} on right side LP (including objective).
Transfer x_{l} on the left side, to the right side.

Pivoting continued...

(1) End of this process: have new equivalent LP.
(2) basic variables: $\boldsymbol{B}^{\prime}=(\boldsymbol{B} \backslash\{l\}) \cup\{e\}$
(3) non-basic variables: $N^{\prime}=(N \backslash\{e\}) \cup\{l\}$.
(4) End of this pivoting stage:

LP objective function value increased.
(5) Made progress.
(0) LP is completely defined by which variables are basic, and which are non-basic.
(3) Pivoting never returns to a combination (of basic/non-basic variable) already visited.
(8) ...because improve objective in each pivoting step.
(9) Can do at most $\binom{n+m}{n} \leq\left(\frac{n+m}{n} \cdot \boldsymbol{e}\right)^{n}$.
(10) examples where 2^{n} pivoting steps are needed.

Simplex algorithm summary...

(1) Each pivoting step takes polynomial time in \boldsymbol{n} and \boldsymbol{m}.
(2) Running time of Simplex is exponential in the worst case.
(3) In practice, Simplex is extremely fast.

conslrei'y y, $14 / 26$

14

Pivoting with zeroes?

Clicker question

Consider a pivoting step, with \boldsymbol{x}_{e} as the entering variable, and \boldsymbol{x}_{ℓ} as the leaving variable, with the relevant constraint in the LP being:

$$
x_{\ell}=0-\sum_{j \in N} a_{l j} x_{j}
$$

(1) Doing the pivoting step would involve division by zero, and as such the Simplex algorithm would fail.
(2) There is no problem.
(3) In an LP the constant in a constraint can never be zero, so this is an impossible scenario.
(9) If there is any problem, it can be solved by choosing a different entering/leaving variables.
The pivoting step would not improve the LP objective function. Simplex might pivot in a loop forever.

Degeneracies

(1) Simplex might get stuck if one of the $b_{i} s$ is zero.
(2) More than $>m$ hyperplanes (i.e., equalities) passes through the same point.
(3) Result: might not be able to make any progress at all in a pivoting step.
(4) Solution I: add tiny random noise to each coefficient.

Can be done symbolically. Intuitively, the degeneracy, being a local phenomena on the polytope disappears with high probability.

Degeneracies - cycling

(1) Might get into cycling: a sequence of pivoting operations that do not improve the objective function, and the bases you get are cyclic (i.e., infinite loop).
(2) Solution II: Bland's rule.

Always choose the lowest index variable for entering and leaving out of the possible candidates.
(Not prove why this work - but it does.)

17/26
19.2.1: Correctness of linear programming

18

Correctness of LP

Definition

A solution to an LP is a basic solution if it the result of setting all the nonbasic variables to zero.

Simplex algorithm deals only with basic solutions.

Theorem

For an arbitrary linear program, the following statements are true:
(1) If there is no optimal solution, the problem is either infeasible or unbounded.
(2) If a feasible solution exists, then a basic feasible solution exists.
(3) If an optimal solution exists, then a basic optimal solution exists.

Proof: is constructive by running the simplex algorithm.

19.2.2: On the ellipsoid method and interior point methods

On the ellipsoid method and interior point methods

(1) Simplex has exponential running time in the worst case.
(3) ellipsoid method is weakly polynomial. It is polynomial in the number of bits of the input.
(3) Khachian in 1979 came up with it. Useless in practice.
(1) In 1984, Karmakar came up with a different method, called the interior-point method.
(0) Also weakly polynomial. Quite useful in practice.
(0) Result in arm race between the interior-point method and the simplex method.
(BIG OPEN QUESTION: Is there strongly polynomial time algorithm for linear programming?

Solving LPs without ever getting into a loop symbolic perturbations

Details in the class notes.

22/26

Notes

Notes

Notes

Notes

