Network flow, duality and Linear Programming

Lecture 20 November 5, 2018

Rounding thingies I

Clicker question

Let $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ be a given graph. Consider the following:

The above IP (Integer program) solves the problem of:

- Computing largest clique in G.
- Omputing largest edge cover in G.
- Omputing largest vertex cover in G.
- Computing largest clique cover in **G**.
- Somputing largest independent set in G.

20.1: Network flow via linear programming

20.1.1: Network flow: Problem definition

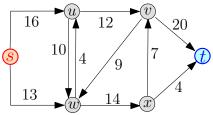
4

Network flow

- Transfer as much "merchandise" as possible from one point to another.
- 2 Wireless network, transfer a large file from s to t.
- Limited capacities.

Network flow

- Transfer as much "merchandise" as possible from one point to another.
- 2 Wireless network, transfer a large file from s to t.
- Limited capacities.



6

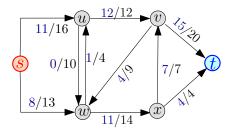
Network: Definition

- Given a network with capacities on each connection.
- ② Q: How much "flow" can transfer from source s to a sink t?
- Solution The flow is **splitable**.
- Network examples: water pipes moving water. Electricity network.
- Internet is packet base, so not quite splitable.

Definition

- G = (V, E): a directed graph.
- $orall (u,v) \in \mathsf{E}(\mathsf{G})$: capacity $c(u,v) \geq 0$,
- $(u,v) \notin G \implies c(u,v) = 0.$
- s: source vertex, t: target sink vertex.
- G, s, t and $c(\cdot)$: form flow network or network.

Network Example



- Ill flow from the source ends up in the sink.
- 2 Flow on edge: non-negative quantity \leq capacity of edge.

8

Flow definition

Definition (flow)

flow in network is a function $f(\cdot, \cdot) : \mathsf{E}(\mathsf{G}) \to \mathbb{R}$:

- Bounded by capacity: $\forall (u,v) \in \mathsf{E} \quad f(u,v) \leq c(u,v).$
- **2** Anti symmetry: $\forall u, v \qquad f(u, v) = -f(v, u).$
- Solution Two special vertices: (i) the source s and the sink t.

11

Conservation of flow (Kirchhoff's Current Law): $\forall u \in \mathsf{V} \setminus \{s, t\} \qquad \sum f(u, v) = 0.$

flow/value of
$$f$$
: $|f| = \sum_{v \in V} f(s, v)$.

Flow on edge can be negative (i.e., positive flow on edge in other direction).

Problem (Maximum flow)

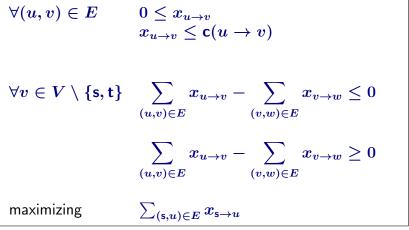
Given a network **G** find the maximum flow in **G**. Namely, compute a legal flow f such that |f| is maximized.

20.1.2: Network flow via linear programming

11

Network flow via linear programming

Input: $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ with source s and sink t, and capacities $\mathbf{c}(\cdot)$ on the edges. Compute max flow in \mathbf{G} .



20.1.3: Min-Cost Network flow via linear programming

Min cost flow

Input:

$$\begin{split} \mathbf{G} &= (\mathbf{V}, \mathbf{E}): \text{ directed graph.} \\ \textbf{[s:] source.} \\ \textbf{t}: \text{ sink} \\ \textbf{c}(\boldsymbol{\cdot}): \text{ capacities on edges,} \\ \phi: \text{ Desired amount } (\textbf{value}) \text{ of flow.} \\ \boldsymbol{\kappa}(\boldsymbol{\cdot}): \text{ Cost on the edges.} \end{split}$$

Definition - cost of flow

cost of flow f:
$$\operatorname{cost}(\mathsf{f}) = \sum_{e \in E} \kappa(e) * \mathsf{f}(e).$$

14

Min cost flow problem

Min-cost flow

minimum-cost *s*-*t* **flow problem**: compute the flow **f** of min cost that has value ϕ .

min-cost circulation problem

Instead of ϕ we have lower-bound $\ell(\cdot)$ on edges. (All flow that enters must leave.)

Claim

If we can solve min-cost circulation \implies can solve min-cost flow.

Rounding thingies II

Clicker question

Let $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ be a given graph. Consider the following:

In the worst case, the optimal solution to the above IP is:

- 1
- 2 |V|
- 3 |E|
- ❹ ∞.
- **5** 0.

Rounding thingies III

Clicker question

Let $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ be a given graph. Consider the following LP:

In the worst case, the optimal solution to the above \underline{LP} is:

- $0 \geq 1$
- $2 \geq |\mathsf{V}|/2$
- $\Im \geq \left|\mathsf{E}\right|/2$
- ❹ ∞.
- **5** 0.

Rounding thingies IV

Clicker question

Consider an optimization problem (a maximization problem) on a graph, that can be written as an IP. α^{I} : optimal solution of the IP. α : optimal solution of the LP (aka fractional solution). We always have that:

 $\begin{array}{l} \bullet \quad \alpha^{I} \geq \alpha. \\ \bullet \quad \alpha^{I} = \alpha. \\ \bullet \quad \alpha^{I} \leq 2\alpha. \\ \bullet \quad \alpha^{I} \leq \alpha. \\ \bullet \quad \alpha^{I} - \alpha < 2. \end{array}$

Rounding thingies V

Clicker question

Consider an optimization problem (a maximization problem) on a graph with n vertices and m edges, that can be written as an IP. α^{I} : optimal solution of the IP. α : optimal solution of the LP. We always have that:

- $\ \, \mathbf{\alpha}/\alpha^{I} \leq 1.$
- $\ 2 \ \alpha/\alpha^I \leq n.$
- Solution Always $\alpha/\alpha^I \geq m$. Unless $m \leq n^{3/2}$ and then $\alpha/\alpha^I \geq \sqrt{m}/n$.
- In the worst case $lpha/lpha^I \geq n/2$, but it can be much worse.
- $\ \, \mathbf{\delta} \ \, \alpha/\alpha^I \geq 1.$

20.2: Duality and Linear Programming

Duality...

- Every linear program L has a dual linear program L'.
- Solving the dual problem is essentially equivalent to solving the primal linear program original LP.
- Icts look an example..

20.2.1: Duality by Example

Duality by Example

\max	$z = 4x_1 + x_2 + 3x_3$
s.t.	$x_1+4x_2~\leq 1$
	$3x_1-x_2+x_3\leq 3$
	$x_1, x_2, x_3 \geq 0$

- η : maximal possible value of target function.
- 2 Any feasible solution \Rightarrow a lower bound on η .
- In above: $x_1 = 1, x_2 = x_3 = 0$ is feasible, and implies z = 4 and thus $\eta \ge 4$.
- $\ \, \bullet \ \, x_1=x_2=0, \, x_3=3 \, \, \hbox{is feasible} \, \Longrightarrow \, \eta \geq z=9.$
- How close this solution is to opt? (i.e., η)
- If very close to optimal might be good enough. Maybe stop?

Add the first inequality (multiplied by 2) to the second inequality (multiplied by 3):

$$2(x_1+4x_2) \le 2(1) \ +3(3x_1-x_2+x_3) \le 3(3).$$

The resulting inequality is

$$11x_1 + 5x_2 + 3x_3 \le 11. \tag{1}$$

max	$z = 4x_1 + x_2 + 3x_3$
s.t.	$x_1+4x_2~\leq 1$
	$3x_1-x_2+x_3\leq 3$
	$x_1, x_2, x_3 \geq 0$

- got $11x_1 + 5x_2 + 3x_3 \le 11$.
- 2 inequality must hold for any feasible solution of L.
- 3 Objective: $z = 4x_1 + x_2 + 3x_3$ and x_{1,x_2} and x_3 are all non-negative.
- Inequality above has larger coefficients than objective (for corresponding variables)
- Sor any feasible solution:

 $z = 4x_1 + x_2 + 3x_3 \le 11x_1 + 5x_2 + 3x_3 \le 11,$

\max	$z = 4x_1 + x_2 + 3x_3$
s.t.	$x_1+4x_2~\leq 1$
	$3x_1-x_2+x_3\leq 3$
	$x_1, x_2, x_3 \geq 0$

- For any feasible solution:
 - $z = 4x_1 + x_2 + 3x_3 \le 11x_1 + 5x_2 + 3x_3 \le 11,$
- **2** Opt solution is LP L is somewhere between 9 and 11.
- Solution Multiply first inequality by y_1 , second inequality by y_2 and add them up:

$rac{y_2(3x_1 \ - \ x_2 \ + \ x_3 \) \leq \ y_2(3)}{(y_1+3y_2)x_1 \ + \ (4y_1-y_2)x_2 \ + \ y_2x_3 \ \leq \ y_1+3y_2.}$	$y_1(x_1$	+	$4x_2$) ≤	$y_1(1)$
$(y_1+3y_2)x_1 + (4y_1-y_2)x_2 + y_2x_3 \leq y_1+3y_2.$	$+ y_2(3x_1$	-	x_2	+	x_3	$) \leq$	$oldsymbol{y_2(3)}$
	$(y_1+3y_2)x_1$	+	$(4y_1 - y_2)x_2$	+	$y_2 x_3$	\leq	$y_1 + 3y_2$.

26

 $(y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3 \le y_1 + 3y_2.$

 Compare to target function – require expression bigger than target function in each variable.

 $\implies z = 4x_1 + x_2 + 3x_3 \leq$

 $(y_1+3y_2)x_1+(4y_1-y_2)x_2+y_2x_3\leq y_1+3y_2.$

 $(y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3 \le y_1 + 3y_2.$

 Compare to target function – require expression bigger than target function in each variable.

 $\implies z = 4x_1 + x_2 + 3x_3 \le$

 $(y_1+3y_2)x_1+(4y_1-y_2)x_2+y_2x_3\leq y_1+3y_2.$

 $(y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3 \le y_1 + 3y_2.$

 $\begin{array}{rrrr} 4 & \leq & y_1 + 3y_2 \\ 1 & \leq & 4y_1 - y_2 \\ 3 & \leq & y_2, \end{array} \qquad \textcircled{O} \quad \begin{array}{rrrr} \text{Compare to target function } - \\ \text{require expression bigger than} \\ \text{target function in each} \\ \text{variable.} \end{array}$

 $\implies z=4x_1+x_2+3x_3\leq \ (y_1+3y_2)x_1+(4y_1-y_2)x_2+y_2x_3\leq y_1+3y_2.$

• Best upper bound on η (max value of z) then solve the LP \widehat{L} .

- **2** \widehat{L} : Dual program to L.
- ${f 0}$ opt. solution of \widehat{L} is an upper bound on optimal solution for L.

Primal program/Dual program

$$\begin{array}{ll} \max & \sum\limits_{j=1}^{n} c_{j} x_{j} \\ \text{s.t.} & \sum\limits_{j=1}^{n} a_{ij} x_{j} \leq b_{i}, \\ & \text{for } i = 1, \dots, m, \\ & x_{j} \geq 0, \\ & \text{for } j = 1, \dots, n. \end{array} \qquad \begin{array}{ll} \min \sum\limits_{i=1}^{m} b_{i} y_{i} \\ \text{s.t.} & \sum\limits_{i=1}^{m} a_{ij} y_{i} \geq c_{j}, \\ & \text{for } j = 1, \dots, m, \\ & y_{i} \geq 0, \\ & \text{for } i = 1, \dots, m. \end{array}$$

Primal program/Dual program

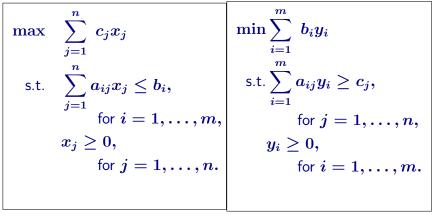
Primal Dual variables variables	$x_1 \ge 0$	$x_2 \ge 0$	$x_3 \ge 0$		$x_n \ge 0$	Primal relation	Min v
$y_1 \ge 0$	<i>a</i> ₁₁	<i>a</i> ₁₂	<i>a</i> ₁₃	•••	a_{1n}	IIA	b_1
$y_2 \ge 0$	a_{21}	<i>a</i> ₂₂	a23	• • •	a_{2n}	≦	b_2
:	:	÷	÷		:	÷	÷
$y_m \ge 0$	a_{m1}	a_{m2}	a _{m3}	•••	a_{mn}	≦	b_m
Dual Relation	IIV	IIV	IIV		IIV		
Max z	<i>c</i> ₁	<i>c</i> ₂	<i>c</i> ₃	••••	C _n]	

 $c^T x$ max s. t. $Ax \leq b$. $x \ge 0$.

min $y^T b$ s. t. $y^T A \ge c^T$. y > 0.

Primal program/Dual program

What happens when you take the dual of the dual?

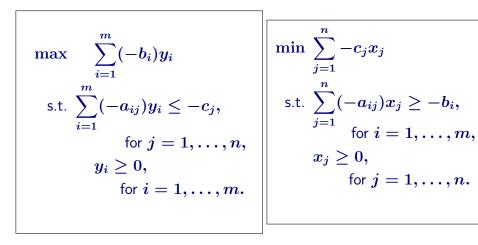


Primal program / Dual program in standard form

$$egin{aligned} \max & \sum_{i=1}^m (-b_i) y_i \ ext{s.t.} & \sum_{i=1}^m (-a_{ij}) y_i \leq -c_j, \ ext{ for } j=1,\ldots,n, \ y_i \geq 0, \ ext{ for } i=1,\ldots,m. \end{aligned}$$

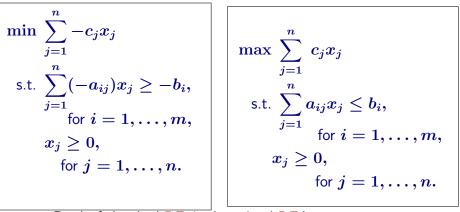
Dual program in standard form

Dual of a dual program



Dual of dual program

Dual of a dual program written in standard form



Dual of the dual LP is the primal LP!

Result

Proved the following:

Lemma

Let L be an LP, and let L' be its dual. Let L'' be the dual to L'. Then L and L'' are the same LP.

$20.2.2: \ \ \text{The Weak Duality Theorem}$

Weak duality theorem

Theorem

If (x_1, x_2, \ldots, x_n) is feasible for the primal LP and (y_1, y_2, \ldots, y_m) is feasible for the dual LP, then

$$\sum_j c_j x_j \leq \sum_i b_i y_i.$$

Namely, all the feasible solutions of the dual bound all the feasible solutions of the primal.

Weak duality theorem - proof

Proof.

By substitution from the dual form, and since the two solutions are feasible, we know that

$$\sum_j c_j x_j \leq \sum_j igg(\sum_{i=1}^m y_i a_{ij} igg) x_j \leq \sum_i igg(\sum_j a_{ij} x_j igg) y_i \leq \sum_i b_i y_i \ .$$

y being dual feasible implies c^T ≤ y^TA
x being primal feasible implies Ax ≤ b
⇒ c^Tx < (y^TA)x < y^T(Ax) < y^Tb

Weak duality is weak...

- If apply the weak duality theorem on the dual program,
- which is the original inequality in the weak duality theorem.
- Weak duality theorem does not imply the strong duality theorem which will be discussed next.

20.3: The strong duality theorem

Theorem (Strong duality theorem.)

If the primal LP problem has an optimal solution $x^* = (x_1^*, \dots, x_n^*)$ then the dual also has an optimal solution, $y^* = (y_1^*, \dots, y_m^*)$, such that

$$\sum_j c_j x_j^* = \sum_i b_i y_i^*.$$

Proof is tedious and omitted.

20.4: Some duality examples

20.4.1: Maximum matching in Bipartite graph

Max matching in bipartite graph as LP

Input: $\mathbf{G} = (L \cup R, \mathbf{E}).$

Max matching in bipartite graph as LP (Copy)

Max matching in bipartite graph as LP (Notes)

20.4.2: Shortest path

$\bullet \ \mathbf{G} = (\mathbf{V}, \mathbf{E}): \text{ graph. } \mathbf{s}: \text{ source },$

- $\begin{tabular}{ll} \displaystyle \textcircled{\begin{tabular}{ll} \bullet} & \forall (u,v) \in \mathsf{E} \text{: weight } \omega(u,v) \\ & \text{on edge.} \end{tabular} \end{tabular} \end{tabular}$
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- ullet d_x : var=dist. ullet to x, $orall x \in V$.
- $egin{array}{lll} egin{array}{lll} egin{array}{llll} egin{array}{lll} egin{array}{lll} egin{arr$
- Also $d_{s} = 0$.
- Trivial solution: all variables 0.
- Target: find assignment max d_t .
- ${f 0}$ ${
 m LP}$ to solve this!

$\bullet \ \mathbf{G} = (\mathbf{V}, \mathbf{E}): \text{ graph. } \mathbf{s}: \text{ source },$

- $\begin{tabular}{ll} \hline {\bf O}(u,v)\in {\sf E}: \mbox{ weight } \omega(u,v) \\ \mbox{ on edge.} \end{tabular} \end{tabular}$
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- ullet d_x : var=dist. ullet to x, $orall x \in V$.
- $orall (u,v) \in \mathsf{E}:$ $d_u + \omega(u,v) \geq d_v.$
- Also $d_{s} = 0$.
- Trivial solution: all variables 0.
- Target: find assignment max d_t.
- Description 1 Descriptio 1 Description 1 Description

$\bullet \ \mathbf{G} = (\mathbf{V}, \mathbf{E}): \text{ graph. } \mathbf{s}: \text{ source },$

- $\begin{tabular}{ll} \hline {\bf O}(u,v)\in {\sf E}: \mbox{ weight } \omega(u,v) \\ \mbox{ on edge.} \end{tabular} \end{tabular}$
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- ullet d_x : var=dist. ullet to x, $orall x \in V$.
- $orall (u,v) \in \mathsf{E}:$ $d_u + \omega(u,v) \geq d_v.$
- Also $d_{s} = 0$.
- Trivial solution: all variables 0.
- Target: find assignment max d_t .
- IP to solve this!

$\bullet \ \mathbf{G} = (\mathbf{V}, \mathbf{E}): \text{ graph. } \mathbf{s}: \text{ source },$

- $\begin{tabular}{ll} \hline {\bf O}(u,v)\in {\sf E}: \mbox{ weight } \omega(u,v) \\ \mbox{ on edge.} \end{tabular} \end{tabular}$
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- ullet d_x : var=dist. ullet to x, $orall x \in V$.
- $orall (u,v) \in \mathsf{E}:$ $d_u + \omega(u,v) \geq d_v.$
- Also $d_{s} = 0$.
- Trivial solution: all variables 0.
- Target: find assignment max d_t .
- IP to solve this!

$\bullet \ \mathbf{G} = (\mathbf{V}, \mathbf{E}): \text{ graph. } \mathbf{s}: \text{ source },$

- $\begin{tabular}{ll} \hline {\bf O}(u,v)\in {\sf E}: \mbox{ weight } \omega(u,v) \\ \mbox{ on edge.} \end{tabular} \end{tabular}$
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- d_x : var=dist. s to x, $\forall x \in V$.
- $orall (u,v) \in \mathsf{E}:$ $d_u + \omega(u,v) \geq d_v.$
- Also $d_{s} = 0$.
- Trivial solution: all variables 0.
- Target: find assignment max d_t.
- ${f 0}$ ${
 m LP}$ to solve this!

$\bullet \ \mathbf{G} = (\mathbf{V}, \mathbf{E}): \text{ graph. } \mathbf{s}: \text{ source },$

- $\begin{tabular}{ll} \displaystyle \textcircled{\begin{tabular}{ll} \bullet} & \forall (u,v) \in \mathsf{E} \text{: weight } \omega(u,v) \\ & \text{on edge.} \end{tabular} \end{tabular} \end{tabular}$
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- ullet d_x : var=dist. ullet to x, $orall x \in V$.
- $orall (u,v) \in \mathsf{E}:$ $d_u + \omega(u,v) \geq d_v.$
- Also $d_{s} = 0$.
- Trivial solution: all variables 0.
- Target: find assignment max d_t.
- IP to solve this!

$\bullet \ \mathbf{G} = (\mathbf{V}, \mathbf{E}): \text{ graph. } \mathbf{s}: \text{ source },$

- $\begin{tabular}{ll} \displaystyle \textcircled{\begin{tabular}{ll} \bullet} & \forall (u,v) \in \mathsf{E} \text{: weight } \omega(u,v) \\ & \text{on edge.} \end{tabular} \end{tabular} \end{tabular}$
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- ullet d_x : var=dist. ullet to x, $orall x \in V$.
- $egin{array}{lll} egin{array}{lll} egin{array}{llll} egin{array}{lll} egin{array}{llll} egin{ar$
- Also $d_{s} = 0$.
- Trivial solution: all variables 0.
- Target: find assignment max d_t .
- IP to solve this!

$\bullet \ \mathbf{G} = (\mathbf{V}, \mathbf{E}): \text{ graph. } \mathbf{s}: \text{ source },$

- $\begin{tabular}{ll} \hline {\bf O}(u,v)\in {\sf E}: \mbox{ weight } \omega(u,v) \\ \mbox{ on edge.} \end{tabular} \end{tabular}$
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- ullet d_x : var=dist. ullet to x, $orall x \in V$.
- $orall (u,v) \in \mathsf{E}:$ $d_u + \omega(u,v) \geq d_v.$
- Also $d_{s} = 0$.
- Strivial solution: all variables 0.
- Target: find assignment max d_t.
- IP to solve this!

$\bullet \ \mathbf{G} = (\mathbf{V}, \mathbf{E}): \text{ graph. } \mathbf{s}: \text{ source },$

- $\begin{tabular}{ll} \displaystyle \textcircled{\begin{tabular}{ll} \bullet} & \forall (u,v) \in \mathsf{E} \text{: weight } \omega(u,v) \\ & \text{on edge.} \end{tabular} \end{tabular} \end{tabular}$
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- d_x : var=dist. s to x, $\forall x \in V$.
- $orall (u,v) \in \mathsf{E}:$ $d_u + \omega(u,v) \geq d_v.$
- Also $d_{s} = 0$.
- Trivial solution: all variables 0.
- Target: find assignment max d_t .
- IP to solve this!

$\bullet \ \mathbf{G} = (\mathbf{V}, \mathbf{E}): \text{ graph. } \mathbf{s}: \text{ source },$

- $\begin{tabular}{ll} \hline {\bf O}(u,v)\in {\sf E}: \mbox{ weight } \omega(u,v) \\ \mbox{ on edge.} \end{tabular} \end{tabular}$
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- d_x : var=dist. s to x, $\forall x \in V$.
- $orall (u,v) \in \mathsf{E}:$ $d_u + \omega(u,v) \geq d_v.$
- Also $d_{s} = 0$.
- Strivial solution: all variables 0.
- Target: find assignment max d_t .
- ${f 0}$ ${
 m LP}$ to solve this!

$$egin{array}{lll} \max & d_{\mathsf{t}} \ ext{s.t.} & d_{\mathsf{s}} \leq 0 \ & d_{u} + \omega(u,v) \geq d_{v} \ & orall (u,v) \in \mathsf{E}, \ & d_{x} \geq 0 & orall x \in \mathsf{V}. \end{array}$$

- G = (V, E): graph. s: source ,
 t: target
- $\label{eq:constraint} {\bf @} \ \forall (u,v) \in {\sf E} : \mbox{ weight } \omega(u,v) \\ \mbox{ on edge.}$
- **Q**: Comp. shortest **s-t** path.
- No edges into s/out of t.
- $\ \, \bullet \ \, \mathbf{d}_{x}: \ \, \mathsf{var} = \mathsf{dist.} \ \, \mathbf{s} \ \, \mathsf{to} \ \, x, \ \, \forall x \in \mathsf{V}.$
- $egin{array}{lll} egin{array}{lll} egin{array}{llll} egin{array}{lll} egin{array}{lll} egin{arr$
- Also $d_{\rm s} = 0$.

60

- Trivial solution: all variables 0.
- **9** Target: find assignment max d_t .
- LP to solve this!

 $egin{array}{lll} \max & d_{\mathsf{t}} \ ext{s.t.} & d_{\mathsf{s}} \leq 0 \ & d_{u} + \omega(u,v) \geq d_{v} \ & orall (u,v) \in \mathsf{E}, \ & d_{x} \geq 0 & orall x \in \mathsf{V}. \end{array}$

Equivalently: max d_t

s.t.
$$d_{\mathsf{s}} \leq 0$$

 $d_v - d_u \leq \omega(u, v)$
 $orall (u, v) \in \mathsf{E},$
 $d_x \geq 0 \quad orall x \in \mathsf{V}.$

- G = (V, E): graph. s: source ,
 t: target
- $\label{eq:constraint} {\bf @} \ \forall (u,v) \in {\sf E} : \mbox{ weight } \omega(u,v) \\ \mbox{ on edge.}$
- **Q**: Comp. shortest **s-t** path.
- No edges into s/out of t.
- d_x : var=dist. s to x, $\forall x \in V$.
- $orall (u,v) \in \mathsf{E}:$ $d_u + \omega(u,v) \geq d_v.$
- Also $d_s = 0$.
- Solution: all variables 0.
- Target: find assignment max d_t .
- LP to solve this!

61

The dual

$$\begin{array}{ll} \min & \sum_{(u,v)\in\mathsf{E}} y_{uv}\omega(u,v) \\ \text{s.t.} & y_{\mathsf{s}} - \sum_{(\mathsf{s},u)\in\mathsf{E}} y_{\mathsf{s}u} \geq 0 & (*) \\ \\ & & \sum_{(u,x)\in\mathsf{E}} y_{ux} - \sum_{(x,v)\in\mathsf{E}} y_{xv} \geq 0 \\ & & \forall x \in \mathsf{V} \setminus \{\mathsf{s},\mathsf{t}\} & (**) \\ & & \sum_{(u,\mathsf{t})\in\mathsf{E}} y_{u\mathsf{t}} \geq 1 & (***) \\ & & y_{uv} \geq 0, \quad \forall (u,v) \in \mathsf{E}, \\ & & y_{\mathsf{s}} \geq 0. \end{array}$$

$$egin{aligned} \max & d_{\mathsf{t}} \ ext{s.t.} & d_{\mathsf{s}} \leq 0 \ & d_v - d_u \leq \omega(u,v) \ & orall (u,v) \in \mathsf{E}, \ & d_x \geq 0 \quad orall x \in \mathsf{V}. \end{aligned}$$

62

The dual – details

- y_{uv} : dual variable for the edge (u, v).
- 🗿 y_{s} : dual variable for $d_{\mathsf{s}} \leq 0$
- ${f 0}$ Think about the y_{uv} as a flow on the edge $y_{uv}.$
- Assume that weights are positive.
- § LP is min cost flow of sending 1 unit flow from source s to t.
- Indeed... (**) can be assumed to be hold with equality in the optimal solution...
- conservation of flow.
- Sequation (***) implies that one unit of flow arrives to the sink t.
- (*) implies that at least y_s units of flow leaves the source.
- **(**) Remaining of LP implies that $y_s \ge 1$.

Integrality

- In the previous example there is always an optimal solution with integral values.
- Inis is not an obvious statement.
- This is not true in general.
- If it were true we could solve **NPC** problems with LP.

Set cover...

Details in notes...

Set cover LP :

min

s.t.

 $\sum x_j$ $F_j \in \mathcal{F}$ $\sum \; x_j \geq 1$ $F_j \in \mathcal{F}, \ u_i \in F_j$ $x_j \ge 0$

65

 $\forall u_i \in S,$

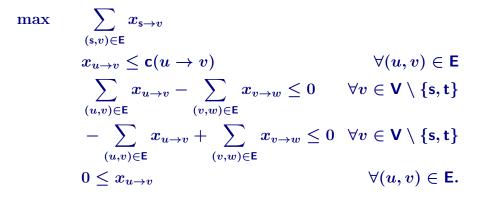
 $\forall F_j \in \mathcal{F}.$

Set cover dual is a packing LP... Details in notes...

$$egin{array}{lll} \max & & \sum\limits_{u_i\in \mathsf{S}} y_i \ & ext{s.t.} & & \sum\limits_{u_i\in F_j} y_i \leq 1 & & orall F_j\in \mathfrak{F}, \ & & y_i\geq 0 & & orall u_i\in \mathsf{S}. \end{array}$$

66

Network flow



67

Dual of network flow...

$$egin{aligned} \min\sum_{(u,v)\in\mathsf{E}}\mathsf{c}(u o v)\,y_{u o v}\ d_u-d_v&\leq y_{u o v}\ y_{u o v}&orall(u,v)\in\mathsf{E}\ y_{u o v}&\geq 0\ d_{\mathsf{s}}=1, \quad d_{\mathsf{t}}=0. \end{aligned}$$

68

Under right interpretation: shortest path (see notes).

Duality and min-cut max-flow

Details in class notes

Lemma

The Min-Cut Max-Flow Theorem follows from the strong duality Theorem for Linear Programming.

71

