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Rounding thingies I
Clicker question

Let G = (V,E) be a given graph. Consider the following:

max
∑
v∈V

xv,

such that xv ∈ {0, 1} ∀v ∈ V

xv + xu ≤ 1 ∀vu ∈ E.

The above IP (Integer program) solves the problem of:
1 Computing largest clique in G.
2 Computing largest edge cover in G.
3 Computing largest vertex cover in G.
4 Computing largest clique cover in G.
5 Computing largest independent set in G.
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20.1: Network flow via linear
programming
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20.1.1: Network flow: Problem definition
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Network flow

1 Transfer as much “merchandise” as possible from one point to
another.

2 Wireless network, transfer a large file from s to t.

3 Limited capacities.

5/59

5



Network flow

1 Transfer as much “merchandise” as possible from one point to
another.

2 Wireless network, transfer a large file from s to t.

3 Limited capacities.

13

4
10

14

t7

4

12 20

9

16
u v

w x

s

5/59

6



Network: Definition

1 Given a network with capacities on each connection.
2 Q: How much “flow” can transfer from source s to a sink t?
3 The flow is splitable.
4 Network examples: water pipes moving water. Electricity

network.
5 Internet is packet base, so not quite splitable.

Definition
G = (V,E): a directed graph.

∀(u, v) ∈ E(G): capacity c(u, v) ≥ 0,

(u, v) /∈ G =⇒ c(u, v) = 0.

s: source vertex, t: target sink vertex.

G, s, t and c(·): form flow network or network.
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Network Example
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1 All flow from the source ends up in the sink.

2 Flow on edge: non-negative quantity ≤ capacity of edge.
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Flow definition

Definition (flow)

flow in network is a function f(·, ·) : E(G)→ R:

1 Bounded by capacity:
∀(u, v) ∈ E f(u, v) ≤ c(u, v).

2 Anti symmetry:
∀u, v f(u, v) = −f(v, u).

3 Two special vertices: (i) the source s and the sink t.

4 Conservation of flow (Kirchhoff’s Current Law):

∀u ∈ V \ {s, t}
∑
v

f(u, v) = 0.

flow/value of f : |f | =
∑
v∈V

f(s, v).
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Problem: Max Flow

1 Flow on edge can be negative (i.e., positive flow on edge in
other direction).

Problem (Maximum flow)

Given a network G find the maximum flow in G. Namely, compute
a legal flow f such that |f | is maximized.
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20.1.2: Network flow via linear programming
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Network flow via linear programming

Input: G = (V,E) with source s and sink t, and capacities c(·) on
the edges. Compute max flow in G.

∀(u, v) ∈ E 0 ≤ xu→v

xu→v ≤ c(u→ v)

∀v ∈ V \ {s, t}
∑

(u,v)∈E

xu→v −
∑

(v,w)∈E

xv→w ≤ 0

∑
(u,v)∈E

xu→v −
∑

(v,w)∈E

xv→w ≥ 0

maximizing
∑

(s,u)∈E xs→u
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20.1.3: Min-Cost Network flow via linear
programming
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Min cost flow

Input:

G = (V,E): directed graph.
[s:] source.
t: sink
c(·): capacities on edges,
φ: Desired amount (value) of flow.
κ(·): Cost on the edges.

Definition - cost of flow

cost of flow f: cost(f) =
∑
e∈E

κ(e) ∗ f(e).
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Min cost flow problem

Min-cost flow
minimum-cost s-t flow problem: compute the flow f of min cost
that has value φ.

min-cost circulation problem

Instead of φ we have lower-bound `(·) on edges.
(All flow that enters must leave.)

Claim
If we can solve min-cost circulation =⇒ can solve min-cost flow.
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Rounding thingies II
Clicker question

Let G = (V,E) be a given graph. Consider the following:

max
∑
v∈V

xv,

such that xv ∈ {0, 1} ∀v ∈ V

xv + xu ≤ 1 ∀vu ∈ E.

In the worst case, the optimal solution to the above IP is:
1 1
2 |V|
3 |E|
4 ∞.
5 0.
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Rounding thingies III
Clicker question

Let G = (V,E) be a given graph. Consider the following LP:

max
∑
v∈V

xv,

such that 0 ≤ xv ≤ 1 ∀v ∈ V

xv + xu ≤ 1 ∀vu ∈ E.

In the worst case, the optimal solution to the above LP is:
1 ≥ 1
2 ≥ |V| /2
3 ≥ |E| /2
4 ∞.
5 0.
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Rounding thingies IV
Clicker question

Consider an optimization problem (a maximization problem) on a
graph, that can be written as an IP.
αI : optimal solution of the IP.
α: optimal solution of the LP (aka fractional solution).
We always have that:

1 αI ≥ α.

2 αI = α.

3 αI ≤ 2α.

4 αI ≤ α.

5 αI − α ≤ 2.

17/59

18













Rounding thingies V
Clicker question

Consider an optimization problem (a maximization problem) on a
graph with n vertices and m edges, that can be written as an IP.
αI : optimal solution of the IP.
α: optimal solution of the LP.
We always have that:

1 α/αI ≤ 1.

2 α/αI ≤ n.

3 Always α/αI ≥ m. Unless m ≤ n3/2 and then
α/αI ≥

√
m/n.

4 In the worst case α/αI ≥ n/2, but it can be much worse.

5 α/αI ≥ 1.
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20.2: Duality and Linear
Programming
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Duality...

1 Every linear program L has a dual linear program L′.

2 Solving the dual problem is essentially equivalent to solving the
primal linear program original LP.

3 Lets look an example..
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20.2.1: Duality by Example
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Duality by Example

max z = 4x1 + x2 + 3x3

s.t. x1 + 4x2 ≤ 1

3x1 − x2 + x3 ≤ 3

x1, x2, x3 ≥ 0

1 η: maximal possible value of target function.

2 Any feasible solution⇒ a lower bound on η.

3 In above: x1 = 1, x2 = x3 = 0 is feasible, and implies z = 4
and thus η ≥ 4.

4 x1 = x2 = 0, x3 = 3 is feasible =⇒ η ≥ z = 9.

5 How close this solution is to opt? (i.e., η)

6 If very close to optimal – might be good enough. Maybe stop?
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Duality by Example: II

max z = 4x1 + x2 + 3x3

s.t. x1 + 4x2 ≤ 1

3x1 − x2 + x3 ≤ 3

x1, x2, x3 ≥ 0

1 Add the first inequality (multiplied by 2) to the second inequality
(multiplied by 3):

2( x1 + 4x2 ) ≤ 2(1)

+3(3x1 − x2 + x3) ≤ 3(3).

2 The resulting inequality is

11x1 + 5x2 + 3x3 ≤ 11. (1)
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Duality by Example: II

max z = 4x1 + x2 + 3x3

s.t. x1 + 4x2 ≤ 1

3x1 − x2 + x3 ≤ 3

x1, x2, x3 ≥ 0

1 got 11x1 + 5x2 + 3x3 ≤ 11.
2 inequality must hold for any feasible solution of L.
3 Objective: z = 4x1 + x2 + 3x3 and x1,x2 and x3 are all

non-negative.
4 Inequality above has larger coefficients than objective (for

corresponding variables)
5 For any feasible solution:
z = 4x1 + x2 + 3x3 ≤ 11x1 + 5x2 + 3x3 ≤ 11,
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Duality by Example: III

max z = 4x1 + x2 + 3x3

s.t. x1 + 4x2 ≤ 1

3x1 − x2 + x3 ≤ 3

x1, x2, x3 ≥ 0

1 For any feasible solution:
z = 4x1 + x2 + 3x3 ≤ 11x1 + 5x2 + 3x3 ≤ 11,

2 Opt solution is LP L is somewhere between 9 and 11.
3 Multiply first inequality by y1, second inequality by y2 and add

them up:

y1(x1 + 4x2 ) ≤ y1(1)
+ y2(3x1 - x2 + x3 ) ≤ y2(3)

(y1 + 3y2)x1 + (4y1 − y2)x2 + y2x3 ≤ y1 + 3y2.
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Duality by Example: IV

max z = 4x1 + x2 + 3x3

s.t. x1 + 4x2 ≤ 1

3x1 − x2 + x3 ≤ 3

x1, x2, x3 ≥ 0

1 (y1 + 3y2)x1 + (4y1 − y2)x2 + y2x3 ≤ y1 + 3y2.

1 Compare to target function –
require expression bigger than
target function in each
variable.

=⇒ z = 4x1 + x2 + 3x3 ≤
(y1 + 3y2)x1 + (4y1 − y2)x2 + y2x3 ≤ y1 + 3y2.
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Duality by Example: IV

Primal LP:
max z = 4x1 + x2 + 3x3

s.t. x1 + 4x2 ≤ 1

3x1 − x2 + x3 ≤ 3

x1, x2, x3 ≥ 0

Dual LP: L̂

min y1 + 3y2

s.t. y1 + 3y2 ≥ 4

4y1 − y2 ≥ 1

y2 ≥ 3

y1, y2 ≥ 0.

1 Best upper bound on η (max value of z) then solve the LP L̂.

2 L̂: Dual program to L.

3 opt. solution of L̂ is an upper bound on optimal solution for L.
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Primal program/Dual program

max
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi,

for i = 1, . . . ,m,

xj ≥ 0,

for j = 1, . . . , n.

min
m∑
i=1

biyi

s.t.
m∑
i=1

aijyi ≥ cj,

for j = 1, . . . , n,

yi ≥ 0,

for i = 1, . . . ,m.

28/59

31



Primal program/Dual program

max cTx

s. t. Ax ≤ b.
x ≥ 0.

min yTb

s. t. yTA ≥ cT .
y ≥ 0.

29/59

32





















Primal program/Dual program

What happens when you take the dual of the dual?

max
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi,

for i = 1, . . . ,m,

xj ≥ 0,

for j = 1, . . . , n.

min
m∑
i=1

biyi

s.t.
m∑
i=1

aijyi ≥ cj,

for j = 1, . . . , n,

yi ≥ 0,

for i = 1, . . . ,m.
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Primal program / Dual program in standard form

max
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi,

for i = 1, . . . ,m,

xj ≥ 0,

for j = 1, . . . , n.

max
m∑
i=1

(−bi)yi

s.t.
m∑
i=1

(−aij)yi ≤ −cj,

for j = 1, . . . , n,

yi ≥ 0,

for i = 1, . . . ,m.
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Dual program in standard form
Dual of a dual program

max
m∑
i=1

(−bi)yi

s.t.
m∑
i=1

(−aij)yi ≤ −cj,

for j = 1, . . . , n,

yi ≥ 0,

for i = 1, . . . ,m.

min
n∑

j=1

−cjxj

s.t.
n∑

j=1

(−aij)xj ≥ −bi,

for i = 1, . . . ,m,

xj ≥ 0,

for j = 1, . . . , n.
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Dual of dual program
Dual of a dual program written in standard form

min
n∑

j=1

−cjxj

s.t.
n∑

j=1

(−aij)xj ≥ −bi,

for i = 1, . . . ,m,

xj ≥ 0,

for j = 1, . . . , n.

max
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi,

for i = 1, . . . ,m,

xj ≥ 0,

for j = 1, . . . , n.

=⇒ Dual of the dual LP is the primal LP!
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Result

Proved the following:

Lemma
Let L be an LP, and let L′ be its dual. Let L′′ be the dual to L′.
Then L and L′′ are the same LP.
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20.2.2: The Weak Duality Theorem
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Weak duality theorem

Theorem
If (x1, x2, . . . , xn) is feasible for the primal LP and
(y1, y2, . . . , ym) is feasible for the dual LP, then∑

j

cjxj ≤
∑
i

biyi.

Namely, all the feasible solutions of the dual bound all the feasible
solutions of the primal.
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Weak duality theorem – proof

Proof.
By substitution from the dual form, and since the two solutions are
feasible, we know that

∑
j

cjxj ≤
∑
j

(
m∑
i=1

yiaij

)
xj ≤

∑
i

(∑
j

aijxj

)
yi ≤

∑
i

biyi .

1 y being dual feasible implies cT ≤ yTA

2 x being primal feasible implies Ax ≤ b
3 ⇒ cTx ≤ (yTA)x ≤ yT (Ax) ≤ yTb
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Weak duality is weak...

1 If apply the weak duality theorem on the dual program,

2 =⇒
m∑
i=1

(−bi)yi ≤
n∑

j=1

−cjxj ,

3 which is the original inequality in the weak duality theorem.

4 Weak duality theorem does not imply the strong duality theorem
which will be discussed next.
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20.3: The strong duality theorem
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The strong duality theorem

Theorem (Strong duality theorem.)

If the primal LP problem has an optimal solution
x∗ =

(
x∗1, . . . , x

∗
n

)
then the dual also has an optimal solution,

y∗ =
(
y∗1, . . . , y

∗
m

)
, such that∑

j

cjx
∗
j =

∑
i

biy
∗
i .

Proof is tedious and omitted.
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20.4: Some duality examples
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20.4.1: Maximum matching in Bipartite graph
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Max matching in bipartite graph as LP

Input:G = (L ∪R,E).

max
∑
uv∈E

xuv

s.t.
∑
uv∈E

xuv ≤ 1 ∀v ∈ G.

xuv ≥ 0 ∀uv ∈ E
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Max matching in bipartite graph as LP (Copy)

Input:G = (L ∪R,E).

max
∑
uv∈E

xuv

s.t.
∑
uv∈E

xuv ≤ 1 ∀v ∈ G.

xuv ≥ 0 ∀uv ∈ E
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Max matching in bipartite graph as LP (Notes)
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20.4.2: Shortest path
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Shortest path

1 G = (V,E): graph. s: source ,
t: target

2 ∀(u, v) ∈ E: weight ω(u, v)
on edge.

3 Q: Comp. shortest s-t path.

4 No edges into s/out of t.

5 dx: var=dist. s to x, ∀x ∈ V.

6 ∀(u, v) ∈ E:
du + ω(u, v) ≥ dv.

7 Also ds = 0.

8 Trivial solution: all variables 0.

9 Target: find assignment max dt.

10 LP to solve this!
47/59
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Shortest path
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Shortest path

max dt

s.t. ds ≤ 0

du + ω(u, v) ≥ dv

∀(u, v) ∈ E,

dx ≥ 0 ∀x ∈ V.

1 G = (V,E): graph. s: source ,
t: target

2 ∀(u, v) ∈ E: weight ω(u, v)
on edge.

3 Q: Comp. shortest s-t path.
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Shortest path

max dt

s.t. ds ≤ 0

du + ω(u, v) ≥ dv

∀(u, v) ∈ E,

dx ≥ 0 ∀x ∈ V.

Equivalently:
max dt

s.t. ds ≤ 0

dv − du ≤ ω(u, v)
∀(u, v) ∈ E,

dx ≥ 0 ∀x ∈ V.

1 G = (V,E): graph. s: source ,
t: target

2 ∀(u, v) ∈ E: weight ω(u, v)
on edge.

3 Q: Comp. shortest s-t path.

4 No edges into s/out of t.

5 dx: var=dist. s to x, ∀x ∈ V.

6 ∀(u, v) ∈ E:
du + ω(u, v) ≥ dv.

7 Also ds = 0.

8 Trivial solution: all variables 0.

9 Target: find assignment max dt.

10 LP to solve this!
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The dual

max dt

s.t. ds ≤ 0

dv − du ≤ ω(u, v)
∀(u, v) ∈ E,

dx ≥ 0 ∀x ∈ V.

min
∑

(u,v)∈E

yuvω(u, v)

s.t. ys −
∑

(s,u)∈E

ysu ≥ 0 (∗)

∑
(u,x)∈E

yux −
∑

(x,v)∈E

yxv ≥ 0

∀x ∈ V \ {s, t} (∗∗)∑
(u,t)∈E

yut ≥ 1 (∗ ∗ ∗)

yuv ≥ 0, ∀(u, v) ∈ E,

ys ≥ 0.
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The dual – details

1 yuv: dual variable for the edge (u, v).

2 ys: dual variable for ds ≤ 0

3 Think about the yuv as a flow on the edge yuv.

4 Assume that weights are positive.

5 LP is min cost flow of sending 1 unit flow from source s to t.

6 Indeed... (**) can be assumed to be hold with equality in the
optimal solution...

7 conservation of flow.

8 Equation (***) implies that one unit of flow arrives to the sink t.

9 (*) implies that at least ys units of flow leaves the source.

10 Remaining of LP implies that ys ≥ 1.
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Integrality

1 In the previous example there is always an optimal solution with
integral values.

2 This is not an obvious statement.

3 This is not true in general.

4 If it were true we could solve NPC problems with LP.
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Set cover...
Details in notes...

Set cover LP:

min
∑
Fj∈F

xj

s.t.
∑
Fj∈F,
ui∈Fj

xj ≥ 1 ∀ui ∈ S,

xj ≥ 0 ∀Fj ∈ F.
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Set cover dual is a packing LP...
Details in notes...

max
∑
ui∈S

yi

s.t.
∑

ui∈Fj

yi ≤ 1 ∀Fj ∈ F,

yi ≥ 0 ∀ui ∈ S.
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Network flow

max
∑

(s,v)∈E

xs→v

xu→v ≤ c(u→ v) ∀(u, v) ∈ E∑
(u,v)∈E

xu→v −
∑

(v,w)∈E

xv→w ≤ 0 ∀v ∈ V \ {s, t}

−
∑

(u,v)∈E

xu→v +
∑

(v,w)∈E

xv→w ≤ 0 ∀v ∈ V \ {s, t}

0 ≤ xu→v ∀(u, v) ∈ E.
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Dual of network flow...

min
∑

(u,v)∈E

c(u→ v) yu→v

du − dv ≤ yu→v ∀(u, v) ∈ E

yu→v ≥ 0 ∀(u, v) ∈ E

ds = 1, dt = 0.

Under right interpretation: shortest path (see notes).
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Duality and min-cut max-flow
Details in class notes

Lemma
The Min-Cut Max-Flow Theorem follows from the strong duality
Theorem for Linear Programming.
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Notes
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