CS 473: Algorithms, Fall 2018

Network flow, duality and Linear Programming

Lecture 20 November 5, 2018

1/59

Rounding thingies I

Clicker question

Let G = (V, E) be a given graph. Consider the following:

The above IP (Integer program) solves the problem of:

- Computing largest clique in G.
- Computing largest edge cover in G.
- 3 Computing largest vertex cover in G.
- Computing largest clique cover in G.
- Omputing largest independent set in G.

20.1: Network flow via linear programming

20.1.1: Network flow: Problem definition

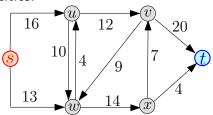
Network flow

- Transfer as much "merchandise" as possible from one point to another.
- ② Wireless network, transfer a large file from s to t.

5/59

Network flow

- Transfer as much "merchandise" as possible from one point to another.
- ② Wireless network, transfer a large file from s to t.
- Limited capacities.



5/59

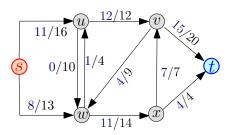
Network: Definition

- Given a network with capacities on each connection.
- ② Q: How much "flow" can transfer from source s to a sink t?
- The flow is splitable.
- Network examples: water pipes moving water. Electricity network.
- Internet is packet base, so not quite splitable.

Definition

- G = (V, E): a directed graph.
- ullet $\forall (u,v) \in \mathsf{E}(\mathsf{G})$: capacity $c(u,v) \geq 0$,
- $\bullet \ (u,v) \notin G \implies c(u,v) = 0.$
- s: source vertex, t: target sink vertex.
- **G**, s, t and $c(\cdot)$: form flow network or network.

Network Example



- All flow from the source ends up in the sink.
- ② Flow on edge: non-negative quantity \leq capacity of edge.

Flow definition

Definition (flow)

flow in network is a function $f(\cdot, \cdot) : \mathsf{E}(\mathsf{G}) \to \mathbb{R}$:

- Bounded by capacity:
 - $orall (u,v) \in \mathsf{E} \quad f(u,v) \leq c(u,v)$.
- Anti symmetry:

$$\forall u, v \qquad f(u, v) = -f(v, u).$$

- **3** Two special vertices: (i) the **source** s and the **sink** t.
- Conservation of flow (Kirchhoff's Current Law):

$$orall u \in \mathsf{V} \setminus \{s,t\} \qquad \sum f(u,v) = 0.$$

flow/value of
$$f$$
: $|f| = \sum_{v \in V} f(s, v)$.

Problem: Max Flow

• Flow on edge can be negative (i.e., positive flow on edge in other direction).

Problem (Maximum flow)

Given a network **G** find the **maximum flow** in **G**. Namely, compute a legal flow f such that |f| is maximized.

9/59

20.1.2: Network flow via linear programming

Network flow via linear programming

Input: $\mathbf{G} = (\mathbf{V}, \mathbf{E})$ with source \mathbf{s} and sink \mathbf{t} , and capacities $\mathbf{c}(\cdot)$ on the edges. Compute max flow in \mathbf{G} .

the edges. Compute max flow in
$${f G}$$
. $orall (u,v)\in E$ $0\le x_{u o v}$ $x_{u o v}\le {f c}(u o v)$ $x_{u o v}\le {f c}(u o v)$ $yv\in V\setminus \{{f s},{f t}\}$ $yv\in V\setminus \{{f s},{f t}\}$

20.1.3: Min-Cost Network flow via linear programming

Min cost flow

Input:

G = (V, E): directed graph.

[s:] source.

t: sink

 $\mathbf{c}(\cdot)$: capacities on edges,

 ϕ : Desired amount (**value**) of flow.

 $\kappa(\cdot)$: Cost on the edges.

Definition - cost of flow

$$\mathrm{cost} \; \mathrm{of} \; \mathrm{flow} \; \mathrm{f} \colon \operatorname{cost}(\mathrm{f}) = \sum_{e \in E} \kappa(e) * \mathrm{f}(e).$$

Min cost flow problem

Min-cost flow

minimum-cost s-t flow problem: compute the flow ${\bf f}$ of min cost that has value ϕ .

min-cost circulation problem

Instead of ϕ we have lower-bound $\ell(\cdot)$ on edges. (All flow that enters must leave.)

Claim

If we can solve min-cost circulation \implies can solve min-cost flow.

Rounding thingies II

Clicker question

Let G = (V, E) be a given graph. Consider the following:

In the worst case, the optimal solution to the above IP is:

- **1**
 - 2 |V|
 - 3 |E|
- **4** ∞.
- **5** 0.

Rounding thingies III

Clicker question

Let G = (V, E) be a given graph. Consider the following LP:

$$\begin{array}{ll} \max & \sum_{\mathbf{v} \in \mathbf{V}} x_{\mathbf{v}}, \\ \text{such that} & 0 \leq x_{\mathbf{v}} \leq 1 & \forall \mathbf{v} \in \mathbf{V} \\ & x_{\mathbf{v}} + x_{\mathbf{u}} \leq 1 & \forall \mathbf{v} \mathbf{u} \in \mathbf{E}. \end{array}$$

In the worst case, the optimal solution to the above \overline{LP} is:

- **1** > 1

- **4** ∞.
- **5** 0.

Rounding thingies IV

Clicker question

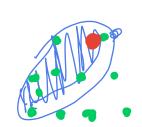
Consider an optimization problem (a maximization problem) on a graph, that can be written as an IP.

 α^I : optimal solution of the IP.

 α : optimal solution of the LP (aka fractional solution).

We always have that:

- $\alpha^I \leq 2\alpha$.



Rounding thingies V

Clicker question

Consider an optimization problem (a maximization problem) on a graph with n vertices and m edges, that can be written as an IP. α^I : optimal solution of the IP.

 α : optimal solution of the LP.

We always have that:

- ullet Always $lpha/lpha^I \geq m$. Unless $m \leq n^{3/2}$ and then $lpha/lpha^I \geq \sqrt{m}/n$.
- In the worst case $lpha/lpha^I \geq n/2$, but it can be much worse.
 - $\alpha/\alpha^I \geq 1.$

20.2: Duality and Linear Programming

Duality...

- **1** Every linear program L has a **dual linear program** L'.
- Solving the dual problem is essentially equivalent to solving the primal linear program original LP.
- Lets look an example..

20/59

20.2.1: Duality by Example

Duality by Example

$$\begin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \\ \text{s.t.} & x_1 + 4x_2 \leq 1 \\ & 3x_1 - x_2 + x_3 \leq 3 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

- lacktriangle maximal possible value of target function.
- ② Any feasible solution \Rightarrow a lower bound on η .
- 10 In above: $x_1 = 1, x_2 = x_3 = 0$ is feasible, and implies z = 4 and thus $\eta \geq 4$.
- **1** How close this solution is to opt? (i.e., η)
- If very close to optimal might be good enough. Maybe stop?

$$\max \quad z = 4x_1 + x_2 + 3x_3$$
s.t. $x_1 + 4x_2 \le 1$
 $3x_1 - x_2 + x_3 \le 3$
 $x_1, x_2, x_3 \ge 0$

Add the first inequality (multiplied by 2) to the second inequality (multiplied by 3):

$$2(x_1+4x_2)\leq 2(1)$$

$$+3(3x_1-x_2+x_3)\leq 3(3).$$
 The resulting inequality is
$$11x_1+5x_2+3x_3\leq 11.$$

24

$$z = 4x_1 + x_2 + 3x_3$$
 s.t. $x_1 + 4x_2 \le 1$ $3x_1 - x_2 + x_3 \le 3$ $x_1, x_2, x_3 \ge 0$

- $oldsymbol{\circ}$ inequality must hold for any feasible solution of $oldsymbol{L}$.
- ullet Objective: $z=4x_1+x_2+3x_3$ and x_1,x_2 and x_3 are all non-negative.
- Inequality above has larger coefficients than objective (for corresponding variables)
- For any feasible solution:

$$z = 4x_1 + x_2 + 3x_3 \le 11x_1 + 5x_2 + 3x_3 \le 11,$$

$$egin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \ & ext{s.t.} & x_1 + 4x_2 & \leq 1 \ & 3x_1 - x_2 + x_3 \leq 3 \ & x_1, x_2, x_3 \geq 0 \end{array}$$

For any feasible solution:

$$z = 4x_1 + x_2 + 3x_3 \le 11x_1 + 5x_2 + 3x_3 \le 11,$$

- ② Opt solution is LP L is somewhere between 9 and 11.
- Multiply first inequality by y_1 , second inequality by y_2 and add them up:

$$egin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \ & ext{s.t.} & x_1 + 4x_2 & \leq 1 \ & 3x_1 - x_2 + x_3 \leq 3 \ & x_1, x_2, x_3 \geq 0 \end{array}$$

$$(y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3 \le y_1 + 3y_2.$$

Compare to target function – require expression bigger than target function in each variable.

$$\implies z = 4x_1 + x_2 + 3x_3 \le (y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3 \le y_1 + 3y_2.$$

$$egin{array}{ll} \max & z = 4x_1 + x_2 + 3x_3 \ & ext{s.t.} & x_1 + 4x_2 & \leq 1 \ & 3x_1 - x_2 + x_3 \leq 3 \ & x_1, x_2, x_3 \geq 0 \end{array}$$

$$(y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3 \le y_1 + 3y_2.$$

Compare to target function – require expression bigger than target function in each variable.

$$\implies z = 4x_1 + x_2 + 3x_3 \le (y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3 \le y_1 + 3y_2.$$

$$\max \quad z = 4x_1 + x_2 + 3x_3$$
s.t. $x_1 + 4x_2 \le 1$
 $3x_1 - x_2 + x_3 \le 3$
 $x_1, x_2, x_3 \ge 0$

$$(y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3 \le y_1 + 3y_2.$$

$$egin{pmatrix} 4 & \leq & y_1 + 3y_2 \ 1 & \leq & 4y_1 - y_2 \ 3 & \leq & y_2, \end{pmatrix}$$

Compare to target function – require expression bigger than target function in each variable.

$$\implies z = 4x_1 + x_2 + 3x_3 \le \ (y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3 \le y_1 + 3y_2.$$

Primal LP:

$$egin{array}{ll} \overline{\max} & z = 4x_1 + x_2 + 3x_3 \ & ext{s.t.} & x_1 + 4x_2 & \leq 1 \ & 3x_1 - x_2 + x_3 \leq 3 \ & x_1, x_2, x_3 \geq 0 \end{array}$$

Dual LP: $\widehat{\boldsymbol{L}}$

min
$$y_1 + 3y_2$$

s.t. $y_1 + 3y_2 \ge 4$
 $4y_1 - y_2 \ge 1$
 $y_2 \ge 3$
 $y_1, y_2 \ge 0$.

- **①** Best upper bound on η (max value of z) then solve the $\operatorname{LP}\widehat{L}$.
- ② $\widehat{\boldsymbol{L}}$: Dual program to \boldsymbol{L} .
- lacktriangledown opt. solution of $\widehat{m{L}}$ is an upper bound on optimal solution for $m{L}$.

27/59

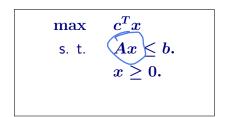
Primal program/Dual program

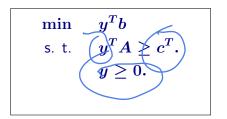
$$\max \sum_{j=1}^n c_j x_j \qquad \qquad \min$$
 s.t. $\sum_{j=1}^n a_{ij} x_j \leq b_i,$ for $i=1,\ldots,m,$ $x_j \geq 0,$ for $j=1,\ldots,n.$

$$\min \sum_{i=1}^m b_i y_i$$
 s.t. $\sum_{i=1}^m a_{ij} y_i \geq c_j,$ for $j=1,\ldots,n,$ $y_i \geq 0,$ for $i=1,\ldots,m.$

Primal program/Dual program

								D .
	Primal Dual variables variables	$x_1 \ge 0$	$x_2 \ge 0$	$x_3 \ge 0$		$x_n \ge 0$	Primal relation	Min v
	$y_1 \ge 0$	a ₁₁	a ₁₂	a ₁₃		a_{1n}	≦	b_1
	$y_2 \ge 0$	a ₂₁	a_{22}	a_{23}	• • •	a_{2n}	≦	$\langle b_2 \rangle$
	:		:	÷			÷	
	$y_m \ge 0$	a_{m1}	a_{m2}	a_{m3}		a_{mn}	≦	b_m
	Dual Relation '	IIV	IIV	IIV		IIV		
	Max z	c ₁	c_2	c ₃		C_n		





Primal program/Dual program

What happens when you take the dual of the dual?

$$egin{array}{lll} \max & \sum_{j=1}^n c_j x_j & \min \sum_{i=1}^n s.t. & \sum_{j=1}^n a_{ij} x_j \leq b_i, & ext{s.t.} & \sum_{i=1}^n c_j x_i \leq b_i, & x_i \leq$$

$$\min \sum_{i=1}^m b_i y_i$$

s.t. $\sum_{i=1}^m a_{ij} y_i \geq c_j,$
for $j=1,\dots,n,$
 $y_i \geq 0,$
for $i=1,\dots,m.$

Primal program / Dual program in standard form

$$\max \quad \sum_{j=1}^n \, c_j x_j$$
 s.t. $\sum_{j=1}^n a_{ij} x_j \leq b_i,$ for $i=1,\ldots,m,$ $x_j \geq 0,$ for $j=1,\ldots,n.$

$$\max \quad \sum_{i=1}^m (-b_i) y_i$$
 s.t. $\sum_{i=1}^m (-a_{ij}) y_i \leq -c_j,$ for $j=1,\ldots,n,$ $y_i \geq 0,$ for $i=1,\ldots,m.$

Dual program in standard form

Dual of a dual program

$$\max \sum_{i=1}^m (-b_i) y_i$$

s.t. $\sum_{i=1}^m (-a_{ij}) y_i \leq -c_j,$
for $j=1,\dots,n,$
 $y_i \geq 0,$
for $i=1,\dots,m.$

$$\min \ \sum_{j=1}^n -c_j x_j$$
 s.t. $\sum_{j=1}^n (-a_{ij}) x_j \geq -b_i,$ for $i=1,\ldots,m,$ $x_j \geq 0,$ for $j=1,\ldots,n.$

Dual of dual program

Dual of a dual program written in standard form

$$\min \ \sum_{j=1}^n -c_j x_j$$
 s.t. $\sum_{j=1}^n (-a_{ij}) x_j \geq -b_i,$ for $i=1,\ldots,m,$ $x_j \geq 0,$ for $j=1,\ldots,n.$

$$\max \sum_{j=1}^n c_j x_j$$

s.t. $\sum_{j=1}^n a_{ij} x_j \leq b_i,$
for $i=1,\ldots,m,$
 $x_j \geq 0,$
for $j=1,\ldots,n.$

 \implies Dual of the dual LP is the primal LP!

Result

Proved the following:

Lemma

Let L be an LP, and let L' be its dual. Let L'' be the dual to L'. Then L and L'' are the same LP.

$20.2.2: \ \, \mathsf{The Weak Duality Theorem}$

Weak duality theorem

Theorem

If (x_1, x_2, \ldots, x_n) is feasible for the primal LP and (y_1, y_2, \ldots, y_m) is feasible for the dual LP, then

$$\sum_j c_j x_j \leq \sum_i b_i y_i.$$

Namely, all the feasible solutions of the dual bound all the feasible solutions of the primal.

Weak duality theorem – proof

Proof.

By substitution from the dual form, and since the two solutions are feasible, we know that

$$\sum_j c_j x_j \leq \sum_j \Biggl(\sum_{i=1}^m y_i a_{ij}\Biggr) x_j \leq \sum_i \Biggl(\sum_j a_{ij} x_j\Biggr) y_i \leq \sum_i b_i y_i \;.$$

- y being dual feasible implies $c^T < y^T A$
- ② x being primal feasible implies $Ax \leq b$
- $\Rightarrow c^T x < (y^T A) x < y^T (Ax) < y^T b$

Weak duality is weak...

- If apply the weak duality theorem on the dual program,
- $\implies \sum_{i=1}^m (-b_i) y_i \leq \sum_{j=1}^n -c_j x_j,$
- which is the original inequality in the weak duality theorem.
- Weak duality theorem does not imply the strong duality theorem which will be discussed next.

20.3: The strong duality theorem

The strong duality theorem

Theorem (Strong duality theorem.)

If the primal LP problem has an optimal solution $x^* = (x_1^*, \dots, x_n^*)$ then the dual also has an optimal solution, $y^* = (y_1^*, \dots, y_m^*)$, such that

$$\sum_j c_j x_j^* = \sum_i b_i y_i^*.$$

Proof is tedious and omitted.

20.4: Some duality examples

20.4.1: Maximum matching in Bipartite graph

Max matching in bipartite graph as LP

Input:
$$G = (L \cup R, E)$$
.

$$egin{array}{lll} \max & & \sum_{uv \in \mathtt{E}} x_{uv} \ & s.t. & & \sum_{uv \in \mathtt{E}} x_{uv} \leq 1 & & orall v \in \mathtt{G}. \ & & x_{uv} \geq 0 & & orall uv \in \mathtt{E} \end{array}$$

Max matching in bipartite graph as LP (Copy)

Input: $G = (L \cup R, E)$.

max	$\sum_{uv\in E} x_{uv}$	
s.t.	$\sum x_{uv} \leq 1$	$orall v \in {\sf G}.$
	$egin{aligned} uv \in E \ x_{uv} \geq 0 \end{aligned}$	$orall uv \in E$

Max matching in bipartite graph as LP (Notes)

20.4.2: Shortest path

- G = (V, E): graph. s: source ,
 t: target
- $orall \ orall (u,v) \in {\sf E}$: weight $\omega(u,v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- $oldsymbol{0}$ d_x : var=dist. $oldsymbol{s}$ to x, $orall x \in oldsymbol{\mathsf{V}}$.
- $orall \left(egin{aligned} orall (u,v) \in \mathsf{E}: \ d_u + \omega(u,v) \geq d_v. \end{aligned}
 ight.$
- Trivial solution: all variables 0.
- ullet Target: find assignment max $d_{\mathbf{t}}$.
- LP to solve this!

- G = (V, E): graph. s: source ,
 t: target
- $orall \ orall (u,v) \in \mathsf{E}$: weight $\omega(u,v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- $oldsymbol{0}$ d_x : var=dist. $oldsymbol{s}$ to x, $orall x \in oldsymbol{\mathsf{V}}$.
- $orall \left(egin{aligned} orall (u,v) \in \mathsf{E}: \ d_u + \omega(u,v) \geq d_v. \end{aligned}
 ight.$
- Also $d_s = 0$.
- Trivial solution: all variables 0.
- ullet Target: find assignment max $d_{\mathbf{t}}$.
- LP to solve this!

- G = (V, E): graph. s: source ,
 t: target
- $orall \ orall (u,v) \in {\sf E}$: weight $\omega(u,v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- $oldsymbol{0}$ d_x : var=dist. $oldsymbol{s}$ to x, $orall x \in oldsymbol{\mathsf{V}}$.
- $orall \left(egin{aligned} orall (u,v) \in \mathbf{E}: \ d_u + \omega(u,v) \geq d_v. \end{aligned}
 ight.$
- Trivial solution: all variables 0.
- ullet Target: find assignment max $d_{
 m t}$.
- LP to solve this!

- G = (V, E): graph. s: source ,
 t: target
- $orall \ orall (u,v) \in {\sf E}$: weight $\omega(u,v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- $oldsymbol{0}$ d_x : var=dist. $oldsymbol{s}$ to x, $orall x \in oldsymbol{\mathsf{V}}$.
- $orall \left(egin{aligned} orall (u,v) \in \mathsf{E}: \ d_u + \omega(u,v) \geq d_v. \end{aligned}
 ight.$
- $\mathbf{0}$ Also $d_{s} = \mathbf{0}$.
- Trivial solution: all variables 0.
- $oldsymbol{0}$ Target: find assignment max $d_{
 m t}$.
- LP to solve this!

- G = (V, E): graph. s: source ,
 t: target
- $orall \ orall (u,v) \in \mathsf{E}$: weight $\omega(u,v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- \bullet d_x : var=dist. **s** to x, $\forall x \in V$.
- $orall \left(egin{aligned} orall (u,v) \in \mathsf{E}: \ d_u + \omega(u,v) \geq d_v. \end{aligned}
 ight.$
- Trivial solution: all variables 0.
- ullet Target: find assignment max $d_{
 m t}$.
- LP to solve this!

- G = (V, E): graph. s: source ,
 t: target
- $orall \ orall (u,v) \in {\sf E}$: weight $\omega(u,v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- $oldsymbol{0}$ d_x : var=dist. $oldsymbol{s}$ to x, $orall x \in oldsymbol{\mathsf{V}}$.
- $orall \left(egin{aligned} orall (u,v) \in \mathbf{E}: \ d_u + \omega(u,v) \geq d_v. \end{aligned}
 ight.$
- Also $d_s = 0$.
- Trivial solution: all variables 0.
- ullet Target: find assignment max $d_{\mathbf{t}}$.
- LP to solve this!

- G = (V, E): graph. s: source ,
 t: target
- $orall \ orall (u,v) \in \mathsf{E}$: weight $\omega(u,v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- $oldsymbol{0}$ d_x : var=dist. $oldsymbol{s}$ to x, $orall x \in oldsymbol{\mathsf{V}}$.
- $orall \left(egin{aligned} orall (u,v) \in \mathsf{E}: \ d_u + \omega(u,v) \geq d_v. \end{aligned}
 ight.$
- Trivial solution: all variables 0.
- ullet Target: find assignment max $d_{
 m t}$.
- LP to solve this!

- G = (V, E): graph. s: source ,
 t: target
- $orall \ orall (u,v) \in \mathsf{E}$: weight $\omega(u,v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- $oldsymbol{0}$ d_x : var=dist. $oldsymbol{s}$ to x, $orall x \in oldsymbol{\mathsf{V}}$.
- $egin{aligned} lackbr{\phi}(u,v) \in \mathsf{E}: \ d_u + \omega(u,v) \geq d_v. \end{aligned}$
- Also $d_s = 0$.
- Trivial solution: all variables 0.
- ullet Target: find assignment max $d_{\mathbf{t}}$.
- LP to solve this!

- G = (V, E): graph. s: source ,
 t: target
- $orall \ orall (u,v) \in {\sf E}$: weight $\omega(u,v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- $oldsymbol{0}$ d_x : var=dist. $oldsymbol{s}$ to x, $orall x \in oldsymbol{\mathsf{V}}$.
- $orall \left(egin{aligned} orall (u,v) \in \mathsf{E}: \ d_u + \omega(u,v) \geq d_v. \end{aligned}
 ight.$
- Trivial solution: all variables 0.
- $oldsymbol{0}$ Target: find assignment max $d_{
 m t}$.
- LP to solve this!

- G = (V, E): graph. s: source ,
 t: target
- $orall \ orall (u,v) \in \mathsf{E}$: weight $\omega(u,v)$ on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.
- $oldsymbol{0}$ d_x : var=dist. $oldsymbol{s}$ to x, $orall x \in oldsymbol{V}$.
- $orall \left(egin{aligned} orall (u,v) \in \mathsf{E}: \ d_u + \omega(u,v) \geq d_v. \end{aligned}
 ight.$
- Also $d_s = 0$.
- Trivial solution: all variables 0.
- ullet Target: find assignment max $d_{
 m t}$.
- LP to solve this!

$$egin{array}{ll} \max & d_{\mathsf{t}} \ & \mathsf{s.t.} & d_{\mathsf{s}} \leq 0 \ & d_u + \omega(u,v) \geq d_v \ & orall (u,v) \in \mathsf{E}, \ & d_x \geq 0 \quad orall x \in \mathsf{V}. \end{array}$$

- \bullet G = (V, E): graph. s: source, t: target
- on edge.
- Q: Comp. shortest s-t path.
- No edges into s/out of t.

5 d_x : var=dist. **s** to x, $\forall x \in V$.

- \bullet $\forall (u,v) \in \mathsf{E}$: $d_u + \omega(u,v) \geq d_v$
- \bigcirc Also $d_s = 0$.
- Trivial solution: all variables 0.
- **1** Target: find assignment max d_t . LP to solve this!

$$\max \ d_{\mathsf{t}}$$
 s.t. $d_{\mathsf{s}} \leq 0$

$$d_{\mathsf{s}} \leq 0$$
 $d_{u} + \omega$

$$egin{aligned} d_u + \omega(u,v) &\geq d_v \ &orall (u,v) \in \mathsf{E}, \end{aligned}$$

Equivalently:

$$\max \ d_{\mathsf{t}}$$

s.t.
$$d_{
m s} \leq 0$$

 $d_x \geq 0 \quad \forall x \in \mathsf{V}.$

$$d_v - d_u \leq \omega(u, v)$$

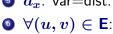
$$orall (u,v) \in \mathsf{E},$$

 $d_x \geq 0 \quad \forall x \in \mathsf{V}.$

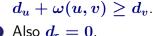
t: target

Q: Comp. shortest s-t path.

61



on edge.



LP to solve this!

No edges into
$$\mathbf{s}/\text{out}$$
 of \mathbf{t} .
$$\mathbf{d}_x : \text{ var} = \text{dist. } \mathbf{s} \text{ to } x, \ \forall x \in \mathbf{V}.$$

9 Target: find assignment max d_t .

t: target
$$\forall (u,v) \in \mathsf{E}$$
: weight $\omega(u,v)$

The dual

$$egin{aligned} \min & \sum_{(u,v)\in \mathsf{E}} y_{uv} \omega(u,v) \ & ext{s.t.} & y_{\mathsf{s}} - \sum_{(\mathsf{s},u)\in \mathsf{E}} y_{\mathsf{s}u} \geq 0 \ & \sum_{(\mathsf{s},u)\in \mathsf{E}} y_{ux} - \sum_{(x,v)\in \mathsf{E}} y_{xv} \ & \sum_{(x,v)\in \mathsf{E}} y_{ux} - \sum_{(x,v)\in \mathsf{E}} y_{xv} \ & \forall x\in \mathsf{V}\setminus \{\mathsf{s},\mathsf{t}\} \ & \sum_{(u,t)\in \mathsf{E}} y_{ut} \geq 1 \ & \sum_{(u,t)\in \mathsf{E}} y_{ut} \geq 1 \ & y_{uv} \geq 0, \quad \forall (u,v)\in \mathsf{E}, \ & y_{\mathsf{s}} \geq 0. \end{aligned}$$

$$y_{\mathsf{s}} - \sum_{(\mathsf{s},u)\in\mathsf{E}} y_{\mathsf{s}u} \geq 0$$
 $\sum_{(\mathsf{s},u)\in\mathsf{E}} y_{ux} - \sum_{(\mathsf{s},v)\in\mathsf{E}} y_{xv} \geq 0$

$$y_{xv} \geq 0$$

$$egin{aligned} & \mathbf{y}_{xx} - \sum_{(x,v) \in \mathsf{E}} \mathbf{y}_{xv} \geq \mathbf{0} \end{aligned}$$

$$\sum_{i} u_{i}$$

(**)

(***)

$$y_{xv} \geq 0$$

The dual – details

- **1** y_{uv} : dual variable for the edge (u, v).
- ② $y_{
 m s}$: dual variable for $d_{
 m s} \leq 0$
- lacksquare Think about the y_{uv} as a flow on the edge y_{uv} .
- Assume that weights are positive.
- **1** LP is min cost flow of sending 1 unit flow from source s to t.
- Indeed... (**) can be assumed to be hold with equality in the optimal solution...
- o conservation of flow.
- Equation (***) implies that one unit of flow arrives to the sink t.
- (*) implies that at least y_s units of flow leaves the source.
- lacktriangle Remaining of LP implies that $y_s \geq 1$.

Integrality

- In the previous example there is always an optimal solution with integral values.
- This is not an obvious statement.
- This is not true in general.
- If it were true we could solve **NPC** problems with LP.

Set cover...

Details in notes.

Set cover LP:

min
$$\sum_{F_j \in \mathfrak{F}} x_j$$

s.t. $\sum_{\substack{F_j \in \mathfrak{F}, \ u_i \in F_j}} x_j \geq 1$ $orall u_i \in \mathbf{S},$ $orall F_j \in \mathfrak{F}.$

Set cover dual is a packing LP...

Details in notes..

$$egin{array}{ll} \max & \sum_{u_i \in \mathsf{S}} y_i \ & ext{s.t.} & \sum_{u_i \in F_j} y_i \leq 1 & orall F_j \in \mathfrak{F}, \ & y_i \geq 0 & orall u_i \in \mathsf{S}. \end{array}$$

Network flow

$$egin{array}{ll} \max & \sum_{(\mathsf{s},v)\in \mathsf{E}} x_{\mathsf{s} o v} \ & x_{u o v} \leq \mathsf{c}(u o v) & orall (u,v) \in \mathsf{E} \ & \sum_{(u,v)\in \mathsf{E}} x_{u o v} - \sum_{(v,w)\in \mathsf{E}} x_{v o w} \leq 0 & orall v \in \mathsf{V}\setminus \{\mathsf{s},\mathsf{t}\} \ & -\sum_{(u,v)\in \mathsf{E}} x_{u o v} + \sum_{(v,w)\in \mathsf{E}} x_{v o w} \leq 0 & orall v \in \mathsf{V}\setminus \{\mathsf{s},\mathsf{t}\} \ & 0 \leq x_{u o v} & orall (u,v) \in \mathsf{E}. \end{array}$$

Dual of network flow...

$$egin{aligned} \min \sum_{(u,v) \in \mathsf{E}} \mathsf{c}(u o v) \, y_{u o v} \ & d_u - d_v \leq y_{u o v} & orall (u,v) \in \mathsf{E} \ & y_{u o v} \geq 0 & orall (u,v) \in \mathsf{E} \ & d_\mathsf{s} = 1, & d_\mathsf{t} = 0. \end{aligned}$$

Under right interpretation: shortest path (see notes).

Duality and min-cut max-flow

Details in class notes

Lemma

The Min-Cut Max-Flow Theorem follows from the strong duality Theorem for Linear Programming.

