
Chapter 4

Dynamic programming
By Sariel Har-Peled, November 28, 2018¬

The events of 8 September prompted Foch to draft the later legendary signal: “My centre is giving way, my
right is in retreat, situation excellent. I attack.” It was probably never sent.

– – The first world war, John Keegan..

Version: 0.1

4.1. Basic Idea - Partition Number
Definition 4.1.1. For a positive integer n, the partition number of n, denoted by p(n), is the number
of different ways to represent n as a decreasing sum of positive integers.

6 = 6
6=5+1
6=4+2 6=4+1+1

6 = 3 + 3 6 = 3 + 2 + 1 6+3+1+1+1
6=2+2+2 6=2+2+1+1 6=2+1+1+1+1

6=1+1+1+1+1+1

The different number of partitions of 6
are shown on the right.

It is natural to ask how to compute p(n).
The “trick” is to think about a recursive so-
lution and observe that once we decide what
is the leading number d, we can solve the
problem recursively on the remaining bud-
get n − d under the constraint that no number exceeds d..

TIP
Suggestion 4.1.2. Recursive algorithms are one of the main tools in developing algorithms (and writing
programs). If you do not feel comfortable with recursive algorithms you should spend time playing with
recursive algorithms till you feel comfortable using them. Without the ability to think recursively, this
class would be a long and painful torture to you. Speak with me if you need guidance on this topic.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

PartitionsI(num, d) //d-max digit
if (num ≤ 1) or (d = 1)

return 1
if d > num

d ← num
res← 0
for i ← d down to 1

res = res + PartitionsI(num − i,i)
return res

Partitions(n)
return PartitionsI(n,n)

The resulting algorithm is depicted on the right.
We are interested in analyzing its running time. To
this end, draw the recursion tree of Partitions
and observe that the amount of work spend at each
node, is proportional to the number of children it
has. Thus, the overall time spend by the algorithm
is proportional to the size of the recurrence tree,
which is proportional (since every node is either a
leaf or has at least two children) to the number of
leafs in the tree, which is Θ(p(n)).

This is not very exciting, since it is easy verify
that 3

√
n/4 ≤ p(n) ≤ nn.

Exercise 4.1.3. Prove the above bounds on p(n) (or better bounds).

TIP
Suggestion 4.1.4. Exercises in the class notes are a natural easy questions for inclusions in exams. You
probably want to spend time doing them.

Hardy and Ramanujan (in 1918) showed that p(n) ≈
eπ

√
2n/3

4n
√

3
(which I am sure was your first guess).

It is natural to ask, if there is a faster algorithm. Or more specifically, why is the algorithm Partitions
so slowwwwwwwwwwwwwwwwww? The answer is that during the computation of Partitions(n) the
function PartitionsI(num,max_digit) is called a lot of times with the same parameters.

PartitionsI_C(num,max_digit)
if (num ≤ 1) or (max_digit = 1)

return 1
if max_digit > num

d ← num
if 〈num,max_digit〉 in cache

return cache(〈num,max_digit〉)
res← 0
for i ← max_digit down to 1 do

res += PartitionsI_C(num − i,i)
cache(〈num,max_digit〉) ← res
return res

PartitionS_C(n)
return PartitionsI_C(n,n)

An easy way to overcome this problem is ca-
che the results of PartitionsI using a hash table.
Whenever PartitionsI is being called, it checks in
a cache table if it already computed the value of
the function for this parameters, and if so it returns
the result. Otherwise, it computes the value of the
function and before returning the value, it stores
it in the cache. This simple (but powerful) idea is
known as memoization.

What is the running time of PartitionS_C? An-
alyzing recursive algorithm that have been trans-
formed by memoization are usually analyzed as fol-
lows: (i) bound the number of values stored in the
hash table, and (ii) bound the amount of work in-
volved in storing one value into the hash table (ig-
noring recursive calls).

Here is the argument in this case:
(A) If a call to PartitionsI_C takes (by itself) more than constant time, then this call performs a store

in the cache.
(B) Number of store operations in the cache is O(n2), since this is the number of different entries stored

in the cache. Indeed, for PartitionsI_C(num,max_digit), the parameters num and max_digit are
both integers in the range 1, . . . ,n.

Throughout the course, we will assume that a hash table operation can be done in constant time. This is a reasonable
assumption using randomization and perfect hashing.

2

(C) We charge the work in the loop to the resulting store. The work in the loop is at most O(n) time
(since max_digit ≤ n).

(D) As such, the overall running time of PartitionS_C(n) is O
(
n2) ×O(n) = O

(
n3) .

Note, that this analysis is naive but it would be sufficient for our purposes (verify that the bound of
O(n3) on the running time is tight in this case).

4.1.1. A Short sermon on memoization
This idea of memoization is generic and nevertheless very useful. To recap, it works by taking a recursive
function and caching the results as the computations goes on. Before trying to compute a value, check
if it was already computed and if it is already stored in the cache. If so, return result from the cache.
If it is not in the cache, compute it and store it in the cache (for the time being, you can think about
the cache as being a hash table).
• When does it work: There is a lot of inefficiency in the computation of the recursive function

because the same call is being performed repeatedly.
• When it does NOT work:

(A) The number of different recursive function calls (i.e., the different values of the parameters
in the recursive call) is “large”.

(B) When the function has side effects.

tidbitTidbit 4.1.5. Some functional programming languages allow one to take a recursive function f (·) that you
already implemented and give you a memorized version f ′(·) of this function without the programmer
doing any extra work. For a nice description of how to implement it in Scheme see [ASS96].

It is natural to ask if we can do better than just using caching? As usual in life – more pain, more
gain. Indeed, in a lot of cases we can analyze the recursive calls, and store them directly in an (sometime
multi-dimensional) array. This gets rid of the recursion (which used to be an important thing long time
ago when memory, used by the stack, was a truly limited resource, but it is less important nowadays)
which usually yields a slight improvement in performance in the real world.

This technique is known as dynamic programming®. We can sometime save space and improve
running time in dynamic programming over memoization.

Dynamic programming made easy:
(A) Solve the problem using recursion - easy (?).
(B) Modify the recursive program so that it caches the results.
(C) Dynamic programming: Modify the cache into an array.

4.2. Example – Fibonacci numbers
Let us revisit the classical problem of computing Fibonacci numbers.

®As usual in life, it is not dynamic, it is not programming, and its hardly a technique. To overcome this, most texts
find creative ways to present this topic in the most opaque way possible.

3

4.2.1. Why, where, and when?
To remind the reader, in the Fibonacci sequence, the first two numbers F0 = 0 and F1 = 1, and
Fi = Fi−1+Fi−2, for i > 1. This sequence was discovered independently in several places and times. From
Wikipedia:

“The Fibonacci sequence appears in Indian mathematics, in connection with Sanskrit
prosody. In the Sanskrit oral tradition, there was much emphasis on how long (L) syllables
mix with the short (S), and counting the different patterns of L and S within a given fixed
length results in the Fibonacci numbers; the number of patterns that are m short syllables
long is the Fibonacci number Fm+1.”

(To see that, imagine that a long syllable is equivalent in length to two short syllables.) Surprisingly,
the credit for this formalization goes back more than 2000 years (!)

Fibonacci was a decent mathematician (1170-1250 AD), and his most significant and lasting contri-
bution was spreading the Hindu-Arabic numerical system (i.e., zero) in Europe. He was the son of a rich
merchant that spend much time growing up in Algiers, where he learned the decimal notation system.
He traveled throughout the Mediterranean world to study mathematics. When he came back to Italy
he published a sequence of books (the first one “Liber Abaci” contained the description of the decimal
notations system). In this book, he also posed the following problem:

Consider a rabbit population, assuming that: A newly born pair of rabbits, one male,
one female, are put in a field; rabbits are able to mate at the age of one month so that at
the end of its second month a female can produce another pair of rabbits; rabbits never die
and a mating pair always produces one new pair (one male, one female) every month from
the second month on. The puzzle that Fibonacci posed was: how many pairs will there be
in one year?

(The above is largely based on Wikipedia.)

4.2.2. Computing Fibonacci numbers

FibR(n)
if n = 0

return 1
if n = 1

return 1
return FibR(n − 1) + FibR(n − 2)

The recursive function for computing Fibonacci num-
bers is depicted on the right. As before, the running
time of FibR(n) is proportional to O(Fn), where Fn is
the nth Fibonacci number. It is known that

Fn =
1
√

5

[(
1 +
√

5
2

) n

+

(
1 −
√

5
2

) n]
= Θ(φn),

where φ = 1+
√

5
2 .

We can now use memoization, and with a bit of care, it is easy enough to come up with the dynamic
programming version of this procedure, see FibDP in Figure 4.1. Clearly, the running time of FibDP(n)
is linear (i.e., O(n)).

A careful inspection of FibDP exposes the fact that it fills the array F[...] from left to right. In
particular, it only requires the last two numbers in the array.

4

FibDP(n)
if n ≤ 1

return 1
if F[n] initialized

return F[n]
F[n] ⇐=FibDP(n − 1)+FibDP(n − 2)
return F[n]

Figure 4.1

FibI(n)
prev ← 0, curr ← 1
for i = 1 to n do

next ← curr + prev
prev ← curr
curr ← next

return curr

As such, we can get rid of the array all together, and reduce space
needed to O(1): This is a phenomena that is quite common in dynamic
programming: By carefully inspecting the way the array/table is being
filled, sometime one can save space by being careful about the imple-
mentation.

The running time of FibI is identical to the running time of FibDP.
Can we do better?

Surprisingly, the answer is yes, to this end observe that(
y

x + y

)
=

(
0 1
1 1

) (
x
y

)
.

As such, (
Fn−1
Fn

)
=

(
0 1
1 1

) (
Fn−2
Fn−1

)
=

(
0 1
1 1

) 2 (Fn−3
Fn−2

)
=

(
0 1
1 1

) n−3 (F2
F1

)
.

Thus, computing the nth Fibonacci number can be done by comput-

ing
(

0 1
1 1

) n−3
.

FastExp(a,n)
if n = 0 then

return 1
if n = 1 then

return a
if n is even then

return (FastE xp(a,n/2))2
else

return a ∗
(
FastExp

(
a, n−1

2
)) 2

How to this quickly? Well, we know that a∗b∗c =
(a∗b)∗c = a∗(b∗c)¯, as such one can compute an by re-
peated squaring, see pseudo-code on the right. The run-
ning time of FastExp is O(log n) as can be easily verified.
Thus, we can compute in Fn in O(log n) time.

But, something is very strange. Observe that Fn has
≈ log10 1.68...n = Θ(n) digits. How can we compute a
number that is that large in logarithmic time? Well,
we assumed that the time to handle a number is O(1)
independent of its size. This is not true in practice if the
numbers are large. Naturally, one has to be very careful with such assumptions.

4.3. Edit Distance
We are given two strings A and B, and we want to know how close the two strings are too each other.
Namely, how many edit operations one has to make to turn the string A into B?

¯Associativity of multiplication...

5

h a r – p e l e d
s h a r p <space> e y e d
1 0 0 0 1 0 1 0 1 0 0

Insert:
s

delete:
–

replace:
l
y

(still) insert:
<space>

ignore:
e
e

Figure 4.2: Interpreting edit-distance as a alignment task. Aligning identical characters to each other
is free of cost. The price in the above example is 4. There are other ways to get the same edit-distance
in this case.

We allow the following operations: (i) insert a character, (ii) delete a character, and (iii) replace a
character by a different character. Price of each operation is one unit.

For example, consider the strings A =“har-peled” and B =“sharp eyed”. Their edit distance is 4,
as can be easily seen.

ed(A[1..m],B[1..n])
if m = 0 return n
if n = 0 return m
pinsert = ed(A[1..m], B[1..(n − 1)]) + 1
pdelete = ed(A[1..(m − 1)], B[1..n]) + 1
pr/i = ed(A[1..(m − 1)], B[1..(n − 1)])

+
[
A[m] , B[n]

]
return min

(
pinsert, pdelete, preplace/ignore

)

But how do we compute the edit-distance
(min # of edit operations needed)?

The idea is to list the edit operations from
left to right. Then edit distance turns into a an
alignment problem. See Figure 4.2.

In particular, the idea of the recursive algo-
rithm is to inspect the last character and de-
cide which of the categories it falls into: insert,
delete or ignore. See pseudo-code on the right.

The running time of ed(...)? Clearly exponential, and roughly 2n+m, where n + m is the size of the
input.

So how many different recursive calls ed performs? Only:O(m ∗ n) different calls, since the only
parameters that matter are n and m.

edM(A[1..m],B[1..n])
if m = 0 return n
if n = 0 return m
if T[m,n] is initialized then return T[m,n]
pinsert = edM(A[1..m],B[1..(n − 1)]) + 1
pdelete = edM(A[1..(m − 1)], B[1..n]) + 1
pr/i = edM(A[1..(m − 1)],B[1..(n − 1)]) +

[
A[m] , B[n]

]
T[m,n] ← min

(
pinsert, pdelete, preplace/ignore

)
return T[m,n]

So the natural thing is to introduce
memoization. The resulting algorithm
edM is depicted on the right. The
running time of edM(n,m) when exe-
cuted on two strings of length n and
m respective is O(nm), since there are
O(nm) store operations in the cache,
and each store requires O(1) time (by
charging one for each recursive call).
Looking on the entry T[i, j] in the ta-
ble, we realize that it depends only on T[i − 1, j], T[i, j − 1] and T[i − 1, j − 1]. Thus, instead of recursive
algorithm, we can fill the table T row by row, from left to right.

6

A L G O R I T H M
0 ← 1 ← 2 ← 3 ← 4 ← 5 ← 6 ← 7 ← 8 ← 9
↑ v

A 1 0 ← 1 ← 2 ← 3 ← 4 ← 5 ← 6 ← 7 ← 8
↑ ↑ v

L 2 1 0 ← 1 ← 2 ← 3 ← 4 ← 5 ← 6 ← 7
↑ ↑ ↑ v ↖

T 3 2 1 1 ← 2 ← 3 ← 4 4 ← 5 ← 6
↑ ↑ ↑ ↑ v ↖

R 4 3 2 2 2 2 ← 3 ← 4 ← 5 ← 6
↑ ↑ ↑ ↖ ↖ v ↖

U 5 4 3 3 3 3 3 ← 4 ← 5 ← 6
↑ ↑ ↑ ↖ ↖ ↖ v

I 6 5 4 4 4 4 3 ← 4 ← 5 ← 6
↑ ↑ ↑ ↑ ↑ ↑ ⇑

S 7 6 5 5 5 5 4 ← 4 ← 5 ← 6
↑ ↑ ↑ ↑ ↑ ↑ ↑ v

T 8 7 6 6 6 6 5 4 ← 5 ← 6
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ v

I 9 8 7 7 7 7 6 5 5 ← 6
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ v

C 10 9 8 8 8 8 7 6 6 6

Figure 4.3: Extracting the edit operations from the table.

edDP(A[1..m],B[1..n])
for i = 1 to m do T[i,0] ← i
for j = 1 to n do T[0, j] ← j
for i ← 1 to m do

for j ← 1 to n do
pinsert = T[i, j − 1] + 1
pdelete = T[i − 1, j] + 1
pr/ignore = T[i − 1. j − 1] +

[
A[i] , B[j]

]
T[i, j] ← min

(
pinsert, pdelete, pr/ignore

)
return T[m,n]

The dynamic programming version
that uses a two dimensional array is
pretty simple now to derive and is de-
picted on the left. Clearly, it requires
O(nm) time, and O(nm) space. See the
pseudo-code of the resulting algorithm
edDP on the left.

It is enlightening to think about the
algorithm as computing for each T[i, j]
the cell it got the value from. What
you get is a tree encoded in the table.

See Figure 4.3. It is now easy to extract from the table the sequence of edit operations that realizes
the minimum edit distance between A and B. Indeed, we start a walk on this graph from the node
corresponding to T[n,m]. Every time we walk left, it corresponds to a deletion, every time we go up, it
corresponds to an insertion, and going sideways corresponds to either replace/ignore.

Note, that when computing the ith row of T[i, j], we only need to know the value of the cell to the
left of the current cell, and two cells in the row above the current cell. It is thus easy to verify that
the algorithm needs only the remember the current and previous row to compute the edit distance. We
conclude:

Theorem 4.3.1. Given two strings A and B of length n and m, respectively, one can compute their edit
distance in O(nm). This uses O(nm) space if we want to extract the sequence of edit operations, and
O(n + m) space if we only want to output the price of the edit distance.

7

Exercise 4.3.2. Show how to compute the sequence of edit-distance operations realizing the edit distance
using only O(n + m) space and O(nm) running time. (Hint: Use a recursive algorithm, and argue that
the recursive call is always on a matrix which is of size, roughly, half of the input matrix.)

4.3.1. Shortest path in a DAG and dynamic programming
Given a dynamic programming problem and its associated recursive program, one can consider all the
different possible recursive calls, as configurations. We can create graph, every configuration is a
node, and an edge is introduced between two configurations if one configuration is computed from
another configuration, and we put the additional price that might be involved in moving between the
two configurations on the edge connecting them. As such, for the edit distance, we have directed edges
from the vertex (i, j) to (i, j−1) and (i−1, j) both with weight 1 on them. Also, we have an edge between
(i, j) to (i − 1, j − 1) which is of weight 0 if A[i] = B[j] and 1 otherwise. Clearly, in the resulting graph,
we are asking for the shortest path between (n,m) and (0,0).

And here are where things gets interesting. The resulting graph G is a DAG (directed acyclic
graph°). DAG can be interpreted as a partial ordering of the vertices, and by topological sort on the
graph (which takes linear time), one can get a full ordering of the vertices which agrees with the DAG.
Using this ordering, one can compute the shortest path in a DAG in linear time (in the size of the DAG).
For edit-distance the DAG size is O(nm), and as such this algorithm takes O(nm) time.

This interpretation of dynamic programming as a shortest path problem in a DAG is a useful way of
thinking about it, and works for many dynamic programming problems.

More surprisingly, one can also compute the longest path in a DAG in linear time. Even for negative
weighted edges. This is also sometime a problem that solving it is equivalent to dynamic programming.

Bibliography
[ASS96] H. Abelson, G. J. Sussman, and J. Sussman. Structure and interpretation of computer programs.

MIT Press, 1996.

°No cycles in the graph – its a miracle!

8

	Dynamic programming
	Basic Idea - Partition Number
	A Short sermon on memoization

	Example – Fibonacci numbers
	Why, where, and when?
	Computing Fibonacci numbers

	Edit Distance
	Shortest path in a DAG and dynamic programming

	Bibliography

