
Chapter 6

Approximation algorithms
By Sariel Har-Peled, November 28, 2018¬ Version: 0.31

6.1. Greedy algorithms and approximation algorithms
A natural tendency in solving algorithmic problems is to locally do whats seems to be the right thing.
This is usually referred to as greedy algorithms. The problem is that usually these kind of algorithms
do not really work. For example, consider the following optimization version of Vertex Cover:

VertexCoverMin
Instance: A graph G, and integer k.
Question: Return the smallest subset S ⊆ V(G), s.t. S touches all the edges of G.

Figure 6.1: Example.

For this problem, the greedy algorithm will always take the vertex with the
highest degree (i.e., the one covering the largest number of edges), add it to the
cover set, remove it from the graph, and repeat. We will refer to this algorithm
as GreedyVertexCover.

It is not too hard to see that this algorithm does not output the optimal
vertex-cover. Indeed, consider the graph depicted on the right. Clearly, the
optimal solution is the black vertices, but the greedy algorithm would pick the
four white vertices.

This of course still leaves open the possibility that, while we do not get the optimal vertex cover,
what we get is a vertex cover which is “relatively good” (or “good enough”).
Definition 6.1.1. A minimization problem is an optimization problem, where we look for a valid
solution that minimizes a certain target function.
Example 6.1.2. In the VertexCoverMin problem the (minimization) target function is the size of the cover.
Formally Opt(G) = minS⊆V(G),S cover of G |S |.

The VertexCover(G) is just the set S realizing this minimum.
Definition 6.1.3. Let Opt(G) denote the value of the target function for the optimal solution.

Intuitively, a vertex-cover of size “close” to the optimal solution would be considered to be good.
Definition 6.1.4. Algorithm Alg for a minimization problem Min achieves an approximation factor α ≥ 1
if for all inputs G, we have:

Alg(G)
Opt(G) ≤ α.

We will refer to Alg as an α-approximation algorithm for Min.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

As a concrete example, an algorithm is a 2-approximation for Ver-
texCoverMin, if it outputs a vertex-cover which is at most twice the
size of the optimal solution for vertex cover.

So, how good (or bad) is the GreedyVertexCover algorithm de-
scribed above? Well, the graph in Figure 6.1 shows that the approxi-
mation factor of GreedyVertexCover is at least 4/3.

It turns out that GreedyVertexCover performance is considerably
worse. To this end, consider the following bipartite graph: Gn = (L ∪
R,E), where L is a set of n vertices. Next, for i = 2, . . . ,n, we add a
set Ri of bn/ic vertices, to R, each one of them of degree i, such that
all of them (i.e., all vertices of degree i at L) are connected to distinct
vertices in R. The execution of GreedyVertexCover on such a graph is
shown on the right.

Clearly, in Gn all the vertices in L have degree at most n − 1, since
they are connected to (at most) one vertex of Ri, for i = 2, . . . ,n. On the
other hand, there is a vertex of degree n at R (i.e., the single vertex of
Rn). Thus, GreedyVertexCover will first remove this vertex. We claim,
that GreedyVertexCover will remove all the vertices of R2, . . . ,Rn and
put them into the vertex-cover. To see that, observe that if R2, . . . ,Ri are still active, then all the nodes
of Ri have degree i, all the vertices of L have degree at most i−1, and all the vertices of R2, . . . ,Ri−1 have
degree strictly smaller than i. As such, the greedy algorithms will use the vertices of Ri. Easy induction
now implies that all the vertices of R are going to be picked by GreedyVertexCover. This implies the
following lemma.

Lemma 6.1.5. The algorithm GreedyVertexCover is Ω(log n) approximation to the optimal solution to
VertexCoverMin.

Proof: Consider the graph Gn above. The optimal solution is to pick all the vertices of L to the vertex
cover, which results in a cover of size n. On the other hand, the greedy algorithm picks the set R. We
have that

|R| =
n∑

i=2
|Ri | =

n∑
i=2

⌊n
i

⌋
≥

n∑
i=2

(n
i
− 1

)
≥ n

n∑
i=1

1
i
− 2n = n(Hn − 2).

Here, Hn =
∑n

i=1 1/i = lg n + Θ(1) is the nth harmonic number. As such, the approximation ratio for

GreedyVertexCover is ≥ |R|
|L |
=

n(Hn − 2)
n

= Ω(log n).

Theorem 6.1.6. The greedy algorithm for VertexCover achieves Θ(log n) approximation, where n is the
number of vertices in the graph. Its running time is O(mn2).

Proof: The lower bound follows from Lemma 6.1.5. The upper bound follows from the analysis of the
greedy of Set Cover, which will be done shortly.

As for the running time, each iteration of the algorithm takes O(mn) time, and there are at most n
iterations.

6.1.1. Alternative algorithm – two for the price of one
One can still do much better than the greedy algorithm in this case. In particular, let ApproxVertexCover
be the algorithm that chooses an edge from G, add both endpoints to the vertex cover, and removes

2

the two vertices (and all the edges adjacent to these two vertices) from G. This process is repeated till
G has no edges. Clearly, the resulting set of vertices is a vertex-cover, since the algorithm removes an
edge only if it is being covered by the generated cover.

Theorem 6.1.7. ApproxVertexCover is a 2-approximation algorithm for VertexCoverMin that runs in
O(n2) time.

Proof: Every edge picked by the algorithm contains at least one vertex of the optimal solution. As such,
the cover generated is at most twice larger than the optimal.

6.2. Fixed parameter tractability, approximation, and fast ex-
ponential time algorithms (to say nothing of the dog)

6.2.1. A silly brute force algorithm for vertex cover
So given a graph G = (V,E) with n vertices, we can approximate VertexCoverMin up to a factor of two
in polynomial time. Let K be this approximation – we know that any vertex cover in G must be of size
at least K/2, and we have a cover of size K. Imagine the case that K is truly small – can we compute
the optimal vertex-cover in this case quickly? Well, of course, we could just try all possible subsets of
vertices size at most K, and check for each one whether it is a cover or not. Checking if a specific set of
vertices is a cover takes O(m) = O(n2) time, where m = |E|. So, the running time of this algorithm is

K∑
i=1

(
n
i

)
O
(
n2) ≤ K∑

i=1
O
(
ni · n2

)
= O

(
nK+2

)
,

where
(n

i

)
is the number of subsets of the vertices of G of size exactly i. Observe that we do not require

to know K – the algorithm can just try all sizes of subsets, till it finds a solution. We thus get the
following (not very interesting result).

Lemma 6.2.1. Given a graph G = (V,E) with n vertices, one can solve VertexCoverMin in O
(
nα+2) time,

where α is the size the minimum vertex cover.

6.2.2. A fixed parameter tractable algorithm
As before, our input is a graph G = (V,E), for which we want to compute a vertex-cover of minimum
size. We need the following definition:

Definition 6.2.2. Let G = (V,E) be a graph. For a subset S ⊆ V, let GS be the induced subgraph over
S. Namely, it is a graph with the set of vertices being S. For any pair of vertices x, y ∈ V, we have that
the edge xy ∈ E(GS) if and only if xy ∈ E(G), and x, y ∈ S.

Also, in the following, for a vertex v, let NG(v) denote the set of vertices of G that are adjacent to v.
Consider an edge e = uv in G. We know that either u or v (or both) must be in any vertex cover of G,

so consider the brute force algorithm for VertexCoverMin that tries all these possibilities. The resulting
algorithm algFPVertexCover is depicted in Figure 6.2.

Lemma 6.2.3. The algorithm algFPVertexCover (depicted in Figure 6.2) returns the optimal solution
to the given instance of VertexCoverMin.

3

fpVertexCoverInner (X, β)
// Computes minimum vertex cover for the induced graph GX
// β: size of VC computed so far.

if X = ∅ or GX has no edges then return β
e← any edge uv of GX .
β1 = f pVertexCover Inner(X \ {u, v} , β + 2)
// Only take u to the cover, but then we must also take
// all the vertices that are neighbors of v,
// to cover their edges with v

β2 = f pVertexCover Inner
(
X \

(
{u} ∪ NGX

(v)
)
, β +

��NGX
(v)

��)
// Only take v to the cover...
β3 = f pVertexCover Inner

(
X \

(
{v} ∪ NGX

(u)
)
, β +

��NGX
(u)

��)
return min(β1, β2, β3).

algFPVertexCover (G = (V,E))
return fpVertexCoverInner (V,0)

Figure 6.2: Fixed parameter tractable algorithm for VertexCoverMin.

Proof: It is easy to verify, that if the algorithm returns β then it found a vertex cover of size β. Since
the depth of the recursion is at most n, it follows that this algorithm always terminates.

Consider the optimal solution Y ⊆ V, and run the algorithm, where every stage of the recursion
always pick the option that complies with the optimal solution. Clearly, since in every level of the
recursion at least one vertex of Y is being found, then after O(|Y |) recursive calls, the remaining graph
would have no edges, and it would return |Y | as one of the candidate solution. Furthermore, since the
algorithm always returns the minimum solution encountered, it follows that it would return the optimal
solution.

Lemma 6.2.4. The depth of the recursion of algFPVertexCover(G) is at most α, where α is the mini-
mum size vertex cover in G.

Proof: The idea is to consider all the vertices that can be added to the vertex cover being computed
without covering any new edge. In particular, in the case the algorithm takes both u and v to the cover,
then one of these vertices must be in the optimal solution, and this can happen at most α times.

The more interesting case, is when the algorithm picks NGX
(v) (i.e., β2) to the vertex cover. We

can add v to the vertex cover in this case without getting any new edges being covered (again, we are
doing this only conceptually – the vertex cover computed by the algorithm would not contain v [only
its neighbors]). We do the same thing for the case of β3.

Now, observe that in any of these cases, the hypothetical set cover being constructed (which has
more vertices than what the algorithm computes, but covers exactly the same set of edges in the original
graph) contains one vertex of the optimal solution picked into itself in each level of the recursion. Clearly,
the algorithm is done once we pick all the vertices of the optimal solution into the hypothetical vertex
cover. It follows that the depth the recursion is ≤ α.

Theorem 6.2.5. Let G be a graph with n vertices, and with the minimal vertex cover being of size α.
Then, the algorithm algFPVertexCover (depicted in Figure 6.2) returns the optimal vertex cover for G
and the running time of this algorithm is O

(
3αn2) .

4

Proof: By Lemma 6.2.4, the recursion tree has depth α. As such, it contains at most 2 · 3α nodes. Each
node in the recursion requires O

(
n2) work (ignoring the recursive calls), if implemented naively. Thus,

the bound on the running time follows.

Algorithms where the running time is of the form O(nc f (α)), where α is some parameter that depends
on the problem are fixed parameter tractable algorithms for the given problem.

6.2.2.1. Remarks

Currently, the fastest algorithm known for this problem has running time O(1.2738α + αn) [CKX10].
This algorithm uses similar ideas, but is considerably more complicated.

It is known that no better approximation than 1.3606 is possible for VertexCoverMin, unless P = NP.
The currently best approximation known is 2 − Θ

(
1/
√

log n
)
. If the Unique Games Conjecture is

true, then no better constant approximation is possible in polynomial time.

6.3. Approximating maximum matching
Definition 6.3.1. Consider an undirected graph G = (V,E). The graph might have a weight function ω(e),
specifying a positive value on the edges of G (if no weights are specified, treat every edge as having
weight 1).
• A subset M ⊆ E is a matching if no pair of edges of M share endpoints.
• A perfect matching is a matching that covers all the vertices of G.
• A min-weight perfect matching, is the minimum weight matching among all perfect matching,

where the weight of a matching is
ω(M) =

∑
e∈M

ω(e).

• The maximum-weight matching (or just maximum matching is the matching with maxi-
mum weight among all matchings.
• A matching M is maximal if no edge can be added to it. That is, for every edge e ∈ E, we have

that the edges of M contains at least one endpoint of e.

Note the subtle difference between maximal and maximum – the first, is a local maximum, while the
other one is the global maximum.

Lemma 6.3.2. Lemma ??Given an undirected unweighted graph G with n vertices and m edges, one can
compute a matching M in G, such that |M | ≥ |opt| /2, where opt is the maximum size (i.e., cardinality)
matching in G. The running time is O(n + m).

Proof: The algorithm is shockingly simple – repeatedly pick an edge of G, remove it and the edges
adjacent to it, and repeat till there are no edges left in the graph. Let M be the resulting matching.

To see why this is a two approximation (i.e., 2|M | ≥ |opt|, observe that every edge of M is adjacent
to at most two edges of opt. As such, each edge of M pays for two edges of opt, which implies the claim.

One way to see that is to imagine that we start with the matching opt and let M = {m1, . . . ,mt} –
at each iteration, we insert mi into the current matching, and remove any old edges that intersect it. As
such, we moved from the matching of M to the matching of opt. In each step, we deleted at most two
edges, and inserted one edges. As such, |opt| ≤ 2|M |.

5

Lemma 6.3.3. Given an undirected weighted graph G with n vertices and m edges, one can compute a
matching M in G, such that ω(M) ≥ ω(opt)/2, where opt is the maximum weight matching in G. The
running time is O(n log n + m).

Proof: We run the algorithm for the unweighted case, with the modification that we always pick the
heaviest edge still available. The same argument as in Lemma ?? implies that that this is a two
approximation. As for the running time – we need a min-heap for m elements, that performs at most n
deletions, and as such, the running time is O(n log n + m) by using a Fibonacci heap.

Remark 6.3.4. Note, that maximum matching (and all the variants mentioned above) are solvable in
polynomial time. The main thing is that the above algorithm is both simple and give us a decent
starting point which can be used in the exact algorithm.

6.4. Graph diameter
FILL IN.

6.5. Traveling Salesman Person
We remind the reader that the optimization variant of the TSP problem is the following.

TSP-Min
Instance: G = (V,E) a complete graph, and ω(e) a cost function on edges of G.
Question: The cheapest tour that visits all the vertices of G exactly once.

Theorem 6.5.1. TSP-Min can not be approximated within any factor unless NP = P.

Proof: Consider the reduction from Hamiltonian Cycle into TSP. Given a graph G, which is the input
for the Hamiltonian cycle, we transform it into an instance of TSP-Min. Specifically, we set the weight
of every edge to 1 if it was present in the instance of the Hamiltonian cycle, and 2 otherwise. In the
resulting complete graph, if there is a tour price n then there is a Hamiltonian cycle in the original
graph. If on the other hand, there was no cycle in G then the cheapest TSP is of price n + 1.

Instead of 2, let us assign the missing edges in H a weight of cn, for c an arbitrary number. Let H
denote the resulting graph. Clearly, if G does not contain any Hamiltonian cycle in the original graph,
then the price of the TSP-Min in H is at least cn + 1.

Note, that the prices of tours of H are either (i) equal to n if there is a Hamiltonian cycle in G, or
(ii) larger than cn + 1 if there is no Hamiltonian cycle in G. As such, if one can do a c-approximation,
in polynomial time, to TSP-Min, then using it on H would yield a tour of price ≤ cn if a tour of price n
exists. But a tour of price ≤ cn exists if and only if G has a Hamiltonian cycle.

Namely, such an approximation algorithm would solve a NP-Complete problem (i.e., Hamiltonian
Cycle) in polynomial time.

Note, that Theorem 6.5.1 implies that TSP-Min can not be approximated to within any factor.
However, once we add some assumptions to the problem, it becomes much more manageable (at least
as far as approximation).

6

What the above reduction did, was to take a problem and reduce it into an instance where this is
a huge gap, between the optimal solution, and the second cheapest solution. Next, we argued that if
had an approximation algorithm that has ratio better than the ratio between the two endpoints of this
empty interval, then the approximation algorithm, would in polynomial time would be able to decide if
there is an optimal solution.

6.5.1. TSP with the triangle inequality
6.5.1.1. A 2-approximation

Consider the following special case of TSP:

TSP4,-Min
Instance: G = (V,E) is a complete graph. There is also a cost function ω(·) defined over the
edges of G, that complies with the triangle inequality.
Question: The cheapest tour that visits all the vertices of G exactly once.

We remind the reader that the triangle inequality holds for ω(·) if

∀u, v,w ∈ V(G), ω(u, v) ≤ ω(u,w) + ω(w, v).

The triangle inequality implies that if we have a path σ in G, that starts at s and ends at t, then
ω(st) ≤ ω(σ). Namely, shortcutting, that is going directly from s to t, is always beneficial if the
triangle inequality holds (assuming that we do not have any reason to visit the other vertices of σ).

Definition 6.5.2. A cycle in a graph G is Eulerian if it visits every edge of G exactly once.

Unlike Hamiltonian cycle, which has to visit every vertex exactly once, an Eulerian cycle might visit
a vertex an arbitrary number of times. We need the following classical result:

Lemma 6.5.3. A graph G has a cycle that visits every edge of G exactly once (i.e., an Eulerian cycle)
if and only if G is connected, and all the vertices have even degree. Such a cycle can be computed in
O(n + m) time, where n and m are the number of vertices and edges of G, respectively.

Our purpose is to come up with a 2-approximation algorithm for TSP4,-Min. To this end, let Copt
denote the optimal TSP tour in G. Observe that Copt is a spanning graph of G, and as such we have
that

ω
(
Copt

)
≥ weight

(
cheapest spanning graph of G

)
.

But the cheapest spanning graph of G, is the minimum spanning tree (MST) of G, and as such ω
(
Copt

)
≥

ω(MST(G)). The MST can be computed in O(n log n+m) = O(n2) time, where n is the number of vertices
of G, and m =

(n
2
)

is the number of edges (since G is the complete graph). Let T denote the MST of G,
and covert T into a tour by duplicating every edge twice. Let H denote the new graph. We have that
H is a connected graph, every vertex of H has even degree, and as such H has an Eulerian tour (i.e., a
tour that visits every edge of H exactly once).

As such, let C denote the Eulerian cycle in H. Observe that

ω(C) = ω(H) = 2ω(T) = 2ω(MST(G)) ≤ 2ω
(
Copt

)
.

7

(a) (b) (c) (d)

Figure 6.3: The TSP approximation algorithm: (a) the input, (b) the duplicated graph, (c) the extracted
Eulerian tour, and (d) the resulting shortcut path.

Next, we traverse C starting from any vertex v ∈ V(C). As we traverse C, we skip vertices that we already
visited, and in particular, the new tour we extract from C will visit the vertices of V(G) in the order
they first appear in C. Let π denote the new tour of G. Clearly, since we are performing shortcutting,
and the triangle inequality holds, we have that ω(π) ≤ ω(C). The resulting algorithm is depicted in
Figure 6.3.

It is easy to verify, that all the steps of our algorithm can be done in polynomial time. As such, we
have the following result.

Theorem 6.5.4. Given an instance of TSP with the triangle inequality (TSP4,-Min) (namely, a graph
G with n vertices and

(n
2
)

edges, and a cost function ω(·) on the edges that comply with the triangle
inequality), one can compute a tour of G of length ≤ 2ω

(
Copt

)
, where Copt is the minimum cost TSP

tour of G. The running time of the algorithm is O
(
n2) .

6.5.1.2. A 3/2-approximation to TSP4,-Min

The following is a known result, and we will see a somewhat weaker version of it in class.

Theorem 6.5.5. Given a graph G and weights on the edges, one can compute the min-weight perfect
matching of G in polynomial time.

Lemma 6.5.6. Let G = (V,E) be a complete graph, S a subset of the vertices of V of even size, and
ω(·) a weight function over the edges. Then, the weight of the min-weight perfect matching in GS is
≤ ω(TSP(G))/2.

8

Proof: Let π be the cycle realizing the TSP in G. Let σ be the cycle
resulting from shortcutting π so that it uses only the vertices of S.
Clearly, ω(σ) ≤ ω(π). Now, let Me and Mo be the sets of even and
odd edges of σ respectively. Clearly, both Mo and Me are perfect
matching in GS, and

ω(Mo) + ω(Me) = ω(σ).

We conclude, that min(w(Mo),w(Me)) ≤ ω(TSP(G))/2.

σ

πS

4

1

3
5

6

7

2

We now have a creature that has the weight of half of the TSP, and
we can compute it in polynomial time. How to use it to approximate
the TSP? The idea is that we can make the MST of G into an Eulerian
graph by being more careful. To this end, consider the tree on the
right. Clearly, it is almost Eulerian, except for these pesky odd degree
vertices. Indeed, if all the vertices of the spanning tree had even degree, then the graph would be
Eulerian (see Lemma 6.5.3).

In particular, in the depicted tree, the “problematic” vertices are 1,4,2,7, since they are all the odd
degree vertices in the MST T .

Lemma 6.5.7. The number of odd degree vertices in any graph G′ is even.

Proof: Observe that µ =
∑

v∈V(G′) d(v) = 2|E(G′)|, where d(v) denotes the degree of v. Let U =∑
v∈V(G′),d(v) is even d(v), and observe that U is even as it is the sum of even numbers.

Thus, ignoring vertices of even degree, we have

α =
∑

v∈V,d(v) is odd
d(v) = µ −U = even number,

since µ and U are both even. Thus, the number of elements in the above sum of all odd numbers must
be even, since the total sum is even.

4

1

3
5

6

7

2

So, we have an even number of problematic vertices in T . The
idea now is to compute a minimum-weight perfect matching M on
the problematic vertices, and add the edges of the matching to the
tree. The resulting graph, for our running example, is depicted on
the right. Let H = (V,E(M) ∪ E(T)) denote this graph, which is the
result of adding M to T .

We observe that H is Eulerian, as all the vertices now have even degree, and the graph is connected.
We also have

ω(H) = ω(MST(G)) + ω(M) ≤ ω(TSP(G)) + ω(TSP(G))/2 = (3/2)ω(TSP(G)),

by Lemma 6.5.6. Now, H is Eulerian, and one can compute the Euler cycle for H, shortcut it, and get
a tour of the vertices of G of weight ≤ (3/2)ω(TSP(G)).

Theorem 6.5.8. Given an instance of TSP with the triangle inequality, one can compute in polynomial
time, a (3/2)-approximation to the optimal TSP.

9

6.6. Biographical Notes
The 3/2-approximation for TSP with the triangle inequality is due to Christofides [Chr76].

Bibliography
[Chr76] N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem.

Technical Report Report 388, Graduate School of Industrial Administration, Carnegie Mellon
University, 1976.

[CKX10] J. Chen, I. A. Kanj, and G. Xia. Improved upper bounds for vertex cover. Theor. Comput.
Sci., 411(40-42):3736–3756, 2010.

10

	Approximation algorithms
	Greedy algorithms and approximation algorithms
	Alternative algorithm – two for the price of one

	Fixed parameter tractability, approximation, and fast exponential time algorithms (to say nothing of the dog)
	A silly brute force algorithm for vertex cover
	A fixed parameter tractable algorithm

	Approximating maximum matching
	Graph diameter
	Traveling Salesman Person
	TSP with the triangle inequality

	Biographical Notes

	Bibliography

