
Chapter 10

Randomized Algorithms II
By Sariel Har-Peled, November 28, 2018¬ Version: 0.1

10.1. QuickSort and Treaps with High Probability
You must be asking yourself what are treaps. For the answer, see Section 10.3p7.

One can think about QuickSort as playing a game in rounds. Every round, QuickSort picks a pivot,
splits the problem into two subproblems, and continue playing the game recursively on both subproblems.

If we track a single element in the input, we see a sequence of rounds that involve this element.
The game ends, when this element find itself alone in the round (i.e., the subproblem is to sort a single
element).

Thus, to show that QuickSort takes O(n log n) time, it is enough to show, that every element in the
input, participates in at most 32 ln n rounds with high enough probability.

Indeed, let Xi be the event that the ith element participates in more than 32 ln n rounds.
Let CQS be the number of comparisons performed by QuickSort. A comparison between a pivot

and an element will be always charged to the element. And as such, the number of comparisons overall
performed by QuickSort is bounded by

∑
i ri, where ri is the number of rounds the ith element participated

in (the last round where it was a pivot is ignored). We have that

α = P
[
CQS ≥ 32n ln n

]
≤ P

[⋃
i

Xi

]
≤

n∑
i=1
P[Xi].

Here, we used the union bound, that states that for any two events A and B, we have that P[A ∪ B] ≤
P[A] + P[B]. Assume, for the time being, that P[Xi] ≤ 1/n3. This implies that

α ≤

n∑
i=1
P[Xi] ≤

n∑
i=1

1
n3 =

1
n2 .

Namely, QuickSort performs at most 32n ln n comparisons with high probability. It follows, that
QuickSort runs in O(n log n) time, with high probability, since the running time of QuickSort is propor-
tional to the number of comparisons it performs.

To this end, we need to prove that P[Xi] ≤ 1/n3.

10.1.1. Proving that an element participates in small number of rounds
Consider a run of QuickSort for an input made out of n numbers. Consider a specific element x in
this input, and let S1,S2, . . . be the subsets of the input that are in the recursive calls that include the

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

Also known as Boole’s inequality.

1

http://creativecommons.org/licenses/by-nc/3.0/

element x. Here Sj is the set of numbers in the jth round (i.e., this is the recursive call at depth j which
includes x among the numbers it needs to sort).

The element x would be considered to be lucky, in the jth iteration, if the call to the QuickSort,
splits the current set Sj into two parts, where both parts contains at most (3/4)

��Sj
�� of the elements.

Let Yj be an indicator variable which is 1 if and only if x is lucky in jth round. Formally, Yj = 1 if
and only if

��Sj
�� /4 ≤ ��Sj+1

�� ≤ 3
��Sj

�� /4. By definition, we have that

P
[
Yj

]
=

1
2 .

Furthermore, Y1,Y2, . . . ,Ym are all independent variables.
Note, that x can participate in at most

ρ = log4/3 n ≤ 3.5 ln n (10.1)

rounds, since at each successful round, the number of elements in the subproblem shrinks by at least
a factor 3/4, and |S1 | = n. As such, if there are ρ successful rounds in the first k rounds, then
|Sk | ≤ (3/4)ρn ≤ 1.

Thus, the question of how many rounds x participates in, boils down to how many coin flips one
need to perform till one gets ρ heads. Of course, in expectation, we need to do this 2ρ times. But what
if we want a bound that holds with high probability, how many rounds are needed then?

In the following, we require the following lemma, which we will prove in Section 10.2.

Lemma 10.1.1. In a sequence of M coin flips, the probability that the number of ones is smaller than
L ≤ M/4 is at most exp(−M/8).

To use Lemma 10.1.1, we set

M = 32 ln n ≥ 8ρ,

see Eq. (10.1). Let Yj be the variable which is one if x is lucky in the jth level of recursion, and
zero otherwise. We have that P

[
Yj = 0

]
= P

[
Yj = 1

]
= 1/2 and that Y1,Y2, . . . ,YM are independent. By

Lemma 10.1.1, we have that the probability that there are only ρ ≤ M/4 ones in Y1, . . . ,YM , is smaller
than

exp
(
−

M
8

)
≤ exp(−ρ) ≤ 1

n3 .

We have that the probability that x participates in M recursive calls of QuickSort to be at most 1/n3.
There are n input elements. Thus, the probability that depth of the recursion in QuickSort exceeds

32 ln n is smaller than (1/n3) ∗ n = 1/n2. We thus established the following result.

Theorem 10.1.2. With high probability (i.e., 1 − 1/n2) the depth of the recursion of QuickSort is
≤ 32 ln n. Thus, with high probability, the running time of QuickSort is O(n log n).

More generally, for any constant c, there exist a constant d, such that the probability that QuickSort
recursion depth for any element exceeds d ln n is smaller than 1/nc.

Specifically, for any t ≥ 1, we have that probability that the recursion depth for any element exceeds
t · d ln n is smaller than 1/nt·c.

2

Proof: Let us do the last part (but the reader is encouraged to skip this on first reading). Setting
M = 32t ln n, we get that the probability that an element has depth exceeds M, requires that in M coin
flips we get at most h = 4 ln n heads. That is, if Y is the sum of the coin flips, where we get +1 for head,
and −1 for tails, then Y needs to be smaller than −(M − h) + h = −M + 2h. By symmetry, this is equal
to the probability that Y ≥ ∆ = M − 2h. By Theorem 10.2.3 below, the probability for that is

P[Y ≥ ∆] ≤ exp
(
−∆2/2M

)
= exp

(
−
(M − 2h)2

2M

)
= exp

(
−
(32t − 8)2 ln2 n

128t ln n

)
= exp

(
−
(4t − 1)2 ln n

2t

)
≤ exp

(
−

3t2 ln n
t

)
≤

1
n3t .

Of course, the same result holds for the algorithm MatchNutsAndBolts for matching nuts and bolts.

10.1.2. An alternative proof of the high probability of QuickSort
Consider a set T of the n items to be sorted, and consider a specific element t ∈ T . Let Xi be the size of
the input in the ith level of recursion that contains t. We know that X0 = n, and

E
[
Xi

��� Xi−1
]
≤

1
2

3
4 Xi−1 +

1
2 Xi−1 ≤

7
8 Xi−1.

Indeed, with probability 1/2 the pivot is the middle of the subproblem; that is, its rank is between Xi−1/4
and (3/4)Xi−1 (and then the subproblem has size ≤ Xi−1(3/4)), and with probability 1/2 the subproblem
might has not shrank significantly (i.e., we pretend it did not shrink at all).

Now, observe that for any two random variables we have that E
[
X
]
= Ey

[
E
[
X

��Y = y
]]

, see
Lemma 10.5.1p9.. As such, we have that

E[Xi] = E
y

[
E
[
Xi

��� Xi−1 = y
]]
≤ E

Xi−1=y

[
7
8 y

]
=

7
8 E[Xi−1] ≤

(
7
8

) i

E[X0] =

(
7
8

) i

n.

In particular, consider M = 8 log8/7 n. We have that

µ = E[XM] ≤

(
7
8

) M

n ≤
1
n8 n =

1
n7 .

Of course, t participates in more than M recursive calls, if and only if XM ≥ 1. However, by Markov’s
inequality (Theorem 10.2.1), we have that

P

[
element t participates

in more than M recursive calls

]
≤ P[XM ≥ 1] ≤ E[XM]

1 ≤
1
n7 ,

as desired. That is, we proved that the probability that any element of the input T participates in more
than M recursive calls is at most n(1/n7) ≤ 1/n6.

10.2. Chernoff inequality

10.2.1. Preliminaries
Theorem 10.2.1 (Markov’s Inequality.). For a non-negative variable X, and t > 0, we have:

P[X ≥ t] ≤
E[X]

t
.

3

Proof: Assume that this is false, and there exists t0 > 0 such that P[X ≥ t0] >
E[X]

t0
. However,

E[X] =
∑

x

x · P[X = x] =
∑
x<t0

x · P[X = x] +
∑
x≥t0

x · P[X = x]

≥ 0 + t0 · P[X ≥ t0] > 0 + t0 ·
E[X]

t0
= E[X] ,

a contradiction.

We remind the reader that two random variables X and Y are independent if for all x, y we have that

P[(X = x) ∩ (Y = y)] = P[X = x] · P[Y = y].

The following claim is easy to verify, and we omit the easy proof.

Claim 10.2.2. If X and Y are independent, then E[XY] = E[X]E[Y].
If X and Y are independent then Z = eX and W = eY are also independent variables.

10.2.2. Chernoff inequality
Theorem 10.2.3 (Chernoff inequality). Let X1, . . . ,Xn be n independent random variables, such
that P[Xi = 1] = P[Xi = −1] = 1

2 , for i = 1, . . . ,n. Let Y =
∑n

i=1 Xi. Then, for any ∆ > 0, we have

P[Y ≥ ∆] ≤ exp
(
−∆2/2n

)
.

Proof: Clearly, for an arbitrary t, to be specified shortly, we have

P[Y ≥ ∆] = P
[
tY ≥ t∆

]
= P

[
exp(tY) ≥ exp(t∆)

]
≤
E
[
exp(tY)

]
exp(t∆) , (10.2)

where the first part follows since exp(·) preserve ordering, and the second part follows by Markov’s
inequality (Theorem 10.2.1).

Observe that, by the definition of E[·] and by the Taylor expansion of exp(·), we have

E
[
exp(tXi)

]
=

1
2et +

1
2e−t =

et + e−t

2

=
1
2

(
1 + t

1! +
t2

2! +
t3

3! + · · ·
)

+
1
2

(
1 − t

1! +
t2

2! −
t3

3! + · · ·
)

=

(
1 + t2

2! + + · · · +
t2k

(2k)! + · · ·
)
.

Now, (2k)! = k!(k + 1)(k + 2) · · · 2k ≥ k!2k , and thus

E
[
exp(tXi)

]
=

∞∑
i=0

t2i

(2i)! ≤
∞∑

i=0

t2i

2i(i!)
=

∞∑
i=0

1
i!

(
t2

2

) i

= exp
(

t2

2

)
,

4

again, by the Taylor expansion of exp(·). Next, by the independence of the Xis, we have

E
[
exp(tY)

]
= E

[
exp

(∑
i

tXi

)]
= E

[∏
i

exp(tXi)

]
=

n∏
i=1
E
[
exp(tXi)

]
≤

n∏
i=1

exp
(

t2

2

)
= exp

(
nt2

2

)
.

We have, by Eq. (10.2), that

P[Y ≥ ∆] ≤
E
[
exp(tY)

]
exp(t∆) ≤

exp
(

nt2

2

)
exp(t∆) = exp

(
nt2

2 − t∆
)
.

Next, we select the value of t that minimizes the right term in the above inequality. Easy calculation
shows that the right value is t = ∆/n. We conclude that

P[Y ≥ ∆] ≤ exp
(

n
2

(
∆

n

) 2
−
∆

n
∆

)
= exp

(
−
∆2

2n

)
.

Note, the above theorem states that

P[Y ≥ ∆] =
n∑

i=∆

P[Y = i] =
n∑

i=n/2+∆/2

(n
i

)
2n ≤ exp

(
−
∆2

2n

)
,

since Y = ∆ means that we got n/2 + ∆/2 times +1s and n/2 − ∆/2 times (−1)s.
By the symmetry of Y , we get the following corollary.

Corollary 10.2.4. Let X1, . . . ,Xn be n independent random variables, such that P[Xi = 1] = P[Xi = −1] =
1
2 , for i = 1, . . . ,n. Let Y =

∑n
i=1 Xi. Then, for any ∆ > 0, we have

P[|Y | ≥ ∆] ≤ 2 exp
(
−
∆2

2n

)
.

By easy manipulation, we get the following result.

Corollary 10.2.5. Let X1, . . . ,Xn be n independent coin flips, such that P[Xi = 1] = P[Xi = 0] = 1
2 , for

i = 1, . . . ,n. Let Y =
∑n

i=1 Xi. Then, for any ∆ > 0, we have

P
[n

2 − Y ≥ ∆
]
≤ exp

(
−

2∆2

n

)
and P

[
Y −

n
2 ≥ ∆

]
≤ exp

(
−

2∆2

n

)
.

In particular, we have P
[���Y − n

2

��� ≥ ∆] ≤ 2 exp
(
−

2∆2

n

)
.

Proof: Transform Xi into the random variable Zi = 2Xi − 1, and now use Theorem 10.2.3 on the new
random variables Z1, . . . , Zn.

5

Lemma 10.1.1 (Restatement.) In a sequence of M coin flips, the probability that the number of ones
is smaller than L ≤ M/4 is at most exp(−M/8).

Proof: Let Y =
∑m

i=1 Xi the sum of the M coin flips. By the above corollary, we have:

P[Y ≤ L] = P
[

M
2 − Y ≥

M
2 − L

]
= P

[
M
2 − Y ≥ ∆

]
,

where ∆ = M/2 − L ≥ M/4. Using the above Chernoff inequality, we get

P[Y ≤ L] ≤ exp
(
−

2∆2

M

)
≤ exp(−M/8).

10.2.2.1. The Chernoff Bound — General Case

Here we present the Chernoff bound in a more general settings.

Problem 10.2.6. Let X1, . . . Xn be n independent Bernoulli trials, where

P[Xi = 1] = pi and P[Xi = 0] = 1 − pi,

and let denote

Y =
∑

i

Xi µ = E[Y] .

Question: what is the probability that Y ≥ (1 + δ)µ.

Theorem 10.2.7 (Chernoff inequality). For any δ > 0,

P[Y > (1 + δ)µ] <
(

eδ

(1 + δ)1+δ

) µ
.

Or in a more simplified form, for any δ ≤ 2e − 1,

P[Y > (1 + δ)µ] < exp
(
−µδ2/4

)
, (10.3)

and

P[Y > (1 + δ)µ] < 2−µ(1+δ),

for δ ≥ 2e − 1.

Theorem 10.2.8. Under the same assumptions as the theorem above, we have

P[Y < (1 − δ)µ] ≤ exp
(
−µ
δ2

2

)
.

The proofs of those more general form, follows the proofs shown above, and are omitted. The
interested reader can get the proofs from:

http://www.uiuc.edu/~sariel/teach/2002/a/notes/07_chernoff.ps

6

http://www.uiuc.edu/~sariel/teach/2002/a/notes/07_chernoff.ps

10.3. Treaps
Anybody that ever implemented a balanced binary tree, knows that it can be very painful. A natural
question, is whether we can use randomization to get a simpler data-structure with good performance.

10.3.1. Construction
The key observation is that many of data-structures that offer good performance for balanced binary
search trees, do so by storing additional information to help in how to balance the tree. As such, the
key Idea is that for every element x inserted into the data-structure, randomly choose a priority p(x);
that is, p(x) is chosen uniformly and randomly in the range [0,1].

So, for the set of elements X = {x1, . . . , xn}, with (random) priorities p(x1), . . . , p(xn), our purpose is
to build a binary tree which is “balanced”. So, let us pick the element xk with the lowest priority in X,
and make it the root of the tree. Now, we partition X in the natural way:

(A) L: set of all the numbers smaller than xk in X, and
(B) R: set of all the numbers larger than xk in X.

p(xk)

xk

TL TR

We can now build recursively the trees for L and R, and let denote them
by TL and TR. We build the natural tree, by creating a node for xk , having
TL its left child, and TR as its right child.

We call the resulting tree a treap. As it is a tree over the elements, and
a heap over the priorities; that is, treap = tree + heap.

Lemma 10.3.1. Given n elements, the expected depth of a treap T defined over those elements is
O(log(n)). Furthermore, this holds with high probability; namely, the probability that the depth of the
treap would exceed c log n is smaller than δ = n−d, where d is an arbitrary constant, and c is a constant
that depends on d.®

Furthermore, the probability that T has depth larger than ct log(n), for any t ≥ 1, is smaller than
n−dt.

Proof: Observe, that every element has equal probability to be in the root of the treap. Thus, the
structure of a treap, is identical to the recursive tree of QuickSort. Indeed, imagine that instead of
picking the pivot uniformly at random, we instead pick the pivot to be the element with the lowest
(random) priority. Clearly, these two ways of choosing pivots are equivalent. As such, the claim follows
immediately from our analysis of the depth of the recursion tree of QuickSort, see Theorem 10.1.2p2.

10.3.2. Operations
The following innocent observation is going to be the key insight in implementing operations on treaps:

Observation 10.3.2. Given n distinct elements, and their (distinct) priorities, the treap storing them
is uniquely defined.

®That is, if we want to decrease the probability of failure, that is δ, we need to increase c.

7

10.3.2.1. Insertion

Given an element x to be inserted into an existing treap T, insert it in the usual way into T (i.e., treat
it a regular search binary tree). This takes O(height(T)). Now, x is a leaf in the treap. Set x priority
p(x) to some random number [0,1]. Now, while the new tree is a valid search tree, it is not necessarily
still a valid treap, as x’s priority might be smaller than its parent. So, we need to fix the tree around x,
so that the priority property holds.

RotateUp(x)
y ← parent(x)
while p(y) > p(x) do

if y.left_child = x then
RotateRight(y)

else
RotateLeft(y)

y ← parent(x)

We call RotateUp(x) to do so. Specifically, if x parent is y, and
p(x) < p(y), we will rotate x up so that it becomes the parent of
y. We repeatedly do it till x has a larger priority than its parent.
The rotation operation takes constant time and plays around with
priorities, and importantly, it preserves the binary search tree order.
Here is a rotate right operation RotateRight(D):

0.2
x

0.6
A

0.5
C

E
0.4

D
0.3

=⇒
E
0.4

0.2
x

0.6
A

0.5
C

D
0.3

RotateLeft is the same tree rewriting operation done in the other direction.
In the end of this process, both the ordering property and the priority property holds. That is, we

have a valid treap that includes all the old elements, and the new element. By Observation 10.3.2, since
the treap is uniquely defined, we have updated the treap correctly. Since every time we do a rotation
the distance of x from the root decrease by one, it follows that insertions takes O(height(T)).

10.3.2.2. Deletion

Deletion is just an insertion done in reverse. Specifically, to delete an element x from a treap T, set its
priority to +∞, and rotate it down it becomes a leaf. The only tricky observation is that you should
rotate always so that the child with the lower priority becomes the new parent. Once x becomes a leaf
deleting it is trivial - just set the pointer pointing to it in the tree to null.

10.3.2.3. Split

Given an element x stored in a treap T, we would like to split T into two treaps – one treap T≤ for all
the elements smaller or equal to x, and the other treap T> for all the elements larger than x. To this
end, we set x priority to −∞, fix the priorities by rotating x up so it becomes the root of the treap. The
right child of x is the treap T>, and we disconnect it from T by setting x right child pointer to null.
Next, we restore x to its real priority, and rotate it down to its natural location. The resulting treap is
T≤. This again takes time that is proportional to the depth of the treap.

8

10.3.2.4. Meld

Given two treaps TL and TR such that all the elements in TL are smaller than all the elements in TR, we
would like to merge them into a single treap. Find the largest element x stored in TL (this is just the
element stored in the path going only right from the root of the tree). Set x priority to −∞, and rotate
it up the treap so that it becomes the root. Now, x being the largest element in TL has no right child.
Attach TR as the right child of x. Now, restore x priority to its original priority, and rotate it back so
the priorities properties hold.

10.3.3. Summery
Theorem 10.3.3. Let T be a treap, initialized to an empty treap, and undergoing a sequence of m = nc

insertions, where c is some constant. The probability that the depth of the treap in any point in time
would exceed d log n is ≤ 1/n f , where d is an arbitrary constant, and f is a constant that depends only
c and d.

In particular, a treap can handle insertion/deletion in O(log n) time with high probability.

Proof: Since the first part of the theorem implies that with high probability all these treaps have
logarithmic depth, then this implies that all operations takes logarithmic time, as an operation on a
treap takes at most the depth of the treap.

As for the first part, let T1, . . . ,Tm be the sequence of treaps, where Ti is the treap after the ith
operation. Similarly, let Xi be the set of elements stored in Ti. By Lemma 10.3.1, the probability that
Ti has large depth is tiny. Specifically, we have that

αi = P[depth(Ti) > tc′ log nc] = P

[
depth(Ti) > c′t

(
log nc

log |Ti |

)
· log |Ti |

]
≤

1
nt·c ,

as a tedious and boring but straightforward calculation shows. Picking t to be sufficiently large, we have
that the probability that the ith treap is too deep is smaller than 1/n f+c. By the union bound, since
there are nc treaps in this sequence of operations, it follows that the probability of any of these treaps
to be too deep is at most 1/n f , as desired.

10.4. Bibliographical Notes
Chernoff inequality was a rediscovery of Bernstein inequality, which was published in 1924 by Sergei
Bernstein. Treaps were invented by Siedel and Aragon [SA96]. Experimental evidence suggests that
Treaps performs reasonably well in practice, despite their simplicity, see for example the comparison
carried out by Cho and Sahni [CS00]. Implementations of treaps are readily available. An old imple-
mentation I wrote in C is available here: http://valis.cs.uiuc.edu/blog/?p=6060.

10.5. From previous lectures
Lemma 10.5.1. For any two random variables X and Y (not necessarily independent), we have that
E[X] = E

[
E
[
X

���Y]]
.

9

http://valis.cs.uiuc.edu/blog/?p=6060

Bibliography
[CS00] S. Cho and S. Sahni. A new weight balanced binary search tree. Int. J. Found. Comput. Sci.,

11(3):485–513, 2000.

[SA96] R. Seidel and C. R. Aragon. Randomized search trees. Algorithmica, 16:464–497, 1996.

10

http://www-tcs.cs.uni-sb.de/seidel/

	Randomized Algorithms II
	QuickSort and Treaps with High Probability
	Proving that an element participates in small number of rounds
	An alternative proof of the high probability of RedVioletQuickSort

	Chernoff inequality
	Preliminaries
	Chernoff inequality

	Treaps
	Construction
	Operations
	Summery

	Bibliographical Notes
	From previous lectures

	Bibliography

