
Chapter 14

Network Flow II - The Vengeance
By Sariel Har-Peled, November 28, 2018¬ Version: 0.11

14.1. Accountability

Figure 14.1: http://www.cs.berkeley.edu/~jrs/

The comic in Figure 14.1 is by Jonathan
Shewchuk and is referring to the Calvin and
Hobbes comics.

People that do not know maximum flows:
essentially everybody.

Average salary on earth < $5,000
People that know maximum flow - most of

them work in programming related jobs and
make at least $10,000 a year.

Salary of people that learned maximum flows:
> $10,000

Salary of people that did not learn maxi-
mum flows: < $5,000

Salary of people that know Latin: 0 (unemployed).
Thus, by just learning maximum flows (and not knowing Latin) you can double your

future salary!

14.2. The Ford-Fulkerson Method
The mtdFordFulkerson method is depicted on the right.
Lemma 14.2.1. If the capacities on the edges of G are
integers, then mtdFordFulkerson runs in O(m | f ∗ |) time,
where | f ∗ | is the amount of flow in the maximum flow
and m = |E(G)|.

mtdFordFulkerson(G,s,t)
Initialize flow f to zero
while ∃ path π from s to t in G f do

c f (π) ← min
{
c f (u, v)

��� (u, v) ∈ π }
for ∀(u, v) ∈ π do

f (u, v) ← f (u, v) + c f (π)
f (v,u) ← f (v,u) − c f (π)

Proof: Observe that the mtdFordFulkerson method performs only subtraction, addition and min oper-
ations. Thus, if it finds an augmenting path π, then c f (π) must be a positive integer number. Namely,
c f (π) ≥ 1. Thus, | f ∗ | must be an integer number (by induction), and each iteration of the algorithm
improves the flow by at least 1. It follows that after | f ∗ | iterations the algorithm stops. Each iteration
takes O(m + n) = O(m) time, as can be easily verified.

The following observation is an easy consequence of our discussion.
¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this

license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://www.cs.berkeley.edu/~jrs/
http://creativecommons.org/licenses/by-nc/3.0/

Observation 14.2.2 (Integrality theorem). If the capacity function c takes on only integral values,
then the maximum flow f produced by the mtdFordFulkerson method has the property that | f | is integer-
valued. Moreover, for all vertices u and v, the value of f (u, v) is also an integer.

14.3. The Edmonds-Karp algorithm
The Edmonds-Karp algorithm works by modifying the mtdFordFulkerson method so that it always re-
turns the shortest augmenting path in G f (i.e., path with smallest number of edges). This is implemented
by finding π using BFS in G f .

Definition 14.3.1. For a flow f , let δ f (v) be the length of the shortest path from the source s to v in the
residual graph G f . Each edge is considered to be of length 1.

We will shortly prove that, for any vertex v ∈ V \ {s, t}, the function δ f (v), in the residual network
G f , increases monotonically with each flow augmentation. We delay proving this (key) technical fact
(see Lemma 14.3.5 below), and first show its implications.

Lemma 14.3.2. During the execution of the Edmonds-Karp algorithm, an edge (u, v) might disappear
(and thus reappear) from G f at most n/2 times throughout the execution of the algorithm, where n =
|V(G)|.

Proof: Consider an iteration when the edge (u, v) disappears. Clearly, in this iteration the edge (u, v)
appeared in the augmenting path π. Furthermore, this edge was fully utilized; namely, c f (π) = c f (uv),
where f is the flow in the beginning of the iteration when it disappeared. We continue running Edmonds-
Karp till (u, v) “magically” reappears. This means that in the iteration before (u, v) reappeared in the
residual graph, the algorithm handled an augmenting path σ that contained the reverse edge (v,u). Let
g be the flow used to compute σ. We have, by the monotonicity of δ(·) [i.e., Lemma 14.3.5 below], that

δg(u) = δg(v) + 1 ≥ δ f (v) + 1 = δ f (u) + 2

as Edmonds-Karp is always augmenting along the shortest path. Namely, the distance of s to u had
increased by 2 between its disappearance and its reappearance. Since δ0(u) ≥ 0 and the maximum value
of δ?(u) is n, it follows that (u, v) can disappear and reappear at most n/2 times during the execution of
the Edmonds-Karp algorithm.

Observe that δ?(u) might become infinity at some point during the algorithm execution (i.e., u is
no longer reachable from s). If so, by monotonicity, the edge (u, v) would never appear again, in the
residual graph, in any future iteration of the algorithm.

Observation 14.3.3. Every time we add an augmenting path during the execution of the Edmonds-
Karp algorithm, at least one edge disappears from the residual graph G?. Indeed, every edge that realizes
the residual capacity (of the augmenting path) will disappear once we push the maximum possible flow
along this path.

Lemma 14.3.4. The Edmonds-Karp algorithm handles at most O(nm) augmenting paths before it stops.
Its running time is O

(
nm2) , where n = |V(G)| and m = |E(G)|.

2

(i) (ii) (iii)

Figure 14.2: (i) A bipartite graph. (ii) A maximum matching in this graph. (iii) A perfect matching (in
a different graph).

Proof: Every edge might disappear at most n/2 times during Edmonds-Karp execution, by Lemma 14.3.2.
Thus, there are at most nm/2 edge disappearances during the execution of the Edmonds-Karp algorithm.
At each iteration, we perform path augmentation, and at least one edge disappears along it from the
residual graph. Thus, the Edmonds-Karp algorithm perform at most O(mn) iterations.

Performing a single iteration of the algorithm boils down to computing an augmenting path. Com-
puting such a path takes O(m) time as we have to perform BFS to find the augmenting path. It follows,
that the overall running time of the algorithm is O

(
nm2) .

We still need to prove the aforementioned monotonicity property. (This is the only part in our
discussion of network flow where the argument gets a bit tedious. So bear with us, after all, you are
going to double your salary here.)

Lemma 14.3.5. If the Edmonds-Karp algorithm is run on a flow network G = (V,E) with source s and
sink t, then for all vertices v ∈ V \ {s, t}, the shortest path distance δ f (v) in the residual network G f
increases monotonically with each flow augmentation.

Proof: Assume, for the sake of contradiction, that this is false. Consider the flow just after the first
iteration when this claim failed. Let f denote the flow before this (fatal) iteration was performed, and
let g be the flow after.

Let v be the vertex such that δg(v) is minimal, among all vertices for which the monotonicity fails.
Formally, this is the vertex v where δg(v) is minimal and

δg(v) < δ f (v). (*)

Let πg = s → · · · → u → v be the shortest path in Gg from s to v. Clearly, (u, v) ∈ E
(
Gg

)
, and thus

δg(u) = δg(v) − 1.

s

πg

uv

By the choice of v it must be that δg(u) ≥ δ f (u), since otherwise the monotonicity property fails for
u, and u is closer to s than v in Gg, and this, in turn, contradicts our choice of v as being the closest
vertex to s that fails the monotonicity property. There are now two possibilities:

3

(i) If (u, v) ∈ E
(
G f

)
then

δ f (v) ≤ δ f (u) + 1 ≤ δg(u) + 1 = δg(v) − 1 + 1 = δg(v).

This contradicts our assumptions that δ f (v) > δg(v).
(ii) If (u, v) is not in E

(
G f

)
then the augmenting path σ f used in computing g from f contains the

edge (v,u). Indeed, the edge (u, v) reappeared in the residual graph Gg (while not being present
in G f). The only way this can happens is if the augmenting path σ f pushed a flow in the other
direction on the edge (u, v). Namely, (v,u) ∈ σ f .

t

s

πg

uv

σf

However, the algorithm always augment along the shortest path. We have that

δ f (u) = δ f (v) + 1 >︸︷︷︸
(∗)

δg(v) + 1 > δg(v) = δg(u) + 1,

by the definition of u. Thus, δ f (u) > δg(u) (i.e., the monotonicity property fails for u) and
δg(u) < δg(v). A contradiction to the choice of v.

14.4. Applications and extensions for Network Flow

14.4.1. Maximum Bipartite Matching

s

1

t

1

1

Figure 14.3

Definition 14.4.1. For an undirected graph G = (V,E) a matching is a
subset of edges M ⊆ E such that for all vertices v ∈ V , at most one edge
of M is incident on v.

A maximum matching is a matching M such that for any matching
M′ we have |M | ≥ |M′|.

A matching is perfect if it involves all vertices. See Figure 14.2 for
examples of these definitions.

Theorem 14.4.2. One can compute maximum bipartite matching using network flow in O(nm) time,
for a bipartite graph with n vertices and m edges.

4

Proof: Given a bipartite graph G, we create a new graph with a new source on the left side and sink on
the right, see Figure 14.3.

Direct all edges from left to right and set the capacity of all edges to 1. Let H be the resulting flow
network. It is now easy to verify that by the Integrality theorem, a flow in H is either 0 or one on every
edge, and thus a flow of value k in H is just a collection of k vertex disjoint paths between s and t in
H, which corresponds to a matching in G of size k.

Similarly, given a matching of size k in G, it can be easily interpreted as realizing a flow in H of
size k. Thus, computing a maximum flow in H results in computing a maximum matching in G. The
running time of the algorithm is O(nm2).

14.4.2. Extension: Multiple Sources and Sinks
Given a flow network with several sources and sinks, how can we compute maximum flow on such a
network?

The idea is to create a super source, that send all its flow to the old sources and similarly create
a super sink that receives all the flow. See Figure 14.4. Clearly, computing flow in both networks in
equivalent.

Bibliography

t1

t2

s1

s2

t1

t2

s1

s2
∞

s
∞ ∞

∞

t

(i) (ii)

Figure 14.4: (i) A flow network with several sources and sinks, and (ii) an equivalent flow network with
a single source and sink.

5

	Network Flow II - The Vengeance
	Accountability
	The Ford-Fulkerson Method
	The Edmonds-Karp algorithm
	Applications and extensions for Network Flow
	Maximum Bipartite Matching
	Extension: Multiple Sources and Sinks

	Bibliography

