
Chapter 18

Network Flow VI - Min-Cost Flow Applica-
tions
By Sariel Har-Peled, November 28, 2018¬ Version: 0.1

18.1. Efficient Flow

s

t

u

v

w

A flow f would be considered to be efficient if it
contains no cycles in it. Surprisingly, even the Ford-
Fulkerson algorithm might generate flows with cycles in
them. As a concrete example consider the picture on the
right. A disc in the middle of edges indicate that we split
the edge into multiple edges by introducing a vertex at
this point. All edges have capacity one. For this graph,
Ford-Fulkerson would first augment along s → w → u →

t. Next, it would augment along s → u → v → t, and
finally it would augment along s → v → w → t. But
now, there is a cycle in the flow; namely, u → v → w →

u.
One easy way to avoid such cycles is to first compute

the max flow in G. Let α be the value of this flow. Next,
we compute the min-cost flow in this network from s to t
with flow α, where every edge has cost one. Clearly, the
flow computed by the min-cost flow would not contain
any such cycles. If it did contain cycles, then we can remove them by pushing flow against the cycle
(i.e., reducing the flow along the cycle), resulting in a cheaper flow with the same value, which would
be a contradiction. We got the following result.

Theorem 18.1.1. Computing an efficient (i.e., acyclic) max-flow can be done in polynomial time.

(BTW, this can also be achieved directly by removing cycles directly in the flow. Naturally, this
flow might be less efficient than the min-cost flow computed.)

18.2. Efficient Flow with Lower Bounds
Consider the problem AFWLB (acyclic flow with lower-bounds) of computing efficient flow, where we
have lower bounds on the edges. Here, we require that the returned flow would be integral, if all the

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/


numbers involved are integers. Surprisingly, this problem which looks like very similar to the problems
we know how to solve efficiently is NP-Complete. Indeed, consider the following problem.

Hamiltonian Path
Instance: A directed graph G and two vertices s and t.
Question: Is there a Hamiltonian path (i.e., a path visiting every vertex exactly once) in G
starting at s and ending at t?

It is easy to verify that Hamiltonian Path is NP-Complete. We reduce this problem to AFWLB
by replacing each vertex of G with two vertices and a direct edge in between them (except for the source
vertex s and the sink vertex t). We set the lower-bound and capacity of each such edge to 1. Let J
denote the resulting graph.

Consider now acyclic flow in J of capacity 1 from s to t which is integral. Its 0/1-flow, and as such it
defines a path that visits all the special edges we created. In particular, it corresponds to a path in the
original graph that starts at s, visits all the vertices of G and ends up at t. Namely, if we can compute
an integral acyclic flow with lower-bounds in J in polynomial time, then we can solve Hamiltonian path
in polynomial time. Thus, AFWLB is NP-Hard.

Theorem 18.2.1. Computing an efficient (i.e., acyclic) max-flow with lower-bounds is NP-Hard
(where the flow must be integral). The related decision problem (of whether such a flow exist) is NP-
Complete.

By this point you might be as confused as I am. We can model an acyclic max-flow problem with
lower bounds as min-cost flow, and solve it, no? Well, not quite. The solution returned from the min-
cost flow might have cycles and we can not remove them by canceling the cycles. That was only possible
when there was no lower bounds on the edge capacities. Namely, the min-cost flow algorithm would
return us a solution with cycles in it if there are lower bounds on the edges.

18.3. Shortest Edge-Disjoint Paths
Let G be a directed graph. We would like to compute k-edge disjoint paths between vertices s and t
in the graph. We know how to do it using network flow. Interestingly, we can find the shortest k-edge
disjoint paths using min-cost flow. Here, we assign cost 1 for every edge, and capacity 1 for every edge.
Clearly, the min-cost flow in this graph with value k, corresponds to a set of k edge disjoint paths, such
that their total length is minimized.

18.4. Covering by Cycles
Given a direct graph G, we would like to cover all its vertices by a set of cycles which are vertex disjoint.
This can be done again using min-cost flow. Indeed, replace every vertex u in G by an edge (u′,u′′).
Where all the incoming edges to u are connected to u′ and all the outgoing edges from u are now starting
from u′′. Let J denote the resulting graph. All the new edges in the graph have a lower bound and
capacity 1, and all the other edges have no lower bound, but their capacity is 1. We compute the
minimum cost circulation in J. Clearly, this corresponds to a collection of cycles in G covering all the
vertices of minimum cost.

Verify that you know to do this — its a natural question for the exam.

2



Theorem 18.4.1. Given a directed graph G and costs on the edges, one can compute a cover of G by a
collection of vertex disjoint cycles, such that the total cost of the cycles is minimized.

18.5. Minimum weight bipartite matching

ts

1

1

1

1

Given an undirected bipartite graph G, we would like to find
the maximum cardinality matching in G that has minimum cost.
The idea is to reduce this to network flow as we did in the un-
weighted case, and compute the maximum flow – the graph con-
structed is depicted on the right. Here, any edge has capacity 1.
This gives us the size φ of the maximum matching in G. Next, we
compute the min-cost flow in G with this value φ, where the edges
connected to the source or the sing has cost zero, and the other
edges are assigned their original cost in G. Clearly, the min-cost
flow in this graph corresponds to a maximum cardinality min-cost
flow in the original graph.

Here, we are using the fact that the flow computed is integral,
and as such, it is a 0/1-flow.

Theorem 18.5.1. Given a bipartite graph G and costs on the edges, one can compute the maximum
cardinality minimum cost matching in polynomial time.

18.6. The transportation problem
In the transportation problem, we are given m facilities f1, . . . , fm. The facility fi contains xi units of
some commodity, for i = 1, . . . ,m. Similarly, there are u1, . . . ,un customers that would like to buy this
commodity. In particular, ui would like to by di units, for i = 1, . . . ,n. To make things interesting, it
costs ci j to send one unit of commodity from facility i to costumer j. The natural question is how to
supply the demands while minimizing the total cost.

To this end, we create a bipartite graph with f1, . . . , fm on one side, and u1, . . . ,un on the other side.
There is an edge from

(
fi,u j

)
with costs ci j , for i = 1, . . . ,m and j = 1, . . . ,n. Next, we create a source

vertex that is connected to fi with capacity xi, for i = 1, . . . ,m. Similarly, we create an edges from u j to
the sink t, with capacity di, for j = 1, . . . n. We compute the min-cost flow in this network that pushes
φ =

∑
j dk units from the source to the sink. Clearly, the solution encodes the required optimal solution

to the transportation problem.

Theorem 18.6.1. The transportation problem can be solved in polynomial time.

Bibliography

3


	Network Flow VI - Min-Cost Flow Applications
	Efficient Flow
	Efficient Flow with Lower Bounds
	Shortest Edge-Disjoint Paths
	Covering by Cycles
	Minimum weight bipartite matching
	The transportation problem

	Bibliography

