
Chapter 19

Linear Programming in Low Dimensions
By Sariel Har-Peled, November 28, 2018¬

At the sight of the still intact city, he remembered his great international precursors and set the whole place on fire
with his artillery in order that those who came after him might work off their excess energies in rebuilding.

The tin drum, Gunter Grass

In this chapter, we shortly describe (and analyze) a simple randomized algorithm for linear programming
in low dimensions. Next, we show how to extend this algorithm to solve linear programming with
violations. Finally, we will show how one can efficiently approximate the number constraints that one
needs to violate to make a linear program feasible. This serves as a fruitful ground to demonstrate some
of the techniques we visited already. Our discussion is going to be somewhat intuitive – it can be made
more formal with more work.

19.1. Some geometry first
We first prove Radon’s and Helly’s theorems.

Definition 19.1.1. The convex hull of a set P ⊆ Rd is the set of all convex combinations of points of P;
that is,

CH(P) =
{∑m

i=0
αisi

��� ∀i si ∈ P, αi ≥ 0, and
∑m

j=1
αi = 1

}
.

Claim 19.1.2. Let P = {p1, . . . ,pd+2} be a set of d+2 points in Rd. There are real numbers β1, . . . , βd+2,
not all of them zero, such that

∑
i βipi = 0 and

∑
i βi = 0.

Proof: Indeed, set qi = (pi,1), for i = 1, . . . , d + 2. Now, the points q1, . . . ,qd+2 ∈ R
d+1 are linearly depen-

dent, and there are coefficients β1, . . . , βd+2, not all of them zero, such that
∑d+2

i=1 βiqi = 0. Considering
only the first d coordinates of these points implies that

∑d+2
i=1 βipi = 0. Similarly, by considering only the

(d + 1)st coordinate of these points, we have that
∑d+2

i=1 βi = 0.

Theorem 19.1.3 (Radon’s theorem). Let P = {p1, . . . ,pd+2} be a set of d + 2 points in Rd. Then,
there exist two disjoint subsets C and D of P, such that CH(C) ∩ CH(D) , ∅ and C ∪ D = P.

Proof: By Claim 19.1.2 there are real numbers β1, . . . , βd+2, not all of them zero, such that
∑

i βipi = 0
and

∑
i βi = 0.

Assume, for the sake of simplicity of exposition, that β1, . . . , βk ≥ 0 and βk+1, . . ., βd+2 < 0. Further-
more, let µ =

∑k
i=1 βi = −

∑d+2
i=k+1 βi. We have that

k∑
i=1
βipi = −

d+2∑
i=k+1

βipi .

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

In particular, v =
∑k

i=1(βi/µ)pi is a point in CH({p1, . . . ,pk}). Furthermore, for the same point v we
have v =

∑d+2
i=k+1 −(βi/µ)pi ∈ CH({pk+1, . . . ,pd+2}). We conclude that v is in the intersection of the two

convex hulls, as required.

Theorem 19.1.4 (Helly’s theorem). Let F be a set of n convex sets in Rd. The intersection of all
the sets of F is non-empty if and only if any d + 1 of them has non-empty intersection.

Proof: This theorem is the “dual” to Radon’s theorem.
If the intersection of all sets in F is non-empty, then any intersection of d + 1 of them is non-empty.

As for the other direction, assume for the sake of contradiction that F is the minimal set of convex sets
for which the claim fails. Namely, for m = |F | > d + 1, any subset of m − 1 sets of F has non-empty
intersection, and yet the intersection of all the sets of F is empty.

As such, for X ∈ F, let pX be a point in the intersection of all sets of F excluding X. Let P ={
pX

��� X ∈ F
}
. Here |P| = |F | > d + 1. By Radon’s theorem, there is a partition of P into two disjoint

sets R and Q such that CH(R) ∩ CH(Q) , ∅. Let s be any point inside this non-empty intersection.
Let U(R) = {X | pX ∈ R} and U(Q) = {X | pX ∈ Q} be the two subsets of F corresponding to R and

Q, respectively. By definition, for X ∈ U(R), we have that

pX ∈
⋂

Y∈F,Y,X

Y ⊆
⋂

Y∈F\U(R)
Y =

⋂
Y∈U(Q)

Y,

since U(Q) ∪U(R) = F and U(Q) ∩U(R) = ∅. As such, R ⊆
⋂

Y∈U(Q)Y and Q ⊆
⋂

Y∈U(R)Y . Now, by the
convexity of the sets of F, we have CH(R) ⊆

⋂
Y∈U(Q)Y and CH(Q) ⊆

⋂
Y∈U(R)Y . Namely, we have

s ∈ CH(R) ∩ CH(Q) ⊆
(⋂
Y∈U(Q)

Y
)
∩

(⋂
Y∈U(R)

Y
)
=
⋂
Y∈F

Y .

Namely, the intersection of all the sets of F is not empty, a contradiction.

19.2. Linear programming
Assume we are given a set of n linear inequalities of the form a1x1 + · · · + ad xd ≤ b, where a1, . . . ,ad, b
are constants and x1, . . . , xd are the variables. In the linear programming (LP) problem, one has to
find a feasible solution, that is, a point (x1, . . . , xd) for which all the linear inequalities hold. In the
following, we use the shorthand LPI to stand for linear programming instance. Usually we would
like to find a feasible point that maximizes a linear expression (referred to as the target function of
the given LPI) of the form c1x1 + · · · + cd xd, where c1, . . . , cd are prespecified constants.

3y + 2x ≤ 6

3y + 2x = 6
The set of points complying with a linear inequality a1x1+· · ·+ad xd ≤ b

is a halfspace of Rd having the hyperplane a1x1 + · · · + ad xd = b as a
boundary; see the figure on the right. As such, the feasible region of a
LPI is the intersection of n halfspaces; that is, it is a polyhedron. If the
polyhedron is bounded, then it is a polytope. The linear target function
is no more than specifying a direction, such that we need to find the point inside the polyhedron which
is extreme in this direction. If the polyhedron is unbounded in this direction, the optimal solution is
unbounded.

2

Feasible region
For the sake of simplicity of exposition, it will be easier to think

of the direction for which one has to optimize as the negative xd-axis
direction. This can be easily realized by rotating the space such that the
required direction is pointing downward. Since the feasible region is the
intersection of convex sets (i.e., halfspaces), it is convex. As such, one
can imagine the boundary of the feasible region as a vessel (with a convex
interior). Next, we release a ball at the top of the vessel, and the ball rolls
down (by “gravity” in the direction of the negative xd-axis) till it reaches the lowest point in the vessel
and gets “stuck”. This point is the optimal solution to the LPI that we are interested in computing.

In the following, we will assume that the given LPI is in general position. Namely, if we intersect k
hyperplanes, induced by k inequalities in the given LPI (the hyperplanes are the result of taking each
of this inequalities as an equality), then their intersection is a (d − k)-dimensional affine subspace. In
particular, the intersection of d of them is a point (referred to as a vertex). Similarly, the intersection
of any d + 1 of them is empty.

A polyhedron defined by an LPI with n constraints might have O
(
nbd/2c

)
vertices on its boundary

(this is known as the upper-bound theorem [Grü03]). As we argue below, the optimal solution is a vertex.
As such, a naive algorithm would enumerate all relevant vertices (this is a non-trivial undertaking) and
return the best possible vertex. Surprisingly, in low dimension, one can do much better and get an
algorithm with linear running time.

We are interested in the best vertex of the feasible region, while this polyhedron is defined implicitly
as the intersection of halfspaces, and this hints to the quandary that we are in: We are looking for an
optimal vertex in a large graph that is defined implicitly. Intuitively, this is why proving the correctness
of the algorithms we present here is a non-trivial undertaking (as already mentioned, we will prove
correctness in the next chapter).

19.2.1. A solution and how to verify it
Observe that an optimal solution of an LPI is either a vertex or unbounded. Indeed, if the optimal
solution p lies in the middle of a segment s, such that s is feasible, then either one of its endpoints
provides a better solution (i.e., one of them is lower in the xd-direction than p) or both endpoints of
s have the same target value. But then, we can move the solution to one of the endpoints of s. In
particular, if the solution lies on a k-dimensional facet F of the boundary of the feasible polyhedron
(i.e., formally F is a set with affine dimension k formed by the intersection of the boundary of the
polyhedron with a hyperplane), we can move it so that it lies on a (k − 1)-dimensional facet F′ of the
feasible polyhedron, using the proceeding argumentation. Using it repeatedly, one ends up in a vertex
of the polyhedron or in an unbounded solution.

Thus, given an instance of LPI, the LP solver should output one of the following answers.

(A) Finite. The optimal solution is finite, and the solver would provide a vertex which realizes the
optimal solution.

(B) Unbounded. The given LPI has an unbounded solution. In this case, the LP solver would output
a ray ζ , such that the ζ lies inside the feasible region and it points down the negative xd-axis
direction.

(C) Infeasible. The given LPI does not have any point which complies with all the given inequalities.
In this case the solver would output d + 1 constraints which are infeasible on their own.

3

Lemma 19.2.1. Given a set of d linear inequalities in Rd, one can compute the vertex induced by the
intersection of their boundaries in O

(
d3) time.

Proof: Write down the system of equalities that the vertex must fulfill. It is a system of d equalities in
d variables and it can be solved in O

(
d3) time using Gaussian elimination.

A cone is the intersection of d constraints, where its apex is the vertex associated with this set of
constraints. A set of such d constraints is a basis. An intersection of d − 1 of the hyperplanes of a basis
forms a line and intersecting this line with the cone of the basis forms a ray. Clipping the same line to
the feasible region would yield either a segment, referred to as an edge of the polyhedron, or a ray (if
the feasible region is an unbounded polyhedron). An edge of the polyhedron connects two vertices of
the polyhedron.

ray

vertex

coneAs such, one can think about the boundary of the feasible region as inducing
a graph – its vertices and edges are the vertices and edges of the polyhedron,
respectively. Since every vertex has d hyperplanes defining it (its basis) and
an adjacent edge is defined by d − 1 of these hyperplanes, it follows that each
vertex has

(d
d−1

)
= d edges adjacent to it.

The following lemma tells us when we have an optimal vertex. While it
is intuitively clear, its proof requires a systematic understanding of what the
feasible region of a linear program looks like, and we delegate it to the next chapter.

Lemma 19.2.2. Let L be a given LPI, and let P denote its feasible region. Let v be a vertex of P, such
that all the d rays emanating from v are in the upward xd-axis direction (i.e., the direction vectors of
all these d rays have positive xd-coordinate). Then v is the lowest (in the xd-axis direction) point in P
and it is thus the optimal solution to L.

Interestingly, when we are at a vertex v of the feasible region, it is easy to find the adjacent vertices.
Indeed, compute the d rays emanating from v. For such a ray, intersect it with all the constraints of
the LPI. The closest intersection point along this ray is the vertex u of the feasible region adjacent to v.
Doing this naively takes O

(
dn + dO(1)

)
time.

Lemma 19.2.2 offers a simple algorithm for computing the optimal solution for an LPI. Start from a
feasible vertex of the LPI. As long as this vertex has at least one ray that points downward, follow this
ray to an adjacent vertex on the feasible polytope that is lower than the current vertex (i.e., compute
the d rays emanating from the current vertex, and follow one of the rays that points downward, till you
hit a new vertex). Repeat this till the current vertex has all rays pointing upward, by Lemma 19.2.2
this is the optimal solution. Up to tedious (and non-trivial) details this is the simplex algorithm.

We need the following lemma, whose proof is also delegated to the next chapter.

Lemma 19.2.3. If L is an LPI in d dimensions which is not feasible, then there exist d + 1 inequalities
in L which are infeasible on their own.

Note that given a set of d + 1 inequalities, it is easy to verify (in polynomial time in d) if they are
feasible or not. Indeed, compute the

(d+1
d

)
vertices formed by this set of constraints, and check whether

any of these vertices are feasible (for these d + 1 constraints). If all of them are infeasible, then this set
of constraints is infeasible.

4

19.3. Low-dimensional linear programming

19.3.1. An algorithm for a restricted case
There are a lot of tedious details that one has to take care of to make things work with linear program-
ming. As such, we will first describe the algorithm for a special case and then provide the envelope
required so that one can use it to solve the general case.

A vertex v is acceptable if all the d rays associated with it point upward (note that the vertex
might not be feasible). The optimal solution (if it is finite) must be located at an acceptable vertex.

Input for the restricted case. The input for the restricted case is an LPI L, which is defined by a
set of n linear inequalities in Rd, and a basis B = {h1, . . . , hd} of an acceptable vertex.

Let hd+1, . . . , hm be a random permutation of the remaining constraints of the LPI L.
We are looking for the lowest point in Rd which is feasible for L. Our algorithm is randomized

incremental. At the ith step, for i > d, it will maintain the optimal solution for the first i constraints.
As such, in the ith step, the algorithm checks whether the optimal solution vi−1 of the previous iteration
is still feasible with the new constraint hi (namely, the algorithm checks if vi−1 is inside the halfspace
defined by hi). If vi−1 is still feasible, then it is still the optimal solution, and we set vi ← vi−1.

The more interesting case is when vi−1 < hi. First, we check if the basis of vi−1 together with hi forms
a set of constraints which is infeasible. If so, the given LPI is infeasible, and we output B(vi−1) ∪ {hi} as
the proof of infeasibility.

hi∂hi

feasible region
h1 ∩ . . . ∩ hi−1

vi
vi−1

Otherwise, the new optimal solution must lie on the hyperplane as-
sociated with hi. As such, we recursively compute the lowest vertex in
the (d−1)-dimensional polyhedron (∂hi)∩

⋂i−1
j=1 h j , where ∂hi denotes the

hyperplane which is the boundary of the halfspace hi. This is a linear
program involving i−1 constraints, and it involves d−1 variables since the
LPI lies on the (d − 1)-dimensional hyperplane ∂hi. The solution found,
vi, is defined by a basis of d−1 constraints in the (d−1)-dimensional sub-
space ∂hi, and adding hi to it results in an acceptable vertex that is feasible in the original d-dimensional
space. We continue to the next iteration.

Clearly, the vertex vn is the required optimal solution.

19.3.1.1. Running time analysis

Every set of d constraints is feasible and computing the vertex formed by this constraint takes O(d3)
time, by Lemma 19.2.1.

Let Xi be an indicator variable that is 1 if and only if the vertex vi is recomputed in the ith iteration
(by performing a recursive call). This happens only if hi is one of the d constraints in the basis of vi.
Since there are most d constraints that define the basis and there are at least i − d constraints that are
being randomly ordered (as the first d slots are fixed), we have that the probability that vi , vi−1 is

αi = P[Xi = 1] ≤ min
(

d
i − d

, 1
)
≤

2d
i
,

for i ≥ d + 1, as can be easily verified. So, let T(m, d) be the expected time to solve an LPI with m
constraints in d dimensions. We have that T(d, d) = O(d3) by the above. Now, in every iteration, we

Indeed, (d)+d
(i−d)+d lies between d

i−d and d
d = 1.

5

need to check if the current solution lies inside the new constraint, which takes O(d) time per iteration
and O(dm) time overall.

Now, if Xi = 1, then we need to update each of the i − 1 constraints to lie on the hyperplane hi. The
hyperplane hi defines a linear equality, which we can use to eliminate one of the variables. This takes
O(di) time, and we have to do the recursive call. The probability that this happens is αi. As such, we
have

T(m, d) = E

[
O(md) +

m∑
i=d+1

Xi(di + T(i − 1, d − 1))
]

= O(md) +
m∑

i=d+1
αi(di + T(i − 1, d − 1))

= O(md) +
m∑

i=d+1

2d
i
(di + T(i − 1, d − 1))

= O
(
md2) + m∑

i=d+1

2d
i

T(i − 1, d − 1).

Guessing that T(m, d) ≤ cdm, we have that

T(m, d) ≤ ĉ1md2 +
m∑

i=d+1

2d
i

cd−1(i − 1) ≤ ĉ1md2 +
m∑

i=d+1
2dcd−1 =

(
ĉ1d2 + 2dcd−1

)
m,

where ĉ1 is some absolute constant. We need that ĉ1d2 + 2cd−1d ≤ cd, which holds for cd = O
(
(3d)d

)
and T(m, d) = O

(
(3d)dm

)
.

Lemma 19.3.1. Given an LPI with n constraints in d dimensions and an acceptable vertex for this LPI,
then can compute the optimal solution in expected O

(
(3d)dn

)
time.

19.3.2. The algorithm for the general case
Let L be the given LPI, and let L′ be the instance formed by translating all the constraints so that
they pass through the origin. Next, let h be the hyperplane xd = −1. Consider a solution to the LP L′

when restricted to h. This is a (d − 1)-dimensional instance of linear programming, and it can be solved
recursively.

If the recursive call on L′ ∩ h returned no solution, then the d constraints that prove that the LP L′

is infeasible on h corresponds to a basis in L of a vertex v which is acceptable in the original LPI. Indeed,
as we move these d constraints to the origin, their intersection on h is empty (i.e., the “quadrant” that
their intersection forms is unbounded only in the upward direction). As such, we can now apply the
algorithm of Lemma 19.3.1 to solve the given LPI. See Figure 19.1.

If there is a solution to L′∩ h, then it is a vertex v on h which is feasible. Thus, consider the original
set of d − 1 constraints in L that corresponds to the basis B of v. Let ` be the line formed by the
intersection of the hyperplanes of B. It is now easy to verify that the intersection of the feasible region
with this line is an unbounded ray, and the algorithm returns this unbounded (downward oriented) ray,
as a proof that the LPI is unbounded.

6

feasible
region

h

empty intersection
on h

v

(a) (b) (c)

Figure 19.1: Demonstrating the algorithm for the general case: (a) given constraints and feasible region,
(b) constraints moved to pass through the origin, and (c) the resulting acceptable vertex v.

Theorem 19.3.2. Given an LP instance with n constraints defined over d variables, it can be solved in
expected O

(
(3d)dn

)
time.

Proof: The expected running time is

S(n, d) = O(nd) + S(n, d − 1) + T(m, d),

where T(m, d) is the time to solve an LP in the restricted case of Section 19.3.1. Indeed, we first solve
the problem on the (d − 1)-dimensional subspace h ≡ xd = −1. This takes O(dn) + S(n, d − 1) time (we
need to rewrite the constraints for the lower-dimensional instance, and that takes O(dn) time). If the
solution on h is feasible, then the original LPI has an unbounded solution, and we return it. Otherwise,
we obtained an acceptable vertex, and we can use the special case algorithm on the original LPI. Now,
the solution to this recurrence is O

(
(3d)dn

)
; see Lemma 19.3.1.

Bibliography
[Grü03] B. Grünbaum. Convex Polytopes. Springer, 2nd edition, may 2003. Prepared by V. Kaibel, V.

Klee, and G. Ziegler.

7

http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20{&}path=ASIN/0387004246

	Linear Programming in Low Dimensions
	Some geometry first
	Linear programming
	A solution and how to verify it

	Low-dimensional linear programming
	An algorithm for a restricted case
	The algorithm for the general case

	Bibliography

