
Chapter 20

Linear Programming
By Sariel Har-Peled, November 28, 2018¬

20.1. Introduction and Motivation
In the VCR/guns/nuclear-bombs/napkins/star-wars/professors/butter/mice problem, the benevolent
dictator, Biga Piguinus, of Penguina (a country in south Antarctica having 24 million penguins under
its control) has to decide how to allocate her empire resources to the maximal benefit of her penguins. In
particular, she has to decide how to allocate the money for the next year budget. For example, buying
a nuclear bomb has a tremendous positive effect on security (the ability to destruct yourself completely
together with your enemy induces a peaceful serenity feeling in most people). Guns, on the other hand,
have a weaker effect. Penguina (the state) has to supply a certain level of security. Thus, the allocation
should be such that:

xgun + 1000 ∗ xnuclear−bomb ≥ 1000,

where xguns is the number of guns constructed, and xnuclear−bomb is the number of nuclear-bombs con-
structed. On the other hand,

100 ∗ xgun + 1000000 ∗ xnuclear−bomb ≤ xsecurity

where xsecurity is the total Penguina is willing to spend on security, and 100 is the price of producing
a single gun, and 1,000,000 is the price of manufacturing one nuclear bomb. There are a lot of other
constrains of this type, and Biga Piguinus would like to solve them, while minimizing the total money
allocated for such spending (the less spent on budget, the larger the tax cut).

a11x1 + . . . + a1nxn ≤ b1
a21x1 + . . . + a2nxn ≤ b2

...
am1x1 + . . . + amnxn ≤ bm
max c1x1 + . . . + cnxn.

More formally, we have a (potentially large) number of variables:
x1, . . . , xn and a (potentially large) system of linear inequalities. We
will refer to such an inequality as a constraint. We would like to
decide if there is an assignment of values to x1, . . . , xn where all these
inequalities are satisfied. Since there might be infinite number of such
solutions, we want the solution that maximizes some linear quantity.
See the instance on the right.

The linear target function we are trying to maximize is known as the objective function of the
linear program. Such a problem is an instance of linear programming. We refer to linear programming
as LP.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

∀(u, v) ∈ E 0 ≤ xu→v

xu→v ≤ c(u → v)

∀v ∈ V \ {s, t}
∑

(u,v)∈E

xu→v −
∑

(v,w)∈E

xv→w ≤ 0∑
(u,v)∈E

xu→v −
∑

(v,w)∈E

xv→w ≥ 0

maximizing
∑

(s,u)∈E xs→u

Figure 20.1

20.1.1. History
Linear programming can be traced back to the early 19th century. It started in earnest in 1939 when L.
V. Kantorovich noticed the importance of certain type of Linear Programming problems. Unfortunately,
for several years, Kantorovich work was unknown in the west and unnoticed in the east.

Dantzig, in 1947, invented the simplex method for solving LP problems for the US Air force planning
problems.

T. C. Koopmans, in 1947, showed that LP provide the right model for the analysis of classical
economic theories.

In 1975, both Koopmans and Kantorovich got the Nobel prize of economics. Dantzig probably did
not get it because his work was too mathematical. That is how it goes. Kantorovich was the only the
Russian economist that got the Nobel prize­.

20.1.2. Network flow via linear programming
To see the impressive expressive power of linear programming, we next show that network flow can be
solved using linear programming. Thus, we are given an instance of max flow; namely, a network flow
G = (V,E) with source s and sink t, and capacities c(·) on the edges. We would like to compute the
maximum flow in G.

To this end, for an edge (u, v) ∈ E , let xu→v be a variable which is the amount of flow assign to
(u, v) in the maximum flow. We demand that 0 ≤ xu→v and xu→v ≤ c(u → v) (flow is non negative on
edges, and it comply with the capacity constraints). Next, for any vertex v which is not the source
or the sink, we require that

∑
(u,v)∈E xu→v =

∑
(v,w)∈E xv→w (this is conservation of flow). Note, that an

equality constraint a = b can be rewritten as two inequality constraints a ≤ b and b ≤ a. Finally,
under all these constraints, we are interest in the maximum flow. Namely, we would like to maximize
the quantity

∑
(s,u)∈E xs→u. Clearly, putting all these constraints together, we get the linear program

depicted in Figure 20.1.
It is not too hard to write down min-cost network flow using linear programming.

2

max
n∑

j=1
c j x j

subject to
n∑

j=1
ai j x j ≤ bi

for i = 1,2, . . . ,m.

Figure 20.2

20.2. The Simplex Algorithm

20.2.1. Linear program where all the variables are positive
We are given a LP, depicted in Figure 20.2, where a variable can have any real value. As a first step
to solving it, we would like to rewrite it, such that every variable is non-negative. This is easy to do,
by replacing a variable xi by two new variables x′i and x′′i , where xi = x′i − x′′i , x′i ≥ 0 and x′′i ≥ 0. For
example, the (trivial) linear program containing the single constraint 2x + y ≥ 5 would be replaced by
the following LP: 2x′ − 2x′′ + y′ − y′′ ≥ 5, x′ ≥ 0, y′ ≥ 0, x′′ ≥ 0 and y′′ ≥ 0.

Lemma 20.2.1. Given an instance I of LP, one can rewrite it into an equivalent LP, such that all the
variables must be non-negative. This takes linear time in the size of I.

20.2.2. Standard form
Using Lemma 20.2.1, we can now require a LP to be specified using only positive variables. This is
known as standard form.

A linear program in standard form.

max
n∑

j=1
c j x j

subject to
n∑

j=1
ai j x j ≤ bi for i = 1,2, . . . ,m

x j ≥ 0 for j = 1, . . . ,n.

A linear program in standard form.
(Matrix notation.)

max cT x
subject to Ax ≤ b.

x ≥ 0.

Here the matrix notation rises, by setting

c =
©­­«

c1
...

cn

ª®®¬, b =
©­­«

b1
...

bm

ª®®¬, A =
©­­­­­­«

a11 a12 . . . a1(n−1) a1n
a21 a22 . . . a2(n−1) a2n
...

...
a(m−1)1 a(m−1)2 . . . a(m−1)(n−1) a(m−1)n

am1 am2 . . . am(n−1) amn

ª®®®®®®¬
, and x =

©­­­­­­«

x1
x2
...

xn−1
xn

ª®®®®®®¬
.

Note, that c, b and A are prespecified, and x is the vector of unknowns that we have to solve the LP for.
­There were other economists that were born in Russia, but lived in the west that got the Nobel prize – Leonid Hurwicz

for example.

3

In the following in order to solve the LP, we are going to do a long sequence of rewritings till we
reach the optimal solution.

20.2.3. Slack Form

We next rewrite the LP into slack form. It is a more convenient® form for describing the Simplex
algorithm for solving LP.

max cT x
subject to Ax = b.

x ≥ 0.

Specifically, one can rewrite a LP, so that every inequality becomes equal-
ity, and all variables must be positive; namely, the new LP will have a form
depicted on the right (using matrix notation). To this end, we introduce new
variables (slack variables) rewriting the inequality

n∑
i=1

ai xi ≤ b

as

xn+1 = b −

n∑
i=1

ai xi

xn+1 ≥ 0.

Intuitively, the value of the slack variable xn+1 encodes how far is the original inequality for holding
with equality.

Now, we have a special variable for each inequality in the LP (this is xn+1 in the above example).
These variables are special, and would be called basic variables. All the other variables on the right
side are nonbasic variables (original isn’t it?). A LP in this form is in slack form.

The slack form is defined by a tuple (N,B, A, b, c, v).

Linear program in slack form.

max z = v +
∑
j∈N

c j x j,

s.t. xi = bi −
∑
j∈N

ai j x j f or i ∈ B,

xi ≥ 0, ∀i = 1, . . . ,n + m.

B - Set of indices of basic variables
N - Set of indices of nonbasic variables
n = |N | - number of original variables
b, c - two vectors of constants
m = |B | - number of basic variables

(i.e., number of inequalities)
A =

{
ai j

}
- The matrix of coefficients

N ∪ B = {1, . . . ,n + m}

v - objective function constant.

Exercise 20.2.2. Show that any linear program can be transformed into equivalent slack form.

Example 20.2.3. Consider the following LP which is in slack form, and its translation into the tuple
(N,B, A, b, c, v).

®The word convenience is used here in the most liberal interpretation possible.

4

max z = 29 −
1
9 x3 −

1
9 x5 −

2
9 x6

x1 = 8 + 1
6 x3 +

1
6 x5 −

1
3 x6

x2 = 4 −
8
3 x3 −

2
3 x5 +

1
3 x6

x4 = 18 −
1
2 x3 +

1
2 x5

B = {1,2,4} ,N = {3,5,6}

A = ©­«
a13 a15 a16
a23 a25 a26
a43 a45 a46

ª®¬ = ©­«
−1/6 −1/6 1/3
8/3 2/3 −1/3
1/2 −1/2 0

ª®¬
b = ©­«

b1
b2
b4

ª®¬ = ©­«
8
4
18

ª®¬ c = ©­«
c3
c5
c6

ª®¬ = ©­«
−1/9
−1/9
−2/9

ª®¬
v = 29.

Note that indices depend on the sets N and B, and also that the entries in A are negation of what they
appear in the slack form.

20.2.4. The Simplex algorithm by example
Before describing the Simplex algorithm in detail, it would be beneficial to derive it on an example. So,
consider the following LP.

max 5x1 + 4x2 + 3x3

s.t . 2x1 + 3x2 + x3 ≤ 5
4x1 + x2 + 2x3 ≤ 11
3x1 + 4x2 + 2x3 ≤ 8
x1, x2,x3 ≥ 0

Next, we introduce slack variables, for example, rewriting 2x1 + 3x2 + x3 ≤ 5 as the constraints: w1 ≥ 0
and w1 = 5 − 2x1 − 3x2 − x3. The resulting LP in slack form is

max z = 5x1 + 4x2 + 3x3

s.t. w1 = 5 − 2x1 − 3x2 − x3

w2 = 11 − 4x1 − x2 − 2x3

w3 = 8 − 3x1 − 4x2 − 2x3

x1, x2,x3,w1,w2,w3 ≥ 0

Here w1,w2,w3 are the slack variables. Note also that they are currently also the basic variables.
Consider the slack representation trivial solution, where all the non-basic variables are assigned zero;
namely, x1 = x2 = x3 = 0. We then have that w1 = 5, w2 = 11 and w3 = 8. Fortunately for us, this is a
feasible solution, and the associated objective value is z = 0.

We are interested in further improving the value of the objective function (i.e., z), while still having
a feasible solution. Inspecting carefully the above LP, we realize that all the basic variables w1 = 5,
w2 = 11 and w3 = 8 have values which are strictly larger than zero. Clearly, if we change the value of one
non-basic variable a bit, all the basic variables would remain positive (we are thinking about the above
system as being function of the nonbasic variables x1, x2 and x3). So, consider the objective function
z = 5x1 + 4x2 + 3x3. Clearly, if we increase the value of x1, from its current zero value, then the value
of the objective function would go up, since the coefficient of x1 for z is a positive number (5 in our
example).

Deciding how much to increase the value of x1 is non-trivial. Indeed, as we increase the value of x1,
the the solution might stop being feasible (although the objective function values goes up, which is a

5

good thing). So, let us increase x1 as much as possible without violating any constraint. In particular,
for x2 = x3 = 0 we have that

w1 = 5 − 2x1 − 3x2 − x3 = 5 − 2x1

w2 = 11 − 4x1 − x2 − 2x3 = 11 − 4x1

w3 = 8 − 3x1 − 4x2 − 2x3 = 8 − 3x1.

We want to increase x1 as much as possible, as long as w1,w2,w3 are non-negative. Formally, the
constraints are that

w1 = 5 − 2x1 ≥ 0,
w2 = 11 − 4x1 ≥ 0,

and w3 = 8 − 3x1 ≥ 0.

This implies that whatever value we pick for x1 it must comply with the inequalities x1 ≤ 2.5,
x1 ≤ 11/4 = 2.75 and x1 ≤ 8/3 = 2.66. We select as the value of x1 the largest value that still comply
with all these conditions. Namely, x1 = 2.5. Putting it into the system, we now have a solution which is

x1 = 2.5, x2 = 0, x3 = 0, w1 = 0, w2 = 1, w3 = 0.5 ⇒ z = 5x1 + 4x2 + 3x3 = 12.5.

As such, all the variables are non-negative and this solution is feasible. Furthermore, this is a better
solution than the previous one, since the old solution had (the objective function) value z = 0.

What really happened? One zero nonbasic variable (i.e., x1) became non-zero, and one basic variable
became zero (i.e., w1). It is natural now to want to exchange between the nonbasic variable x1 (since it
is no longer zero) and the basic variable w1. This way, we will preserve the invariant, that the current
solution we maintain is the one where all the nonbasic variables are assigned zero.

So, consider the equality in the LP that involves w1, that is w1 = 5 − 2x1 − 3x2 − x3. We can rewrite
this equation, so that x1 is on the left side:

x1 = 2.5 − 0.5w1 − 1.5x2 − 0.5 x3. (20.1)

The problem is that x1 still appears in the right size of the equations for w2 and w3 in the LP. We
observe, however, that any appearance of x1 can be replaced by substituting it by the expression on the
right side of Eq. (20.1). Collecting similar terms, we get the following equivalent LP:

max z = 12.5 − 2.5w1 − 3.5x2 + 0.5x3

x1 = 2.5 − 0.5w1 − 1.5x2 − 0.5x3

w2 = 1 + 2w1 + 5x2

w3 = 0.5 + 1.5w1 + 0.5x2 − 0.5x3.

Note, that the nonbasic variables are now {w1, x2, x3} and the basic variables are {x1,w2,w3}. In partic-
ular, the trivial solution, of assigning zero to all the nonbasic variables is still feasible; namely we set
w1 = x2 = x3 = 0. Furthermore, the value of this solution is 12.5.

This rewriting step, we just did, is called pivoting. And the variable we pivoted on is x1, as x1 was
transfered from being a nonbasic variable into a basic variable.

We would like to continue pivoting till we reach an optimal solution. We observe, that we can not
pivot on w1, since if we increase the value of w1 then the objective function value goes down, since the
coefficient of w1 is −2.5. Similarly, we can not pivot on x2 since its coefficient in the objective function

6

is −3.5. Thus, we can only pivot on x3 since its coefficient in the objective function is 0.5, which is a
positive number.

Checking carefully, it follows that the maximum we can increase x3 is to 1, since then w3 becomes
zero. Thus, rewriting the equality for w3 in the LP; that is,

w3 = 0.5 + 1.5w1 + 0.5x2 − 0.5x3,

for x3, we have
x3 = 1 + 3w1 + x2 − 2w3,

Substituting this into the LP, we get the following LP.

max z = 13 − w1 − 3x2 − w3

s.t . x1 = 2 − 2w1 − 2x2 + w3

w2 = 1 + 2w1 + 5x2

x3 = 1 + 3w1 + x2 − 2w3

Can we further improve the current (trivial) solution that assigns zero to all the nonbasic variables?
(Here the nonbasic variables are {w1, x2,w3}.)

The resounding answer is no. We had reached the optimal solution. Indeed, all the coefficients in
the objective function are negative (or zero). As such, the trivial solution (all nonbasic variables get
zero) is maximal, as they must all be non-negative, and increasing their value decreases the value of the
objective function. So we better stop.

Intuition. The crucial observation underlining our reasoning is that at each stage we had to replace
the LP by a completely equivalent LP. In particular, any feasible solution to the original LP would be
feasible for the final LP (and vice versa). Furthermore, they would have exactly the same objective
function value. However, in the final LP, we get an objective function that can not be improved for any
feasible point, an we stopped. Thus, we found the optimal solution to the linear program.

This gives a somewhat informal description of the simplex algorithm. At each step we pivot on a
nonbasic variable that improves our objective function till we reach the optimal solution. There is a
problem with our description, as we assumed that the starting (trivial) solution of assigning zero to the
nonbasic variables is feasible. This is of course might be false. Before providing a formal (and somewhat
tedious) description of the above algorithm, we show how to resolve this problem.

20.2.4.1. Starting somewhere

max z = v +
∑
j∈N

c j x j,

s.t. xi = bi −
∑
j∈N

ai j x j for i ∈ B,

xi ≥ 0, ∀i = 1, . . . ,n + m.

We had transformed a linear programming problem
into slack form. Intuitively, what the Simplex algo-
rithm is going to do, is to start from a feasible solution
and start walking around in the feasible region till it
reaches the best possible point as far as the objective
function is concerned. But maybe the linear program
L is not feasible at all (i.e., no solution exists.). Let L

be a linear program (in slack form depicted on the left. Clearly, if we set all xi = 0 if i ∈ N then this
determines the values of the basic variables. If they are all positive, we are done, as we found a feasible
solution. The problem is that they might be negative.

7

min x0

s.t. xi = x0 + bi −
∑
j∈N

ai j x j for i ∈ B,

xi ≥ 0, ∀i = 1, . . . ,n + m.

We generate a new LP problem L′ from L.
This LP L′ = Feasible(L) is depicted on the
right. Clearly, if we pick x j = 0 for all j ∈ N (all
the nonbasic variables), and a value large enough
for x0 then all the basic variables would be non-
negatives, and as such, we have found a feasible solution for L′. Let LPStartSolution(L′) denote this
easily computable feasible solution.

We can now use the Simplex algorithm we described to find this optimal solution to L′ (because we
have a feasible solution to start from!).

Lemma 20.2.4. The LP L is feasible if and only if the optimal objective value of LP L′ is zero.

Proof: A feasible solution to L is immediately an optimal solution to L′ with x0 = 0, and vice versa.
Namely, given a solution to L′ with x0 = 0 we can transform it to a feasible solution to L by removing
x0.

One technicality that is ignored above, is that the starting solution we have for L′, generated by
LPStartSolution(L) is not legal as far as the slack form is concerned, because the non-basic variable x0
is assigned a non-zero value. However, this can be easily resolved by immediately pivoting on x0 when
we run the Simplex algorithm. Namely, we first try to decrease x0 as much as possible.

Bibliography

8

	Linear Programming
	Introduction and Motivation
	History
	Network flow via linear programming

	The Simplex Algorithm
	Linear program where all the variables are positive
	Standard form
	Slack Form
	The Simplex algorithm by example

	Bibliography

