
Chapter 24

Sorting Networks
By Sariel Har-Peled, November 28, 2018¬

The world is what it is; men who are nothing, who allow themselves to become nothing, have no place in it.

A bend in the river, V. S. Naipul

24.1. Model of Computation
It is natural to ask if one can perform a computational task considerably faster by using a different
architecture (i.e., a different computational model).

The answer to this question is a resounding yes. A cute example is the Macaroni sort algorithm.
We are given a set S = {s1, . . . , sn} of n real numbers in the range (say) [1,2]. We get a lot of Macaroni
(this are longish and very narrow tubes of pasta), and cut the ith piece to be of length si, for i = 1, . . . ,n.
Next, take all these pieces of pasta in your hand, make them stand up vertically, with their bottom end
lying on a horizontal surface. Next, lower your handle till it hit the first (i.e., tallest) piece of pasta. Take
it out, measure it height, write down its number, and continue in this fashion till you have extracted
all the pieces of pasta. Clearly, this is a sorting algorithm that works in linear time. But we know that
sorting takes Ω(n log n) time. Thus, this algorithm is much faster than the standard sorting algorithms.

This faster algorithm was achieved by changing the computation model. We allowed new “strange”
operations (cutting a piece of pasta into a certain length, picking the longest one in constant time, and
measuring the length of a pasta piece in constant time). Using these operations we can sort in linear
time.

If this was all we can do with this approach, that would have only
been a curiosity. However, interestingly enough, there are natural compu-
tation models which are considerably stronger than the standard model
of computation. Indeed, consider the task of computing the output of the
circuit on the right (here, the input is boolean values on the input wires
on the left, and the output is the single output on the right).

Clearly, this can be solved by ordering the gates in the “right” order (this can be done by topological
sorting), and then computing the value of the gates one by one in this order, in such a way that a gate
being computed knows the values arriving on its input wires. For the circuit above, this would require
8 units of time, since there are 8 gates.

However, if you consider this circuit more carefully, one realized that
we can compute this circuit in 4 time units. By using the fact that several
gates are independent of each other, and we can compute them in parallel,
as depicted on the right. Furthermore, circuits are inherently parallel and
we should be able to take advantage of this fact.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

So, let us consider the classical problem of sorting n numbers. The question is whether we can sort
them in sublinear time by allowing parallel comparisons. To this end, we need to precisely define our
computation model.

24.2. Sorting with a circuit – a naive solution

Comparator

x

y

y′ = max(x, y)

x′ = min(x, y)We are going to design a circuit, where the inputs are the numbers and
we compare two numbers using a comparator gate. Such a gate has two
inputs and two outputs, and it is depicted on the right.

y

x′ = min(x, y)

y′ = max(x, y)

x We usually depict such a gate as a vertical segment connecting two
wires, as depicted on the right. This would make drawing and arguing
about sorting networks easier.

Our circuits would be depicted by horizontal lines, with vertical
segments (i.e., gates) connecting between them. For example, see
complete sorting network depicted on the right.

The inputs come on the wires on the left, and are output on the
wires on the right. The largest number is output on the bottom
line. Somewhat surprisingly, one can generate circuits from known
sorting algorithms.

24.2.1. Definitions
Definition 24.2.1. A comparison network is a DAG (directed acyclic graph), with n inputs and n
outputs, where each gate (i.e., done) has two inputs and two outputs (i.e., two incoming edges, and two
outgoing edges).

Definition 24.2.2. The depth of a wire is 0 at the input. For a gate with two inputs of depth d1 and d2
the depth on the output wire is 1 +max(d1, d2). The depth of a comparison network is the maximum
depth of an output wire.

Definition 24.2.3. A sorting network is a comparison network such that for any input, the output is
monotonically sorted. The size of a sorting network is the number of gates in the sorting network. The
running time of a sorting network is just its depth.

24.2.2. Sorting network based on insertion sort

Consider the sorting circuit on the
left. Clearly, this is just the inner
loop of the standard insertion sort.
As such, if we repeat this loop, we
get the sorting network on the right.

It is easy to argue that this circuit sorts correctly all inputs (we
removed some unnecessary gates).

2

1 2 3 4 5 6 7 8 9

(i) (ii)

Figure 24.1: The sorting network inspired by inser-
tion sort.

An alternative way of drawing this sorting
network is depicted in Figure 24.1 (ii). The next
natural question, is how much time does it take
for this circuit to sort the n numbers. Observe,
that the running time of the algorithm is how
many different time ticks we have to wait till the
result stabilizes in all the gates. In our example,
the alternative drawing immediately tell us how
to schedule the computation of the gates. See
Figure 24.1 (ii).

In particular, the above discussion implies the following result.

Lemma 24.2.4. The sorting network based on insertion sort has O(n2) gates, and requires 2n − 1 time
units to sort n numbers.

24.3. The Zero-One Principle
The zero-one principle states that if a comparison network sort correctly all binary inputs (i.e., every
number is either 0 or 1) then it sorts correctly all inputs. We (of course) need to prove that the zero-one
principle is true.

Lemma 24.3.1. If a comparison network transforms the input sequence a = 〈a1,a2, . . . ,an〉 into the
output sequence b = 〈b1, b2, . . . , bn〉, then for any monotonically increasing function f , the network
transforms the input sequence f (a) = 〈 f (a1), . . . , f (an)〉 into the sequence f (b) = 〈 f (b1), . . . , f (bn)〉.

Proof: Consider a single comparator with inputs x and y, and outputs x′ = min(x, y) and y′ = max(x, y).
If f (x) = f (y) then the claim trivially holds for this comparator. If f (x) < f (y) then clearly

max
(

f (x), f (y)
)
= f

(
max(x, y)

)
and

min
(

f (x), f (y)
)
= f

(
min(x, y)

)
,

since f (·) is monotonically increasing. As such, for the input 〈x, y〉, for x < y, we have output 〈x, y〉.
Thus, for the input 〈 f (x), f (y)〉 the output is 〈 f (x), f (y)〉. Similarly, if x > y, the output is 〈y, x〉.
In this case, for the input 〈 f (x), f (y)〉 the output is 〈 f (y), f (x)〉. This establish the claim for a single
comparator.

Now, we claim by induction that if a wire carry a value ai, when the sorting network get input
a1, . . . ,an, then for the input f (a1), . . . , f (an) this wire would carry the value f (ai).

This is proven by induction on the depth on the wire at each point. If the point has depth 0, then
its an input and the claim trivially hold. So, assume it holds for all points in our circuits of depth at
most i, and consider a point p on a wire of depth i + 1. Let G be the gate which this wire is an output
of. By induction, we know the claim holds for the inputs of G (which have depth at most i). Now, we
the claim holds for the gate G itself, which implies the claim apply the above claim to the gate G, which
implies the claim holds at p.

Theorem 24.3.2. If a comparison network with n inputs sorts all 2n binary strings of length n correctly,
then it sorts all sequences correctly.

3

Proof: Assume for the sake of contradiction, that it sorts incorrectly the sequence a1, . . . ,an. Let b1, . . . bn
be the output sequence for this input.

Let ai < ak be the two numbers that are output in incorrect order (i.e. ak appears before ai in the
output). Let

f (x) =

{
0 x ≤ ai

1 x > ai .

Clearly, by the above lemma (Lemma 24.3.1), for the input

〈 f (a1), . . . , f (an)〉 ,

which is a binary sequence, the circuit would output 〈 f (b1), . . . , f (bn)〉. But then, this sequence looks
like

000..0???? f (ak)???? f (ai)??1111
but f (ai) = 0 and f (a j) = 1. Namely, the output is a sequence of the form ????1????0????, which is not
sorted.

Namely, we have a binary input (i.e., 〈 f (b1), . . . , f (bn)〉) for which the comparison network does not
sort it correctly. A contradiction to our assumption.

24.4. A bitonic sorting network
Definition 24.4.1. A bitonic sequence is a sequence which is first increasing and then decreasing, or
can be circularly shifted to become so.

Example 24.4.2. The sequences (1,2,3, π,4,5,4,3,2,1) and (4,5,4,3,2,1,1,2,3) are bitonic, while the se-
quence (1,2,1,2) is not bitonic.

Observation 24.4.3. A binary bitonic sequence (i.e., bitonic sequence made out only of zeroes and
ones) is either of the form 0i1 j0k or of the form 1i0 j1k , where 0i (resp, 1i) denote a sequence of i zeros
(resp., ones).

Definition 24.4.4. A bitonic sorter is a comparison network that sorts all bitonic sequences correctly.

Definition 24.4.5. A half-cleaner is a comparison network, connecting line i with
line i+n/2. In particular, let Half-Cleaner[n] denote the half-cleaner with n inputs.
Note, that the depth of a Half-Cleaner[n] is one, see figure on the right.

111..111 000..000000..000

000..000111..111 111..111 111

000..000

000..000

111..111 111000..000

000..000 111

000..000

half−

cleaner

It is beneficial to consider what a half-cleaner do to an input
which is a (binary) bitonic sequence. Clearly, in the specific example,
depicted on the left, we have that the left half size is clean and all
equal to 0. Similarly, the right size of the output is bitonic.

Specifically, one can prove by simple (but tedious) case analysis
that the following lemma holds.

Lemma 24.4.6. If the input to a half-cleaner (of size n) is a binary bitonic sequence then for the output
sequence we have that

(i) the elements in the top half are smaller than the elements in bottom half, and

4

���������	��

� ������������� ���

�
���������� �"!#�%$
&'�(�*)

� ��������� ��� ���

�����+���	��
 � ������� �,!#�-$

���������	��

� �������	�
��������

� �����

(i) (ii) (iii)

Figure 24.2: Depicted are the (i) recursive construction of BitonicSorter[n], (ii) opening up the recursive
construction, and (iii) the resulting comparison network.

(ii) one of the halves is clean, and the other is bitonic.
Proof: If the sequence is of the form 0i1 j0k and the block of ones is completely on the left side (i.e., its
part of the first n/2 bits) or the right side, the claim trivially holds. So, assume that the block of ones
starts at position n/2 − β and ends at n/2 + α.

00 . . . 00 111 . . . 111

000 . . . 00011 . . . 11

HalfCleaner

00 . . . 00 00 . . . 0011

111 . . . 111

α︷ ︸︸ ︷
︸ ︷︷ ︸

β

If n/2 − α ≥ β then this is exactly the case depicted
above and claim holds. If n/2−α < β then the second half
is going to be all ones, as depicted on the right. Implying
the claim for this case.

A similar analysis holds if the sequence is of the form 1i0 j1k .

This suggests a simple recursive construction of BitonicSorter[n], see Figure 24.2, and we have the
following lemma.
Lemma 24.4.7. BitonicSorter[n] sorts bitonic sequences of length n = 2k , it uses (n/2)k = (n/2) lg n
gates, and it is of depth k = lg n.

24.4.1. Merging sequence
Next, we deal with the following merging question. Given two sorted sequences of length n/2, how do
we merge them into a single sorted sequence?

The idea here is concatenate the two sequences, where the second sequence is being flipped (i.e.,
reversed). It is easy to verify that the resulting sequence is bitonic, and as such we can sort it using the
BitonicSorter[n].

Specifically, given two sorted sequences a1 ≤ a2 ≤ . . . ≤ an and b1 ≤ b2 ≤ . . . ≤ bn, observe that the
sequence a1,a2, . . . ,an, bn, bn−1, bn−2, . . . , b2, b1 is bitonic.

Thus, to merge two sorted sequences of length n/2, just flip one of them, and use BitonicSorter[n],
see Figure 24.3. This is of course illegal, and as such we take BitonicSorter[n] and physically flip the
last n/2 entries. The process is depicted in Figure 24.3. The resulting circuit Merger takes two sorted
sequences of length n/2, and return a sorted sequence of length n.

It is somewhat more convenient to describe the Merger using a FlipCleaner component. See Fig-
ure 24.4
Lemma 24.4.8. The circuit Merger[n] gets as input two sorted sequences of length n/2 = 2k−1, it uses
(n/2)k = (n/2) lg n gates, and it is of depth k = lg n, and it outputs a sorted sequence.

5

���������	��

� ���������������

� ���������������

(i) (ii) (iii) (iv)

Figure 24.3: (i) Merger via flipping the lines of bitonic sorter. (ii) A BitonicSorter. (ii) The Merger
after we “physically” flip the lines, and (iv) An equivalent drawing of the resulting Merger.

� �������	�
��������
� �����

� �����������

� � � � ���!�#"%$ &('

� � � � ���!� "%$ &('

� �����������

(i) (ii)

Figure 24.4: (i) FlipCleaner[n], and (ii) Merger[n] described using FlipCleaner.

24.5. Sorting Network

� �����������
	��

�������������� ���

���������� ��� ���

We are now in the stage, where we can build a sorting network. To this
end, we just implement merge sort using the Merger[n] component. The
resulting component Sorter[n] is depicted on the right using a recursive
construction.

Lemma 24.5.1. The circuit Sorter[n] is a sorting network (i.e., it
sorts any n numbers) using G(n) = O(n log2 n) gates. It has depth
O(log2 n). Namely, Sorter[n] sorts n numbers in O(log2 n) time.

Proof: The number of gates is

G(n) = 2G(n/2) + Gates(Merger[n]).

Which is G(n) = 2G(n/2) +O(n log n) = O(n log2 n).
As for the depth, we have that D(n) = D(n/2) + Depth(Merger[n]) = D(n/2) + O(log(n)), and thus

D(n) = O(log2 n), as claimed.

24.6. Faster sorting networks

6

Figure 24.5: Sorter[8].

One can build a sorting network of logarithmic depth (see [AKS83]).
The construction however is very complicated. A simpler parallel al-
gorithm would be discussed sometime in the next lectures. BTW, the
AKS construction [AKS83] mentioned above, is better than bitonic
sort for n larger than 28046.

Bibliography
[AKS83] M. Ajtai, J. Komlós, and E. Szemerédi. An O(n log n) sorting network. In Proc. 15th Annu.

ACM Sympos. Theory Comput. (STOC), pages 1–9, 1983.

7

	Sorting Networks
	Model of Computation
	Sorting with a circuit – a naive solution
	Definitions
	Sorting network based on insertion sort

	The Zero-One Principle
	A bitonic sorting network
	Merging sequence

	Sorting Network
	Faster sorting networks

	Bibliography

