Chapter 25

Union Find

By Sariel Har-Peled, November 28, 2018% Version: 0.2

Scene: It’s a fine sunny day in the forest, and a rabbit is
sitting outside his burrow, tippy-tapping on his typewriter.
2 5 1 U . . Along comes a fox, out for a walk.

oL nlon-Flnd Foz: “What are you working on?”
Rabbit: “My thesis.”

For: “Hmmm. What’s it about?”

25.1.1. Requlrements from Rabbit: “Oh, I'm writing about how rabbits eat foxes.”

the data-structure Foz: (incredulous pause) “That’s ridiculous! Any fool

knows that rabbits don’t eat foxes.”
We want to maintain a collection of Rabbit: “Sure they do, and I can prove it. Come with me.”
sets, under the following operations. They both disappear into the rabbit’s burrow. After a few
(i) makeSet(x) - creates a set that minutes, the rabbit returns, alone, to his typewriter and

resumes typing.
Scene inside the rabbit’s burrow: In one corner, there
is a pile of fox bones. In another corner, a pile of wolf bones.

contains the single element x.
(ii) find(x) - returns the set that con-

tains x. On the other side of the room, a huge lion is belching and
(iii) union(A,B) - returns the set picking his teeth.

which is the union of A and B. (The End) ’ _

Namely AU B. Namely, this oper- }Z{;ral: It doesn’t matter what you choose for a thesis sub-

ation merges the two sets A and It doesn’t matter what you use for data.

B and return the merged set. What does matter is who you have for a thesis advisor.

— — Anonymous

25.1.2. Amortized analysis

We use a data-structure as a black-box inside an algorithm (for example Union-Find in Kruskal algorithm
for computing minimum spanning tee). So far, when we design a data-structure we cared about worst
case time for operation. Note however, that this is not necessarily the right measure. Indeed, we care
about the overall running time spend on doing operations in the data-structure, and less about its
running time for a single operation.

Formally, the amortized running-time of an operation is the average time it takes to perform an
overall running time

operation on the data-structure. Formally, the amortized time of an operation is —.
number of operations

®This w nsed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
gcénr;la isit atar &%ﬁtﬂérﬁg/llcenses/by nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

http://creativecommons.org/licenses/by-nc/3.0/

Figure 25.2: (a) The tree before performing find(z), and (b) The reversed tree after performing find(z)
that uses path compression.

To implement this operations, we are going
to use Reversed Trees. In a reversed tree, every
element is stored in its own node. A node has one @ Q ﬂ @ a
pointer to its parent. A set is uniquely identified
with the element stored in the root of such a @ e e o

reversed tree. See Figure 25.1 for an example of

how such a reversed tree looks like. Figure 25.1: The Union-Find representation of the
We implement the operations of the Union- sets A = {a,b,c,d,e} and B = {f, g, h,i,j, k}. The
Find data structure as follows: set A is uniquely identified by a pointer to the root

(A) makeSet: Create a singleton pointing to itself: of A, which is

(B) find(x): We start from the node that contains—x;-and
following the parent pointer of the current node, till we get to the root, which is just
a node with its parent pointer pointing to itself.

the node containing a.

AVC P CcC

Thus, doing a find(x) operation in the reversed tree shown on the right, involve going
up the tree from x — b — a, and returning a as the set.

(C) union(a,p): We merge two sets, by hanging the root of one a a O
tree, on the root of the other. Note, that this is a destructive () (P) j> (®)
operation, and the two original sets no longer exist. Example 6 D @ O o806

© () @
©)

of how the new tree representing the new set is depicted on
the right.

Note, that in the worst case, depth of tree can be linear in n (the number of elements stored in the
tree), so the find operation might require Q(n) time. To see that this worst case is realizable perform
the following sequence of operations: create n sets of size 1, and repeatedly merge the current set with
a singleton. If we always merge (i.e., do union) the current set with a singleton by hanging the current
set on the singleton, the end result would be a reversed tree which looks like a linked list of length n.
Doing a find on the deepest element will take linear time.

So, the question is how to further improve the performance of this data-structure. We are going to

union(x, y)
makeSet(x) A — find(x)
p(x) « x B « find(y)
rank(x) < 0 if rank(A) > rank(B) then
P(B) «— A
find(x) else
if x # p(x) then p(A) « B
p(x) « find(p(x)) if rank(A) = rank(B) then
return p(x) rank(B) « rank(B) + 1

Figure 25.3: The pseudo-code for the Union-Find data-structure that uses both path-compression and
union by rank. For element x, we denote the parent pointer of x by p(x).

do this, by using two “hacks”:

(i) Union by rank: Maintain for every tree, in the root, a bound on its depth (called rank). Always
hang the smaller tree on the larger tree.

(ii) Path compression: Since, anyway, we travel the path to the root during a find operation, we
might as well hang all the nodes on the path directly on the root.

An example of the effects of path compression are depicted in Figure 25.2. For the pseudo-code of
the makeSet, union and find using path compression and union by rank, see Figure 25.3.

We maintain a rank which is associated with each element in the data-structure. When a singleton
is being created, its associated rank is set to zero. Whenever two sets are being merged, we update the
rank of the new root of the merged trees. If the two trees have different root ranks, then the rank of
the root does not change. If they are equal then we set the rank of the new root to be larger by one.

25.2. Analyzing the Union-Find Data-Structure

Definition 25.2.1. A node in the union-find data-structure is a leader if it is the root of a (reversed)
tree.

Lemma 25.2.2. Once a node stop being a leader (i.e., the node in top of a tree), it can never become
a leader again.

Proof: Note, that an element x can stop being a leader only because of a union operation that hanged
x on an element y. From this point on, the only operation that might change x parent pointer, is a
find operation that traverses through x. Since path-compression can only change the parent pointer of
X to point to some other element y, it follows that x parent pointer will never become equal to x again.
Namely, once x stop being a leader, it can never be a leader again. []

Lemma 25.2.3. Once a node stop being a leader then its rank is fixed.

Proof: The rank of an element changes only by the union operation. However, the union operation
changes the rank, only for elements that are leader after the operation is done. As such, if an element
is no longer a leader, than its rank is fixed. []

Lemma 25.2.4. Ranks are monotonically increasing in the reversed trees, as we travel from a node to
the root of the tree.

Proof: 1t is enough to prove, that for every edge u — v in the data-structure, we have rank(u) < rank(v).
The proof is by induction. Indeed, in the beginning of time, all sets are singletons, with rank zero, and
the claim trivially holds.

Next, assume that the claim holds at time 7, just before we perform an operation. Clearly, if this
operation is union (A, B), and assume that we hanged root(A) on root(B). In this case, it must be that
rank(root(B)) is now larger than rank(root(A)), as can be easily verified. As such, if the claim held before
the union operation, then it is also true after it was performed.

If the operation is find, and we traverse the path m, then all the nodes of 7 are made to point to
the last node v of 7. However, by induction, rank(v) is larger than the rank of all the other nodes of .
In particular, all the nodes that get compressed, the rank of their new parent, is larger than their own
rank. []

Lemma 25.2.5. When a node gets rank k than there are at least > 2% elements in its subtree.

Proof: The proof is by induction. For k = 0 it is obvious since a singleton has a rank zero, and a single
element in the set. Next observe that a node gets rank k only if the merged two roots has rank k — 1.
By induction, they have 2= nodes (each one of them), and thus the merged tree has > 2+=1 4 2k=1 = 2k
nodes.]

Lemma 25.2.6. The number of nodes that get assigned rank k throughout the execution of the Union-
Find data-structure is at most n/2*.

Proof: Again, by induction. For k = 0 it is obvious. We charge a node v of rank k to the two elements
u and v of rank k — 1 that were leaders that were used to create the new larger set. After the merge v is
of rank k and u is of rank k —1 and it is no longer a leader (it can not participate in a union as a leader
any more). Thus, we can charge this event to the two (no longer active) nodes of degree k — 1. Namely,
u and v.

By induction, we have that the algorithm created at most n/2%~! nodes of rank k — 1, and thus the
number of nodes of rank k created by the algorithm is at most < (n/2k_1) /2 =n/2k. []

Lemma 25.2.7. The time to perform a single find operation when we perform union by rank and path
compression is O(logn) time.

Proof: The rank of the leader v of a reversed tree T, bounds the depth of a tree T in the Union-Find
data-structure. By the above lemma, if we have n elements, the maximum rank is lgn and thus the
depth of a tree is at most O(log n). (]

Surprisingly, we can do much better.

Theorem 25.2.8. If we perform a sequence of m operations over n elements, the overall running time
of the Union-Find data-structure is O((n + m)log™ n).

We remind the reader that log*(n) is the number one has to take lg of a number to get a number
smaller than two (there are other definitions, but they are all equivalent, up to adding a small constant).

2
Thus, log*2 = 1 and log*2? = 2. Similarly, log* 22 =1+ log*(22) = 2 + log* 2 = 3. Similarly, log* 22" =
log*(65536) = 4. Things get really exciting, when one considers

log" 22222 — J0g" 205536 —

ot

2
. . . . 22 . .
However, log" is a monotone increasing function. And g = 22" = 295936 i 4 huge number (considerably

larger than the number of atoms in the universe). Thus, for all practical purposes, log* returns a value
which is smaller than 5. Intuitively, Theorem 25.2.8 states (in the amortized sense), that the Union-Find
data-structure takes constant time per operation (unless n is larger than 8 which is unlikely).

It would be useful to look on the inverse function to log*.

Definition 25.2.9. Let Tower(b) = 2T°%" =1 and Tower(0) = 1.

2
So, Tower(i) is just a tower of 22" of height i. Observe that log*(Tower(i)) = i.

Definition 25.2.10. For i > 0, let Block(i) = [Tower(i — 1) + 1, Tower(i)]; that is
Block(7) :[z, 21_1] for z = Tower(i — 1) + 1.
For technical reasons, we define Block(0) = [0,1]. As such,

Block(0) = [0,1]
Block(1) = [2,2]
Block(2) = [3,4]
Block(3) = [5,16]
Block(4) = [17,65536]
Block(5) = [65537,209930]

The running time of find(x) is proportional to the length of the path from x to the root of the tree
that contains x. Indeed, we start from x and we visit the sequence:

X1 = x,x2 = p(x) = p(x1), ..., i = P(Xi-1), . . ., Xy = 0Ot Of tree.

Clearly, we have for this sequence: rank(x;) < rank(xs) < rank(xs) < ... < rank(x,,), and the time
it takes to perform find(x) is proportional to m, the length of the path from x to the root of the tree
containing x.

Definition 25.2.11. A node x is in the ith block if rank(x) € Block(i).

We are now looking for ways to pay for the find operation, since the other two operations take
constant time.

Observe, that the maximum rank of a node v is O(log n), and
the number of blocks is O(log™ n), since O(logn) is in the block Block(10) 'O/'@
Block(c log™ n), for ¢ a constant sufficiently large.
In particular, consider a find (x) operation, and let @ be Block(9) ;/
the path visited. Next, consider the ranks of the elements of =, / Block(8)
and imagine partitioning 7 into which blocks each element rank IBlm P,
belongs to. An example of such a path is depicted on the right. Mump Block(5)
The price of the find operation is the length of . - -
Formally, for a node x, v = indexg(x) is the index of the block il oo
that contains rank(x). Namely, rank(x) € Block(indexp(x)). As
such, indexpg(x) is the block of x. BIOCk(IM

Now, during a find operation, since the ranks of the nodes £ Block(l)
o/ Block(0)

we visit are monotone increasing, once we pass through from a
node v in the ith block into a node in the (i + 1)th block, we can
never go back to the ith block (i.e., visit elements with rank in the ith block). As such, we can charge
the visit to nodes in 7 that are next to a element in a different block, to the number of blocks (which is
O(log™ n)).

Definition 25.2.12. Consider a path z traversed by a find operation. Along the path m, an element x,
such that p(x) is in a different block, is a jump between blocks.

On the other hand, a jump during a find operation inside a block is called an internal jump; that
is, x and p(x) are in the same block.

Lemma 25.2.13. During a single find(x) operation, the number of jumps between blocks along the search
path is O(log™ n).

Proof: Consider the search path 7 = xi,...,x,, and consider the list of numbers 0 < indexp(x]) <
indexpg(x2) < ... < indexp(x,). We have that indexp(x;,) = O(log™ n). As such, the number of elements
x in 7 such that indexg(x) # indexg(p(x)) is at most O(log™ n). []

Consider the case that x and p(x) are both the same block (i.e., indexp(x) = indexp(p(x)) and we
perform a find operation that passes through x. Let rpef = rank(p(x)) before the find operation, and
let rape be rank(p(x)) after the find operation. Observe, that because of path compression, we have
Faft > T'bef- Namely, when we jump inside a block, we do some work: we make the parent pointer of x
jump forward and the new parent has higher rank. We will charge such internal block jumps to this
“progress”.

Lemma 25.2.14. At most |Block(i)| < Tower(i) find operations can pass through an element x, which

is in the ith block (i.e., indexp(x) = i) before p(x) is no longer in the ith block. That is indexp(p(x)) > i.

Proof: Indeed, by the above discussion, the parent of x increases its rank every-time an internal jump
goes through x. Since there at most |Block(i)| different values in the ith block, the claim follows. The
inequality |Block(i)| < Tower(i) holds by definition, see Definition 25.2.10. (]

Lemma 25.2.15. There are at most n/Tower(i) nodes that have ranks in the ith block throughout the
algorithm execution.

Proof: By Lemma 25.2.6, we have that the number of elements with rank in the ith block is at most

Tower(i) Tower(i)

n n 1 n n
Z 2 Z ok = Z ok = STowerG-D) — N =
keBlock(i) k=Tower(i-1)+1 2 k=Towor(i-1)+1 2 2 ower(i-1) Tower(i)

6

Lemma 25.2.16. The number of internal jumps performed, inside the ith block, during the lifetime of
the union-find data-structure is O(n).

Proof: An element x in the ith block, can have at most |Block(i)| internal jumps, before all jumps
through x are jumps between blocks, by Lemma 25.2.14. There are at most n/Tower(i) elements with
ranks in the ith block, throughout the algorithm execution, by Lemma 25.2.15. Thus, the total number
of internal jumps is

| Block(7)| - < Tower(i) -

n
_ —_—=n
Tower(i) Tower(i)

We are now ready for the last step.

Lemma 25.2.17. The number of internal jumps performed by the Union-Find data-structure overall is
O(nlog™ n).

Proof: Every internal jump can be associated with the block it is being performed in. Every block con-
tributes O(n) internal jumps throughout the execution of the union-find data-structures, by Lemma 25.2.16.
There are O(log™ n) blocks. As such there are at most O(nlog” n) internal jumps. []

Lemma 25.2.18. The overall time spent on m find operations, throughout the lifetime of a union-find
data-structure defined over n elements, is O((m + n)log™ n).

Theorem 25.2.8 now follows readily from the above discussion.

Bibliography

	Union Find
	Union-Find
	Requirements from the data-structure
	Amortized analysis
	The data-structure

	Analyzing the Union-Find Data-Structure

	Bibliography

