
Chapter 30

Even more on Entropy, Randomness, and
Information

Version: 0.1
By Sariel Har-Peled, November 28, 2018¬

“It had been that way even before, when for years at a time he had not seen blue sky, and each second of
those years could have been his last. But it did not benefit an Assualtman to think about death. Though on
the other hand you had to think a lot about possible defeats. Gorbovsky had once said that death is worse
than any defeat, even the most shattering. Defeat was always really only an accident, a setback which you
could surmount. You had to surmount it. Only the dead couldn’t fight on.”

– – Defeat, Arkady and Boris Strugatsky.

30.1. Extracting randomness

30.1.1. Enumerating binary strings with j ones
Consider a binary string of length n with j ones. S(n, j) denote the set of all such binary strings. There
are

(n
j

)
such strings. For the following, we need an algorithm that given a string U of n bits with j ones,

maps it into a number in the range 0, . . . ,
(n

j

)
− 1.

To this end, consider the full binary tree T of height n. Each leaf, encodes a string of length n, and
mark each leaf that encodes a string of S(n, j). Consider a node v in the tree, that is of height k; namely,
the path πv from the root of T to v is of length k. Furthermore, assume there are m ones written on the
path πv. Clearly, any leaf in the subtree of v that is in S(n, j) is created by selecting j − m ones in the
remaining n − k positions. The number of possibilities to do so is

(n−k
j−m

)
. Namely, given a node v in this

tree T, we can quickly compute the number of elements of S(n, j) stored in this subtree.
As such, let traverse T using a standard DFS algorithm, which would always first visit the ‘0’ child

before the ‘1’ child, and use it to enumerate the marked leaves. Now, given a string x of Sj , we would
like to compute what number would be assigned to by the above DFS procedure. The key observation
is that calls made by the DFS on nodes that are not on the path, can be skipped by just computing
directly how many marked leaves are there in the subtrees on this nodes (and this we can do using the
above formula). As such, we can compute the number assigned to x in linear time.

The cool thing about this procedure, is that we do not need T to carry it out. We can think about
T as being a virtual tree.

Formally, given a string x made out of n bits, with j ones, we can in O(n) time map it to an integer in
the range 0, . . . ,

(n
j

)
−1, and this mapping is one-to-one. Let EnumBinomCoeffAlg denote this procedure.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

30.1.2. Extracting randomness
Theorem 30.1.1. Consider a coin that comes up heads with probability p > 1/2. For any constant
δ > 0 and for n sufficiently large:
(A) One can extract, from an input of a sequence of n flips, an output sequence of (1−δ)nH(p) (unbiased)

independent random bits.
(B) One can not extract more than nH(p) bits from such a sequence.

Proof: There are
(n

j

)
input sequences with exactly j heads, and each has probability p j(1−p)n− j . We map

this sequence to the corresponding number in the set Sj =
{
0, . . . ,

(n
j

)
− 1

}
. Note, that this, conditional

distribution on j, is uniform on this set, and we can apply the extraction algorithm of Theorem 30.2.3
to Sj . Let Z be the random variable which is the number of heads in the input, and let B be the number
of random bits extracted. We have

E[B] =
n∑

k=0
P[Z = k]E

[
B
��� Z = k

]
,

and by Theorem 30.2.3, we have E
[
B
��� Z = k

]
≥

⌊
lg

(
n
k

) ⌋
− 1. Let ε < p − 1/2 be a constant to be

determined shortly. For n(p − ε) ≤ k ≤ n(p + ε), we have(
n
k

)
≥

(
n

bn(p + ε)c

)
≥

2nH(p+ε)

n + 1 ,

by Corollary 30.2.2 (iii). We have

E[B] ≥

dn(p+ε)e∑
k=bn(p−ε)c

P[Z = k]E
[
B
��� Z = k

]
≥

dn(p+ε)e∑
k=bn(p−ε)c

P
[
Z = k

] (⌊
lg

(
n
k

) ⌋
− 1

)
≥

dn(p+ε)e∑
k=bn(p−ε)c

P[Z = k]
(
lg 2nH(p+ε)

n + 1 − 2
)

= (nH(p + ε) − lg(n + 1) − 2)P[|Z − np| ≤ εn]

≥ (nH(p + ε) − lg(n + 1) − 2)
(
1 − 2 exp

(
−

nε2

4p

))
,

since µ = E[Z] = np and P
[
|Z − np| ≥ ε

p pn
]
≤ 2 exp

(
−

np
4

(
ε
p

) 2
)
= 2 exp

(
−nε2

4p

)
, by the Chernoff inequal-

ity. In particular, fix ε > 0, such that H(p + ε) > (1 − δ/4)H(p), and since p is fixed nH(p) = Ω(n), in
particular, for n sufficiently large, we have − lg(n + 1) ≥ − δ10nH(p). Also, for n sufficiently large, we have
2 exp

(
−nε2

4p

)
≤ δ

10 . Putting it together, we have that for n large enough, we have

E[B] ≥

(
1 −
δ

4 −
δ

10

)
nH(p)

(
1 −
δ

10

)
≥ (1 − δ)nH(p),

as claimed.

2

As for the upper bound, observe that if an input sequence x has probability P[X = x], then the output
sequence y = E xt(x) has probability to be generated which is at least P[X = x]. Now, all sequences of
length |y | have equal probability to be generated. Thus, we have the following (trivial) inequality

2|E xt(x)| P[X = x] ≤ 2|E xt(x)| P[y = E xt(x)] ≤ 1,

implying that |E xt(x)| ≤ lg(1/P[X = x]). Thus,

E[B] =
∑

x
P[X = x] |E xt(x)| ≤

∑
x
P[X = x] lg 1

P[X = x]
= H(X).

30.2. From previous lectures

Lemma 30.2.1. Suppose that nq is integer in the range [0,n]. Then 2nH(q)

n + 1 ≤

(
n

nq

)
≤ 2nH(q).

Lemma 30.2.1 can be extended to handle non-integer values of q. This is straightforward, and we
omit the easy details.

Corollary 30.2.2. We have:
(i) q ∈ [0,1/2] ⇒

(n
bnqc

)
≤ 2nH(q). (ii) q ∈ [1/2,1]

(n
dnqe

)
≤ 2nH(q).

(iii) q ∈ [1/2,1] ⇒ 2nH(q)
n+1 ≤

(n
bnqc

)
. (iv) q ∈ [0,1/2] ⇒ 2nH(q)

n+1 ≤
(n
dnqe

)
.

Theorem 30.2.3. Suppose that the value of a random variable X is chosen uniformly at random from
the integers {0, . . . ,m − 1}. Then there is an extraction function for X that outputs on average at least
blg mc − 1 = bH(X)c − 1 independent and unbiased bits.

30.3. Bibliographical Notes
The presentation here follows [MU05, Sec. 9.1-Sec 9.3].

Bibliography
[MU05] M. Mitzenmacher and U. Upfal. Probability and Computing – randomized algorithms and prob-

abilistic analysis. Cambridge, 2005.

3

	Even more on Entropy, Randomness, and Information
	Extracting randomness
	Enumerating binary strings with j ones
	Extracting randomness

	From previous lectures
	Bibliographical Notes

	Bibliography

