
Chapter 33

Matchings II
By Sariel Har-Peled, November 28, 2018¬ Version: 1.02

He left his desk, bore down on me on tiptoe and, bending toward me, whispered in tones full of hatred that the
elephants were a mere political diversion and that of course he knew what the real issue was, but if communism
triumphed in Africa, the elephants would be the first to die.

The roots of heaven, Romain Gary

33.1. Maximum weight matchings in a bipartite graph

33.1.1. On the structure of the problem
For an alternating path/cycle π, its weight, in relation to a matching M, is

γ(π,M) =
∑

e∈π\M

ω(e) −
∑

e∈π∩M

ω(e). (33.1)

Namely, it is the total weight of the free edges in π minus the weight of the matched edges. This is a
natural concept because of the following lemma.

Lemma 33.1.1. Let M be a matching, and let π be an alternating path/cycle with positive weight relative
to M; that is γ(π,M) > 0. Furthermore, assume that

M′ = M ⊕ π = (M \ π) ∪ (π \ M)

is a matching. Then ω(M′) is bigger; namely, ω(M′) > ω(M).

Proof: We have that

ω(M′) − ω(M) =
∑
e∈M ′
ω(e) −

∑
e∈M

ω(e) =
∑

e∈M ′\M

ω(e) −
∑

e∈M\M ′
ω(e) =

∑
e∈π\M

ω(e) −
∑

e∈M\π

ω(e) = γ(π,M).

As such, we have that ω(M′) = ω(M) + γ(π,M).

We remind the reader that an alternating path is augmenting if it starts and ends in a free vertex.

Observation 33.1.2. If M has an augmenting path π then M is not of maximum size matching (this
is for the unweighted case), since M ⊕ π is a larger matching.

Theorem 33.1.3. Let M be a matching of maximum weight among matchings of size |M |. Let π be an
augmenting path for M of maximum weight, and let T be the matching formed by augmenting M using
π. Then T is of maximum weight among matchings of size |M | + 1.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

Proof: Let S be a matching of maximum weight among all matchings with |M | + 1 edges. And consider
H = (V,M ⊕ S).

Consider a cycle σ in H. The weight γ(σ,M) (see Eq. (33.1)) must be zero. Indeed, if γ(σ,M) > 0
then M ⊕ σ is a matching of the same size as M which is heavier than M. A contradiction to the
definition of M as the maximum weight such matching.

Similarly, if γ(σ,M) < 0 than γ(σ,S) = −γ(σ,M) and as such S⊕σ is heavier than S. A contradiction.
By the same argumentation, if σ is a path of even length in the graph H then γ(σ,M) = 0 by the

same argumentation.
Let US be all the odd length paths in H that have one edge more in S than in M, and similarly, let

UM be the odd length paths in H that have one edge more of M than an edge of S.
We know that |US | − |UM | = 1 since S has one more edge than M. Now, consider a path π ∈ US

and a path π′ ∈ UM . It must be that γ(π,M) + γ(π′,M) = 0. Indeed, if γ(π,M) + γ(π′,M) > 0 then
M ⊕ π ⊕ π′ would have bigger weight than M while having the same number of edges. Similarly, if
γ(π,M)+ γ(π′,M) < 0 (compared to M) then S ⊕ π ⊕ π′ would have the same number of edges as S while
being a heavier matching. A contradiction.

Thus, γ(π,M) + γ(π′,M) = 0. Thus, we can pair up the paths in US to paths in UM , and the total
weight of such a pair is zero, by the above argumentation. There is only one path µ in US which is not
paired, and it must be that γ(µ,M) = ω(S) − ω(M) (since everything else in H has zero weight as we
apply it to M to get S).

This establishes the claim that we can augment M with a single path to get a maximum weight
matching of cardinality |M | + 1. Clearly, this path must be the heaviest augmenting path that exists
for M. Otherwise, there would be a heavier augmenting path σ′ for M such that ω(M ⊕ σ′) > ω(S). A
contradiction to the maximality of S.

The above theorem imply that if we always augment along the maximum weight augmenting path,
than we would get the maximum weight matching in the end.

33.1.2. Maximum Weight Matchings in a bipartite Graph
33.1.2.1. Building the residual graph

Let G = (L ∪ R,E) be the given bipartite graph, with w : E → R be the non-negative weight function.
Given a matching M, let GM to be the directed graph, where

(i) For all edges rl ∈ M, l ∈ L and r ∈ R, the edge (r, l) is added GM , with weight α
(
(r, l)

)
= ω(rl).

(ii) For all edges rl ∈ E \ M, the edge (l → r) is added to GM , with weight α
(
(l,r)

)
= −ω(rl).

Namely, we direct all the matching edges from right to left, and assign them their weight, and we direct
all other edges from left to right, with their negated weight. Let GM denote the resulting graph.

An augmenting path π in G must have an odd number of edges. Since G is bipartite, π must have
one endpoint on the left side and one endpoint on the right side. Observe, that a path π in GM has
weight α(π) = −γ(π,M).

Let UL be all the unmatched vertices in L and let UR be all the unmatched vertices in R.
Thus, what we are looking for is a path π in GM starting UL going to UR with maximum weight

γ(π), namely with minimum weight α(π).

Lemma 33.1.4. If M is a maximum weight matching with k edges in G, than there is no negative cycle
in GM where α(·) is the associated weight function.

2

Proof: Assume for the sake of contradiction that there is a cycle C, and observe that γ(C) = −α(C) > 0.
Namely, M ⊕ C is a new matching with bigger weight and the same number of edges. A contradiction
to the maximality of M.

33.1.2.2. The algorithm

So, we now can find a maximum weight in the bipartite graph G as follows: Find a maximum weight
matching M with k edges, compute the maximum weight augmenting path for M, apply it, and repeat
till M is maximal.

Thus, we need to find a minimum weight path in GM between UL and UR (because we flip weights).
This is the problem of computing a shortest path in the graph GM which does not have negative cycles,
and this can be done by using the Bellman-Ford algorithm. Indeed, collapse all the vertices of UL into a
single vertex, and all the uncovered vertices of UR into a single vertex. Let HM be the resulting graph.
Clearly, we are looking for the shortest path between the two vertices corresponding to UL and UR in
HM and since this graph has no negative cycles, this can be done using the Bellman-Ford algorithm,
which takes O(nm) time. We conclude:

Lemma 33.1.5. Given a bipartite graph G and a maximum weight matching M of size k one can find
a maximum weight augmenting path for M in G, in O(nm) time, where n is the number of vertices of G
and m is the number of edges.

We need to apply this algorithm n/2 times at most, as such, we get:

Theorem 33.1.6. Given a weight bipartite graph G, with n vertices and m edges, one can compute a
maximum weight matching in G in O(n2m) time.

33.1.3. Faster Algorithm
It turns out that the graph here is very special, and one can use the Dijkstra algorithm. We omit any
further details, and state the result. The interested student can figure out the details (warning: this is
not easy). or lookup the literature.

Theorem 33.1.7. Given a weight bipartite graph G, with n vertices and m edges, one can compute a
maximum weight matching in G in O(n(n log n + m)) time.

33.2. The Bellman-Ford algorithm - a quick reminder
The Bellman-Ford algorithm computes the shortest path from a single source s in a graph G that has
no negative cycles to all the vertices in the graph. Here G has n vertices and m edges. The algorithm
works by initializing all distances to the source to be ∞ (formally, for all u ∈ V(G), we set d[u] ← ∞ and
d[s] ← 0). Then, it n times scans all the edges, and for every edge (u, v) ∈ E(G) it performs a Relax(u, v)
operation. The relax operation checks if x = d[u] + w

(
(u, v)

)
< d[v], and if so, it updates d[v] to x,

where d[u] denotes the current distance from s to u. Since Relax(u, v) operation can be performed in
constant time, and we scan all the edges n times, it follows that the overall running time is O(mn).

We claim that in the end of the execution of the algorithm the shortest path length from s to u is
d[u], for all u ∈ V(G). Indeed, every time we scan the edges, we set at least one vertex distance to its
final value (which is its shortest path length). More formally, all vertices that their shortest path to s

3

have i edges, are being set to their shortest path length in the ith iteration of the algorithm, as can be
easily proved by induction. This implies the stated bound on the running time of the algorithm.

Notice, that if we want to detect negative cycles, we can ran Bellman-Ford for an additional iteration.
If the distances changes, we know that there is a negative cycle somewhere in the graph.

33.3. Maximum size matching in a non-bipartite graph
The results from the previous lecture suggests a natural algorithm for computing a maximum size (i.e.,
matching with maximum number of edges in it) matching in a general (i.e., not necessarily bipartite)
graph. Start from an empty matching M and repeatedly find an augmenting path from an unmatched
vertex to an unmatched vertex. Here we are discussing the unweighted case.

Notations. Let T be a given tree. For two vertices x, y ∈ V(T), let τxy denote the path in T between
x and y. For two paths π and π′ that share an endpoint, let π | | π′ denotes the path resulting from
concatenating π to π′. For a path π, let |π | denote the number of edges in π.

33.3.1. Finding an augmenting path
We are given a graph G and a matching M, and we would to compute a bigger matching in G. We will
do it by computing an augmenting path for M.

We first observe that if G has any edge with both endpoints being free, we can just add it to the
current matching. Thus, in the following, we assume that for all edges, at least one of their endpoint is
covered by the current matching M. Our task is to find an augmenting path in M.

Let H be the result of collapsing all the unmatched vertices in G into a single (special) vertex s.
Next, we compute an alternating BFS of H starting from s. Formally, we perform a BFS on H

starting from s such that for the even levels of the tree the algorithm is allowed to traverse only edges
in the matching M, and in odd levels the algorithm traverses the unmatched edges. Let T denote the
resulting tree.

An augmenting path in G corresponds to an odd cycle in H with passing through the vertex s.

Definition 33.3.1. An edge uv ∈ E(G) is a bridge if the following conditions are met:
(i) u and v have the same depth in T,
(ii) if the depth of u in T is even then uv is free (i.e., uv < M, and
(iii) if the depth of u in T is odd then uv ∈ M.

s

u v

s

u v

depth 0

depth 1

depth 2depth 2

depth 3

depth 4

Figure 33.1: A cycle in the alternating BFS tree. Depths in the alternating BFS tree.

4

Note, that given an edge uv we can check if it is a bridge in constant time after linear time prepro-
cessing of T and G.

The following is an easy technical lemma.

Lemma 33.3.2. Let v be a vertex of G, M a matching in G, and let π be the shortest alternating path
between s and v in G. Furthermore, assume that for any vertex w of π the shortest alternating path
between w and s is the path along π.

Then, the depth dT(v) of v in T is |π |.

Proof: By induction on |π |. For |π | = 1 the proof trivially holds, since then v is a neighbor of s in G,
and as such it is a child of s in T.

For |π | = k, consider the vertex just before v on π, and let us denote it by u. By induction, the
depth of u in T is k − 1. Thus, when the algorithm computing the alternating BFS visited u, it tried to
hang v from it in the next iteration. The only possibility for failure is if the algorithm already hanged v

in earlier iteration of the algorithm. But then, there exists a shorter alternating path from s to v, which
is a contradiction.

Lemma 33.3.3. If there is an augmenting path in G for a matching M, then there exists an edge
uv ∈ E(G) which is a bridge in T.

Proof: Let π be an augmenting path in G. The path π corresponds to a an odd length alternating cycle
in H. Let σ be the shortest odd length alternating cycle in G (note that both edges in σ that are
adjacent to s are unmatched).

For a vertex x of σ, let d(x) be the length of the shortest alternating path between x and s in H.
Similarly, let d′(x) be the length of the shortest alternating path between s and x along σ. Clearly,
d(x) ≤ d′(x).

The claim that is that d(x) = d′(x), for all x ∈ σ. Indeed, assume for the sake of contradiction that
d(x) < d′(x), and let π1, π2 be the two paths from x to s formed by σ. Let η be the shortest alternating
path between s and x. We know that |η | < |π1 | and |η | < |π2 |. It is now easy to verify that either
π1 | | η or π2 | | η is an alternating cycle shorter than σ involving s, which is a contradiction.

But then, take the two vertices of σ furthest away from s. Clearly, both of them have the same depth
in T, since d(u) = d′(u) = d′(v) = d(v). By Lemma 33.3.2, we now have that dT(u) = d(u) = d(v) = dT(v).
Establishing the first part of the claim. See Figure 33.1.

As for the second claim, observe that it easily follows as σ is created from an alternating path.

Thus, we can do the following: Compute the alternating BFS T for H, and find a bridge uv in it. If
M is not a maximal matching, then there exists an augmenting path for G, and by Lemma 33.3.3 there
exists a bridge. Computing the bridge uv takes O(m) time.

Extract the paths from s to u and from s to v in T, and glue them together with the edge uv to form
an odd cycle µ in H; namely, µ = τsu | | uv | | τvs. If µ corresponds to an alternating path in G then we
are done, since we found an alternating path, and we can apply it and find a bigger matching.

But µ might have repeated edges. In particular, let πsu and πsv be the two
paths from s to u and v, respectively. Let w be the lowest vertex in T that is
common to both πsu and πsv.

Definition 33.3.4. Given a matching M, a flower for M is formed by a stem and
a blossom. The stem is an even length alternating path starting at a free vertex
v ending at vertex w, and the blossom is an odd length (alternating) cycle based
at w.

w

u v

T

s

5

Lemma 33.3.5. Consider a bridge edge uv ∈ G, and let w be the least common ancestor (LCA) of u
and v in T. Consider the path πsw together with the cycle C = πwu | | uv | | πvw. Then πsw and C together
form a flower.

Proof: Since only the even depth nodes in T have more than one child, w must be of even depth, and as
such πsw is of even length. As for the second claim, observe that α = |πwu | = |πwv | since the two nodes
have the same depth in T. In particular, |C | = |πwu | + |πwv | + 1 = 2α + 1, which is an odd number.

f

w

Figure 33.2: A blossom is made out of a
stem (the path f w), and an odd length
cycle which is the blossom. Together they
form a flower.

Let us translate this blossom of H back to the original
graph G. The path s to w corresponds to an alternating
path starting at a free vertex f (of G) and ending at w,
where the last edge is in the stem is in the matching, the
cycle w . . . u . . . v . . .w is an alternating odd length cycle
in G where the two edges adjacent to w are unmatched.

We can not apply a blossom to a matching in the hope
of getting better matching. In fact, this is illegal and yield
something which is not a matching. On the positive side,
we discovered an odd alternating cycle in the graph G.
Summarizing the above algorithm, we have:

Lemma 33.3.6. Given a graph G with n vertices and m edges, and a matching M, one can find in
O(n + m) time, either a blossom in G or an augmenting path in G.

To see what to do next, we have to realize how a matching in G interact
with an odd length cycle which is computed by our algorithm (i.e., blos-
som). In particular, assume that the free vertex in the cycle is unmatched.
To get a maximum number of edges of the matching in the cycle, we must
at most (n − 1)/2 edges in the cycle, but then we can rotate the matching
edges in the cycle, such that any vertex on the cycle can be free. See figure on the right.

a

b

d

C a

b

d

{C}

Let G/C denote the graph resulting from collapsing such an odd cycle
C into single vertex. The new vertex is marked by {C}.

Lemma 33.3.7. Given a graph G, a matching M, and a flower B, one can find a matching M′ with the
same cardinality, such that the blossom of B contains a free (i.e., unmatched) vertex in M′.

Proof: If the stem of B is empty and B is just formed by a blossom, and then we are done. Otherwise,
B was as stem π which is an even length alternating path starting from a free vertex v. Observe that
the matching M′ = M ⊕ π is of the same cardinality, and the cycle in B now becomes an alternating odd
cycle, with a free vertex.

Intuitively, what we did is to apply the stem to the matching M. See Figure 33.3.

Theorem 33.3.8. Let M be a matching, and let C be a blossom for M with an unmatched vertex v.
Then, M is a maximum matching in G if and only if M/C = M \ C is a maximum matching in G/C.

6

f

w

f
w

(i) (ii)

Figure 33.3: (i) the flower, and (ii) the invert stem.

Proof: Let G/C be the collapsed graph, with {C} denoting the vertex that correspond to the cycle C.
Note, that the collapsed vertex {C} in G/C is free. Thus, an augmenting path π in G/C either avoids

the collapsed vertex {C} altogether, or it starts or ends there. In any case, we can rotate the matching
around C such that π would be an augmenting path in G. Thus, if M/C is not a maximum matching in
G/C then there exists an augmenting path in G/C, which in turn is an augmenting path in G, and as
such M is not a maximum matching in G.

Similarly, if π is an augmenting path in G and it avoids C then it is also an augmenting path in G/C,
and then M/C is not a maximum matching in G/C.

Otherwise, since π starts and ends in two different free vertices and C has only one free vertex, it
follows that π has an endpoint outside C. Let v be this endpoint of π and let u be the first vertex of π
that belongs to C. Let σ be the path π[v,u].

Let f be the free vertex of C. Note that f is unmatched. Now, if u = f we are done, since then π is
an augmenting path also in G/C. Note that if u is matched in C, as such, it must be that the last edge
e in π is unmatched. Thus, rotate the matching M around C such that u becomes free. Clearly, then σ
is now an augmenting path in G (for the rotated matching) and also an augmenting path in G/C.

Corollary 33.3.9. Let M be a matching, and let C be an alternating odd length cycle with the unmatched
vertex being free. Then, there is an augmenting path in G if and only if there is an augmenting path in
G/C.

33.3.2. The algorithm
Start from the empty matching M in the graph G.

Now, repeatedly, try to enlarge the matching. First, check if you can find an edge with both endpoints
being free, and if so add it to the matching. Otherwise, compute the graph H (this is the graph where
all the free vertices are collapsed into a single vertex), and compute an alternating BFS tree in H. From
the alternating BFS, we can extract the shortest alternating cycle based in the root (by finding the
highest bridge). If this alternating cycle corresponds to an alternating path in G then we are done, as
we can just apply this alternating path to the matching M getting a bigger matching.

If this is a flower, with a stem ρ and a blossom C then apply the stem to M (i.e., compute the
matching M ⊕ ρ). Now, C is an odd cycle with the free vertex being unmatched. Compute recursively
an augmenting path π in G/C. By the above discussing, we can easily transform this into an augmenting
path in G. Apply this augmenting path to M.

Thus, we succeeded in computing a matching with one edge more in it. Repeat till the process get
stuck. Clearly, what we have is a maximum size matching.

7

33.3.2.1. Running time analysis

Every shrink cost us O(m + n) time. We need to perform O(n) recursive shrink operations till we
find an augmenting path, if such a path exists. Thus, finding an augmenting path takes O(n(m + n))
time. Finally, we have to repeat this O(n) times. Thus, overall, the running time of our algorithm is
O(n2(m + n)) = O(n4).

Theorem 33.3.10. Given a graph G with n vertices and m edges, computing a maximum size matching
in G can be done in O

(
n2m

)
time.

33.4. Maximum weight matching in a non-bipartite graph
This the hardest case and it is non-trivial to handle. There are known polynomial time algorithms, but
I feel that they are too involved, and somewhat cryptic, and as such should not be presented in class.
For the interested student, a nice description of such an algorithm is presented in

Combinatorial Optimization - Polyhedral and efficiency
by Alexander Schrijver
Vol. A, 453–459.

The description above also follows loosely the same book.

Bibliography

8

	Matchings II
	Maximum weight matchings in a bipartite graph
	On the structure of the problem
	Maximum Weight Matchings in a bipartite Graph
	Faster Algorithm

	The Bellman-Ford algorithm - a quick reminder
	Maximum size matching in a non-bipartite graph
	Finding an augmenting path
	The algorithm

	Maximum weight matching in a non-bipartite graph

	Bibliography

