
Chapter 35

Backwards analysis
By Sariel Har-Peled, November 28, 2018¬ Version: 1.0

The idea of backwards analysis (or backward analysis) is a technique to analyze randomized
algorithms by imagining as if it was running backwards in time, from output to input. Most of the more
interesting applications of backward analysis are in Computational Geometry, but nevertheless, there
are some other applications that are interesting and we survey some of them here.

35.1. How many times can the minimum change?
Let Π = π1 . . . πn be a random permutation of {1, . . . ,n}. Let Ei be the event that πi is the minimum
number seen so far as we read Π; that is, Ei is the event that πi = mini

k=1 πk . Let Xi be the indicator
variable that is one if Ei happens. We already seen, and it is easy to verify, that E[Xi] = 1/i. We are
interested in how many times the minimum might change; that is Z =

∑
i Xi, and how concentrated is

the distribution of Z . The following is maybe surprising.

Lemma 35.1.1. The events E1, . . . ,En are independent (as such, variables X1, . . . ,Xn are independent).

Proof: The trick is to think about the sampling process in a different way, and then the result readily
follows. Indeed, we randomly pick a permutation of the given numbers, and set the first number to be
πn. We then, again, pick a random permutation of the remaining numbers and set the first number as
the penultimate number (i.e., πn−1) in the output permutation. We repeat this process till we generate
the whole permutation.

Now, consider 1 ≤ i1 < i2 < . . . < ik ≤ n, and observe that P
[
Ei1

���Ei2 ∩ . . . ∩ Eik

]
= P

[
Ei1

]
, since

by our thought experiment, Ei1 is determined after all the other variables Ei2, . . . ,Eik . In particular, the
variable Ei1 is inherently not effected by these events happening or not. As such, we have

P
[
Ei1 ∩ Ei2 ∩ . . . ∩ Eik

]
= P

[
Ei1

���Ei2 ∩ . . . ∩ Eik

]
P
[
Ei2 ∩ . . . ∩ Eik

]
= P

[
Ei1

]
P
[
Ei2 ∩ Ei2 ∩ . . . ∩ Eik

]
=

k∏
j=1
P
[
Eij

]
=

k∏
j=1

1
i j
,

by induction.

Theorem 35.1.2. Let Π = π1 . . . πn be a random permutation of 1, . . . ,n, and let Z be the number of
times, that πi is the smallest number among π1, . . . , πi, for i = 1, . . . ,n. Then, we have that for t ≥ 2e
that P

[
Z > t ln n

]
≤ 1/nt ln 2, and for t ∈

[
1,2e

]
, we have that P

[
Z > t ln n

]
≤ 1/n(t−1)2/4.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

The answer, my friend, is blowing in the permutation.

1

http://creativecommons.org/licenses/by-nc/3.0/

Proof: Follows readily from Chernoff’s inequality, as Z =
∑

i Xi is a sum of independent indicator vari-
ables, and, since by linearity of expectations, we have

µ = E
[
Z
]
=
∑

i
E
[
Xi

]
=

n∑
i=1

1
i
≥

∫ n+1

x=1

1
x

dx = ln(n + 1) ≥ ln n.

Next, we set δ = t − 1, and use Chernoff inequality.

35.2. Yet another analysis of QuickSort
Rephrasing QuickSort. We need to restate QuickSort in a slightly different way for the backward
analysis to make sense.

We conceptually can think about QuickSort as being a randomized incremental algorithm, building
up a list of numbers in the order they are used as pivots. Consider the execution of QuickSort when
sorting a set P of n numbers. Let 〈p1, . . . ,pn〉 be the random permutation of the numbers picked in
sequence by QuickSort. Specifically, in the ith iteration, it randomly picks a number pi that was not
handled yet, pivots based on this number, and then recursively handles the subproblems.

Specifically, assume that at the end of the ith iteration, a set Pi = {p1, . . . ,pi} of pivots has already
been handled by the algorithm. That is, the algorithm have these pivots in sorted orders p′1 < p′2 < . . . <
p′i. In addition, the numbers that were not handled yet P\Pi, are partitions into sets Q0, . . . ,Qi, where all
the numbers in P \Pi between p′i and p′i+1 are in the set Qi, for all i. In the (i + 1)th iteration, QuickSort
randomly picks a pivot pi+1 ∈ P \Pi, identifies the set Q j that contains it, splits this set according to the
pivot into two sets (i.e., a set for the smaller elements, and a set for the bigger elements). The algorithm
QuickSort continues in this fashion till all the numbers were pivots.

Lemma 35.2.1. Consider QuickSort being executed on a set P of n numbers. For any element q ∈ P,
in expectation, q participates in O(log n) comparisons during the execution of QuickSort.

Proof: Consider a specific element q ∈ P. For any subset B ⊆ P, let U(B) be the two closest numbers in
B having q in between them in the original ordering of P. In other words, U(B) contains the (at most)
two elements that are the endpoints of the interval of R \ B that contains q. Let Xi be the indicator
variable of the event that the pivot pi used in the ith iteration is in U(Pi). That is, q got compared to
the ith pivot when it was inserted. Clearly, the total number of comparisons q participates in is

∑
i Xi.

Now, we use backward analysis. Consider the state of the algorithm just after i pivots were handled
(i.e., the end of the ith iteration). Consider the set Pi = {p1, . . . ,pi} and imagine that you know only
what elements are in this set, but the internal ordering is not known to you. As such, as there are (at
most) two elements in U(Pi), the probability that pi ∈ U(Pi) is at most 2/i.

As such, the expected number of comparisons q participates in is E[
∑

i Xi] ≤
∑n

i=1 2/i = O(log n), as
desired. This also implies that QuickSort takes O(n log n) time in expectation.

Exercise 35.2.2. Prove using backward analysis that QuickSort takes O(n log n) with high probability.
It is not true that the indicator variables X1,X2, . . . are independent (this is quite subtle and not easy

to see, as such extending directly the proof of Theorem 35.1.2 for this case does not work.

35.3. Closest pair: Backward analysis in action
We are interested in solving the following problem:

2

Problem 35.3.1. Given a set P of n points in the plane, find the pair of points closest to each other.
Formally, return the pair of points realizing CP(P) = min

p,q, p,q∈P
‖p − q‖ .

35.3.1. Definitions
Definition 35.3.2. For a real positive number ∆ and a point p = (p1, . . . ,pd) ∈ R

d, define G∆(p) to be the
grid point (bp1/∆c∆, . . . , bpd/∆c∆).

N≤r(p)

p
r

∆We call ∆ the width or sidelength of the grid G∆. Observe that G∆
partitions Rd into cubes, which are grid cells. The grid cell of p is uniquely
identified by the integer point id(p) =

(
bp1/∆c , . . . , bpd/∆c

)
.

For a number r ≥ 0, let N≤r(p) denote the set of grid cells in distance
≤ r from p, which is the neighborhood of p. Note, that the neighborhood
also includes the grid cell containing p itself, and if ∆ = Θ(r) then |N≤r(p)| =
Θ
(
(2 + d2r/∆e)d

)
= Θ(1). See figure on the right.

35.3.2. Back to the problem
The following is an easy standard packing argument that underlines, under various disguises, many
algorithms in computational geometry.

Lemma 35.3.3. Let P be a set of points contained inside a square �, such
that the sidelength of � is α = CP(P). Then |P| ≤ 4.

Proof: Partition � into four equal squares �1, . . . ,�4, and observe that each
of these squares has diameter

√
2α/2 < α, and as such each can contain at

most one point of P; that is, the disk of radius α centered at a point p ∈ P
completely covers the subsquare containing it; see the figure on the right.
Note that the set P can have four points if it is the four corners of �.

α
p

Lemma 35.3.4. Given a set P of n points in the plane and a distance α, one can verify in linear time
whether CP(P) < α, CP(P) = α, or CP(P) > α.

Proof: Indeed, store the points of P in the grid Gα. For every non-empty grid cell, we maintain a linked
list of the points inside it. Thus, adding a new point p takes constant time. Specifically, compute id(p),
check if id(p) already appears in the hash table, if not, create a new linked list for the cell with this ID
number, and store p in it. If a linked list already exists for id(p), just add p to it. This takes O(n) time
overall.

Now, if any grid cell in Gα(P) contains more than, say, 4 points of P, then it must be that the
CP(P) < α, by Lemma 35.3.3.

3

D
p

α

Thus, when we insert a point p, we can fetch all the points of P that
were already inserted in the cell of p and the 8 adjacent cells (i.e., all
the points stored in the cluster of p); that is, these are the cells of the
grid Gα that intersects the disk D = disk(p, α) centered at p with radius
α; see the figure on the right. If there is a point closer to p than α
that was already inserted, then it must be stored in one of these 9 cells
(since it must be inside D). Now, each one of those cells must contain
at most 4 points of P by Lemma 35.3.3 (otherwise, we would already
have stopped since the CP(·) of the inserted points is smaller than α).
Let S be the set of all those points, and observe that |S | ≤ 9 · 4 = O(1).
Thus, we can compute, by brute force, the closest point to p in S. This takes O(1) time. If d(p,S) < α,
we stop; otherwise, we continue to the next point.

Overall, this takes at most linear time.
As for correctness, observe that the algorithm returns ‘CP(P) < α’ only after finding a pair of points

of P with distance smaller than α. So, assume that p and q are the pair of points of P realizing the closest
pair and that ‖p − q‖ = CP(P) < α. Clearly, when the later point (say p) is being inserted, the set S
would contain q, and as such the algorithm would stop and return ‘CP(P) < α’. Similar argumentation
works for the case that CP(P) = α. Thus if the algorithm returns ‘CP(P) > α’, it must be that CP(P)
is not smaller than α or equal to it. Namely, it must be larger. Thus, the algorithm output is correct.

Remark 35.3.5. Assume that CP(P \ {p}) ≥ α, but CP(P) < α. Furthermore, assume that we use
Lemma 35.3.4 on P, where p ∈ P is the last point to be inserted. When p is being inserted, not only
do we discover that CP(P) < α, but in fact, by checking the distance of p to all the points stored in its
cluster, we can compute the closest point to p in P \ {p} and denote this point by q. Clearly, pq is the
closest pair in P, and this last insertion still takes only constant time.

35.3.3. Slow algorithm
Lemma 35.3.4 provides a natural way of computing CP(P). Indeed, permute the points of P in an
arbitrary fashion, and let P = 〈p1, . . . ,pn〉. Next, let αi−1 = CP({p1, . . . ,pi−1}). We can check if αi <
αi−1 by using the algorithm of Lemma 35.3.4 on Pi and αi−1. In fact, if αi < αi−1, the algorithm of
Lemma 35.3.4 would return ‘CP(Pi) < αi−1’ and the two points of Pi realizing αi.

So, consider the “good” case, where αi = αi−1; that is, the length of the shortest pair does not change
when pi is being inserted. In this case, we do not need to rebuild the data-structure of Lemma 35.3.4 to
store Pi = 〈p1, . . . ,pi〉. We can just reuse the data-structure from the previous iteration that was used
by Pi−1 by inserting pi into it. Thus, inserting a single point takes constant time, as long as the closest
pair does not change.

Things become problematic when αi < αi−1, because then we need to rebuild the grid data-structure
and reinsert all the points of Pi = 〈p1, . . . ,pi〉 into the new grid Gαi (Pi). This takes O(i) time.

In the end of this process, we output the number αn, together with the two points of P that realize
the closest pair.

Observation 35.3.6. If the closest pair distance, in the sequence α1, . . . , αn, changes only t times, then
the running time of our algorithm would be O(nt+n). Naturally, t might be Ω(n), so this algorithm might
take quadratic time in the worst case.

4

35.3.4. Linear time algorithm

Surprisingly®, we can speed up the above algorithm to have linear running time by spicing it up using
randomization.

We pick a random permutation of the points of P and let 〈p1, . . . ,pn〉 be this permutation. Let
α2 = ‖p1 − p2‖ , and start inserting the points into the data-structure of Lemma 35.3.4. We will keep
the invariant that αi would be the closest pair distance in the set Pi, for i = 2, . . . ,n.

In the ith iteration, if αi = αi−1, then this insertion takes constant time. If αi < αi−1, then we know
what is the new closest pair distance αi (see Remark 35.3.5), rebuild the grid, and reinsert the i points
of Pi from scratch into the grid Gαi . This rebuilding of Gαi (Pi) takes O(i) time.

Finally, the algorithm returns the number αn and the two points of Pn realizing it, as the closest pair
in P.

Lemma 35.3.7. Let t be the number of different values in the sequence α2, α3, . . . , αn. Then E[t] =
O(log n). As such, in expectation, the above algorithm rebuilds the grid O(log n) times.

Proof: For i ≥ 3, let Xi be an indicator variable that is one if and only if αi < αi−1. Observe that
E[Xi] = P[Xi = 1] (as Xi is an indicator variable) and t =

∑n
i=3 Xi.

To bound P[Xi = 1] = P[αi < αi−1], we (conceptually) fix the points of Pi and randomly permute
them. A point q ∈ Pi is critical if CP(Pi \ {q}) > CP(Pi). If there are no critical points, then αi−1 = αi
and then P[Xi = 1] = 0 (this happens, for example, if there are two pairs of points realizing the closest
distance in Pi). If there is one critical point, then P[Xi = 1] = 1/i, as this is the probability that this
critical point would be the last point in the random permutation of Pi.

Assume there are two critical points and let p,q be this unique pair of points of Pi realizing CP(Pi).
The quantity αi is smaller than αi−1 only if either p or q is pi. The probability for that is 2/i (i.e.,
the probability in a random permutation of i objects that one of two marked objects would be the last
element in the permutation).

Observe that there cannot be more than two critical points. Indeed, if p and q are two points that
realize the closest distance, then if there is a third critical point s, then CP(Pi \ {s}) = ‖p − q‖ , and
hence the point s is not critical.

Thus, P[Xi = 1] = P[αi < αi−1] ≤ 2/i, and by linearity of expectations, we have that E[t] = E
[∑n

i=3 Xi
]
=∑n

i=3 E[Xi] ≤
∑n

i=3 2/i = O(log n).

Lemma 35.3.7 implies that, in expectation, the algorithm rebuilds the grid O(log n) times. By
Observation 35.3.6, the running time of this algorithm, in expectation, is O(n log n). However, we can
do better than that. Intuitively, rebuilding the grid in early iterations of the algorithm is cheap, and
only late rebuilds (when i = Ω(n)) are expensive, but the number of such expensive rebuilds is small (in
fact, in expectation it is a constant).

Theorem 35.3.8. For set P of n points in the plane, one can compute the closest pair of P in expected
linear time.

Proof: The algorithm is described above. As above, let Xi be the indicator variable which is 1 if αi , αi−1,
and 0 otherwise. Clearly, the running time is proportional to

R = 1 +
n∑

i=3
(1 + Xi · i).

®Surprise in the eyes of the beholder. The reader might not be surprised at all and might be mildly annoyed by the
whole affair. In this case, the reader should read any occurrence of “surprisingly” in the text as being “mildly annoying”.

5

Thus, the expected running time is proportional to

E
[
R
]
= E

[
1 +

n∑
i=3

(1 + Xi · i)
]
≤ n +

n∑
i=3
E
[
Xi
]
· i ≤ n +

n∑
i=3

i · P
[
Xi = 1

]
≤ n +

n∑
i=3

i ·
2
i
≤ 3n,

by linearity of expectation and since E[Xi] = P[Xi = 1] and since P[Xi = 1] ≤ 2/i (as shown in the proof
of Lemma 35.3.7). Thus, the expected running time of the algorithm is O(E[R]) = O(n).

Theorem 35.3.8 is a surprising result, since it implies that uniqueness (i.e., deciding if n real numbers
are all distinct) can be solved in linear time. Indeed, compute the distance of the closest pair of the
given numbers (think about the numbers as points on the x-axis). If this distance is zero, then clearly
they are not all unique.

However, there is a lower bound of Ω(n log n) on the running time to solve uniqueness, using the
comparison model. This “reality dysfunction” can be easily explained once one realizes that the com-
putation model of Theorem 35.3.8 is considerably stronger, using hashing, randomization, and the floor
function.

35.4. Computing a good ordering of the vertices of a graph
We are given a G = (V,E) be an edge-weighted graph with n vertices and m edges. The task is to compute
an ordering π = 〈π1, . . . , πn〉 of the vertices, and for every vertex v ∈ V, the list of vertices Lv, such that
πi ∈ Łv, if πi is the closet vertex to v in the ith prefix 〈π1, . . . , πi〉.

This situation can arise for example in a streaming scenario, where we install servers in a network.
In the ith stage there i servers installed, and every client in the network wants to know its closest server.
As we install more and more servers (ultimately, every node is going to be server), each client needs to
maintain its current closest server.

The purpose is to minimize the total size of these lists L =
∑

v∈V |Lv |.

35.4.1. The algorithm
Take a random permutation π1, . . . , πn of the vertices V of G. Initially, we set δ(v) = +∞, for all v ∈ V.

In the ith iteration, set δ(πi) to 0, and start Dijkstra from the ith vertex πi. The Dijkstra propagates
only if it improves the current distance associated with a vertex. Specifically, in the ith iteration, we
update δ(u) to dG(πi,u) if and only if dG(πi,u) < δ(u) before this iteration started. If δ(u) is updated,
then we add πi to Lu. Note, that this Dijkstra propagation process might visit only small portions of
the graph in some iterations – since it improves the current distance only for few vertices.

35.4.2. Analysis

Lemma 35.4.1. The above algorithm computes a permutation π, such that E
[
|L|

]
= O(n log n), and

the expected running time of the algorithm is O
(
(n log n + m) log n

)
, where n = |V(G)| and m = |E(G)|.

Note, that both bounds also hold with high probability.

6

Proof: Fix a vertex v ∈ V = {v1, . . . , vn}. Consider the set of n numbers {dG(v, v1), . . . ,dG(v, vn)}. Clearly,
dG(v, π1), . . . ,dG(v, πn) is a random permutation of this set, and by Lemma 35.1.1 the random permutation
π changes this minimum O(log n) time in expectations (and also with high probability). This readily
implies that |Lv | = O(log n) both in expectations and high probability.

The more interesting claim is the running time. Consider an edge uv ∈ E(G), and observe that δ(u) or
δ(v) changes O(log n) times. As such, an edge gets visited O(log n) times, which implies overall running
time of O(n log2 n + m log n), as desired.

Indeed, overall there are O(n log n) changes in the value of δ(·). Each such change might require one
delete-min operation from the queue, which takes O(log n) time operation. Every edge, by the above,
might trigger O(log n) decrease-key operations. Using Fibonacci heaps, each such operation takes O(1)
time.

35.5. Computing nets

35.5.1. Basic definitions
35.5.1.1. Metric spaces

Definition 35.5.1. A metric space is a pair (X,d) where X is a set and d : X × X → [0,∞) is a metric
satisfying the following axioms: (i) d(x, y) = 0 if and only if x = y, (ii) d(x, y) = d(y, x), and (iii)
d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality).

For example, R2 with the regular Euclidean distance is a metric space. In the following, we assume
that we are given black-box access to dM . Namely, given two points p,q ∈ X, we assume that d(p,q)
can be computed in constant time.

Another standard example for a finite metric space is a graph G with non-negative weights ω(·)
defined on its edges. Let dG(x, y) denote the shortest path (under the given weights) between any
x, y ∈ V(G). It is easy to verify that dG(·, ·) is a metric. In fact, any finite metric (i.e., a metric defined
over a finite set) can be represented by such a weighted graph.

35.5.1.2. Nets

Definition 35.5.2. For a point set P in a metric space with a metric d, and a parameter r > 0, an r-net
of P is a subset C ⊆ P, such that

(i) for every p,q ∈ C, p , q, we have that d(p,q) ≥ r, and
(ii) for all p ∈ P, we have that minq∈C d(p,q) < r.

Intuitively, an r-net represents P in resolution r.

35.5.2. Computing nets quickly for a point set in Rd

The results here have nothing to do with backward analysis and are included here only for the sake of
completeness.

There is a simple algorithm for computing r-nets. Namely, let all the points in P be initially
unmarked. While there remains an unmarked point, p, add p to C, and mark it and all other points in
distance < r from p (i.e. we are scooping away balls of radius r). By using grids and hashing one can

7

modify this algorithm to run in linear time. The following is implicit in previous work [Har04], and we
include it here for the sake of completeness¯ – it was also described by the authors in [ERH12].

Lemma 35.5.3. Given a point set P ⊆ Rd of size n and a parameter r > 0, one can compute an r-net
for P in O(n) time.

Proof: Let G denote the grid in Rd with side length ∆ = r/
(
2
√

d
)
. First compute for every point p ∈ P

the grid cell in G that contains p; that is, id(p). Let G denote the set of grid cells of G that contain
points of P. Similarly, for every cell � ∈ G we compute the set of points of P which it contains. This
task can be performed in linear time using hashing and bucketing assuming the floor function can be
computed in constant time. Specifically, store the id(·) values in a hash table, and in constant time hash
each point into its appropriate bin.

Scan the points of P one at a time, and let p be the current point. If p is marked then move on to
the next point. Otherwise, add p to the set of net points, C, and mark it and each point q ∈ P such that
‖p − q‖ < r. Since the cells of N≤r(p) contain all such points, we only need to check the lists of points
stored in these grid cells. At the end of this procedure every point is marked. Since a point can only
be marked if it is in distance < r from some net point, and a net point is only created if it is unmarked
when visited, this implies that C is an r-net.

As for the running time, observe that a grid cell, c, has its list scanned only if c is in the neighborhood
of some created net point. As ∆ = Θ(r), there are only O(1) cells which could contain a net point p such
that c ∈ N≤r(p). Furthermore, at most one net point lies in a single cell since the diameter of a grid cell
is strictly smaller than r. Therefore each grid cell had its list scanned O(1) times. Since the only real
work done is in scanning the cell lists and since the cell lists are disjoint, this implies an O(n) running
time overall.

Observe that the closest net point, for a point p ∈ P, must be in one of its neighborhood’s grid cells.
Since every grid cell can contain only a single net point, it follows that in constant time per point of P,
one can compute each point’s nearest net point. We thus have the following.

Corollary 35.5.4. For a set P ⊆ Rd of n points, and a parameter r > 0, one can compute, in linear
time, an r-net of P, and furthermore, for each net point the set of points of P for which it is the nearest
net point.

In the following, a weighted point is a point that is assigned a positive integer weight. For any
subset S of a weighted point set P, let |S | denote the number of points in S and let ω(S) =

∑
p∈S ω(p)

denote the total weight of S.
In particular, Corollary 35.5.4 implies that for a weighted point set one can compute the following

quantity in linear time.

Algorithm 35.5.5 (net). Given a weighted point set P ⊆ Rd, let N(r,P) denote an r-net of P, where
the weight of each net point p is the total sum of the weights of the points assigned to it. We slightly
abuse notation, and also use N(r,P) to designate the algorithm computing this net, which has linear
running time.

¯Specifically, the algorithm of Har-Peled [Har04] is considerably more complicated than Lemma 35.5.3, and does not
work in this settings, as the number of clusters it can handle is limited to O

(
n1/6) . Lemma 35.5.3 has no such restriction.

8

35.5.3. Computing an r-net in a sparse graph
Given a G = (V,E) be an edge-weighted graph with n vertices and m edges, and let r > 0 be a parameter.
We are interested in the problem of computing an r-net for G. That is, a set of vertices of G that
complies with Definition 35.5.2p7.

35.5.3.1. The algorithm

We compute an r-net in a sparse graph using a variant of Dijkstra’s algorithm with the sequence of
starting vertices chosen in a random permutation.

Let πi be the ith vertex in a random permutation π of V. For each vertex v we initialize δ(v) to +∞.
In the ith iteration, we test whether δ(πi) ≥ r, and if so we do the following steps:
(A) Add πi to the resulting net N .
(B) Set δ(πi) to zero.
(C) Perform Dijkstra’s algorithm starting from πi, modified to avoid adding a vertex u to the priority

queue unless its tentative distance is smaller than the current value of δ(u). When such a vertex
u is expanded, we set δ(u) to be its computed distance from πi, and relax the edges adjacent to u
in the graph.

35.5.3.2. Analysis

While the analysis here does not directly uses backward analysis, it is inspired to a large extent by such
an analysis as in Section 35.4p6.

Lemma 35.5.6. The set N is an r-net in G.

Proof: By the end of the algorithm, each v ∈ V has δ(v) < r, for δ(v) is monotonically decreasing, and
if it were larger than r when v was visited then v would have been added to the net.

An induction shows that if ` = δ(v), for some vertex v, then the distance of v to the set N is at most
`. Indeed, for the sake of contradiction, let j be the (end of) the first iteration where this claim is false.
It must be that π j ∈ N , and it is the nearest vertex in N to v. But then, consider the shortest path
between π j and v. The modified Dijkstra must have visited all the vertices on this path, thus computing
δ(v) correctly at this iteration, which is a contradiction.

Finally, observe that every two points in N have distance ≥ r. Indeed, when the algorithm handles
vertex v ∈ N , its distance from all the vertices currently in N is ≥ r, implying the claim.

Lemma 35.5.7. Consider an execution of the algorithm, and any vertex v ∈ V. The expected number
of times the algorithm updates the value of δ(v) during its execution is O(log n), and more strongly the
number of updates is O(log n) with high probability.

Proof: For simplicity of exposition, assume all distances in G are distinct. Let Si be the set of all the
vertices x ∈ V, such that the following two properties both hold:
(A) dG(x, v) < dG(v,Πi), where Πi = {π1, . . . , πi}.
(B) If πi+1 = x then δ(v) would change in the (i + 1)th iteration.

Let si = |Si |. Observe that S1 ⊇ S2 ⊇ · · · ⊇ Sn, and |Sn | = 0.
In particular, let Ei+1 be the event that δ(v) changed in iteration (i + 1) – we will refer to such an

iteration as being active. If iteration (i + 1) is active then one of the points of Si is πi+1. However, πi+1
has a uniform distribution over the vertices of Si, and in particular, if Ei+1 happens then si+1 ≤ si/2,

9

with probability at least half, and we will refer to such an iteration as being lucky. (It is possible that
si+1 < si even if Ei+1 does not happen, but this is only to our benefit.) After O(log n) lucky iterations
the set Si is empty, and we are done. Clearly, if both the ith and jth iteration are active, the events
that they are each lucky are independent of each other. By the Chernoff inequality, after c log n active
iterations, at least dlog2 ne iterations were lucky with high probability, implying the claim. Here c is a
sufficiently large constant.

Interestingly, in the above proof, all we used was the monotonicity of the sets S1, . . . ,Sn, and that if
δ(v) changes in an iteration then the size of the set Si shrinks by a constant factor with good probability in
this iteration. This implies that there is some flexibility in deciding whether or not to initiate Dijkstra’s
algorithm from each vertex of the permutation, without damaging the number of times of the values of
δ(v) are updated.

Theorem 35.5.8. Given a graph G = (V,E), with n vertices and m edges, the above algorithm computes
an r-net of G in O((n log n + m) log n) expected time.

Proof: By Lemma 35.5.7, the two δ values associated with the endpoints of an edge get updated O(log n)
times, in expectation, during the algorithm’s execution. As such, a single edge creates O(log n) decrease-
key operations in the heap maintained by the algorithm. Each such operation takes constant time if we
use Fibonacci heaps to implement the algorithm.

35.6. Bibliographical notes
Backwards analysis was invented/discovered by Raimund Seidel, and the QuickSort example is taken
from Seidel [Sei93]. The number of changes of the minimum result of Section 35.1 is by now folklore.

The closet-pair result is Section 35.3 follows Golin et al. [GRSS95]. This is in turn a simplification
of a result of Rabin [Rab76]. Smid provides a survey of such algorithms [Smi00].

The good ordering of Section 35.4 is probably also folklore, although a similar idea was used by
Mendel and Schwob [MS09] for a different problem. Computing nets in Rd, which has nothing to do
with backwards analysis, Section 35.5.2, is from Har-Peled and Raichel [HR13].

Computing a net in a sparse graph, Section 35.5.3, is from [EHS14]. While backwards analysis fails
to hold in this case, it provide a good intuition for the analysis, which is slightly more complicated and
indirect.

Bibliography
[EHS14] D. Eppstein, S. Har-Peled, and A. Sidiropoulos. On the greedy permutation and counting

distances. manuscript, 2014.

[ERH12] A. Ene, B. Raichel, and S. Har-Peled. Fast clustering with lower bounds: No customer too
far, no shop too small. In submission. http://sarielhp.org/papers/12/lbc/, 2012.

[GRSS95] M. Golin, R. Raman, C. Schwarz, and M. Smid. Simple randomized algorithms for closest
pair problems. Nordic J. Comput., 2:3–27, 1995.

[Har04] S. Har-Peled. Clustering motion. Discrete Comput. Geom., 31(4):545–565, 2004.

10

http://www.ics.uci.edu/~eppstein/
http://sarielhp.org
http://sarielhp.org
http://sarielhp.org/papers/12/lbc/
http://sarielhp.org
http://cs.uiuc.edu/~sariel/research/papers/01/cluster/
http://link.springer.com/journal/454

[HR13] S. Har-Peled and B. Raichel. Net and prune: A linear time algorithm for Euclidean distance
problems. In Proc. 45th Annu. ACM Sympos. Theory Comput. (STOC), pages 605–614, New
York, NY, USA, 2013. ACM.

[MS09] M. Mendel and C. Schwob. Fast c-k-r partitions of sparse graphs. Chicago J. Theor. Comput.
Sci., 2009, 2009.

[Rab76] M. O. Rabin. Probabilistic algorithms. In J. F. Traub, editor, Algorithms and Complexity:
New Directions and Recent Results, pages 21–39. Academic Press, Orlando, FL, USA, 1976.

[Sei93] R. Seidel. Backwards analysis of randomized geometric algorithms. In J. Pach, editor, New
Trends in Discrete and Computational Geometry, volume 10 of Algorithms and Combinatorics,
pages 37–68. Springer-Verlag, 1993.

[Smi00] M. Smid. Closest-point problems in computational geometry. In J.-R. Sack and J. Urru-
tia, editors, Handbook of Computational Geometry, pages 877–935. Elsevier, Amsterdam, The
Netherlands, 2000.

11

http://sarielhp.org
http://cs.uiuc.edu/~sariel/papers/12/aggregate/
http://cs.uiuc.edu/~sariel/papers/12/aggregate/
http://www-tcs.cs.uni-sb.de/seidel/
http://www.math.nyu.edu/~pach

	Backwards analysis
	How many times can the minimum change?
	Yet another analysis of RedVioletQuickSort
	Closest pair: Backward analysis in action
	Definitions
	Back to the problem
	Slow algorithm
	Linear time algorithm

	Computing a good ordering of the vertices of a graph
	The algorithm
	Analysis

	Computing nets
	Basic definitions
	Computing nets quickly for a point set in Rd
	Computing an r-net in a sparse graph

	Bibliographical notes

	Bibliography

