Chapter 36

Linear time algorithms

By Sariel Har-Peled, November 28, $2018^{(1)}$

Version: 0.3

36.1. The lowest point above a set of lines

Let L be a set of n lines in the plane. To simplify the exposition, assume the lines are in general position:
(A) No two lines of L are parallel.
(B) No line of L is vertical or horizontal.
(C) No three lines of L meet in a point.

We are interested in the problem of computing the point with the minimum y coordinate that is above all the lines of L. We consider a point on a line to be above it.

Figure 36.1: An input to the problem, the critical curve U_{L}, and the optimal solution - the point opt (L).
For a line $\ell \in L$, and a value $\alpha \in \mathbb{R}$, let $\ell(x)$ be the value of ℓ at α. Formally, consider the intersection point of $p=\ell \cap(x=\alpha)$ (here, $x=\alpha$ is the vertical line passing through $(\alpha, 0))$. Then $\ell(x)=y(p)$.

Let $U_{L}(\alpha)=\max _{\ell \in L} \ell(\alpha)$ be the upper envelope of L. The function $U_{L}(\cdot)$ is convex, as one can easily verify. The problem asks to compute $y^{*}=\min _{x \in \mathbb{R}} U_{L}(x)$. Let x^{*} be the coordinate such that $y^{*}=U_{L}\left(x^{*}\right)$.

Definition 36.1.1. Let $\operatorname{opt}(L)=\left(x^{*}, y^{*}\right)$ denote the optimal solution - that is, lowest point on $U_{L}(x)$.
Remark 36.1.2. There are some uninteresting cases of this problem. For example, if all the lines of L have negative slope, then the solution is at $x^{*}=+\infty$. Similarly, if all the slopes are positive, then the solution is $x^{*}=-\infty$. We can easily check these cases in linear time. In the following, we assume that at least one line of L has positive slope, and at least one line has a negative slope.

Lemma 36.1.3. Given a value x, and a set L of n lines, one can in linear time do the following:

[^0]

Figure 36.2: Illustration of the proof of Lemma 36.1.4.
(A) Compute the value of $U_{L}(x)$.
(B) Decide which one of the following happens: (I) $x=x^{*}$, (II) $x<x^{*}$, or (III) $x>x^{*}$.

Proof: (A) Computing $\ell(x)$, for $x \in \mathbb{R}$, takes $O(1)$ time. Thus computing this value for all the lines of L takes $O(n)$ time, and the maximum can be computed in $O(n)$ time.
(B) For case (I) to happen, there must be two lines that realizes $U_{L}(x)$ - one of them has a positive slope, the other has negative slope. This clearly can be checked in linear time.

Otherwise, consider $U_{L}(x)$. If there is a single line that realizes the maximum for x, then its slope is the slope of $U_{L}(x)$ at x. If this slope is positive than $x^{*}<x$. If the slope is negative then $x<x^{*}$.

The slightly more challenging case is when two lines realizes the value of $U_{L}(x)$. That is $\left(x, U_{L}(x)\right)$ is an intersection point of two lines of L (i.e., a vertex) on the upper envelope of the lines of L). Let ℓ_{1}, ℓ_{2} be these two lines, and assume that $\operatorname{slope}\left(\ell_{1}\right)<\operatorname{slope}\left(\ell_{2}\right)$.

If slope $\left(\ell_{2}\right)<0$, then both lines have negative slope, and $x^{*}>x$. If slope $\left(\ell_{1}\right)>0$, then both lines have positive slope, and $x^{*}<x$. If slope $\left(\ell_{1}\right)<0$, and slope $\left(\ell_{1}\right)>0$, then this is case (I), and we are done.

Lemma 36.1.4. Let (x, y) be the intersection point of two lines $\ell_{1}, \ell_{2} \in L$, such that $\operatorname{slope}\left(\ell_{1}\right)<\operatorname{slope}\left(\ell_{2}\right)$, and $x<x^{*}$. Then $\operatorname{opt}(L)=\operatorname{opt}\left(L-\ell_{1}\right)$, where $L-\ell_{1}=L \backslash\left\{\ell_{1}\right\}$

Proof: See Figure 36.2. Since $x<x^{*}$, it must be that $U_{L}(\cdot)$ has a negative slope at x (and also immediately to its right). In particular, for any $\alpha>x$, we have that $U_{L}(\alpha) \geq \ell_{2}(x)>\ell_{1}(x)$. That is, the line $\ell_{1}(x)$ is "buried" below ℓ_{2}, and can not touch $U_{L}(\cdot)$ to the right of x. In particular, removing ℓ_{1} from L can not change $U_{L}(\cdot)$ to the right of x. Furthermore, since $U_{L}(\cdot)$ has negative slope immediately after x, it implies that minimum point can not move by the deletion of ℓ_{1}. Thus implying the claim.

Lemma 36.1.5. Let (x, y) be the intersection point of two lines $\ell_{1}, \ell_{2} \in L$, such that $\operatorname{slope}\left(\ell_{1}\right)<\operatorname{slope}\left(\ell_{2}\right)$, and $x^{*}<x$. Then $\operatorname{opt}(L)=\operatorname{opt}\left(L-\ell_{2}\right)$.

Proof: Symmetric argument to the one used in the proof of Lemma 36.1.4.
Observation 36.1.6. The point $p=\operatorname{opt}(L)$ is a vertex formed by the intersection of two lines of L. Indeed, since none of the lines of L are horizontal, if p was in the middle of a line, then we could move it and improve the value of the solution.

Lemma 36.1.7 (Prune). Given a set L of n lines, one can compute, in linear time, either:
(A) A set $L^{\prime} \subseteq L$ such that $\operatorname{opt}(L)=\operatorname{opt}\left(L^{\prime}\right)$, and $\left|L^{\prime}\right| \leq(7 / 8)|L|$.

Figure 36.3: Illustration of the proof of Lemma 36.1.5.
(B) A value x such that $x^{*}(L)=x$.

Proof: If $|L|=n=O(1)$ then one can compute $\operatorname{opt}(L)$ by brute force. Indeed, compute all the $\binom{n}{2}$ vertices induced by L, and for each one of them check if they define the optimal solution using the algorithm of Lemma 36.1.3. This takes $O(1)$ time, as desired.

Otherwise, pair the lines of L in $N=\lfloor n / 2\rfloor$ pairs $\ell_{i}, \ell_{i}^{\prime}$. For each pair, let x_{i} be the x-coordinate of the vertex $\ell_{i} \cap \ell_{i}^{\prime}$. Compute, in linear time, using median selection, the median value z of x_{1}, \ldots, x_{N}. For the sake of simplicity of exposition assume that $x_{i}<z$, for $i=1, \ldots, N / 2-1$, and $x_{i}>z$, for $i=N / 2+1, \ldots, N$ (otherwise, reorder the lines and the values so that it happens).

Using the algorithm of Lemma 36.1.3 decide which of the following happens:
(I) $z=x^{*}$: we found the optimal solution, and we are done.
(II) $z<x^{*}$. But then $x_{i}<z<x^{*}$, for $i=1, \ldots, N / 2-1$, By Lemma 36.1.4, either ℓ_{i} or ℓ_{i}^{\prime} can be dropped without effecting the optimal solution, and which one can be dropped can be decided in $O(1)$ time. In particular, let L^{\prime} be the set of lines after we drop a line from each such pair. We have that $\operatorname{opt}\left(L^{\prime}\right)=\operatorname{opt}(L)$, and $\left|L^{\prime}\right|=n-(N / 2-1) \leq(7 / 8) n$.
(III) $z>x^{*}$. This case is handled symmetrically, using Lemma 36.1.5.

Theorem 36.1.8. Given a set L of n lines in the plane, one can compute the lowest point that is above all the lines of L (i.e., $\operatorname{opt}(L))$ in linear time.

Proof: The algorithm repeatedly apply the pruning algorithm of Lemma 36.1.7. Clearly, by the above, this algorithm computes opt (L) as desired.

In the i th iteration of this algorithm, if the set of lines has n_{i} lines, then this iteration takes $O\left(n_{i}\right)$ time. However, $n_{i} \leq(7 / 8)^{i} n$. In particular, the overall running time of the algorithm is

$$
O\left(\sum_{i=0}^{\infty}(7 / 8)^{i} n\right)=O(n)
$$

36.2. Bibliographical notes

The algorithm presented in Section 36.1 is a simplification of the work of Megiddo [Meg84]. Megiddo solved the much harder problem of solving linear programming in constant dimension in linear time, The algorithm presented is essentially the core of his basic algorithm.

Bibliography

[Meg84] N. Megiddo. Linear programming in linear time when the dimension is fixed. J. Assoc. Comput. Mach., 31:114-127, 1984.

[^0]: ${ }^{(1)}$ This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

