
Chapter 36

Linear time algorithms
By Sariel Har-Peled, November 28, 2018¬ Version: 0.3

36.1. The lowest point above a set of lines
Let L be a set of n lines in the plane. To simplify the exposition, assume the lines are in general position:
(A) No two lines of L are parallel.
(B) No line of L is vertical or horizontal.
(C) No three lines of L meet in a point.

We are interested in the problem of computing the point with the minimum y coordinate that is above
all the lines of L. We consider a point on a line to be above it.

UL UL

opt(L)

Figure 36.1: An input to the problem, the critical curve UL, and the optimal solution – the point opt(L).

For a line ` ∈ L, and a value α ∈ R, let `(x) be the value of ` at α. Formally, consider the intersection
point of p = ` ∩ (x = α) (here, x = α is the vertical line passing through (α,0)). Then `(x) = y(p).

Let UL(α) = max`∈L `(α) be the upper envelope of L. The function UL(·) is convex, as one can
easily verify. The problem asks to compute y∗ = minx∈RUL(x). Let x∗ be the coordinate such that
y∗ = UL(x∗).

Definition 36.1.1. Let opt(L) = (x∗, y∗) denote the optimal solution – that is, lowest point on UL(x).

Remark 36.1.2. There are some uninteresting cases of this problem. For example, if all the lines of L
have negative slope, then the solution is at x∗ = +∞. Similarly, if all the slopes are positive, then the
solution is x∗ = −∞. We can easily check these cases in linear time. In the following, we assume that at
least one line of L has positive slope, and at least one line has a negative slope.

Lemma 36.1.3. Given a value x, and a set L of n lines, one can in linear time do the following:
¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this

license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

1

http://creativecommons.org/licenses/by-nc/3.0/

`1

`2

x

opt(L)

UL

Figure 36.2: Illustration of the proof of Lemma 36.1.4.

(A) Compute the value of UL(x).
(B) Decide which one of the following happens: (I) x = x∗, (II) x < x∗, or (III) x > x∗.

Proof: (A) Computing `(x), for x ∈ R, takes O(1) time. Thus computing this value for all the lines of L
takes O(n) time, and the maximum can be computed in O(n) time.

(B) For case (I) to happen, there must be two lines that realizes UL(x) – one of them has a positive
slope, the other has negative slope. This clearly can be checked in linear time.

Otherwise, consider UL(x). If there is a single line that realizes the maximum for x, then its slope is
the slope of UL(x) at x. If this slope is positive than x∗ < x. If the slope is negative then x < x∗.

The slightly more challenging case is when two lines realizes the value of UL(x). That is
(
x,UL(x)

)
is an intersection point of two lines of L (i.e., a vertex) on the upper envelope of the lines of L). Let
`1, `2 be these two lines, and assume that slope(`1) < slope(`2).

If slope(`2) < 0, then both lines have negative slope, and x∗ > x. If slope(`1) > 0, then both lines
have positive slope, and x∗ < x. If slope(`1) < 0, and slope(`1) > 0, then this is case (I), and we are
done.

Lemma 36.1.4. Let (x, y) be the intersection point of two lines `1, `2 ∈ L, such that slope(`1) < slope(`2),
and x < x∗. Then opt(L) = opt(L − `1), where L − `1 = L \ {`1}

Proof: See Figure 36.2. Since x < x∗, it must be that UL(·) has a negative slope at x (and also
immediately to its right). In particular, for any α > x, we have that UL(α) ≥ `2(x) > `1(x). That is,
the line `1(x) is “buried” below `2, and can not touch UL(·) to the right of x. In particular, removing `1
from L can not change UL(·) to the right of x. Furthermore, since UL(·) has negative slope immediately
after x, it implies that minimum point can not move by the deletion of `1. Thus implying the claim.

Lemma 36.1.5. Let (x, y) be the intersection point of two lines `1, `2 ∈ L, such that slope(`1) < slope(`2),
and x∗ < x. Then opt(L) = opt(L − `2).

Proof: Symmetric argument to the one used in the proof of Lemma 36.1.4.

Observation 36.1.6. The point p = opt(L) is a vertex formed by the intersection of two lines of L.
Indeed, since none of the lines of L are horizontal, if p was in the middle of a line, then we could move
it and improve the value of the solution.

Lemma 36.1.7 (Prune). Given a set L of n lines, one can compute, in linear time, either:
(A) A set L′ ⊆ L such that opt(L) = opt(L′), and |L′| ≤ (7/8) |L |.

2

opt(L)

UL

`1

`2
x

Figure 36.3: Illustration of the proof of Lemma 36.1.5.

(B) A value x such that x∗(L) = x.

Proof: If |L | = n = O(1) then one can compute opt(L) by brute force. Indeed, compute all the
(n
2
)

vertices induced by L, and for each one of them check if they define the optimal solution using the
algorithm of Lemma 36.1.3. This takes O(1) time, as desired.

Otherwise, pair the lines of L in N = bn/2c pairs ì, `
′
i . For each pair, let xi be the x-coordinate of the

vertex ì ∩ `
′
i . Compute, in linear time, using median selection, the median value z of x1, . . . , xN . For the

sake of simplicity of exposition assume that xi < z, for i = 1, . . . ,N/2−1, and xi > z, for i = N/2+1, . . . ,N
(otherwise, reorder the lines and the values so that it happens).

Using the algorithm of Lemma 36.1.3 decide which of the following happens:
(I) z = x∗: we found the optimal solution, and we are done.

(II) z < x∗. But then xi < z < x∗, for i = 1, . . . ,N/2 − 1, By Lemma 36.1.4, either ì or `′i can be
dropped without effecting the optimal solution, and which one can be dropped can be decided in
O(1) time. In particular, let L′ be the set of lines after we drop a line from each such pair. We
have that opt(L′) = opt(L), and |L′| = n − (N/2 − 1) ≤ (7/8)n.

(III) z > x∗. This case is handled symmetrically, using Lemma 36.1.5.

Theorem 36.1.8. Given a set L of n lines in the plane, one can compute the lowest point that is above
all the lines of L (i.e., opt(L)) in linear time.

Proof: The algorithm repeatedly apply the pruning algorithm of Lemma 36.1.7. Clearly, by the above,
this algorithm computes opt(L) as desired.

In the ith iteration of this algorithm, if the set of lines has ni lines, then this iteration takes O(ni)

time. However, ni ≤ (7/8)in. In particular, the overall running time of the algorithm is

O

(
∞∑

i=0
(7/8)in

)
= O(n).

36.2. Bibliographical notes
The algorithm presented in Section 36.1 is a simplification of the work of Megiddo [Meg84]. Megiddo
solved the much harder problem of solving linear programming in constant dimension in linear time,
The algorithm presented is essentially the core of his basic algorithm.

3

Bibliography
[Meg84] N. Megiddo. Linear programming in linear time when the dimension is fixed. J. Assoc. Comput.

Mach., 31:114–127, 1984.

4

http://www.acm.org/jacm/
http://www.acm.org/jacm/

	Linear time algorithms
	The lowest point above a set of lines
	Bibliographical notes

	Bibliography

