## CS 473: Algorithms, Fall 2018

## Linear Programming

Lecture 21
November 8, 2018

## Easy or not easy?

## Clicker question

Let $x_{1}, \ldots, x_{n} \in\{0,1\}$ be boolean variables. You are given $m$ constraints of the form:

$$
2+x_{i}+x_{j}-x_{k} \geq-1
$$

That is, each variable might have +1 or -1 as a coefficient, and each inequality has three variables, and a constant additive term. Deciding if such a problem has a feasible solution is
(1) NP-Complete.
c 2 NP-Hard.
(3) P.
(4) Not a well defined question.
(5) Doable in polynomial time if Riemann's hypothesis is true.

## 21.1: Linear Programming

21.1.1: Introduction and Motivation
21.1.1.1: Resource allocation in a factory

## A Factory Example

## Problem

Suppose a factory produces two products $\boldsymbol{I}$ and $\boldsymbol{I I}$. Each requires three resources $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$.
(1) Producing one unit of Product I requires 1 unit each of resources $\boldsymbol{A}$ and $\boldsymbol{C}$.
(2) One unit of Product II requires 1 unit of resource $\boldsymbol{B}$ and 1 units of resource $C$.
(3) We have 200 units of $\boldsymbol{A}, 300$ units of $\boldsymbol{B}$, and 400 units of $\boldsymbol{C}$.
(4) Product I can be sold for $\$ 1$ and product II for $\$ 6$.

How many units of product I and product II should the factory manufacture to maximize profit?

Solution: Formulate as a linear program.
6/58

## A Factory Example

## Problem

Suppose a factory produces two products $\boldsymbol{I}$ and $\boldsymbol{I I}$. Each requires three resources $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$.
(1) Producing one unit of Product I requires 1 unit each of resources $\boldsymbol{A}$ and $\boldsymbol{C}$.
(2) One unit of Product II requires 1 unit of resource $\boldsymbol{B}$ and 1 units of resource $C$.
(3) We have 200 units of $\boldsymbol{A}, 300$ units of $\boldsymbol{B}$, and 400 units of $\boldsymbol{C}$.
(9) Product I can be sold for $\$ 1$ and product II for $\$ 6$.

How many units of product I and product II should the factory manufacture to maximize profit?

Solution: Formulate as a linear program

## A Factory Example

## Problem

Suppose a factory produces two products $\boldsymbol{I}$ and $\boldsymbol{I I}$. Each requires three resources $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$.
(1) Producing one unit of Product I requires 1 unit each of resources $\boldsymbol{A}$ and $\boldsymbol{C}$.
(2) One unit of Product II requires 1 unit of resource $\boldsymbol{B}$ and 1 units of resource $C$.
(3) We have 200 units of $\boldsymbol{A}, 300$ units of $\boldsymbol{B}$, and 400 units of $\boldsymbol{C}$.
(9) Product I can be sold for $\$ 1$ and product II for $\$ 6$.

How many units of product I and product II should the factory manufacture to maximize profit?

Solution: Formulate as a linear program.

## A Factory Example

## Problem

Suppose a factory produces two products $\boldsymbol{I}$ and $\boldsymbol{I I}$. Each requires three resources $A, B, C$.
(1) Producing unit I: Req. 1 unit of $\boldsymbol{A}, \boldsymbol{C}$.
(2) Producing unit II: Requ. 1 unit of $B, C$.
(0) Have $\boldsymbol{A}: 200, \boldsymbol{B}: 300$, and C: 400.
(0) Price I: $\$ 1$, and II: $\$ 6$.

How many units of I and II to manufacture to max profit?

## A Factory Example

## Problem

Suppose a factory produces two products $I$ and $I I$. Each requires three resources $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$.
(1) Producing unit I: Req. 1 unit of $\boldsymbol{A}, \boldsymbol{C}$.
(2) Producing unit II: Requ. 1 unit of $B, C$.
(3) Have $\boldsymbol{A}: 200, B: 300$, and $C$ : 400.
(4) Price I: $\$ 1$, and II: $\$ 6$.

How many units of I and II to manufacture to max profit?

## Linear Programming Formulation

Let us produce $x_{1}$ units of product I and $x_{2}$ units of product II. Our profit can be computed by solving

$$
\begin{array}{ll}
\text { maximize } & x_{1}+6 x_{2} \\
\text { s.t. } & x_{1} \leq 200 \\
& x_{2} \leq 300 \\
& x_{1}+x_{2} \leq 400 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

## Linear Programming Formulation

Let us produce $x_{1}$ units of product I and $x_{2}$ units of product II. Our profit can be computed by solving

$$
\begin{array}{ll}
\operatorname{maximize} & x_{1}+6 x_{2} \\
\text { s.t. } & x_{1} \leq 200 \\
& x_{2} \leq 300 \\
& x_{1}+x_{2} \leq 400 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

What is the solution?

## Graphical interpretation of LP



## Graphical interpretation of LP



10/58
14

## Graphical interpretation of LP



## Graphical interpretation of LP



10/58
16

## Graphical interpretation of LP



## Graphical interpretation of LP



## Graphical interpretation of LP



10/58
19

## Graphical interpretation of LP



10/58
20

## Graphical interpretation of LP



21

## Graphical interpretation of LP



10/58
22

## Graphical interpretation of LP



## Graphical interpretation of LP



10/58

### 21.1.1.2:More examples...

## Economic planning

## Guns/nuclear-bombs/napkins/star-wars/professors/butter/mice problem

(1) Penguina: a country.
(2) Ruler need to decide how to allocate resources.
(3) Maximize benefit.
(4) Budget allocation
(1) Nuclear bomb has a tremendous positive effect on security while being expensive.
(2) Guns, on the other hand, have a weaker effect.
(5) Penguina need to prove a certain level of security:

$$
x_{g u n}+1000 * x_{n u c l e a r-b o m b} \geq 1000
$$

where $\boldsymbol{x}_{\text {guns }}$ : \# guns $\boldsymbol{x}_{\text {nuclear-bomb }}$ : \# nuclear-bombs constructed.
(6) $100 * x_{\text {gun }}+1000000 * x_{\text {nuclear-bomb }} \leq x_{\text {security }}$ $\boldsymbol{x}_{\text {security }}$ : total amount spent on security. $100 / 1,000,000$ : price of producing a single gun/nuclear bomb.

## Linear programming

An instance of linear programming (LP):
(1) $x_{1}, \ldots, x_{n}$ : variables.
(2) For $j=1, \ldots, m: a_{j 1} x_{1}+\ldots+a_{j n} x_{n} \leq b_{j}$ : linear inequality.
(3) i.e., constraint.
(9) $\mathrm{Q}: \exists$ assignment of values to $x_{1}, \ldots, x_{n}$ such that all inequalities are satisfied?
(5) Many possible solutions... Want solution that maximizes some linear quantity.
(6) objective function: linear inequality being maximized.

## Linear programming - example

| $a_{11} x_{1}+\ldots+a_{1 n} x_{n} \leq b_{1}$ |
| :--- |
| $a_{21} x_{1}+\ldots+a_{2 n} x_{n} \leq b_{2}$ |
| $\ldots$ |
| $a_{m 1} x_{1}+\ldots+a_{m n} x_{n} \leq b_{m}$ |
| $\max \quad c_{1} x_{1}+\ldots+c_{n} x_{n}$. |

14/58

## Linear Programming: A History

(1) First formalized applied to problems in economics by Leonid Kantorovich in the 1930s
© However, work was ignored behind the Iron Curtain and unknown in the West
(O) Rediscovered by Tialling Koopmans in the 1940s, along with applications to economics
(3) First algorithm (Simplex) to solve linear programs by George Dantzig in 1947
(9) Kantorovich and Koopmans receive Nobel Prize for economics in 1975
(1) Koopmans contemplated refusing the Nobel Prize to protest Dantzig's exclusion, but Kantorovich saw it as a vindication for using mathematics in economics, which had been written off as "a means for apologists of capitalism"

## Linear Programming: A History

(1) First formalized applied to problems in economics by Leonid Kantorovich in the 1930s
(1) However, work was ignored behind the Iron Curtain and unknown in the West
(2) Rediscovered by Tjalling Koopmans in the 1940s, along with applications to economics
(3) First algorithm (Simplex) to solve linear programs by George Dantzig in 1947
( - Kantorovich and Koopmans receive Nobel Prize for economics in 1975
(1 Koopmans contemplated refusing the Nobel Prize to protest
Dantzig's exclusion, but Kantorovich saw it as a vindication for using mathematics in economics, which had been written off as
'a means for apologists of capitalism'

## Linear Programming: A History

(1) First formalized applied to problems in economics by Leonid Kantorovich in the 1930s
(1) However, work was ignored behind the Iron Curtain and unknown in the West
(2) Rediscovered by Tjalling Koopmans in the 1940s, along with applications to economics
(3) First algorithm (Simplex) to solve linear programs by George
Dantzig in 1947
(1) Kantorovich and Koopmans receive Nobel Prize for economics in
1975 Koopmans contemplated refusing the Nobel Prize to protest
(entzig's exclusion, but Kantorovich saw it as a vindication for
using mathematics in economics, which had been written off as
"a means for apologists of capitalism"

## Linear Programming: A History

(1) First formalized applied to problems in economics by Leonid Kantorovich in the 1930s
(1) However, work was ignored behind the Iron Curtain and unknown in the West
(2) Rediscovered by Tjalling Koopmans in the 1940s, along with applications to economics
(3) First algorithm (Simplex) to solve linear programs by George Dantzig in 1947
Kantorovich and Koopmans receive Nobel Prize for economics in 1975
(1) Koopmans contemplated refusing the Nobel Prize to protest

Dantzig's exclusion, but Kantorovich saw it as a vindication for
using mathematics in economics, which had been written off as
"a means for apologists of capitalism"

## Linear Programming: A History

(1) First formalized applied to problems in economics by Leonid Kantorovich in the 1930s
(1) However, work was ignored behind the Iron Curtain and unknown in the West
(2) Rediscovered by Tjalling Koopmans in the 1940s, along with applications to economics
(3) First algorithm (Simplex) to solve linear programs by George Dantzig in 1947
(4) Kantorovich and Koopmans receive Nobel Prize for economics in 1975 ; Dantzig, however, was ignored
© Koopmans contemplated refusing the Nobel Prize to protest
Dantzig's exclusion, but Kantorovich saw it as a vindication for using mathematics in economics, which had been written off as 'a means for apologists of capitalism'

## Linear Programming: A History

(1) First formalized applied to problems in economics by Leonid Kantorovich in the 1930s
(1) However, work was ignored behind the Iron Curtain and unknown in the West
(2) Rediscovered by Tjalling Koopmans in the 1940s, along with applications to economics
(3) First algorithm (Simplex) to solve linear programs by George Dantzig in 1947
(9) Kantorovich and Koopmans receive Nobel Prize for economics in 1975 ; Dantzig, however, was ignored
© Koopmans contemplated refusing the Nobel Prize to protest
Dantzig's exclusion, but Kantorovich saw it as a vindication for using mathematics in economics, which had been written off as 'a means for apologists of capitalism'

## Linear Programming: A History

(1) First formalized applied to problems in economics by Leonid Kantorovich in the 1930s
(1) However, work was ignored behind the Iron Curtain and unknown in the West
(2) Rediscovered by Tjalling Koopmans in the 1940s, along with applications to economics
(3) First algorithm (Simplex) to solve linear programs by George Dantzig in 1947
(4) Kantorovich and Koopmans receive Nobel Prize for economics in 1975 ; Dantzig, however, was ignored
(1) Koopmans contemplated refusing the Nobel Prize to protest Dantzig's exclusion, but Kantorovich saw it as a vindication for using mathematics in economics, which had been written off as "a means for apologists of capitalism"

## Network flow via linear programming

Input: $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ with source $\mathbf{s}$ and $\operatorname{sink} \mathbf{t}$, and capacities $\mathbf{c}(\cdot)$ on the edges. Compute max flow in $\mathbf{G}$.

$$
\begin{array}{ll}
\forall(u, v) \in E & 0 \leq x_{u \rightarrow v} \\
& x_{u \rightarrow v} \leq \mathbf{c}(u \rightarrow v)
\end{array}
$$

$\forall v \in V \backslash\{\mathrm{~s}, \mathrm{t}\} \quad \sum_{(u, v) \in E} x_{u \rightarrow v}-\sum_{(v, w) \in E} x_{v \rightarrow w} \leq 0$

$$
\sum_{(u, v) \in E} x_{u \rightarrow v}-\sum_{(v, w) \in E} x_{v \rightarrow w} \geq 0
$$

maximizing
$\sum_{(\mathrm{s}, u) \in E} x_{\mathrm{s} \rightarrow u}$

## Maximum weight matching

Input: $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and weight $\boldsymbol{w}(\cdot)$ on the edges. Compute max matching in $\mathbf{G}$.

$$
\begin{array}{ll}
\forall u v \in \mathrm{E} & 0 \leq x_{u v} \\
& x_{u v} \leq 1
\end{array}
$$

$\forall v \in V \quad \sum_{u v \in \mathbf{E}} x_{u v} \leq 1$
max

$$
\sum_{u v \in \mathbf{E}} w(u v) x_{u v}
$$

### 21.1.1.3:Shortest path as a LP

## Shortest path as a LP

## Clicker question

Let $\mathbf{G}$ be a directed graph with weights on the edges, and a vertices $\boldsymbol{s}$ and $\boldsymbol{t}$. For a vertex $\boldsymbol{v} \in \mathbf{V}(\mathbf{G})$, let $\boldsymbol{x}_{\boldsymbol{v}}$ be the length of the shortest path from $s$ to $\boldsymbol{v}$. For all $(\boldsymbol{u}, \boldsymbol{v}) \in \mathbf{E}(\mathbf{G})$, we must have that
(1) $x_{u}+w(u, v) \leq x_{v}$.
(2) $x_{u}+x_{v}-w(u, v) \geq 0$.
(3) $x_{u}+w(u, v) \geq x_{v}$.
(9) $x_{u}+x_{v}+w(u, v) \geq 0$.
(5) All of the above.

## Computing shortest path from s to t is the LP...

## Clicker question

$$
\begin{aligned}
& \max x_{t} \\
& \text { (1) } \forall(u, v) \in E \quad x_{u}+w(u, v) \geq x_{v} \\
& x_{s}=0 \text {. } \\
& \min x_{s} \\
& \text { (2) } \forall(u, v) \in \mathrm{E} \quad x_{u}+w(u, v) \geq x_{v} \\
& x_{t}=0 \text {. } \\
& \text { (3) } \forall(u, v) \in E \quad x_{u}+w(u, v) \geq x_{v} \\
& x_{s}=0 \text {. } \\
& \max x_{t} \\
& \text { (4) } \forall(u, v) \in E \quad x_{u}+w(u, v) \geq x_{v} \\
& x_{s}=0 \text {. }
\end{aligned}
$$

## 21.2: The Simplex Algorithm

# 21.2.1: Linear program where all the variables are positive 

## Rewriting an LP

$$
\begin{aligned}
\max & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { s.t. } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \text { for } i=1,2, \ldots, m
\end{aligned}
$$

(1) Rewrite: so every variable is non-negative.
(2) Replace variable $x_{i}$ by $x_{i}^{\prime}$ and $x_{i}^{\prime \prime}$, where new constraints are:
(3) Example: The (silly) LP $2 x+y \geq 5$ rewritten:


## Rewriting an LP

$$
\begin{aligned}
\max & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { s.t. } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \text { for } i=1,2, \ldots, m
\end{aligned}
$$

(1) Rewrite: so every variable is non-negative.
(2) Replace variable $x_{i}$ by $x_{i}^{\prime}$ and $x_{i}^{\prime \prime}$, where new constraints are: $x_{i}=x_{i}^{\prime}-x_{i}^{\prime \prime}, \quad x_{i}^{\prime} \geq 0 \quad$ and $\quad x_{i}^{\prime \prime} \geq 0$.
( O Example: The (silly) LP $2 x+y \geq 5$ rewritten:


## Rewriting an LP

$$
\begin{aligned}
\max & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { s.t. } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \text { for } i=1,2, \ldots, m
\end{aligned}
$$

(1) Rewrite: so every variable is non-negative.
(2) Replace variable $x_{i}$ by $x_{i}^{\prime}$ and $x_{i}^{\prime \prime}$, where new constraints are: $x_{i}=x_{i}^{\prime}-x_{i}^{\prime \prime}, \quad x_{i}^{\prime} \geq 0 \quad$ and $\quad x_{i}^{\prime \prime} \geq 0$.
(3) Example: The (silly) LP $2 x+y \geq 5$ rewritten:
$2 x^{\prime}-2 x^{\prime \prime}+y^{\prime}-y^{\prime \prime} \geq 5$,
$x^{\prime} \geq 0, y^{\prime} \geq 0$,
$\boldsymbol{x}^{\prime \prime} \geq 0$, and
$y^{\prime \prime} \geq 0$.

## Rewriting an LP into standard form

## Lemma

Given an instance $I$ of LP, one can rewrite it into an equivalent LP, such that all the variables must be non-negative. This takes linear time in the size of $I$.

## An LP where all variables must be non-negative is in standard form

## Rewriting an LP into standard form

## Lemma

Given an instance I of LP, one can rewrite it into an equivalent LP, such that all the variables must be non-negative. This takes linear time in the size of $I$.

An LP where all variables must be non-negative is in standard form

24/58

### 21.2.2: Standard form

## Standard form of LP

## A linear program in standard form.

$$
\begin{aligned}
\max & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { s.t. } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \\
& \text { for } i=1,2, \ldots, m \\
& x_{j} \geq 0
\end{aligned} \quad \text { for } j=1, \ldots, n . ~ \$
$$

26/58

## Standard form of LP

## Because everything is clearer when you use matrices. Not.

$\boldsymbol{A}=\left(\begin{array}{ccccc}a_{11} & a_{12} & \cdots & a_{1(n-1)} & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2(n-1)} & a_{2 n} \\ \vdots & \ldots & \cdots & \ldots & \vdots \\ a_{(m-1) 1} & a_{(m-1) 2} & \cdots & a_{(m-1)(n-1)} & a_{(m-1) n} \\ a_{m 1} & a_{m 2} & \cdots & a_{m(n-1)} & a_{m n}\end{array}\right)$,
$c, b$ and $A$ : prespecifi of unknowns.
Solve LP for $\boldsymbol{x}$.

## LP in standard form.

(Matrix notation.)

$$
\begin{aligned}
\max & c^{T} x \\
\text { s.t. } & A x \leq b \\
& x \geq 0
\end{aligned}
$$

$$
c=\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right), b=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right), x=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n-1} \\
x_{n}
\end{array}\right)
$$

21.2.3: Slack Form

51

## Slack Form

(1) Rewrite LP into slack form.
(2) Every inequality becomes equality.
(3) All variables must be positive.
(4) See resulting form on the right.

$$
\begin{aligned}
\max & \boldsymbol{c}^{T} x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{aligned}
$$

(1) New slack var.. Rewrite: $\sum_{i=1}^{n} a_{i} x_{i} \leq b$. As:

(2) Value of slack variable $x_{n+1}$ encodes how far is the original inequality for holding with equality.

## Slack Form

(1) Rewrite LP into slack form.
(2) Every inequality becomes equality.
(3) All variables must be positive.
(4) See resulting form on the right.

$$
\begin{aligned}
\max & \boldsymbol{c}^{T} x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{aligned}
$$

(1) New slack var. Rewrite: $\sum_{i=1}^{n} a_{i} x_{i} \leq b$. As:
(2) Value of slack variable $x_{n+1}$ encodes how far is the original inequality for holding with equality.

## Slack Form

(1) Rewrite LP into slack form.
(2) Every inequality becomes equality.
(3) All variables must be positive.
(4) See resulting form on the right.

$$
\begin{aligned}
\max & c^{T} x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{aligned}
$$

(1) New slack var. Rewrite: $\sum_{n=1}^{n} a_{i} x_{i} \leq b$. As:

$$
x_{n+1}=b-\sum_{i=1}^{n} a_{i} x_{i} \quad \text { and } x_{n+1} \geq 0
$$

(3) Value of slack variable $x_{n+1}$ encodes how far is the original inequality for holding with equality.

## Slack Form

(1) Rewrite LP into slack form.
(2) Every inequality becomes equality.
(3) All variables must be positive.
(4) See resulting form on the right.

$$
\begin{aligned}
\max & c^{T} x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{aligned}
$$

(1) New slack var.. Rewrite: ${ }_{n} \sum_{i=1}^{n} a_{i} x_{i} \leq b$. As:

$$
x_{n+1}=b-\sum_{i=1}^{n} a_{i} x_{i} \quad \text { and } x_{n+1} \geq 0
$$

(2) Value of slack variable $\boldsymbol{x}_{n+1}$ encodes how far is the original inequality for holding with equality.

## Slack form...

(1) LP now made of equalities of the form:

$$
x_{n+1}=b-\sum_{i=1}^{n} a_{i} x_{i}
$$

(2) Variables on left: basic variables
(3) Variables on right: nonbasic variables.
( LP in this form is in slack form. Linear program in slack form.


## Slack form...

(1) LP now made of equalities of the form:

$$
x_{n+1}=b-\sum_{i=1}^{n} a_{i} x_{i}
$$

(2) Variables on left: basic variables.
(3) Variables on right: nonbasic variables
(9) LP in this form is in slack form.

Linear program in slack form.


## Slack form...

(1) LP now made of equalities of the form:

$$
x_{n+1}=b-\sum_{i=1}^{n} a_{i} x_{i}
$$

(2) Variables on left: basic variables.
(3) Variables on right: nonbasic variables.
(1) LP in this form is in slack form

Linear program in slack form.


## Slack form...

(1) LP now made of equalities of the form:

$$
x_{n+1}=b-\sum_{i=1}^{n} a_{i} x_{i}
$$

(2) Variables on left: basic variables.
(3) Variables on right: nonbasic variables.
(4) LP in this form is in slack form.

Linear program in slack form.

$$
\begin{aligned}
\max & z=v+\sum_{j \in N} c_{j} x_{j} \\
\text { s.t. } & x_{i}=b_{i}-\sum_{j \in N} a_{i j} x_{j} \quad \text { for } \quad i \in B \\
& x_{i} \geq 0, \quad \forall i=1, \ldots, n+m
\end{aligned}
$$

## Basic/nonbasic



31/58

60

## Slack form formally

Because everything is clearer when you use tuples. Not.

The slack form is defined by a tuple $(\boldsymbol{N}, \boldsymbol{B}, \boldsymbol{A}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{v})$.
$\boldsymbol{B}$ - Set of indices of basic variables
$\boldsymbol{N}$ - Set of indices of nonbasic variables
$n=|N|$ - number of original variables
$b, c$ - two vectors of constants
$\boldsymbol{m}=|\boldsymbol{B}|$ - number of basic variables
(i.e., number of inequalities)
$A=\left\{a_{i j}\right\}$ - The matrix of coefficients
$N \cup B=\{1, \ldots, n+m\}$
$\boldsymbol{v}$ - objective function constant.

## Slack form formally

## Final form

$$
\begin{aligned}
\max & z=v+\sum_{j \in N} c_{j} x_{j} \\
\text { s.t. } & x_{i}=b_{i}-\sum_{j \in N} a_{i j} x_{j} \quad \text { for } \quad i \in B \\
& x_{i} \geq 0, \quad \forall i=1, \ldots, n+m
\end{aligned}
$$

## Example

Consider the following LP which is in slack form.

$$
\begin{aligned}
\max \quad z & =29-\frac{1}{9} x_{3}-\frac{1}{9} x_{5}-\frac{2}{9} x_{6} \\
x_{1} & =8+\frac{1}{6} x_{3}+\frac{1}{6} x_{5}-\frac{1}{3} x_{6} \\
x_{2} & =4-\frac{8}{3} x_{3}-\frac{2}{3} x_{5}+\frac{1}{3} x_{6} \\
x_{4} & =18-\frac{1}{2} x_{3}+\frac{1}{2} x_{5}
\end{aligned}
$$

## Example

$\ldots$..translated into tuple form $(N, B, A, b, c, v)$.

$$
\begin{aligned}
B & =\{1,2,4\}, N=\{3,5,6\} \\
A & =\left(\begin{array}{lll}
a_{13} & a_{15} & a_{16} \\
a_{23} & a_{25} & a_{26} \\
a_{43} & a_{45} & a_{46}
\end{array}\right)=\left(\begin{array}{ccc}
-1 / 6 & -1 / 6 & 1 / 3 \\
8 / 3 & 2 / 3 & -1 / 3 \\
1 / 2 & -1 / 2 & 0
\end{array}\right) \\
b & =\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{4}
\end{array}\right)=\left(\begin{array}{c}
8 \\
4 \\
18
\end{array}\right) \quad c=\left(\begin{array}{l}
c_{3} \\
c_{5} \\
c_{6}
\end{array}\right)=\left(\begin{array}{c}
-1 / 9 \\
-1 / 9 \\
-2 / 9
\end{array}\right) \\
v & =29 .
\end{aligned}
$$

Note that indices depend on the sets $\boldsymbol{N}$ and $\boldsymbol{B}$, and also that the entries in $\boldsymbol{A}$ are negation of what they appear in the slack form.

## Another example...

$$
\begin{array}{rc}
\max & 5 x_{1}+4 x_{2}+3 x_{3} \\
\text { s.t. } & 2 x_{1}+3 x_{2}+x_{3} \leq 5 \\
& 4 x_{1}+x_{2}+2 x_{3} \leq 11 \\
& 3 x_{1}+4 x_{2}+2 x_{3} \leq 8 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

## Transform into slack form...

$$
\begin{aligned}
\max & z=5 x_{1}+4 x_{2}+3 x_{3} \\
s . t . & w_{1}=5-2 x_{1}-3 x_{2}-x_{3} \\
& w_{2}=11-4 x_{1}-x_{2}-2 x_{3} \\
& w_{3}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
& x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0
\end{aligned}
$$

21.2.4: The Simplex algorithm by example

## The Simplex algorithm by example

$$
\begin{array}{rc}
\max & 5 x_{1}+4 x_{2}+3 x_{3} \\
\text { s.t. } & 2 x_{1}+3 x_{2}+x_{3} \leq 5 \\
& 4 x_{1}+x_{2}+2 x_{3} \leq 11 \\
& 3 x_{1}+4 x_{2}+2 x_{3} \leq 8 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

Next, we introduce slack variables, for example, rewriting $2 x_{1}+3 x_{2}+x_{3} \leq 5$ as the constraints: $w_{1} \geq 0$ and $w_{1}=5-2 x_{1}-3 x_{2}-x_{3}$. The resulting LP in slack form is

$$
\begin{aligned}
\max & z=5 x_{1}+4 x_{2}+3 x_{3} \\
\text { s.t. } & w_{1}=5-2 x_{1}-3 x_{2}-x_{3} \\
& w_{2}=11-4 x_{1}-x_{2}-2 x_{3} \\
& w_{3}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
& x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0
\end{aligned}
$$

## Example continued I...

$\max \quad z=5 x_{1}+4 x_{2}+3 x_{3}$
s.t. $\quad w_{1}=5-2 x_{1}-3 x_{2}-x_{3}$

$$
w_{2}=11-4 x_{1}-x_{2}-2 x_{3}
$$

(1) $w_{1}, w_{2}, w_{3}$ : slack variables (Also currently basic variables)
(2) Consider the slack representation trivial

$$
w_{3}=8-3 x_{1}-4 x_{2}-2 x_{3}
$$ solution...

$$
x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0
$$

all non-basic variables assigned zero:
$x_{1}=x_{2}=x_{3}=0$
( $) \Longrightarrow w_{1}=5, w_{2}=11$ and $w_{3}=8$.
(2) Feasible!
(3) Objection function value: $z=0$.
(- Further improve the value of objective function (i.e., z). While keeping feasibility.

## Example continued I...

$$
\begin{aligned}
\max & z=5 x_{1}+4 x_{2}+3 x_{3} \\
s . t . & w_{1}=5-2 x_{1}-3 x_{2}-x_{3} \\
& w_{2}=11-4 x_{1}-x_{2}-2 x_{3} \\
& w_{3}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
& x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0
\end{aligned}
$$

(1) $w_{1}, w_{2}, w_{3}$ : slack variables. (Also currently basic variables).
(2) Consider the slack
representation trivial solution..
all non-basic variables assigned zero: $x_{1}=x_{2}=x_{3}=0$

## Example continued I...

$$
\begin{aligned}
\max & z=5 x_{1}+4 x_{2}+3 x_{3} \\
\text { s.t. } & w_{1}=5-2 x_{1}-3 x_{2}-x_{3} \\
& w_{2}=11-4 x_{1}-x_{2}-2 x_{3} \\
& w_{3}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
& x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0
\end{aligned}
$$

(1) $w_{1}, w_{2}, w_{3}$ : slack variables. (Also currently basic variables).
(2) Consider the slack representation trivial solution...
all non-basic variables assigned zero:

$$
x_{1}=x_{2}=x_{3}=0
$$

## Example continued I...

$$
\begin{aligned}
\max & z=5 x_{1}+4 x_{2}+3 x_{3} \\
s . t . & w_{1}=5-2 x_{1}-3 x_{2}-x_{3} \\
& w_{2}=11-4 x_{1}-x_{2}-2 x_{3} \\
& w_{3}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
& x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0
\end{aligned}
$$

(1) $w_{1}, w_{2}, w_{3}$ : slack variables. (Also currently basic variables).
(2) Consider the slack representation trivial solution...
all non-basic variables assigned zero:

$$
x_{1}=x_{2}=x_{3}=0
$$

(1) $\Longrightarrow w_{1}=5, w_{2}=11$ and $w_{3}=8$.
(2) Feasible!
(3) Objection function value: $z=0$.
( ( Further improve the value of objective function (i.e., z). While keeping feasibility.

## Example continued I...

$\max \quad z=5 x_{1}+4 x_{2}+3 x_{3}$
s.t. $\quad w_{1}=5-2 x_{1}-3 x_{2}-x_{3}$

$$
w_{2}=11-4 x_{1}-x_{2}-2 x_{3}
$$

$$
w_{3}=8-3 x_{1}-4 x_{2}-2 x_{3}
$$

$$
x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0
$$

(1) $w_{1}, w_{2}, w_{3}$ : slack variables. (Also currently basic variables).
(2) Consider the slack representation trivial solution...
all non-basic variables assigned zero:

$$
x_{1}=x_{2}=x_{3}=0
$$

(1) $\Longrightarrow w_{1}=5, w_{2}=11$ and $w_{3}=8$.
(2) Feasible!
(3) Objection function value: $z=0$.
(다 Further improve the value of objective function (i.e., $z$ ). While keeping feasibility.

## Example continued I...

$\max \quad z=5 x_{1}+4 x_{2}+3 x_{3}$
s.t. $\quad w_{1}=5-2 x_{1}-3 x_{2}-x_{3}$

$$
\begin{aligned}
& w_{2}=11-4 x_{1}-x_{2}-2 x_{3} \\
& w_{3}=8-3 x_{1}-4 x_{2}-2 x_{3}
\end{aligned}
$$

$$
x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0
$$

(1) $w_{1}, w_{2}, w_{3}$ : slack variables. (Also currently basic variables).
(2) Consider the slack representation trivial solution...
all non-basic variables assigned zero:

$$
x_{1}=x_{2}=x_{3}=0
$$

(1) $\Longrightarrow w_{1}=5, w_{2}=11$ and $w_{3}=8$.
(2) Feasible!
(3) Objection function value: $\boldsymbol{z = 0}$.
( - Further improve the value of objective function (i.e., z). While keeping feasibility.

## Example continued I...

$\max \quad z=5 x_{1}+4 x_{2}+3 x_{3}$
s.t. $\quad w_{1}=5-2 x_{1}-3 x_{2}-x_{3}$

$$
w_{2}=11-4 x_{1}-x_{2}-2 x_{3}
$$

$$
w_{3}=8-3 x_{1}-4 x_{2}-2 x_{3}
$$

$$
x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0
$$

(1) $w_{1}, w_{2}, w_{3}$ : slack variables. (Also currently basic variables).
(2) Consider the slack representation trivial solution...
all non-basic variables assigned zero:

$$
x_{1}=x_{2}=x_{3}=0
$$

(1) $\Longrightarrow w_{1}=5, w_{2}=11$ and $w_{3}=8$.
(2) Feasible!
(3) Objection function value: $z=0$.
(9) Further improve the value of objective function (i.e., $\boldsymbol{z}$ ). While keeping feasibility.

## Example continued II...

$\max \quad z=5 x_{1}+4 x_{2}+3 x_{3}$
s.t. $\quad w_{1}=5-2 x_{1}-3 x_{2}-x_{3}$

$$
w_{2}=11-4 x_{1}-x_{2}-2 x_{3}
$$

$$
w_{3}=8-3 x_{1}-4 x_{2}-2 x_{3}
$$

$$
x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0
$$

(1) $x_{1}=x_{2}=x_{3}=0$

$$
\Longrightarrow w_{1}=5
$$

(2) All $w_{i}$ positive - change $x_{i}$ a bit does not change feasibility.
(1) $z=5 x_{1}+4 x_{2}+3 x_{3}$ : want to increase values of $x_{1}$ s... since $z$ increases (since $5>0$ ).
(2) How much to increase $x_{1}$ ???
(3) Careful! Might break feasibility.

4 Increase $\boldsymbol{x}_{1}$ as much as nossible without breaking feasibility!

## Example continued II...

$$
\begin{aligned}
\max & z=5 x_{1}+4 x_{2}+3 x_{3} \\
s . t . & w_{1}=5-2 x_{1}-3 x_{2}-x_{3} \\
& w_{2}=11-4 x_{1}-x_{2}-2 x_{3} \\
& w_{3}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
& x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0
\end{aligned}
$$

(1) $x_{1}=x_{2}=x_{3}=0$
$\Longrightarrow w_{1}=5$,
$w_{2}=11$ and $w_{3}=8$.
(2) All $w_{i}$ positive - change $x_{i}$ a bit does not change feasibility.
(1) $z=5 x_{1}+4 x_{2}+3 x_{3}$ : want to increase values of $x_{1}$ s... since $z$ increases (since $5>0$ ).
(2) How much to increase $x_{1}$ ???
(3) Careful! Might break feasibility.

4 Increase $\boldsymbol{x}_{1}$ as much as nossible without breaking feasibility!

## Example continued II...

$$
\begin{aligned}
\max & z=5 x_{1}+4 x_{2}+3 x_{3} \\
s . t . & w_{1}=5-2 x_{1}-3 x_{2}-x_{3} \\
& w_{2}=11-4 x_{1}-x_{2}-2 x_{3} \\
& w_{3}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
& x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0
\end{aligned}
$$

(1) $x_{1}=x_{2}=x_{3}=0$
$\Longrightarrow w_{1}=5$,
$w_{2}=11$ and $w_{3}=8$.
(2) All $w_{i}$ positive - change $x_{i}$ a bit does not change feasibility.
(1) $z=5 x_{1}+4 x_{2}+3 x_{3}$ : want to increase values of $x_{1}$ s... since $z$ increases (since $5>0$ ).
(2) How much to increase $x_{1}$ ???
(3) Careful! Might break feasibility.
4. Increase $x_{1}$ as much as possible without breaking feasibility!

## Example continued II...

$$
\begin{aligned}
\max & z=5 x_{1}+4 x_{2}+3 x_{3} \\
s . t . & w_{1}=5-2 x_{1}-3 x_{2}-x_{3} \\
& w_{2}=11-4 x_{1}-x_{2}-2 x_{3} \\
& w_{3}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
& x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0
\end{aligned}
$$

(1) $x_{1}=x_{2}=x_{3}=0$
$\Longrightarrow w_{1}=5$,
$w_{2}=11$ and $w_{3}=8$.
(2) All $w_{i}$ positive - change $x_{i}$ a bit does not change feasibility.
(1) $z=5 x_{1}+4 x_{2}+3 x_{3}$ : want to increase values of $x_{1} \mathrm{~s} \ldots$ since $z$ increases (since $5>0$ ).
(2) How much to increase $x_{1}$ ???
(3) Careful! Might break feasibility.
(응 Increase $x_{1}$ as much as possible without breaking feasibility!

## Example continued II...

$$
\begin{aligned}
\max & z=5 x_{1}+4 x_{2}+3 x_{3} \\
s . t . & w_{1}=5-2 x_{1}-3 x_{2}-x_{3} \\
& w_{2}=11-4 x_{1}-x_{2}-2 x_{3} \\
& w_{3}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
& x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0
\end{aligned}
$$

(1) $x_{1}=x_{2}=x_{3}=0$
$\Longrightarrow w_{1}=5$,
$w_{2}=11$ and $w_{3}=8$.
(2) All $w_{i}$ positive - change $x_{i}$ a bit does not change feasibility.
(1) $z=5 x_{1}+4 x_{2}+3 x_{3}$ : want to increase values of $x_{1} \mathrm{~s} \ldots$ since $z$ increases (since $5>0$ ).
(2) How much to increase $x_{1}$ ???
© Careful! Might break feasibility.
(ㄷ) Increase $x_{1}$ as much as possible without breaking feasibility!

## Example continued II...

$$
\begin{aligned}
\max & z=5 x_{1}+4 x_{2}+3 x_{3} \\
s . t . & w_{1}=5-2 x_{1}-3 x_{2}-x_{3} \\
& w_{2}=11-4 x_{1}-x_{2}-2 x_{3} \\
& w_{3}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
& x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0
\end{aligned}
$$

(1) $x_{1}=x_{2}=x_{3}=0$
$\Longrightarrow w_{1}=5$,
$w_{2}=11$ and $w_{3}=8$.
(2) All $w_{i}$ positive - change $x_{i}$ a bit does not change feasibility.
(1) $z=5 x_{1}+4 x_{2}+3 x_{3}$ : want to increase values of $x_{1} \mathrm{~s} \ldots$ since $z$ increases (since $5>0$ ).
(2) How much to increase $x_{1}$ ???
(3) Careful! Might break feasibility.
(ㅇ) Increase $x_{1}$ as much as possible without breaking feasibility!

## Example continued II...

$$
\begin{aligned}
\max & z=5 x_{1}+4 x_{2}+3 x_{3} \\
s . t . & w_{1}=5-2 x_{1}-3 x_{2}-x_{3} \\
& w_{2}=11-4 x_{1}-x_{2}-2 x_{3} \\
& w_{3}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
& x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0
\end{aligned}
$$

(1) $x_{1}=x_{2}=x_{3}=0$
$\Longrightarrow w_{1}=5$,
$w_{2}=11$ and $w_{3}=8$.
(2) All $w_{i}$ positive - change $x_{i}$ a bit does not change feasibility.
(1) $z=5 x_{1}+4 x_{2}+3 x_{3}$ : want to increase values of $x_{1} \mathrm{~s} \ldots$ since $z$ increases (since $5>0$ ).
(2) How much to increase $x_{1}$ ???
(3) Careful! Might break feasibility.
(4) Increase $x_{1}$ as much as possible without breaking feasibility!

## Example continued III...

Set $x_{2}=x_{3}=0$

$$
\begin{aligned}
\max & z=5 x_{1}+4 x_{2}+3 x_{3} \\
s . t . & w_{1}=5-2 x_{1}-3 x_{2}-x_{3} \\
& w_{2}=11-4 x_{1}-x_{2}-2 x_{3} \\
& w_{3}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
& x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0
\end{aligned}
$$

(1) Want to increase $x_{1}$ as much as possible, as long as:


82

## Example continued III...

Set $x_{2}=x_{3}=0$

|  |  |
| ---: | :---: | :---: |
| $\max$ | $z=5 x_{1}+4 x_{2}+3 x_{3}$ |
| s.t. | $w_{1}=5-2 x_{1}-3 x_{2}-x_{3}$ |
|  | $w_{2}=11-4 x_{1}-x_{2}-2 x_{3}$ |
|  | $w_{3}=8-3 x_{1}-4 x_{2}-2 x_{3}$ |
|  | $x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0$ |

$$
\begin{aligned}
w_{1} & =5-2 x_{1}-3 x_{2}-x_{3} \\
& =5-2 x_{1} \\
w_{2} & =11-4 x_{1}-x_{2}-2 x_{3} \\
& =11-4 x_{1} \\
w_{3} & =8-3 x_{1}-4 x_{2}-2 x_{3} \\
& =8-3 x_{1} .
\end{aligned}
$$

(1) Want to increase $x_{1}$ as much as possible, as long as:
and $w_{3}=8-3 x_{1} \geq 0$.

83

## Example continued III...

$$
\text { Set } x_{2}=x_{3}=0
$$

|  |  |
| :---: | :---: |
| $\max$ | $z=5 x_{1}+4 x_{2}+3 x_{3}$ |
| s.t. | $w_{1}=5-2 x_{1}-3 x_{2}-x_{3}$ |
|  | $w_{2}=11-4 x_{1}-x_{2}-2 x_{3}$ |
|  | $w_{3}=8-3 x_{1}-4 x_{2}-2 x_{3}$ |
|  | $x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0$ |

$$
\begin{aligned}
w_{1} & =5-2 x_{1}-3 x_{2}-x_{3} \\
& =5-2 x_{1} \\
w_{2} & =11-4 x_{1}-x_{2}-2 x_{3} \\
& =11-4 x_{1} \\
w_{3} & =8-3 x_{1}-4 x_{2}-2 x_{3} \\
& =8-3 x_{1} .
\end{aligned}
$$

(1) Want to increase $x_{1}$ as much as possible, as long as:

$$
\begin{aligned}
w_{1} & =5-2 x_{1} \geq 0 \\
w_{2} & =11-4 x_{1} \geq 0 \\
\text { and } w_{3} & =8-3 x_{1} \geq 0
\end{aligned}
$$

## Example continued IV...

(1) Constraints:

$$
\begin{align*}
\max & z=5 x_{1}+4 x_{2}+3 x_{3} \\
s . t . & w_{1}=5-2 x_{1}-3 x_{2}-x_{3} \\
& w_{2}=11-4 x_{1}-x_{2}-2 x_{3} \\
& w_{3}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
& x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0 \tag{2}
\end{align*}
$$

(1) Maximum we can increase $x_{1}$ is 2.5

$$
\begin{aligned}
w_{1} & =5-2 x_{1} \geq 0, \\
w_{2} & =11-4 x_{1} \geq 0, \\
\text { and } w_{3} & =8-3 x_{1} \geq 0 .
\end{aligned}
$$

(2) $x_{1}=2.5, x_{2}=0, x_{3}=0, w_{1}=0, w_{2}=1, w_{3}=0.5$
$z=5 x_{1}+4 x_{2}+3 x_{3}=12.5$.
(3) Improved target!

4 A nonbasic variable $x_{1}$ is now non-zero. One basic variable $\left(w_{1}\right)$ became zero.

## Example continued IV...

(1) Constraints:

$$
\begin{aligned}
\max & z=5 x_{1}+4 x_{2}+3 x_{3} \\
s . t . & w_{1}=5-2 x_{1}-3 x_{2}-x_{3} \\
& w_{2}=11-4 x_{1}-x_{2}-2 x_{3} \\
& w_{3}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
& x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0
\end{aligned}
$$

(1) Maximum we can increase $x$
,
(2) $x_{1} \leq 2.5$,
$x_{1} \leq 11 / 4=2.75$ and $x_{1} \leq 8 / 3=2.66$
(3) Improved target!
(9) A nonbasic variable $x_{1}$ is now non-zero. One basic variable $\left(w_{1}\right)$ became zero.

$$
\begin{aligned}
w_{1} & =5-2 x_{1} \geq 0 \\
w_{2} & =11-4 x_{1} \geq 0 \\
\text { and } w_{3} & =8-3 x_{1} \geq 0
\end{aligned}
$$ $0, w_{2}=1, w_{3}=0.5$

$x_{1}+4 x_{2}$

## Example continued IV...

(1) Constraints:

$$
\begin{aligned}
\max & z=5 x_{1}+4 x_{2}+3 x_{3} \\
s . t . & w_{1}=5-2 x_{1}-3 x_{2}-x_{3} \\
& w_{2}=11-4 x_{1}-x_{2}-2 x_{3} \\
& w_{3}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
& x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0
\end{aligned}
$$

(1) Maximum we can increase $x_{1}$ is 2.5. $x_{1} \leq 8 / 3=2.66$
(2) $x_{1}=2.5, x_{2}=0, x_{3}=0, w_{1}=0, w_{2}=1, w_{3}=0.5$
(3) Improved target!

4 A nonbasic variable $x_{1}$ is now non-zero. One basic variable $\left(w_{1}\right)$ became zero.

## Example continued IV...

(1) Constraints:

$$
\begin{aligned}
\max & z=5 x_{1}+4 x_{2}+3 x_{3} \\
s . t . & w_{1}=5-2 x_{1}-3 x_{2}-x_{3} \\
& w_{2}=11-4 x_{1}-x_{2}-2 x_{3} \\
& w_{3}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
& x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0
\end{aligned}
$$

$$
\begin{aligned}
w_{1} & =5-2 x_{1} \geq 0, \\
w_{2} & =11-4 x_{1} \geq 0, \\
\text { and } w_{3} & =8-3 x_{1} \geq 0 .
\end{aligned}
$$

(3) $x_{1} \leq 2.5$,
$x_{1} \leq 11 / 4=2.75$ and
(1) Maximum we can increase $x_{1}$ is 2.5. $x_{1} \leq 8 / 3=2.66$
(2) $x_{1}=2.5, x_{2}=0, x_{3}=0, w_{1}=0, w_{2}=1, w_{3}=0.5$

$$
\Rightarrow \quad z=5 x_{1}+4 x_{2}+3 x_{3}=12.5 .
$$

(3) Improved target

4 A nonbasic variable $x_{1}$ is now non-zero. One basic variable $\left(w_{1}\right)$ became zero.

## Example continued IV...

(1) Constraints:

$$
\begin{aligned}
\max & z=5 x_{1}+4 x_{2}+3 x_{3} \\
s . t . & w_{1}=5-2 x_{1}-3 x_{2}-x_{3} \\
& w_{2}=11-4 x_{1}-x_{2}-2 x_{3} \\
& w_{3}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
& x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0
\end{aligned}
$$

$$
\begin{aligned}
w_{1} & =5-2 x_{1} \geq 0, \\
w_{2} & =11-4 x_{1} \geq 0, \\
\text { and } w_{3} & =8-3 x_{1} \geq 0 .
\end{aligned}
$$

(3) $x_{1} \leq 2.5$,
$x_{1} \leq 11 / 4=2.75$ and
(1) Maximum we can increase $x_{1}$ is 2.5. $x_{1} \leq 8 / 3=2.66$
(2) $x_{1}=2.5, x_{2}=0, x_{3}=0, w_{1}=0, w_{2}=1, w_{3}=0.5$

$$
\Rightarrow \quad z=5 x_{1}+4 x_{2}+3 x_{3}=12.5
$$

(3) Improved target!
(4) A nonbasic variable $x_{1}$ is now non-zero. One basic variable $\left(w_{1}\right)$ became zero.

## Example continued IV...

(1) Constraints:

$$
\begin{aligned}
\max & z=5 x_{1}+4 x_{2}+3 x_{3} \\
s . t . & w_{1}=5-2 x_{1}-3 x_{2}-x_{3} \\
& w_{2}=11-4 x_{1}-x_{2}-2 x_{3} \\
& w_{3}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
& x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0
\end{aligned}
$$

$$
\begin{aligned}
w_{1} & =5-2 x_{1} \geq 0, \\
w_{2} & =11-4 x_{1} \geq 0, \\
\text { and } w_{3} & =8-3 x_{1} \geq 0 .
\end{aligned}
$$

(3) $x_{1} \leq 2.5$,
$x_{1} \leq 11 / 4=2.75$ and
(1) Maximum we can increase $x_{1}$ is 2.5. $x_{1} \leq 8 / 3=2.66$
(2) $x_{1}=2.5, x_{2}=0, x_{3}=0, w_{1}=0, w_{2}=1, w_{3}=0.5$

$$
\Rightarrow \quad z=5 x_{1}+4 x_{2}+3 x_{3}=12.5
$$

(3) Improved target!
(4) A nonbasic variable $x_{1}$ is now non-zero. One basic variable $\left(w_{1}\right)$ became zero.

## Example continued V...

$\max \quad z=5 x_{1}+4 x_{2}+3 x_{3}$
(1) $x_{1}=2.5, x_{2}=$
$0, x_{3}=0, w_{1}=$
$0, w_{2}=1, w_{3}=0.5$
s.t. $\quad w_{1}=5-2 x_{1}-3 x_{2}-x_{3}$
$w_{2}=11-4 x_{1}-x_{2}-2 x_{3}$
$w_{3}=8-3 x_{1}-4 x_{2}-2 x_{3}$
$x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0$
(1) Want to keep invariant: All non-basic variables in current solution are zero.
(2) Idea: Fxchange $\boldsymbol{x}_{1}$ and $w_{1}$ !
(3) Consider equality LP with $w_{1}$ and $x_{1}$
$w_{1}=5-2 x_{1}-3 x_{2}-x_{3}$.
(9) Rewrite as: $x_{1}=2.5-0.5 w_{1}-1.5 x_{2}-0.5 x_{3}$

## Example continued V...

$\max \quad z=5 x_{1}+4 x_{2}+3 x_{3}$
(1) $x_{1}=2.5, x_{2}=$
$0, x_{3}=0, w_{1}=$
$0, w_{2}=1, w_{3}=0.5$
s.t. $\quad w_{1}=5-2 x_{1}-3 x_{2}-x_{3}$

$$
w_{2}=11-4 x_{1}-x_{2}-2 x_{3}
$$

$$
w_{3}=8-3 x_{1}-4 x_{2}-2 x_{3}
$$

$$
x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0
$$

(1) Want to keep invariant: All non-basic variables in current solution are zero.
(2) Idea: Exchange $x_{1}$ and $w_{1}$ !
(3) Consider equality LP with $w_{1}$ and $x_{1}$
$w_{1}=5-2 x_{1}-3 x_{2}-x_{3}$
(9) Rewrite as: $x_{1}=2.5-0.5 w_{1}-1.5 x_{2}-0.5 x_{3}$.

## Example continued V...

$\max \quad z=5 x_{1}+4 x_{2}+3 x_{3}$
s.t. $\quad w_{1}=5-2 x_{1}-3 x_{2}-x_{3}$
$w_{2}=11-4 x_{1}-x_{2}-2 x_{3}$
$w_{3}=8-3 x_{1}-4 x_{2}-2 x_{3}$
$x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0$
(1) $x_{1}=2.5, x_{2}=$
$0, x_{3}=0, w_{1}=$
$0, w_{2}=1, w_{3}=0.5$
(2) A nonbasic variable $x_{1}$ is now non-zero. One basic variable $\left(w_{1}\right)$ became zero.
(1) Want to keep invariant: All non-basic variables in current solution are zero...
(2) Idea: Exchange $x_{1}$ and $w_{1}$ !
(3) Consider equality LP with $w_{1}$ and $x_{1}$. $w_{1}=5-2 x_{1}-3 x_{2}-x_{3}$.
(9) Rewrite as: $x_{1}=2.5-0.5 w_{1}-1.5 x_{2}-0.5 x_{3}$.

## Example continued V...

$\max \quad z=5 x_{1}+4 x_{2}+3 x_{3}$
s.t. $\quad w_{1}=5-2 x_{1}-3 x_{2}-x_{3}$
$w_{2}=11-4 x_{1}-x_{2}-2 x_{3}$
$w_{3}=8-3 x_{1}-4 x_{2}-2 x_{3}$
$x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0$
(1) $x_{1}=2.5, x_{2}=$
$0, x_{3}=0, w_{1}=$
$0, w_{2}=1, w_{3}=0.5$
(2) A nonbasic variable $x_{1}$ is now non-zero. One basic variable $\left(w_{1}\right)$ became zero.
(1) Want to keep invariant: All non-basic variables in current solution are zero...
(2) Idea: Exchange $x_{1}$ and $w_{1}$ !
(3) Consider equality LP with $w_{1}$ and $x_{1}$. $w_{1}=5-2 x_{1}-3 x_{2}-x_{3}$.
(4) Rewrite as: $x_{1}=2.5-0.5 w_{1}-1.5 x_{2}-0.5 x_{3}$.

## Example continued VI...

## Substituting $\mathrm{x}_{1}=5-2 \mathrm{x}_{1}-3 \mathrm{x}_{2}-\mathrm{x}_{3}$, the new LP

$\max \quad z=12.5-2.5 w_{1}-3.5 x_{2}+0.5 x_{3}$

$$
x_{1}=2.5-0.5 w_{1}-1.5 x_{2}-0.5 x_{3}
$$

$$
w_{2}=1+2 w_{1}+5 x_{2}
$$

$$
w_{3}=0.5+1.5 w_{1}+0.5 x_{2}-0.5 x_{3}
$$

(1) nonbasic variables: $\left\{w_{1}, x_{2}, x_{3}\right\}$
basic variables: $\left\{x_{1}, w_{2}, w_{3}\right\}$.
(2) Trivial solution: all nonbasic variables $=0$ is feasible
(3) $w_{1}=x_{2}=x_{3}=0$. Value: $z=12.5$.

## Example continued VI...

## Substituting $\mathrm{x}_{1}=5-2 \mathrm{x}_{1}-3 \mathrm{x}_{2}-\mathrm{x}_{3}$, the new LP

$$
\begin{aligned}
\max & z=12.5-2.5 w_{1}-3.5 x_{2}+0.5 x_{3} \\
& x_{1}=2.5-0.5 w_{1}-1.5 x_{2}-0.5 x_{3} \\
& w_{2}=1+2 w_{1}+5 x_{2} \\
& w_{3}
\end{aligned}=0.5+1.5 w_{1}+0.5 x_{2}-0.5 x_{3} .
$$

(1) nonbasic variables: $\left\{w_{1}, x_{2}, x_{3}\right\}$
basic variables: $\left\{x_{1}, w_{2}, w_{3}\right\}$.
(2) Trivial solution: all nonbasic variables $=0$ is feasible.
(3) $w_{1}=x_{2}=x_{3}=0$. Value: $z=12.5$.

## Example continued VI...

## Substituting $\mathrm{x}_{1}=5-2 \mathrm{x}_{1}-3 \mathrm{x}_{2}-\mathrm{x}_{3}$, the new LP

$$
\begin{aligned}
\max & z=12.5-2.5 w_{1}-3.5 x_{2}+0.5 x_{3} \\
& x_{1}=2.5-0.5 w_{1}-1.5 x_{2}-0.5 x_{3} \\
w_{2} & =1+2 w_{1}+5 x_{2} \\
& w_{3}
\end{aligned}=0.5+1.5 w_{1}+0.5 x_{2}-0.5 x_{3} .
$$

(1) nonbasic variables: $\left\{w_{1}, x_{2}, x_{3}\right\}$
basic variables: $\left\{x_{1}, w_{2}, w_{3}\right\}$.
(2) Trivial solution: all nonbasic variables $=0$ is feasible.
(3) $w_{1}=x_{2}=x_{3}=0$. Value: $z=12.5$.

## Example continued VII...

(1) Rewriting stop done is called pivoting.
(2) pivoted on $x_{1}$
(3) Continue pivoting till reach optimal solution.

$$
\begin{aligned}
\max & z=12.5-2.5 w_{1}-3.5 x_{2}+0.5 x_{3} \\
x_{1} & =2.5-0.5 w_{1}-1.5 x_{2}-0.5 x_{3} \\
w_{2} & =1+2 w_{1}+5 x_{2} \\
& w_{3}=0.5+1.5 w_{1}+0.5 x_{2}-0.5 x_{3} .
\end{aligned}
$$

( Can not pivot on $w_{1}$, since if $w_{1}$ increase, then $z$ decreases. Bad.
(3) Can not pivot on $x_{2}$ (coefficient in objective function is -3.5 ).
(0) Can only pivot on $x_{3}$ since its coefficient ub objective 0.5 . Positive number.

## Example continued VII...

(1) Rewriting stop done is called pivoting.
(2) pivoted on $x_{1}$.
(3) Continue pivoting till reach optimal solution.

$$
\begin{aligned}
\max & z=12.5-2.5 w_{1}-3.5 x_{2}+0.5 x_{3} \\
& x_{1}=2.5-0.5 w_{1}-1.5 x_{2}-0.5 x_{3} \\
w_{2} & =1+2 w_{1}+5 x_{2} \\
& w_{3}
\end{aligned}
$$

(9) Can not pivot on $w_{1}$, since if $w_{1}$ increase, then $z$ decreases. Bad.
(3) Can not pivot on $x_{2}$ (coefficient in objective function is -3.5 )
(6) Can only pivot on $x_{3}$ since its coefficient ub objective 0.5 . Positive number.

## Example continued VII...

(1) Rewriting stop done is called pivoting.
(2) pivoted on $x_{1}$.
(3) Continue pivoting till reach optimal solution.

(3) Can not pivot on $w_{1}$, since if $w_{1}$ increase, then $z$ decreases. Bad.
(3) Can not pivot on $x_{2}$ (coefficient in objective function is -3.5 )
(0) Can only pivot on $x_{3}$ since its coefficient ub objective 0.5 . Positive number

## Example continued VII...

(1) Rewriting stop done is called pivoting.
(2) pivoted on $x_{1}$.
(0) Continue pivoting till reach optimal solution.

$$
\begin{aligned}
\max & z=12.5-2.5 w_{1}-3.5 x_{2}+0.5 x_{3} \\
& x_{1}=2.5-0.5 w_{1}-1.5 x_{2}-0.5 x_{3} \\
& w_{2}=1+2 w_{1}+5 x_{2} \\
& w_{3} \\
& 0.5+1.5 w_{1}+0.5 x_{2}-0.5 x_{3}
\end{aligned}
$$

(4) Can not pivot on $w_{1}$, since if $w_{1}$ increase, then $z$ decreases. Bad

- Can not pivot on $x_{2}$ (coefficient in objective function is -3.5 )
(5) Can only pivot on $x_{3}$ since its coefficient ub objective 0.5 Positive number.


## Example continued VII...

(1) Rewriting stop done is called pivoting.
(2) pivoted on $x_{1}$.
(0) Continue pivoting till reach optimal solution.

$$
\begin{aligned}
\max & z=12.5-2.5 w_{1}-3.5 x_{2}+0.5 x_{3} \\
& x_{1}=2.5-0.5 w_{1}-1.5 x_{2}-0.5 x_{3} \\
& w_{2}=1+2 w_{1}+5 x_{2} \\
& w_{3}=0.5+1.5 w_{1}+0.5 x_{2}-0.5 x_{3} .
\end{aligned}
$$

(4) Can not pivot on $w_{1}$, since if $w_{1}$ increase, then $z$ decreases. Bad.
(5) Can not pivot on $x_{2}$ (coefficient in objective function is -3.5 )
(6) Can only pivot on $x_{3}$ since its coefficient ub objective 0.5 . Positive number.

## Example continued VII...

(1) Rewriting stop done is called pivoting.
(2) pivoted on $x_{1}$.
(0) Continue pivoting till reach optimal solution.

$$
\begin{array}{rlr}
\max & z=12.5-2.5 w_{1}-3.5 x_{2}+0.5 x_{3} \\
& x_{1}=2.5-0.5 w_{1}-1.5 x_{2}-0.5 x_{3} \\
& w_{2}=1+2 w_{1}+5 x_{2} \\
& w_{3}=0.5+1.5 w_{1}+0.5 x_{2}-0.5 x_{3} .
\end{array}
$$

(4) Can not pivot on $w_{1}$, since if $w_{1}$ increase, then $z$ decreases. Bad.
(5) Can not pivot on $x_{2}$ (coefficient in objective function is $\mathbf{- 3 . 5}$ ).
(0) Can only pivot on $x_{3}$ since its coefficient ub objective 0.5 Positive number.

## Example continued VII...

(1) Rewriting stop done is called pivoting.
(2) pivoted on $x_{1}$.
(0) Continue pivoting till reach optimal solution.

$$
\begin{aligned}
\max & z=12.5-2.5 w_{1}-3.5 x_{2}+0.5 x_{3} \\
& x_{1}=2.5-0.5 w_{1}-1.5 x_{2}-0.5 x_{3} \\
& w_{2}=1+2 w_{1}+5 x_{2} \\
& w_{3}=0.5+1.5 w_{1}+0.5 x_{2}-0.5 x_{3} .
\end{aligned}
$$

(4) Can not pivot on $w_{1}$, since if $w_{1}$ increase, then $z$ decreases. Bad.
(5) Can not pivot on $x_{2}$ (coefficient in objective function is -3.5 ).
(6) Can only pivot on $x_{3}$ since its coefficient ub objective $\mathbf{0 . 5}$. Positive number.

## Example continued VIII...

$$
\begin{aligned}
\max & z=12.5-2.5 w_{1}-3.5 x_{2}+0.5 x_{3} \\
& x_{1}=2.5-0.5 w_{1}-1.5 x_{2}-0.5 x_{3} \\
& w_{2}=1+2 w_{1}+5 x_{2} \\
& w_{3}=0.5+1.5 w_{1}+0.5 x_{2}-0.5 x_{3}
\end{aligned}
$$

(1) Can only pivot on $x_{3} \ldots$
(2) $x_{1}$ can only be increased to 1 before $w_{3}=0$.

(5) Substituting into LP, we get the following LP


## Example continued VIII...

$$
\begin{aligned}
\max & z=12.5-2.5 w_{1}-3.5 x_{2}+0.5 x_{3} \\
& x_{1}=2.5-0.5 w_{1}-1.5 x_{2}-0.5 x_{3} \\
& w_{2}
\end{aligned}=1+2 w_{1}+5 x_{2} .
$$

(1) Can only pivot on $x_{3} \ldots$
(2) $x_{1}$ can only be increased to 1 before $w_{3}=0$.
(3) Rewriting the equality for $w_{3}$ in LP:
$w_{3}=0.5+1.5 w_{1}+0.5 x_{2}-0.5 x_{3}$,
(9) ..for $x_{3}$ : $x_{3}=1+3 w_{1}+x_{2}-2 w_{3}$.
(5) Substituting into LP, we get the following LP.

$$
\begin{aligned}
\max & z=13-w_{1}-3 x_{2}-w_{3} \\
\text { s.t. } & x_{1}=2-2 w_{1}-2 x_{2}+w_{3} \\
& w_{2}=1+2 w_{1}+5 x_{2} \\
& x_{3}=1+3 w_{1}+x_{2}-2 w_{3} \\
& 106
\end{aligned}
$$

## Example continued - can this be further improved?

$$
\begin{aligned}
\max & z=13-w_{1}-3 x_{2}-w_{3} \\
\text { s.t. } & x_{1}=2-2 w_{1}-2 x_{2}+w_{3} \\
& w_{2}=1+2 w_{1}+5 x_{2} \\
& x_{3}=1+3 w_{1}+x_{2}-2 w_{3}
\end{aligned}
$$

## Example continued - can this be further improved?

$$
\begin{aligned}
\max & z=13-w_{1}-3 x_{2}-w_{3} \\
\text { s.t. } & x_{1}=2-2 w_{1}-2 x_{2}+w_{3} \\
& w_{2}=1+2 w_{1}+5 x_{2} \\
& x_{3}=1+3 w_{1}+x_{2}-2 w_{3}
\end{aligned}
$$

(1) NO !
(3) All coefficients in objective negative (or zero)
(3) trivial solution (all nonbasic variables zero) is maximal.

## Example continued - can this be further improved?

$$
\begin{aligned}
\max & z=13-w_{1}-3 x_{2}-w_{3} \\
\text { s.t. } & x_{1}=2-2 w_{1}-2 x_{2}+w_{3} \\
& w_{2}=1+2 w_{1}+5 x_{2} \\
& x_{3}=1+3 w_{1}+x_{2}-2 w_{3}
\end{aligned}
$$

(1) NO !
(2) All coefficients in objective negative (or zero).
(3) trivial solution (all nonbasic variables zero) is maximal.

## Example continued - can this be further improved?

$$
\begin{aligned}
\max & z=13-w_{1}-3 x_{2}-w_{3} \\
\text { s.t. } & x_{1}=2-2 w_{1}-2 x_{2}+w_{3} \\
& w_{2}=1+2 w_{1}+5 x_{2} \\
& x_{3}=1+3 w_{1}+x_{2}-2 w_{3}
\end{aligned}
$$

(1) NO !
(2) All coefficients in objective negative (or zero).
(3) trivial solution (all nonbasic variables zero) is maximal.

## Pivoting changes nothing

## Observation

Every pivoting step just rewrites the LP into EQUIVALENT LP. When LP objective can no longer be improved because of rewrite, it implies that the original LP objective function can not be increased any further.

## Simplex algorithm - summary

(1) This was an informal description of the simplex algorithm.
(2) At each step pivot on a nonbasic variable that improves objective function.
(0) Till reach optimal solution.
(0) Problem: Assumed that the starting (trivial) solution (all zero nonbasic vars) is feasible.

### 21.2.4.1:Starting somewhere

113

## Starting somewhere...

(1) L: Transformed LP to slack form.

$$
\begin{aligned}
& \max \quad z=v+\sum_{j \in N} c_{j} x_{j} \\
& \text { s.t. } \quad x_{i}=b_{i}-\sum_{j \in N} a_{i j} x_{j} \text { for } i \in B \\
& \\
& \quad x_{i} \geq 0, \quad \forall i=1, \ldots, n+m
\end{aligned}
$$

(2) Simplex starts from feasible solution and walks around till reaches opt.
(3) $L$ might not be feasible at
(a) Example on left, trivial sol is

## Idea: Add a variable $x_{0}$, and minimize it!



## Starting somewhere...

(1) L: Transformed LP to slack form.

$$
\begin{array}{ll}
\max \quad & z=v+\sum_{j \in N} c_{j} x_{j} \\
\text { s.t. } \quad x_{i}=b_{i}-\sum_{j \in N} a_{i j} x_{j} \text { for } i \in B \\
& x_{i} \geq 0, \quad \forall i=1, \ldots, n+m
\end{array}
$$

(2) Simplex starts from feasible solution and walks around till reaches opt.
© $L$ might not be feasible at
(a) Example on left, trivial sol is

## Idea: Add a variable $x_{0}$, and minimize it!



## Starting somewhere...

(1) L: Transformed LP to slack form.

$$
\begin{aligned}
\max & z=v+\sum_{j \in N} c_{j} x_{j} \\
\text { s.t. } & x_{i}=b_{i}-\sum_{j \in N} a_{i j} x_{j} \text { for } i \in B \\
& x_{i} \geq 0, \quad \forall i=1, \ldots, n+m .
\end{aligned}
$$

(2) Simplex starts from feasible solution and walks around till reaches opt.
(3) $L$ might not be feasible at all.

Example on left, trivial sol is not feasible, if $\exists b_{i}<0$.

## Idea: Add a variable $x_{0}$, and minimize it!



## Starting somewhere...

(1) L: Transformed LP to slack form.
$\max \quad z=v+\sum_{j \in N} c_{j} x_{j}$,
s.t. $\quad x_{i}=b_{i}-\sum_{j \in N} a_{i j} x_{j}$ for $i \in B$,
$x_{i} \geq 0, \quad \forall i=1, \ldots, n+m$.
(2) Simplex starts from feasible solution and walks around till reaches opt.
(3) $L$ might not be feasible at all.
(4) Example on left, trivial sol is not feasible, if $\exists b_{i}<0$.

## Starting somewhere...

(1) L: Transformed LP to slack form.

$$
\begin{aligned}
\max & z=v+\sum_{j \in N} c_{j} x_{j} \\
\text { s.t. } & x_{i}=b_{i}-\sum_{j \in N} a_{i j} x_{j} \text { for } i \in B \\
& x_{i} \geq 0, \quad \forall i=1, \ldots, n+m
\end{aligned}
$$

(2) Simplex starts from feasible solution and walks around till reaches opt.
(3) $L$ might not be feasible at all.
(4) Example on left, trivial sol is not feasible, if $\exists b_{i}<0$.
Idea: Add a variable $x_{0}$, and minimize it!
min

$x_{i} \geq 0, \quad \forall i=1, \ldots, n+m$.

## Starting somewhere...

(1) L: Transformed LP to slack form.

$$
\max \quad z=v+\sum_{j \in N} c_{j} x_{j}
$$

$$
\text { s.t. } \quad x_{i}=b_{i}-\sum_{j \in N} a_{i j} x_{j} \text { for } i \in B,
$$

$$
x_{i} \geq 0, \quad \forall i=1, \ldots, n+m
$$

## Finding a feasible solution...

(1) $L^{\prime}=\operatorname{Feasible}(L)$ (see previous slide).
(2) Add new variable $x_{0}$ and make it large enough.
(3) $x_{0}=\max \left(-\min _{i} b_{i}, 0\right), \forall i>0, x_{i}=0$ : feasible!
(1) LPStartSolution $\left(L^{\prime}\right)$ : Solution of Simplex to $L^{\prime}$.
(6) If $x_{0}=0$ in solution then $L$ feasible. Have valid basic solution.
(0) If $x_{0}>0$ then LP not feasible. Done.

120

## Finding a feasible solution...

(1) $L^{\prime}=\operatorname{Feasible}(L)$ (see previous slide).
(2) Add new variable $x_{0}$ and make it large enough.
(3) $x_{0}=\max \left(-\min _{i} b_{i}, 0\right), \forall i>0, x_{i}=0$ : feasible!

- LPStartSolution $\left(L^{\prime}\right)$ : Solution of Simplex to $L^{\prime}$.
- If $x_{0}=0$ in solution then $L$ feasible. Have valid basic solution.
- If $x_{0}>0$ then LP not feasible. Done.


## Finding a feasible solution...

(1) $L^{\prime}=\operatorname{Feasible}(\boldsymbol{L})$ (see previous slide).
(2) Add new variable $x_{0}$ and make it large enough.
(0) $x_{0}=\max \left(-\min _{i} b_{i}, 0\right), \forall i>0, x_{i}=0$ : feasible!
(1) LPStartSolution $\left(L^{\prime}\right)$ : Solution of Simplex to $L^{\prime}$.

- If $x_{0}=0$ in solution then $L$ feasible. Have valid basic solution.
- If $x_{0}>0$ then LP not feasible. Done.


## Finding a feasible solution...

(1) $L^{\prime}=\operatorname{Feasible}(L)$ (see previous slide).
(2) Add new variable $x_{0}$ and make it large enough.
(0) $x_{0}=\max \left(-\min _{i} b_{i}, 0\right), \forall i>0, x_{i}=0$ : feasible!

- LPStartSolution $\left(L^{\prime}\right)$ : Solution of Simplex to $L^{\prime}$.
(0) If $x_{0}=\mathbf{0}$ in solution then $L$ feasible. Have valid basic solution.
- If $x_{0}>0$ then LP not feasible. Done.


## Finding a feasible solution...

(1) $L^{\prime}=\operatorname{Feasible}(L)$ (see previous slide).
(2) Add new variable $x_{0}$ and make it large enough.
(0) $x_{0}=\max \left(-\min _{i} b_{i}, 0\right), \forall i>0, x_{i}=0$ : feasible!

- LPStartSolution $\left(L^{\prime}\right)$ : Solution of Simplex to $L^{\prime}$.
(0) If $x_{0}=0$ in solution then $L$ feasible. Have valid basic solution.
(- If $x_{0}>0$ then LP not feasible. Done.


## Lemma...

## Lemma

LP $\boldsymbol{L}$ is feasible $\Longleftrightarrow$ optimal objective value of LP $\boldsymbol{L}^{\prime}$ is zero.

## Proof.

A feasible solution to $L$ is immediately an optimal solution to $L^{\prime}$ with $\boldsymbol{x}_{0}=\mathbf{0}$, and vice versa. Namely, given a solution to $\boldsymbol{L}^{\prime}$ with $\boldsymbol{x}_{0}=\mathbf{0}$ we can transform it to a feasible solution to $L$ by removing $x_{0}$.

## Technicalities, technicalities everywhere

(1) Starting solution for $L^{\prime}$, generated by LPStartSolution $(\boldsymbol{L})$..
(3) .. not legal in slack form as non-basic variable $x_{0}$ assigned non-zero value.
(0 Trick: Immediately pivoting on $x_{0}$ when running Simplex ( $L^{\prime}$ ),
O First try to decrease $x_{0}$ as much as possible.

## Technicalities, technicalities everywhere

(1) Starting solution for $L^{\prime}$, generated by LPStartSolution $(L)$..
(2) .. not legal in slack form as non-basic variable $x_{0}$ assigned non-zero value.

- Trick: Immediately pivoting on $x_{0}$ when running Simplex $\left(L^{\prime}\right)$.
- First try to decrease $x_{0}$ as much as possible.


## Technicalities, technicalities everywhere

(1) Starting solution for $L^{\prime}$, generated by LPStartSolution $(L)$..
(2) .. not legal in slack form as non-basic variable $x_{0}$ assigned non-zero value.
( Trick: Immediately pivoting on $x_{0}$ when running Simplex $\left(L^{\prime}\right)$.

- First try to decrease $x_{0}$ as much as possible.


## Technicalities, technicalities everywhere

(1) Starting solution for $L^{\prime}$, generated by LPStartSolution $(L)$..
(2) .. not legal in slack form as non-basic variable $x_{0}$ assigned non-zero value.
( Trick: Immediately pivoting on $x_{0}$ when running Simplex $\left(L^{\prime}\right)$.
(0) First try to decrease $x_{0}$ as much as possible.

## Notes

55/58

130

## Notes

56/58

131

## Notes

## Notes

58/58

133

