CS 473: Algorithms, Fall 2018

Fast Fourier Transform

Lecture 5 September 13, 2018

5.1: Introduction

What is going on?

Clicker question

Consider the formula
$$\sqrt{xy} = \sqrt{x}\sqrt{y}$$
.
 $\implies 1 = \sqrt{1} = \sqrt{(-1)(-1)} = \sqrt{-1}\sqrt{-1} = -1$.

- 1. 1 = -1. Its time that this was more publicly known.
- 2. The formula $\sqrt{xy} = \sqrt{x}\sqrt{y}$ is incorrect.
- 3. $\sqrt{-1}$ is two numbers, and the above formula is incorrect in this case.
- 4. Wikipedia knows the answer.
- 5. This is not related to the class topic, so stop wasting my time.

Polynomials of degree ${f 2}$

Clicker question

Consider the polynomial $p(x) = ax^2 + bx + c$ that passes through the points (0, 1), (-1, 1), (1, 2). Which of the following statements are correct?

- 1. There are infinite family of such polynomials.
- 2. There is no such polynomial.
- 3. There is only one such polynomial, but its coefficients are complex numbers.
- 4. There is only one such polynomial, and it is $p(x) = x^2/2 + x/2 + 1.$
- 5. None of the above.

Polynomials of degree n

Clicker question

Consider two polynomials $p(x) = \sum_{i=0}^{n-1} a_i x^i$ and $q(x) = \sum_{i=0}^{n-1} b_i x^i$ that passes through the points (x_i, y_i) , for i = 1, ..., n. Then: 1. p(x) = q(x), for all x. 2. $p(x) \neq q(x)$, for all $x \in \mathbb{R} \setminus \{x_1, ..., x_n\}$. 3. Both (A) and (B) are possible.

4. None of the above.

Approximating functions with polynomials Clicker question

Let f be a continuous function on the interval [0, 1]. Let $\varepsilon > 0$ be a parameter. Then, we have:

- 1. $\exists n > 0$, and a polynomial p(x) of degree n, such that $\forall x \in [0, 1] \quad |p(x) f(x)| \leq \varepsilon$.
- 2. For $n = O(1/\varepsilon^2)$, there exists a polynomial p(x) of degree n, such that $\forall x \in [0, 1] \quad |p(x) f(x)| \le \varepsilon$.
- 3. There might not be a polynomial that can approximate f on [0, 1], up to additive error of ε .
- 4. None of the above.

Polynomials and point value pairs

Some polynomials of degree two, passing through two fixed points

Multiplying polynomials quickly

Definition **polynomial** p(x) of degree n:a function $p(x) = \sum_{j=0}^{n} a_j x^j = a_0 + x(a_1 + x(a_2 + \ldots + xa_n)).$ $x_0: p(x_0)$ can be computed in O(n) time. "dual" (and equivalent) representation...

Theorem

For any set $\{(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1})\}$ of n **point-value pairs** such that all the x_k values are distinct, there is a unique polynomial p(x) of degree n-1, such that $y_k = p(x_k)$, for $k = 0, \dots, n-1$.

Clicker question

L

Let
$$x_0,\ldots,x_n$$
 be $n+1$ distinct real numbers. $p(x)=rac{(x-x_1)(x-x_2)\ldots(x-x_n)}{(x_0-x_1)(x_0-x_2)\ldots(x_0-x_n)}$

- 1. p(x) is a polynomial of degree n, we have $p(x_0) = 0$, and $p(x_1) = 1, p(x_2) = 1, \dots, p(x_n) = 1.$
- 2. p(x) is a rational function.
- 3. p(x) is a polynomial of degree n, we have $p(x_0) = 1$, and $p(x_1) = 0, p(x_2) = 0, \dots, p(x_n) = 0.$
- 4. p(x) is not well defined function because of division by zero.

 $\{(x_0, y_0), (x_1, y_1), (x_2, y_2)\}$: polynomial through points:

$$egin{aligned} p(x) &= y_0 rac{(x-x_0)(x-x_1)(x-x_2)}{(x_0-x_0)(x_0-x_1)(x_0-x_2)} \ &+ y_1 rac{(x-x_0)(x-x_1)(x-x_2)}{(x_1-x_0)(x_1-x_1)(x_1-x_2)} \ &+ y_2 rac{(x-x_0)(x-x_1)(x-x_2)}{(x_2-x_0)(x_2-x_1)(x_2-x_2)} \end{aligned}$$

 $\{(x_0, y_0), (x_1, y_1), (x_2, y_2)\}$: polynomial through points:

$$egin{aligned} p(x) &= y_0 rac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} \ &+ y_1 rac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} \ &+ y_2 rac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} \end{aligned}$$

 $\{(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1})\}$: polynomial through points:

$$p(x)=\sum_{i=0}^{n-1}y_irac{\prod_{j
eq i}(x-x_j)}{\prod_{j
eq i}(x_i-x_j)}.$$

*i*th is zero for $x = x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n-1}$, and is equal to y_i for $x = x_i$.

Just because.

- 1. Given n point-value pairs. Can compute p(x) in $O(n^2)$ time.
- 2. Point-value pairs representation: Multiply polynomials quickly!
- p, q polynomial of degree n 1, both represented by 2n point-value pairs

Just because.

- 1. Given n point-value pairs. Can compute p(x) in $O(n^2)$ time.
- 2. Point-value pairs representation: Multiply polynomials quickly!
- p, q polynomial of degree n 1, both represented by 2n point-value pairs

Just because.

- 1. Given n point-value pairs. Can compute p(x) in $O(n^2)$ time.
- 2. Point-value pairs representation: Multiply polynomials quickly!
- 3. p, q polynomial of degree n 1, both represented by 2n point-value pairs

Just because.

- 1. Given n point-value pairs. Can compute p(x) in $O(n^2)$ time.
- 2. Point-value pairs representation: Multiply polynomials quickly!
- 3. p, q polynomial of degree n 1, both represented by 2n point-value pairs

Just because.

1. In point-value representation representation of r(x) is

$$egin{aligned} &\left\{(x_0,r(x_0)),\ldots,(x_{2n-1},r(x_{2n-1}))
ight\}\ &=\left\{ig(x_0,p(x_0)q(x_0)ig),\ldots,ig(x_{2n-1},p(x_{2n-1})q(x_{2n-1})ig)
ight\}\ &=\left\{(x_0,y_0y_0'),\ldots,(x_{2n-1},y_{2n-1}y_{2n-1}')
ight\}. \end{aligned}$$

- 1. p(x) and q(x): point-value pairs \implies compute r(x) = p(x)q(x) in linear time!
- 2. ...but r(x) is in point-value representation. Bummer.
- 3. ...but we can compute r(x) from this representation.
- Purpose: Translate quickly (i.e., O(n log n) time) from the standard r to point-value pairs representation of polynomials.
- 5. ...and back!
- 6. \implies computing product of two polynomials in $O(n \log n)$ time.
- 7. *Fast Fourier Transform* is a way to do this.

- 1. p(x) and q(x): point-value pairs \implies compute r(x) = p(x)q(x) in linear time!
- 2. ...but r(x) is in point-value representation. Bummer.
- 3. ...but we can compute r(x) from this representation.
- Purpose: Translate quickly (i.e., O(n log n) time) from the standard r to point-value pairs representation of polynomials.
- 5. ...and back!
- 6. \implies computing product of two polynomials in $O(n \log n)$ time.
- 7. *Fast Fourier Transform* is a way to do this.

- 1. p(x) and q(x): point-value pairs \implies compute r(x) = p(x)q(x) in linear time!
- 2. ...but r(x) is in point-value representation. Bummer.
- 3. ...but we can compute r(x) from this representation.
- 4. Purpose: Translate quickly (i.e., $O(n \log n)$ time) from the standard r to point-value pairs representation of polynomials.
- 5. ...and back!
- 6. \implies computing product of two polynomials in $O(n \log n)$ time.
- 7. *Fast Fourier Transform* is a way to do this.

- 1. p(x) and q(x): point-value pairs \implies compute r(x) = p(x)q(x) in linear time!
- 2. ...but r(x) is in point-value representation. Bummer.
- 3. ...but we can compute r(x) from this representation.
- 4. Purpose: Translate quickly (i.e., $O(n \log n)$ time) from the standard r to point-value pairs representation of polynomials.
- 5. ...and back!
- 6. \implies computing product of two polynomials in $O(n \log n)$ time.
- 7. *Fast Fourier Transform* is a way to do this.

- 1. p(x) and q(x): point-value pairs \implies compute r(x) = p(x)q(x) in linear time!
- 2. ...but r(x) is in point-value representation. Bummer.
- 3. ...but we can compute r(x) from this representation.
- 4. Purpose: Translate quickly (i.e., $O(n \log n)$ time) from the standard r to point-value pairs representation of polynomials.
- 5. ...and back!
- 6. \implies computing product of two polynomials in $O(n \log n)$ time.
- 7. *Fast Fourier Transform* is a way to do this.

- 1. p(x) and q(x): point-value pairs \implies compute r(x) = p(x)q(x) in linear time!
- 2. ...but r(x) is in point-value representation. Bummer.
- 3. ...but we can compute r(x) from this representation.
- 4. Purpose: Translate quickly (i.e., $O(n \log n)$ time) from the standard r to point-value pairs representation of polynomials.
- 5. ...and back!
- 6. \implies computing product of two polynomials in $O(n \log n)$ time.
- 7. *Fast Fourier Transform* is a way to do this.

- 1. p(x) and q(x): point-value pairs \implies compute r(x) = p(x)q(x) in linear time!
- 2. ...but r(x) is in point-value representation. Bummer.
- 3. ...but we can compute r(x) from this representation.
- 4. Purpose: Translate quickly (i.e., $O(n \log n)$ time) from the standard r to point-value pairs representation of polynomials.
- 5. ...and back!
- 6. \implies computing product of two polynomials in $O(n \log n)$ time.
- 7. Fast Fourier Transform is a way to do this.

- 1. p(x) and q(x): point-value pairs \implies compute r(x) = p(x)q(x) in linear time!
- 2. ...but r(x) is in point-value representation. Bummer.
- 3. ...but we can compute r(x) from this representation.
- 4. Purpose: Translate quickly (i.e., $O(n \log n)$ time) from the standard r to point-value pairs representation of polynomials.
- 5. ...and back!
- 6. \implies computing product of two polynomials in $O(n \log n)$ time.
- 7. Fast Fourier Transform is a way to do this.

5.2: Computing a polynomial quickly on n values

- 1. Assume: polynomials have degree n-1, where $n=2^k$.
- 2. .. pad polynomials with terms having zero coefficients.
- 3. *Magic set* of numbers: $\Psi = \{x_1, \dots, x_n\}$. Property: $|\mathsf{SQ}(\Psi)| = n/2$, where $\mathsf{SQ}(\Psi) = \{x^2 \mid x \in \Psi\}$.
- 4. $|\text{square}()| = |\Psi|/2.$
- 5. Easy to find such set...
- 6. Magic: Have this property repeatedly... $SQ(SQ(\Psi))$ has n/4 distinct values.
- 7. $\mathsf{SQ}(\mathsf{SQ}(\mathsf{SQ}(\Psi)))$ has n/8 values.
- 0 **CO**^{*i*}(**T**) has a 0i distinct value.

- 1. Assume: polynomials have degree n-1, where $n=2^k$.
- 2. .. pad polynomials with terms having zero coefficients.
- 3. *Magic set* of numbers: $\Psi = \{x_1, \dots, x_n\}$. Property: $|\mathsf{SQ}(\Psi)| = n/2$, where $\mathsf{SQ}(\Psi) = \{x^2 \mid x \in \Psi\}$.
- 4. $|\text{square}()| = |\Psi|/2.$
- 5. Easy to find such set...
- 6. Magic: Have this property repeatedly... $SQ(SQ(\Psi))$ has n/4 distinct values.
- 7. $\mathsf{SQ}(\mathsf{SQ}(\mathsf{SQ}(\Psi)))$ has n/8 values.
- 0 $\mathbf{CO}^{i}(\mathbf{T})$ has a O^{i}_{i} distinct value.

- 1. Assume: polynomials have degree n-1, where $n=2^k$.
- 2. .. pad polynomials with terms having zero coefficients.
- 3. *Magic set* of numbers: $\Psi = \{x_1, \dots, x_n\}$. Property: $|\mathsf{SQ}(\Psi)| = n/2$, where $\mathsf{SQ}(\Psi) = \{x^2 \mid x \in \Psi\}$.
- 4. $|\text{square}()| = |\Psi|/2.$
- 5. Easy to find such set...
- 6. Magic: Have this property repeatedly... $SQ(SQ(\Psi))$ has n/4 distinct values.
- 7. $\mathsf{SQ}(\mathsf{SQ}(\mathsf{SQ}(\Psi)))$ has n/8 values.
- 0 **CO**^{*i*}(**T**) has a 0^{i} distinct value.

- 1. Assume: polynomials have degree n-1, where $n=2^k$.
- 2. .. pad polynomials with terms having zero coefficients.
- 3. *Magic set* of numbers: $\Psi = \{x_1, \dots, x_n\}$. Property: $|\mathsf{SQ}(\Psi)| = n/2$, where $\mathsf{SQ}(\Psi) = \{x^2 \mid x \in \Psi\}$.
- 4. $|square()| = |\Psi|/2.$
- 5. Easy to find such set...
- 6. Magic: Have this property repeatedly... $SQ(SQ(\Psi))$ has n/4 distinct values.
- 7. $\mathsf{SQ}(\mathsf{SQ}(\mathsf{SQ}(\Psi)))$ has n/8 values.
- 0 **CO**^{*i*}(**T**) has a 0i distinct value.

- 1. Assume: polynomials have degree n-1, where $n=2^k$.
- 2. .. pad polynomials with terms having zero coefficients.
- 3. *Magic set* of numbers: $\Psi = \{x_1, \dots, x_n\}$. Property: $|\mathsf{SQ}(\Psi)| = n/2$, where $\mathsf{SQ}(\Psi) = \{x^2 \mid x \in \Psi\}$.
- 4. $|\text{square}()| = |\Psi|/2.$
- 5. Easy to find such set...
- 6. Magic: Have this property repeatedly... $SQ(SQ(\Psi))$ has n/4 distinct values.
- 7. $\mathsf{SQ}(\mathsf{SQ}(\mathsf{SQ}(\Psi)))$ has n/8 values.
- 0 **CO**^{*i*}(**T**) has a 0i distinct value.

- 1. Assume: polynomials have degree n-1, where $n=2^k$.
- 2. .. pad polynomials with terms having zero coefficients.
- 3. *Magic set* of numbers: $\Psi = \{x_1, \dots, x_n\}$. Property: $|\mathsf{SQ}(\Psi)| = n/2$, where $\mathsf{SQ}(\Psi) = \{x^2 \mid x \in \Psi\}$.
- 4. $|\text{square}()| = |\Psi| / 2.$
- 5. Easy to find such set...
- 6. Magic: Have this property repeatedly... $SQ(SQ(\Psi))$ has n/4 distinct values.
- 7. $\mathsf{SQ}(\mathsf{SQ}(\mathsf{SQ}(\Psi)))$ has n/8 values.
- 0 **CO**^{*i*}(**T**) has a 0i distinct value.

- 1. Assume: polynomials have degree n-1, where $n=2^k$.
- 2. .. pad polynomials with terms having zero coefficients.
- 3. *Magic set* of numbers: $\Psi = \{x_1, \dots, x_n\}$. Property: $|\mathsf{SQ}(\Psi)| = n/2$, where $\mathsf{SQ}(\Psi) = \{x^2 \mid x \in \Psi\}$.
- 4. $|\text{square}()| = |\Psi| / 2.$
- 5. Easy to find such set...
- 6. Magic: Have this property repeatedly... $SQ(SQ(\Psi))$ has n/4 distinct values.
- 7. $SQ(SQ(SQ(\Psi)))$ has n/8 values.
- 0 **CO**¹(**T**_i) has a 0^{i} distinct value.

- 1. Assume: polynomials have degree n-1, where $n=2^k$.
- 2. .. pad polynomials with terms having zero coefficients.
- 3. *Magic set* of numbers: $\Psi = \{x_1, \dots, x_n\}$. Property: $|\mathsf{SQ}(\Psi)| = n/2$, where $\mathsf{SQ}(\Psi) = \{x^2 \mid x \in \Psi\}$.
- 4. $|\text{square}()| = |\Psi| / 2.$
- 5. Easy to find such set...
- 6. Magic: Have this property repeatedly... $SQ(SQ(\Psi))$ has n/4 distinct values.
- 7. $\mathsf{SQ}(\mathsf{SQ}(\mathsf{SQ}(\Psi)))$ has n/8 values.
- 0 **CO**¹(**T**) has a 0^{i} distinct value.

- 1. Assume: polynomials have degree n-1, where $n=2^k$.
- 2. .. pad polynomials with terms having zero coefficients.
- 3. *Magic set* of numbers: $\Psi = \{x_1, \dots, x_n\}$. Property: $|\mathsf{SQ}(\Psi)| = n/2$, where $\mathsf{SQ}(\Psi) = \{x^2 \mid x \in \Psi\}$.
- 4. $|\text{square}()| = |\Psi| / 2.$
- 5. Easy to find such set...
- 6. Magic: Have this property repeatedly... $SQ(SQ(\Psi))$ has n/4 distinct values.
- 7. $\mathsf{SQ}(\mathsf{SQ}(\mathsf{SQ}(\Psi)))$ has n/8 values.
- 0 **CO**^{*i*}(**T**) has a $0^{$ *i* $}$ distinct value.

- 1. Assume: polynomials have degree n-1, where $n=2^k$.
- 2. .. pad polynomials with terms having zero coefficients.
- 3. *Magic set* of numbers: $\Psi = \{x_1, \dots, x_n\}$. Property: $|\mathsf{SQ}(\Psi)| = n/2$, where $\mathsf{SQ}(\Psi) = \{x^2 \mid x \in \Psi\}$.
- 4. $|\text{square}()| = |\Psi| / 2.$
- 5. Easy to find such set...
- 6. Magic: Have this property repeatedly... $SQ(SQ(\Psi))$ has n/4 distinct values.
- 7. $\mathsf{SQ}(\mathsf{SQ}(\mathsf{SQ}(\Psi)))$ has n/8 values.
- 0 **CO**^{*i*}(**T**) has a $0^{$ *i* $}$ distinct value.
Computing a polynomial quickly on $oldsymbol{n}$ values

Lets just use some magic.

- 1. Assume: polynomials have degree n-1, where $n=2^k$.
- 2. .. pad polynomials with terms having zero coefficients.
- 3. *Magic set* of numbers: $\Psi = \{x_1, \dots, x_n\}$. Property: $|\mathsf{SQ}(\Psi)| = n/2$, where $\mathsf{SQ}(\Psi) = \{x^2 \mid x \in \Psi\}$.
- 4. $|\text{square}()| = |\Psi| / 2.$
- 5. Easy to find such set...
- 6. Magic: Have this property repeatedly... $SQ(SQ(\Psi))$ has n/4 distinct values.
- 7. $\mathsf{SQ}(\mathsf{SQ}(\mathsf{SQ}(\Psi)))$ has n/8 values.
- 0 **CO**^{*i*}(**T**) has a $0^{$ *i* $}$ distinct value.

Collapsible sets

Assume magic...

Let us for the time being ignore this technicality, and fly, for a moment, into the land of fantasy, and assume that we do have such a set of numbers, so that $|\mathbf{SQ}^i(\Psi)| = n/2^i$ numbers, for $i = 0, \ldots, k$. Let us call such a set of numbers *collapsible*.

... two polynomials of half the degree

1. For a set $\mathfrak{X} = \{x_0, \ldots, x_n\}$ and polynomial p(x), let

$$p(\mathfrak{X}) = \left\langle (x_0, p(x_0)), \dots, (x_n, p(x_n)) \right\rangle.$$

2.
$$p(x) = \sum_{i=0}^{n-1} a_i x^i$$
 as
 $p(x) = u(x^2) + x \cdot v(x^2)$, where
 $u(y) = \sum_{i=0}^{n/2-1} a_{2i} y^i$ and $v(y) = \sum_{i=0}^{n/2-1} a_{1+2i} y^i$.

... two polynomials of half the degree

1. For a set $\mathfrak{X} = \{x_0, \ldots, x_n\}$ and polynomial p(x), let

$$p(\mathfrak{X}) = \left\langle (x_0, p(x_0)), \dots, (x_n, p(x_n)) \right\rangle.$$

2.
$$p(x) = \sum_{i=0}^{n-1} a_i x^i$$
 as
 $p(x) = u(x^2) + x \cdot v(x^2)$, where
 $u(y) = \sum_{i=0}^{n/2-1} a_{2i} y^i$ and $v(y) = \sum_{i=0}^{n/2-1} a_{1+2i} y^i$.

... two polynomials of half the degree

1. For a set $\mathfrak{X} = \{x_0, \ldots, x_n\}$ and polynomial p(x), let

$$p(\mathfrak{X}) = \left\langle (x_0, p(x_0)), \dots, (x_n, p(x_n)) \right\rangle.$$

2.
$$p(x) = \sum_{i=0}^{n-1} a_i x^i$$
 as
 $p(x) = u(x^2) + x \cdot v(x^2)$, where
 $u(y) = \sum_{i=0}^{n/2-1} a_{2i} y^i$ and $v(y) = \sum_{i=0}^{n/2-1} a_{1+2i} y^i$.

... two polynomials of half the degree

1. For a set $\mathfrak{X} = \{x_0, \ldots, x_n\}$ and polynomial p(x), let

$$p(\mathfrak{X}) = \left\langle (x_0, p(x_0)), \dots, (x_n, p(x_n)) \right\rangle.$$

2.
$$p(x) = \sum_{i=0}^{n-1} a_i x^i$$
 as
 $p(x) = u(x^2) + x \cdot v(x^2)$, where
 $u(y) = \sum_{i=0}^{n/2-1} a_{2i} y^i$ and $v(y) = \sum_{i=0}^{n/2-1} a_{1+2i} y^i$.

1.
$$p(x) = \sum_{i=0}^{n-1} a_i x^i$$
 as $p(x) = u(x^2) + x \cdot v(x^2).$

- 2. Ψ : collapsible set of size n.
- 3. $p(\Psi)$: compute polynomial of degree n-1 on n values.
- 4. Decompose:

$$u(y) = \sum_{i=0}^{n/2-1} a_{2i} y^i$$
 and $v(y) = \sum_{i=0}^{n/2-1} a_{1+2i} y^i.$

- 5. Need to compute $u(x^2)$, for all $x \in \Psi$.
- 6. Need to compute $v(x^2)$, for all $x \in \Psi$.
- 7. $SQ(\Psi) = \left\{ x^2 \mid x \in \Psi \right\}.$

1.
$$p(x) = \sum_{i=0}^{n-1} a_i x^i$$
 as $p(x) = u(x^2) + x \cdot v(x^2)$

- 2. Ψ : collapsible set of size n.
- 3. $p(\Psi)$: compute polynomial of degree n-1 on n values.
- 4. Decompose:

$$u(y) = \sum_{i=0}^{n/2-1} a_{2i} y^i$$
 and $v(y) = \sum_{i=0}^{n/2-1} a_{1+2i} y^i.$

- 5. Need to compute $u(x^2)$, for all $x\in \Psi$.
- 6. Need to compute $v(x^2)$, for all $x \in \Psi$.
- 7. $\mathsf{SQ}(\Psi) = \left\{ x^2 \mid x \in \Psi \right\}.$

1.
$$p(x) = \sum_{i=0}^{n-1} a_i x^i$$
 as $p(x) = u(x^2) + x \cdot v(x^2)$

- 2. Ψ : collapsible set of size n.
- 3. $p(\Psi)$: compute polynomial of degree n-1 on n values.
- 4. Decompose:

$$u(y) = \sum_{i=0}^{n/2-1} a_{2i} y^i$$
 and $v(y) = \sum_{i=0}^{n/2-1} a_{1+2i} y^i.$

- 5. Need to compute $u(x^2)$, for all $x\in \Psi$.
- 6. Need to compute $v(x^2)$, for all $x \in \Psi$.
- 7. $\mathsf{SQ}(\Psi) = \Big\{ x^2 \mid x \in \Psi \Big\}.$

1.
$$p(x) = \sum_{i=0}^{n-1} a_i x^i$$
 as $p(x) = u(x^2) + x \cdot v(x^2)$

- 2. Ψ : collapsible set of size n.
- 3. $p(\Psi)$: compute polynomial of degree n-1 on n values.
- 4. Decompose:

$$u(y) = \sum_{i=0}^{n/2-1} a_{2i}y^i$$
 and $v(y) = \sum_{i=0}^{n/2-1} a_{1+2i}y^i.$

- 5. Need to compute $u(x^2)$, for all $x \in \Psi$.
- 6. Need to compute $v(x^2)$, for all $x \in \Psi$.
- 7. $\mathsf{SQ}(\Psi) = \Big\{ x^2 \ \Big| \ x \in \Psi \Big\}.$

1.
$$p(x) = \sum_{i=0}^{n-1} a_i x^i$$
 as $p(x) = u(x^2) + x \cdot v(x^2)$

- 2. Ψ : collapsible set of size n.
- 3. $p(\Psi)$: compute polynomial of degree n-1 on n values.
- 4. Decompose:

$$u(y) = \sum_{i=0}^{n/2-1} a_{2i}y^i$$
 and $v(y) = \sum_{i=0}^{n/2-1} a_{1+2i}y^i.$

- 5. Need to compute $u(x^2)$, for all $x \in \Psi$.
- 6. Need to compute $v(x^2)$, for all $x \in \Psi$. 7. $SQ(\Psi) = \left\{ x^2 \mid x \in \Psi \right\}$.

1.
$$p(x) = \sum_{i=0}^{n-1} a_i x^i$$
 as $p(x) = u(x^2) + x \cdot v(x^2)$

- 2. Ψ : collapsible set of size n.
- 3. $p(\Psi)$: compute polynomial of degree n-1 on nvalues.
- 4. Decompose:

$$u(y) = \sum_{i=0}^{n/2-1} a_{2i}y^i$$
 and $v(y) = \sum_{i=0}^{n/2-1} a_{1+2i}y^i.$

- 5. Need to compute $u(x^2)$, for all $x \in \Psi$.
- 6. Need to compute $v(x^2)$, for all $x \in \Psi$.
- 7. $\mathsf{SQ}(\Psi) = \Big\{ x^2 \mid x \in \Psi \Big\}.$

1.
$$p(x) = \sum_{i=0}^{n-1} a_i x^i$$
 as $p(x) = u(x^2) + x \cdot v(x^2)$

- 2. Ψ : collapsible set of size n.
- 3. $p(\Psi)$: compute polynomial of degree n-1 on n values.
- 4. Decompose:

$$u(y) = \sum_{i=0}^{n/2-1} a_{2i}y^i$$
 and $v(y) = \sum_{i=0}^{n/2-1} a_{1+2i}y^i.$

- 5. Need to compute $u(x^2)$, for all $x \in \Psi$.
- 6. Need to compute $v(x^2)$, for all $x \in \Psi$.
- 7. $\mathsf{SQ}(\Psi) = \left\{ x^2 \mid x \in \Psi \right\}.$

1.
$$p(x) = \sum_{i=0}^{n-1} a_i x^i$$
 as $p(x) = u(x^2) + x \cdot v(x^2)$

- 2. Ψ : collapsible set of size n.
- 3. $p(\Psi)$: compute polynomial of degree n-1 on n values.
- 4. Decompose:

$$u(y) = \sum_{i=0}^{n/2-1} a_{2i}y^i$$
 and $v(y) = \sum_{i=0}^{n/2-1} a_{1+2i}y^i.$

- 5. Need to compute $u(x^2)$, for all $x \in \Psi$.
- 6. Need to compute $v(x^2)$, for all $x \in \Psi$.

7.
$$\mathsf{SQ}(\Psi) = \left\{ x^2 \mid x \in \Psi \right\}.$$

1.
$$p(x) = \sum_{i=0}^{n-1} a_i x^i$$
 as $p(x) = u(x^2) + x \cdot v(x^2)$

- 2. Ψ : collapsible set of size n.
- 3. $p(\Psi)$: compute polynomial of degree n-1 on n values.
- 4. Decompose:

$$u(y) = \sum_{i=0}^{n/2-1} a_{2i}y^i$$
 and $v(y) = \sum_{i=0}^{n/2-1} a_{1+2i}y^i.$

- 5. Need to compute $u(x^2)$, for all $x \in \Psi$.
- 6. Need to compute $v(x^2)$, for all $x \in \Psi$.

7.
$$\mathsf{SQ}(\Psi) = \left\{ x^2 \mid x \in \Psi \right\}.$$

- 1. Ψ : Collapsible set of size n.
- 2. $p(x) = \sum_{i=0}^{n-1} a_i x^i$ as $p(x) = u(x^2) + x \cdot v(x^2).$
- 3. $u(y) = \sum_{i=0}^{n/2-1} a_{2i} y^i$ and $v(y) = \sum_{i=0}^{n/2-1} a_{1+2i} y^i$.
- 4. $u(\mathsf{SQ}(\Psi)), v(\mathsf{SQ}(\Psi))$: Computed recursively.
- 5. Need to compute $p(\Psi)$.

6. For $x \in \Psi$: Compute $p(x) = u(x^2) + x \cdot v(x^2)$.

7. Takes constant time per single element $x \in \Psi$.

- 1. Ψ : Collapsible set of size n.
- 2. $p(x) = \sum_{i=0}^{n-1} a_i x^i$ as $p(x) = u(x^2) + x \cdot v(x^2).$
- 3. $u(y) = \sum_{i=0}^{n/2-1} a_{2i} y^i$ and $v(y) = \sum_{i=0}^{n/2-1} a_{1+2i} y^i$.
- 4. $u(\mathsf{SQ}(\Psi)), v(\mathsf{SQ}(\Psi))$: Computed recursively.
- 5. Need to compute $p(\Psi)$.

6. For $x \in \Psi$: Compute $p(x) = u(x^2) + x \cdot v(x^2)$.

7. Takes constant time per single element $x \in \Psi$.

- 1. Ψ : Collapsible set of size n. 2. $p(x) = \sum_{i=0}^{n-1} a_i x^i$ as $p(x) = u(x^2) + x \cdot v(x^2)$. 3. $u(y) = \sum_{i=0}^{n/2-1} a_{2i} y^i$ and $v(y) = \sum_{i=0}^{n/2-1} a_{1+2i} y^i$.
- 4. $u(SQ(\Psi)), v(SQ(\Psi))$: Computed recursively. 5. Need to compute $p(\Psi)$.

6. For $x \in \Psi$: Compute $p(x) = u(x^2) + x \cdot v(x^2)$.

7. Takes constant time per single element $x\in\Psi$.

- 1. Ψ : Collapsible set of size n. 2. $p(x) = \sum_{i=0}^{n-1} a_i x^i$ as $p(x) = u(x^2) + x \cdot v(x^2)$. 3. $u(y) = \sum_{i=0}^{n/2-1} a_{2i} y^i$ and $v(y) = \sum_{i=0}^{n/2-1} a_{1+2i} y^i$.
- u(SQ(Ψ)), v(SQ(Ψ)): Computed recursively.
 Need to compute p(Ψ).

6. For $x\in \Psi$: Compute $p(x)=u(x^2)+x\cdot v(x^2).$

7. Takes constant time per single element $x\in\Psi$.

- 1. Ψ : Collapsible set of size n. 2. $p(x) = \sum_{i=0}^{n-1} a_i x^i$ as $p(x) = u(x^2) + x \cdot v(x^2)$. 3. $u(y) = \sum_{i=0}^{n/2-1} a_{2i} y^i$ and $v(y) = \sum_{i=0}^{n/2-1} a_{1+2i} y^i$.
- 4. $u(\mathsf{SQ}(\Psi)), v(\mathsf{SQ}(\Psi))$: Computed recursively.
- 5. Need to compute $p(\Psi)$.

6. For $x\in \Psi$: Compute $p(x)=u(x^2)+x\cdot v(x^2).$

- 7. Takes constant time per single element $x\in\Psi$.
- 8. Takes O(n) time overall.

- 1. Ψ : Collapsible set of size n. 2. $p(x) = \sum_{i=0}^{n-1} a_i x^i$ as $p(x) = u(x^2) + x \cdot v(x^2)$. 3. $u(y) = \sum_{i=0}^{n/2-1} a_{2i} y^i$ and $v(y) = \sum_{i=0}^{n/2-1} a_{1+2i} y^i$.
- 4. $u(\mathsf{SQ}(\Psi)), v(\mathsf{SQ}(\Psi))$: Computed recursively.
- 5. Need to compute $p(\Psi)$.
- 6. For $x \in \Psi$: Compute $p(x) = u(x^2) + x \cdot v(x^2)$.

7. Takes constant time per single element $x\in \Psi.$

- 1. Ψ : Collapsible set of size n. 2. $p(x) = \sum_{i=0}^{n-1} a_i x^i$ as $p(x) = u(x^2) + x \cdot v(x^2)$. 3. $u(y) = \sum_{i=0}^{n/2-1} a_{2i} y^i$ and $v(y) = \sum_{i=0}^{n/2-1} a_{1+2i} y^i$.
- 4. $u(\mathsf{SQ}(\Psi)), v(\mathsf{SQ}(\Psi))$: Computed recursively.
- 5. Need to compute $p(\Psi)$.

6. For $x \in \Psi$: Compute $p(x) = u(x^2) + x \cdot v(x^2)$.

7. Takes constant time per single element $x \in \Psi$.

- 1. Ψ : Collapsible set of size n. 2. $p(x) = \sum_{i=0}^{n-1} a_i x^i$ as $p(x) = u(x^2) + x \cdot v(x^2)$. 3. $u(y) = \sum_{i=0}^{n/2-1} a_{2i} y^i$ and $v(y) = \sum_{i=0}^{n/2-1} a_{1+2i} y^i$.
- 4. $u(\mathsf{SQ}(\Psi)), v(\mathsf{SQ}(\Psi))$: Computed recursively.
- 5. Need to compute $p(\Psi)$.

6. For $x \in \Psi$: Compute $p(x) = u(x^2) + x \cdot v(x^2)$.

7. Takes constant time per single element $x \in \Psi$.

FFT algorithm

FFTAlg(p, X)//X: A collapsible set of n elements. input: p(x): polynomial deg. n: $p(x) = \sum_{i=0}^{n-1} a_i x^i$ output: p(X) $u(y) = \sum_{i=0}^{n/2-1} a_{2i} y^i$ $v(y) = \sum_{i=0}^{n/2-1} a_{1+2i} y^i.$ $Y = \mathsf{SQ}(X) = \left\{ x^2 \mid x \in X \right\}.$ $U = \mathsf{FFTAlg}(u, Y)$ // U = u(Y)// V = v(Y) $V = \mathsf{FFTAlg}(v, Y)$ $Out \leftarrow \emptyset$ $// p(x) = u(x^2) + x * v(x^2)$ for $x \in X$ do $(x, p(x)) \leftarrow (x, U[x^2] + x \cdot V[x^2])$ // $U[x^2] \equiv u(x^2)$ $Out \leftarrow Out \cup \{(x, p(x))\}$ return **Out**

Running time analysis...

...an old foe emerges once again to serve

1. T(m, n): Time of computing a polynomial of degree m on n values.

2. We have that:

T(n-1,n) = 2T(n/2-1,n/2) + O(n).

3. The solution to this recurrence is $O(n \log n)$.

Running time analysis...

... an old foe emerges once again to serve

- 1. T(m, n): Time of computing a polynomial of degree m on n values.
- 2. We have that:

T(n-1,n) = 2T(n/2 - 1, n/2) + O(n).

3. The solution to this recurrence is $O(n \log n)$.

Running time analysis...

...an old foe emerges once again to serve

- 1. T(m, n): Time of computing a polynomial of degree m on n values.
- 2. We have that:

T(n-1,n) = 2T(n/2 - 1, n/2) + O(n).

3. The solution to this recurrence is $O(n \log n)$.

Generating Collapsible Sets

- 1. How to generate collapsible sets?
- 2.

Generating Collapsible Sets

- 1. How to generate collapsible sets?
- 2. Trick: Use complex numbers!

 Complex number: pair (α, β) of real numbers. Written as

 $\tau = \alpha + \mathbf{i}\boldsymbol{\beta}.$

- α: real part,
 β: imaginary part.
- 3. i is the root of -1.
- Geometrically: a point in the complex plane:
- 1. polar form:

 $au = r \cos \phi + \mathrm{i} r \sin \phi = r (\cos \phi + \mathrm{i} \sin \phi)$

1. Complex number: pair (α, β) of real numbers.

Written as

 $\tau = \alpha + \mathbf{i}\beta$.

- α: real part,
 β: imaginary part.
- 3. i is the root of -1.
- Geometrically: a point in the complex plane:
- 1. polar form:

 $au = r \cos \phi + \mathrm{i} r \sin \phi = r (\cos \phi + \mathrm{i} \sin \phi)$

1. Complex number: pair (α, β) of real numbers.

Written as

 $\tau = \alpha + \mathbf{i}\boldsymbol{\beta}.$

- α: real part,
 β: imaginary part.
- 3. i is the root of -1.
- Geometrically: a point in the complex plane:
- 1. polar form:

 $au = r \cos \phi + \mathrm{i} r \sin \phi = r (\cos \phi + \mathrm{i} \sin \phi)$

- 1. Complex number: pair (α, β) of real numbers.
 - Written as

 $\tau = \alpha + \mathbf{i}\beta$.

- α: real part,
 β: imaginary part.
- 3. i is the root of -1.
- 4. Geometrically: a point in the complex plane:
- $\tau = \alpha + \beta \mathbf{i}$ Re

 $au = r \cos \phi + \mathrm{i} r \sin \phi = r (\cos \phi + \mathrm{i} \sin \phi)$

Im

- 1. Complex number: pair (α, β) of real numbers.
 - Written as

 $\tau = \alpha + i\beta$.

- 2. α : *real* part, β: *imaginary* part.
- 3. i is the root of -1.
- 4. Geometrically: a point in the complex plane:
- 1. polar form:

 $\tau = r \cos \phi + \mathrm{i} r \sin \phi = r(\cos \phi + \mathrm{i} \sin \phi)$

- 1. Complex number: pair (α, β) of real numbers.
 - Written as

 $\tau = \alpha + i\beta$.

- 2. α : *real* part, β: *imaginary* part.
- 3. i is the root of -1.
- 4. Geometrically: a point in the complex plane:
- 1. polar form:

 $\tau = r \cos \phi + \mathrm{i} r \sin \phi = r(\cos \phi + \mathrm{i} \sin \phi)$

A useful formula: $\cos \phi + \mathrm{i} \sin \phi = \mathrm{e}^{\mathrm{i} \phi}$

1. By Taylor's expansion:

$$e^{\mathrm{i}x} = 1 + \mathrm{i}rac{x}{1!} - rac{x^2}{2!} - \mathrm{i}rac{x^3}{3!} + rac{x^4}{4!} + \mathrm{i}rac{x^5}{5!} - rac{x^6}{6!} \cdots$$

= $\cos x + \mathrm{i}\sin x$.
A useful formula: $\cos \phi + \mathrm{i} \sin \phi = \mathrm{e}^{\mathrm{i} \phi}$

1. By Taylor's expansion:

 $= \cos x + \mathrm{i} \sin x.$

- 1. polar form: $\tau = r \cos \phi + ir \sin \phi = r(\cos \phi + i \sin \phi) = re^{i\phi}$,
- 2. $\tau = re^{i\phi}$, $\tau' = r'e^{i\phi'}$: complex numbers. 3. $\tau \cdot \tau' = re^{i\phi} \cdot r'e^{i\phi'} = rr'e^{i(\phi+\phi')}$.
- 4. $e^{\mathrm{i}\phi}$ is 2π periodic (i.e., $e^{\mathrm{i}\phi}=e^{\mathrm{i}(\phi+2\pi)})$, and $1=e^{\mathrm{i}0}$.
- *n*th root of 1: complex number *τ* raise it to power *n* get 1.
- 6. $au = r e^{\mathrm{i}\phi}$, such that $au^n = r^n e^{\mathrm{i}n\phi} = e^{\mathrm{i}0}$.
- 7. $\implies r = 1$, and there must be an integer j, such that

$$n\phi = 0 + 2\pi j \implies \phi = j(2\pi/n).$$

- 1. **polar form**: $\tau = r \cos \phi + ir \sin \phi = r(\cos \phi + i \sin \phi) = re^{i\phi}$, 2. $\tau = re^{i\phi}$, $\tau' = r'e^{i\phi'}$: complex numbers. 3. $\tau \cdot \tau' = re^{i\phi} \cdot r'e^{i\phi'} = rr'e^{i(\phi+\phi')}$. 4. $e^{i\phi}$ is 2π periodic (i.e., $e^{i\phi} = e^{i(\phi+2\pi)}$), and $1 = e^{i0}$.
- *n*th root of 1: complex number *τ* raise it to power *n* get 1.
- 6. $au = r e^{\mathrm{i}\phi}$, such that $au^n = r^n e^{\mathrm{i}n\phi} = e^{\mathrm{i}0}$.
- *r* = 1, and there must be an integer *j*, such that

$$n\phi = 0 + 2\pi j \implies \phi = j(2\pi/n).$$

- 1. polar form: $\tau = r \cos \phi + ir \sin \phi = r(\cos \phi + i \sin \phi) = re^{i\phi}$, 2. $\tau = re^{i\phi}$, $\tau' = r'e^{i\phi'}$: complex numbers. 3. $\tau \cdot \tau' = re^{i\phi} \cdot r'e^{i\phi'} = rr'e^{i(\phi+\phi')}$. 4. $e^{i\phi}$ is 2π periodic (i.e., $e^{i\phi} = e^{i(\phi+2\pi)}$), and $1 = e^{i0}$.
- *n*th root of 1: complex number *τ* raise it to power *n* get 1.
- 6. $au=re^{\mathrm{i}\phi}$, such that $au^n=r^ne^{\mathrm{i}n\phi}=e^{\mathrm{i}0}.$
- *r* = 1, and there must be an integer *j*, such that

$$n\phi = 0 + 2\pi j \implies \phi = j(2\pi/n).$$

- 1. polar form: $\tau = r \cos \phi + ir \sin \phi = r(\cos \phi + i \sin \phi) = re^{i\phi}$, 2. $\tau = re^{i\phi}$, $\tau' = r'e^{i\phi'}$: complex numbers. 3. $\tau \cdot \tau' = re^{i\phi} \cdot r'e^{i\phi'} = rr'e^{i(\phi+\phi')}$. 4. $e^{i\phi}$ is 2π periodic (i.e., $e^{i\phi} = e^{i(\phi+2\pi)}$), and $1 = e^{i0}$.
- 5. *n*th root of 1: complex number τ raise it to power *n* get 1.
- 6. $au = r e^{\mathrm{i}\phi}$, such that $au^n = r^n e^{\mathrm{i}n\phi} = e^{\mathrm{i}0}$.
- 7. \implies r = 1, and there must be an integer j, such that

$$n\phi = 0 + 2\pi i \implies \phi = i(2\pi/n).$$

Roots of unity

The desire to avoid war?

For $j = 0, \ldots, n - 1$, we get the n distinct **roots of unity**.

- 1. Can do all basic calculations on complex numbers in O(1) time.
- 2. Idea: Work over the complex numbers.
- 3. Use roots of unity!
- γ: nth root of unity. There are n such roots, and let γ_j(n) denote the jth root.

- Let $\mathcal{A}(n) = \{\gamma_0(n), \dots, \gamma_{n-1}(n)\}.$
- 5. $|\mathsf{SQ}(\mathcal{A}(n))|$ has n/2 entries.
- 6. $\mathsf{SQ}(\mathcal{A}(n)) = \mathcal{A}(n/2)$
- $7 \rightarrow 1$

- 1. Can do all basic calculations on complex numbers in O(1) time.
- 2. Idea: Work over the complex numbers.
- 3. Use roots of unity!
- 4. γ : *n*th root of unity. There are *n* such roots, and let $\gamma_j(n)$ denote the *j*th root.

- Let $\mathcal{A}(n) = \{\gamma_0(n), \dots, \gamma_{n-1}(n)\}.$
- 5. $|\mathsf{SQ}(\mathcal{A}(n))|$ has n/2 entries.
- 6. $\mathsf{SQ}(\mathcal{A}(n)) = \mathcal{A}(n/2)$
- $7 \rightarrow 1$

- 1. Can do all basic calculations on complex numbers in O(1) time.
- 2. Idea: Work over the complex numbers.
- 3. Use roots of unity!
- 4. γ : *n*th root of unity. There are *n* such roots, and let $\gamma_j(n)$ denote the *j*th root.

- Let $\mathcal{A}(n) = \{\gamma_0(n), \ldots, \gamma_{n-1}(n)\}.$
- 5. $|\mathbf{SQ}(\mathcal{A}(n))|$ has n/2 entries.
- 6. $SQ(\mathcal{A}(n)) = \mathcal{A}(n/2)$
- 7 is to be a neuron of Ω then $\Lambda(m)$ is the neuroined

- 1. Can do all basic calculations on complex numbers in O(1) time.
- 2. Idea: Work over the complex numbers.
- 3. Use roots of unity!
- 4. γ : *n*th root of unity. There are *n* such roots, and let $\gamma_j(n)$ denote the *j*th root.

 $\gamma_j(n) = \cos((2\pi j)/n) + \mathrm{i}\sin((2\pi j)/n) = \gamma^j.$

Let $\mathcal{A}(n) = \{\gamma_0(n), \dots, \gamma_{n-1}(n)\}.$ 5. $|\mathbf{SQ}(\mathcal{A}(n))|$ has n/2 entries. 6. $\mathbf{SQ}(\mathcal{A}(n)) = \mathcal{A}(n/2)$

7 is to be a neuron of Ω then $\Lambda(\alpha)$ is the neuron of

- 1. Can do all basic calculations on complex numbers in O(1) time.
- 2. Idea: Work over the complex numbers.
- 3. Use roots of unity!
- 4. γ : *n*th root of unity. There are *n* such roots, and let $\gamma_j(n)$ denote the *j*th root.

 $\gamma_j(n) = \cos((2\pi j)/n) + \mathrm{i}\sin((2\pi j)/n) = \gamma^j.$

Let $\mathcal{A}(n) = \{\gamma_0(n), \dots, \gamma_{n-1}(n)\}.$ 5. $|\mathbf{SQ}(\mathcal{A}(n))|$ has n/2 entries. 6. $\mathbf{SQ}(\mathcal{A}(n)) = \mathcal{A}(n/2)$

7 is to be a neuron of $\mathbf{0}$ then $\mathbf{1}(\mathbf{x})$ is the neuron of

- 1. Can do all basic calculations on complex numbers in O(1) time.
- 2. Idea: Work over the complex numbers.
- 3. Use roots of unity!
- 4. γ : *n*th root of unity. There are *n* such roots, and let $\gamma_j(n)$ denote the *j*th root.

- Let $\mathcal{A}(n) = \{\gamma_0(n), \ldots, \gamma_{n-1}(n)\}.$
- 5. $|\mathsf{SQ}(\mathcal{A}(n))|$ has n/2 entries.
- 6. $\mathsf{SQ}(\mathcal{A}(n)) = \mathcal{A}(n/2)$
- $7 \rightarrow 1$

- 1. Can do all basic calculations on complex numbers in O(1) time.
- 2. Idea: Work over the complex numbers.
- 3. Use roots of unity!
- 4. γ : *n*th root of unity. There are *n* such roots, and let $\gamma_j(n)$ denote the *j*th root.

- Let $\mathcal{A}(n) = \{\gamma_0(n), \ldots, \gamma_{n-1}(n)\}.$
- 5. $|\mathsf{SQ}(\mathcal{A}(n))|$ has n/2 entries.
- 6. $\mathsf{SQ}(\mathcal{A}(n)) = \mathcal{A}(n/2)$
- \mathbf{Z}_{1} is the formula of $\mathbf{0}$ then $\mathbf{A}(\mathbf{u})$ is the manifold

The first result ...

Theorem

Given polynomial p(x) of degree n, where n is a power of two, then we can compute p(X) in $O(n \log n)$ time, where $X = \mathcal{A}(n)$ is the set of n different powers of the nth root of unity over the complex numbers.

We can go, but can we come back?

1. Can multiply two polynomials quickly

- 2. by transforming them to the point-value pairs representation...
- 3. over the nth roots of unity.
- 4. Q: How to transform this representation back to the regular representation.
- 5. A: Do some confusing math...

- 1. Can multiply two polynomials quickly
- 2. by transforming them to the point-value pairs representation...
- 3. over the nth roots of unity.
- 4. Q: How to transform this representation back to the regular representation.
- 5. A: Do some confusing math...

- $1.\ \mbox{Can}$ multiply two polynomials quickly
- 2. by transforming them to the point-value pairs representation...
- 3. over the nth roots of unity.
- 4. Q: How to transform this representation back to the regular representation.
- 5. A: Do some confusing math...

- 1. Can multiply two polynomials quickly
- 2. by transforming them to the point-value pairs representation...
- 3. over the nth roots of unity.
- 4. Q: How to transform this representation back to the regular representation.
- 5. A: Do some confusing math...

- 1. Can multiply two polynomials quickly
- 2. by transforming them to the point-value pairs representation...
- 3. over the nth roots of unity.
- 4. Q: How to transform this representation back to the regular representation.
- 5. A: Do some confusing math...

5.3: Recovering the polynomial

Recovering the polynomial

Think about FFT as a matrix multiplication operator. $p(x) = \sum_{i=0}^{n-1} a_i x^i$. Evaluating $p(\cdot)$ on $\mathcal{A}(n)$:

where $\gamma_j = \gamma_j(n) = (\gamma_1(n))^j$ is the jth power of the

The Vandermonde matrix

Because every matrix needs a name

V is the **Vandermonde** matrix. V^{-1} : inverse matrix of VVandermonde matrix. And let multiply the above formula from the left. We get:

1. Recover the polynomial p(x) from the point-value pairs

 $ig\{(\gamma_0,p(\gamma_0)),(\gamma_1,p(\gamma_1)),\ldots,(\gamma_{n-1},p(\gamma_{n-1}))ig\}$

- 2. by doing a single matrix multiplication of V^{-1} by the vector $[y_0, y_1, \ldots, y_{n-1}]$.
- 3. Multiplying a vector with n entries with $n \times n$ matrix takes $O(n^2)$ time.
- 4. No benefit so far...

1. Recover the polynomial p(x) from the point-value pairs

 $\left\{(\gamma_0,p(\gamma_0)),(\gamma_1,p(\gamma_1)),\ldots,(\gamma_{n-1},p(\gamma_{n-1}))
ight\}$

- 2. by doing a single matrix multiplication of V^{-1} by the vector $[y_0, y_1, \ldots, y_{n-1}]$.
- 3. Multiplying a vector with n entries with $n \times n$ matrix takes $O(n^2)$ time.
- 4. No benefit so far...

1. Recover the polynomial p(x) from the point-value pairs

 $ig\{(\gamma_0,p(\gamma_0)),(\gamma_1,p(\gamma_1)),\ldots,(\gamma_{n-1},p(\gamma_{n-1}))ig\}$

- 2. by doing a single matrix multiplication of V^{-1} by the vector $[y_0, y_1, \ldots, y_{n-1}]$.
- 3. Multiplying a vector with n entries with $n \times n$ matrix takes $O(n^2)$ time.

4. No benefit so far...

1. Recover the polynomial p(x) from the point-value pairs

 $ig\{(\gamma_0,p(\gamma_0)),(\gamma_1,p(\gamma_1)),\ldots,(\gamma_{n-1},p(\gamma_{n-1}))ig\}$

- 2. by doing a single matrix multiplication of V^{-1} by the vector $[y_0, y_1, \ldots, y_{n-1}]$.
- 3. Multiplying a vector with n entries with $n \times n$ matrix takes $O(n^2)$ time.
- 4. No benefit so far...

What is the inverse of the Vandermonde matrix

Vandermonde matrix is famous, beautiful and well known – a celebrity matrix

Claim

$$V^{-1} = rac{1}{n} egin{pmatrix} 1 & eta_0 & eta_0^2 & eta_0^3 & \cdots & eta_0^{n-1} \ 1 & eta_1 & eta_1^2 & eta_1^3 & \cdots & eta_1^{n-1} \ 1 & eta_2 & eta_2^2 & eta_2^3 & \cdots & eta_2^{n-1} \ 1 & eta_3 & eta_3^2 & eta_3^3 & \cdots & eta_3^{n-1} \ dotvee & dotvee & dotvee & dotvee & dotvee \ dotvee & dotvee & dotvee & dotvee & dotvee \ dotvee & dotvee & dotvee & dotvee \ dotvee & dotvee & dotvee & dotvee \ do$$

where $\beta_j = (\gamma_j(n))^{-1}$.

Proof

Consider the (u, v) entry in the matrix $C = V^{-1} V$. We have

$$C_{u,v}=\sum_{j=0}^{n-1}rac{(eta_u)^j(\gamma_j)^v}{n}.$$

As $\gamma_j = (\gamma_1)^j$. Thus,

$$C_{u,v} = \sum_{j=0}^{n-1} rac{(eta_u)^j ((\gamma_1)^j)^v}{n} = \sum_{j=0}^{n-1} rac{(eta_u)^j ((\gamma_1)^v)^j}{n} = \sum_{j=0}^{n-1} rac{(eta_u \gamma_v)}{n}$$

Clearly, if u = v then

$$C_{u,u} = rac{1}{n} \sum_{i=1}^{n-1} (eta_u \gamma_u)^j = rac{1}{n} \sum_{i=1}^{n-1} (1)^j = rac{n}{n} = 1.$$

Proof continued... If $u \neq v$ then, $\beta_u \gamma_v = (\gamma_u)^{-1} \gamma_v = (\gamma_1)^{-u} \gamma_1^v = (\gamma_1)^{v-u} = \gamma_{v-u}.$ And $C_{u,v} = rac{1}{n} \sum_{i=1}^{n-1} (\gamma_{v-u})^j = rac{1}{n} \cdot rac{\gamma_{v-u}^n - 1}{\gamma_{v-u} - 1} = rac{1}{n} \cdot rac{1-1}{\gamma_{v-u} - 1} = 0,$

Proved that the matrix C have ones on the diagonal and zero everywhere else.

Recap...

- 1. *n* point-value pairs $\{(\gamma_0, y_0), \ldots, (\gamma_{n-1}, y_{n-1})\}$: of polynomial $p(x) = \sum_{i=0}^{n-1} a_i x^i$ over *n*th roots of unity.
- 2. Recover coefficients of polynomial by multiplying $[y_0, y_1, \ldots, y_n]$ by V^{-1} :

$$egin{pmatrix} a_0\ a_1\ a_2\ dots\ a_{n-1}\end{pmatrix} = rac{1}{n} egin{pmatrix} 1 & eta_0 & eta_0^2 & eta_0^3 & \cdots & eta_0^{n-1}\ 1 & eta_1 & eta_1^2 & eta_1^3 & \cdots & eta_1^{n-1}\ 1 & eta_2 & eta_2^2 & eta_2^3 & \cdots & eta_2^{n-1}\ 1 & eta_3 & eta_3^2 & eta_3^3 & \cdots & eta_3^{n-1}\ dots & dots$$

Recap...

- 1. *n* point-value pairs $\{(\gamma_0, y_0), \ldots, (\gamma_{n-1}, y_{n-1})\}$: of polynomial $p(x) = \sum_{i=0}^{n-1} a_i x^i$ over *n*th roots of unity.
- 2. Recover coefficients of polynomial by multiplying $[y_0, y_1, \ldots, y_n]$ by V^{-1} :

$$\begin{pmatrix} a_{0} \\ a_{1} \\ a_{2} \\ \vdots \\ a_{n-1} \end{pmatrix} = \underbrace{\frac{1}{n} \begin{pmatrix} 1 & \beta_{0} & \beta_{0}^{2} & \beta_{0}^{3} & \cdots & \beta_{0}^{n-1} \\ 1 & \beta_{1} & \beta_{1}^{2} & \beta_{1}^{3} & \cdots & \beta_{1}^{n-1} \\ 1 & \beta_{2} & \beta_{2}^{2} & \beta_{2}^{3} & \cdots & \beta_{2}^{n-1} \\ 1 & \beta_{3} & \beta_{3}^{2} & \beta_{3}^{3} & \cdots & \beta_{3}^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \beta_{n-1} & \beta_{n-1}^{2} & \beta_{n-1}^{3} & \cdots & \beta_{n-1}^{n-1} \end{pmatrix}}_{V^{-1}} \begin{pmatrix} a_{0} \\ a_{0$$

Recap...

- 1. *n* point-value pairs $\{(\gamma_0, y_0), \ldots, (\gamma_{n-1}, y_{n-1})\}$: of polynomial $p(x) = \sum_{i=0}^{n-1} a_i x^i$ over *n*th roots of unity.
- 2. Recover coefficients of polynomial by multiplying $[y_0, y_1, \ldots, y_n]$ by V^{-1} :

$$\begin{pmatrix} a_{0} \\ a_{1} \\ a_{2} \\ \vdots \\ a_{n-1} \end{pmatrix} = \underbrace{\frac{1}{n} \begin{pmatrix} 1 & \beta_{0} & \beta_{0}^{2} & \beta_{0}^{3} & \cdots & \beta_{0}^{n-1} \\ 1 & \beta_{1} & \beta_{1}^{2} & \beta_{1}^{3} & \cdots & \beta_{1}^{n-1} \\ 1 & \beta_{2} & \beta_{2}^{2} & \beta_{2}^{3} & \cdots & \beta_{2}^{n-1} \\ 1 & \beta_{3} & \beta_{3}^{2} & \beta_{3}^{3} & \cdots & \beta_{3}^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \beta_{n-1} & \beta_{n-1}^{2} & \beta_{n-1}^{3} & \cdots & \beta_{n-1}^{n-1} \end{pmatrix}}_{V^{-1}} \begin{pmatrix} a_{0} \\ a_{0$$

- 1. recover coefficients of $p(\cdot)$...
- 2. ... compute $W(\cdot)$ on n values: $\beta_0, \ldots, \beta_{n-1}$.
- 3. $\{\beta_0, \ldots, \beta_{n-1}\} = \{\gamma_0, \ldots, \gamma_{n-1}\}.$
- 4. Indeed $\beta_i^n = (\gamma_i^{-1})^n = (\gamma_i^n)^{-1} = 1^{-1} = 1.$
- 5. Apply the **FFTAIg** algorithm on W(x) to compute a_0, \ldots, a_{n-1} .

- 1. recover coefficients of $p(\cdot)$...
- 2. ... compute $W(\cdot)$ on n values: $\beta_0, \ldots, \beta_{n-1}$.
- 3. $\{\beta_0, \ldots, \beta_{n-1}\} = \{\gamma_0, \ldots, \gamma_{n-1}\}.$
- 4. Indeed $\beta_i^n = (\gamma_i^{-1})^n = (\gamma_i^n)^{-1} = 1^{-1} = 1.$
- 5. Apply the **FFTAlg** algorithm on W(x) to compute a_0, \ldots, a_{n-1} .

- 1. recover coefficients of $p(\cdot)$...
- 2. ... compute $W(\cdot)$ on n values: $\beta_0, \ldots, \beta_{n-1}$.
- 3. $\{\beta_0, \ldots, \beta_{n-1}\} = \{\gamma_0, \ldots, \gamma_{n-1}\}.$
- 4. Indeed $\beta_i^n = (\gamma_i^{-1})^n = (\gamma_i^n)^{-1} = 1^{-1} = 1.$
- 5. Apply the **FFTAIg** algorithm on W(x) to compute a_0, \ldots, a_{n-1} .

- 1. recover coefficients of $p(\cdot)...$
- 2. ... compute $W(\cdot)$ on n values: $\beta_0, \ldots, \beta_{n-1}$.
- 3. $\{\beta_0, \ldots, \beta_{n-1}\} = \{\gamma_0, \ldots, \gamma_{n-1}\}.$
- 4. Indeed $\beta_i^n = (\gamma_i^{-1})^n = (\gamma_i^n)^{-1} = 1^{-1} = 1.$
- 5. Apply the **FFTAIg** algorithm on W(x) to compute a_0, \ldots, a_{n-1} .
Recovering continued...

- 1. recover coefficients of $p(\cdot)$...
- 2. ... compute $W(\cdot)$ on n values: $\beta_0, \ldots, \beta_{n-1}$.
- 3. $\{\beta_0, \ldots, \beta_{n-1}\} = \{\gamma_0, \ldots, \gamma_{n-1}\}.$
- 4. Indeed $\beta_i^n = (\gamma_i^{-1})^n = (\gamma_i^n)^{-1} = 1^{-1} = 1.$
- 5. Apply the **FFTAIg** algorithm on W(x) to compute a_0, \ldots, a_{n-1} .

Result

Theorem

Given n point-value pairs of a polynomial p(x) of degree n-1 over the set of n powers of the nth roots of unity, we can recover the polynomial p(x) in $O(n \log n)$ time.

Theorem

Given two polynomials of degree n, they can be multiplied in $O(n \log n)$ time.

5.4: Convolutions

1. Two vectors: $A = [a_0, a_1, \dots, a_n]$ and $B = [b_0, \dots, b_n]$.

2. dot product $A \cdot B = \langle A, B \rangle = \sum_{i=0}^{n} a_i b_i$.

3. A_r : shifting of A by n-r locations to the left

4. Padded with zeros:,
$$a_j = 0$$
 for $j \notin \{0, \ldots, n\}$).

5. $A_r = [a_{n-r}, a_{n+1-r}, a_{n+2-r}, \dots, a_{2n-r}]$ where $a_j = 0$ if $j \notin [0, \dots, n]$.

6. Observation: $A_n = A$.

1. Two vectors: $A = [a_0, a_1, \dots, a_n]$ and $B = [b_0, \dots, b_n]$.

2. dot product $A \cdot B = \langle A, B \rangle = \sum_{i=0}^{n} a_i b_i$.

3. $\boldsymbol{A_r}$: shifting of \boldsymbol{A} by $\boldsymbol{n-r}$ locations to the left

4. Padded with zeros:,
$$a_j = 0$$
 for $j \notin \{0, \ldots, n\}$).

5. $A_r = [a_{n-r}, a_{n+1-r}, a_{n+2-r}, \dots, a_{2n-r}]$ where $a_j = 0$ if $j \notin [0, \dots, n]$.

6. Observation: $A_n = A$.

- 1. Two vectors: $A = [a_0, a_1, \dots, a_n]$ and $B = [b_0, \dots, b_n]$.
- 2. dot product $A \cdot B = \langle A, B \rangle = \sum_{i=0}^{n} a_i b_i$.
- 3. A_r : shifting of A by n-r locations to the left
- 4. Padded with zeros:, $a_j = 0$ for $j \notin \{0, \ldots, n\}$).
- 5. $A_r = [a_{n-r}, a_{n+1-r}, a_{n+2-r}, \dots, a_{2n-r}]$ where $a_j = 0$ if $j \notin [0, \dots, n]$.
- 6. **Observation**: $A_n = A$.

- 1. Two vectors: $A = [a_0, a_1, \dots, a_n]$ and $B = [b_0, \dots, b_n]$.
- 2. dot product $A \cdot B = \langle A, B \rangle = \sum_{i=0}^{n} a_i b_i$.
- 3. A_r : shifting of A by n-r locations to the left
- 4. Padded with zeros:, $a_j=0$ for $j \notin \{0,\ldots,n\}$).
- 5. $A_r = [a_{n-r}, a_{n+1-r}, a_{n+2-r}, \dots, a_{2n-r}]$ where $a_j = 0$ if $j \notin [0, \dots, n]$.
- 6. Observation: $A_n = A$.

- 1. Two vectors: $A = [a_0, a_1, \dots, a_n]$ and $B = [b_0, \dots, b_n]$.
- 2. dot product $A \cdot B = \langle A, B \rangle = \sum_{i=0}^{n} a_i b_i$.
- 3. A_r : shifting of A by n-r locations to the left
- 4. Padded with zeros:, $a_j=0$ for $j \notin \{0,\ldots,n\}$).
- 5. $A_r = [a_{n-r}, a_{n+1-r}, a_{n+2-r}, \dots, a_{2n-r}]$ where $a_j = 0$ if $j \notin [0, \dots, n]$.

6. Observation: $A_n = A$.

- 1. Two vectors: $A = [a_0, a_1, \dots, a_n]$ and $B = [b_0, \dots, b_n]$.
- 2. dot product $A \cdot B = \langle A, B \rangle = \sum_{i=0}^{n} a_i b_i$.
- 3. A_r : shifting of A by n-r locations to the left
- 4. Padded with zeros:, $a_j=0$ for $j \notin \{0,\ldots,n\}$).
- 5. $A_r = [a_{n-r}, a_{n+1-r}, a_{n+2-r}, \dots, a_{2n-r}]$ where $a_j = 0$ if $j \notin [0, \dots, n]$.
- 6. Observation: $A_n = A$.

Example of shifting

```
Example
For A = [3, 7, 9, 15], n = 3
A_2 = [7, 9, 15, 0],
A_5 = [0, 0, 3, 7].
```

Definition

Definition Let $c_i = A_i \cdot B = \sum_{j=n-i}^{2n-i} a_j b_{j-n+i}$, for $i = 0, \dots, 2n$. The vector $[c_0, \dots, c_{2n}]$ is the *convolution* of A and B.

question

How to compute the convolution of two vectors of length \boldsymbol{n} ?

1.
$$p(x) = \sum_{i=0}^n lpha_i x^i$$
, and $q(x) = \sum_{i=0}^n eta_i x^i$.

2. Coefficient of x^i in r(x) = p(x)q(x) is $d_i = \sum_{j=0}^i lpha_j eta_{i-j}.$

3. Want to compute $c_i = A_i \cdot B = \sum_{j=n-i}^{2n-i} a_j b_{j-n+i}$. 4. Set $\alpha_i = a_i$ and $\beta_l = b_{n-l-1}$.

1.
$$p(x) = \sum_{i=0}^{n} \alpha_i x^i$$
, and $q(x) = \sum_{i=0}^{n} \beta_i x^i$.
2. Coefficient of x^i in $r(x) = p(x)q(x)$ is
 $d_i = \sum_{j=0}^{i} \alpha_j \beta_{i-j}$.

3. Want to compute $c_i = A_i \cdot B = \sum_{j=n-i}^{2n-i} a_j b_{j-n+i}.$ 4. Set $\alpha_i = a_i$ and $\beta_l = b_{n-l-1}.$

1.
$$p(x) = \sum_{i=0}^{n} \alpha_i x^i$$
, and $q(x) = \sum_{i=0}^{n} \beta_i x^i$.
2. Coefficient of x^i in $r(x) = p(x)q(x)$ is
 $d_i = \sum_{j=0}^{i} \alpha_j \beta_{i-j}$.

3. Want to compute

$$c_i = A_i \cdot B = \sum_{j=n-i}^{2n-i} a_j b_{j-n+i}$$
.
4. Set $\alpha_i = a_i$ and $\beta_l = b_{n-l-1}$.

1.
$$p(x) = \sum_{i=0}^{n} \alpha_i x^i$$
, and $q(x) = \sum_{i=0}^{n} \beta_i x^i$.
2. Coefficient of x^i in $r(x) = p(x)q(x)$ is
 $d_i = \sum_{j=0}^{i} \alpha_j \beta_{i-j}$.

3. Want to compute $c_i = A_i \cdot B = \sum_{j=n-i}^{2n-i} a_j b_{j-n+i}.$ 4. Set $\alpha_i = a_i$ and $\beta_l = b_{n-l-1}.$

Convolution by example

1. Consider coefficient of x^2 in product of $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ and $q(x) = b_0 + b_1x + b_2x^2 + b_3x^3$.

2. Sum of the entries on the anti diagonal:

	a_0+	$a_1 x$	$+a_{2}x^{2}$	$+a_{3}x^{3}$
b 0			$a_2b_0x^2$	
$+b_1x$		$a_1b_1x^2$		
$+b_{2}x^{2}$	$a_0b_2x^2$			
$+b_{3}x^{3}$				

3. entry in the *i*th row and *j*th column is $a_i b_j$.

Convolution by example

- 1. Consider coefficient of x^2 in product of $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ and $q(x) = b_0 + b_1x + b_2x^2 + b_3x^3$.
- 2. Sum of the entries on the anti diagonal:

	a_0+	a_1x	$+a_{2}x^{2}$	$ +a_3x^3 $
b 0			$a_2b_0x^2$	
$+b_1x$		$a_1b_1x^2$		
$+b_{2}x^{2}$	$a_0b_2x^2$			
$+b_{3}x^{3}$				

3. entry in the *i*th row and *j*th column is $a_i b_j$.

Convolution by example

- 1. Consider coefficient of x^2 in product of $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ and $q(x) = b_0 + b_1x + b_2x^2 + b_3x^3$.
- 2. Sum of the entries on the anti diagonal:

	a_0+	a_1x	$+a_2 x^2$	$+a_{3}x^{3}$
b ₀			$a_2b_0x^2$	
$+b_1x$		$a_1b_1x^2$		
$+b_{2}x^{2}$	$a_0b_2x^2$			
$+b_{3}x^{3}$				

3. entry in the *i*th row and *j*th column is $a_i b_j$.

Theorem Given two vectors $A = [a_0, a_1, \dots, a_n]$, $B = [b_0, \dots, b_n]$ one can compute their convolution in $O(n \log n)$ time.

Proof.

Let $p(x) = \sum_{i=0}^{n} a_{n-i}x^{i}$ and let $q(x) = \sum_{i=0}^{n} b_{i}x^{i}$. Compute r(x) = p(x)q(x) in $O(n \log n)$ time using the convolution theorem. Let c_{0}, \ldots, c_{2n} be the coefficients of r(x). It is easy to verify, as described above, that $[c_{0}, \ldots, c_{2n}]$ is the convolution of A and B.