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26.1: Entropy

2



Quote
“If only once - only once - no matter where, no
matter before what audience - I could better the
record of the great Rastelli and juggle with thir-
teen balls, instead of my usual twelve, I would
feel that I had truly accomplished something for
my country. But I am not getting any younger,
and although I am still at the peak of my pow-
ers there are moments - why deny it? - when I
begin to doubt - and there is a time limit on all
of us.”
–Romain Gary, The talent scout.
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Entropy: Definition
Definition
The entropy in bits of a discrete random variable X is

H(X) = −
∑

x

Pr
[
X = x

]
lg Pr

[
X = x

]
.

Equivalently, H(X) = E
[
lg 1

Pr[X]

]
.
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Entropy
Clicker question

Consider X a random variable that picks its value
uniformly from 1, . . . ,n. We have that its entropy
H(X) = −

∑
x Pr

[
X = x

]
lg Pr

[
X = x

]
is

1. O(log n).
2. O(n).
3. lnn.
4. n ∗ lnn.
5. lg n.
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Entropy intuition...
Intuition...
H(X) is the number of fair coin flips that one gets
when getting the value of X.

Interpretation from last lecture...
Consider a (huge) string S = s1s2 . . . sn formed by
picking characters independently according to X. Then

|S|H(X) = nH(X)

is the minimum number of bits one needs to store the
string S (when we compress it).
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Entropy II
Clicker question

Consider X a random variable that

Pr[X = i] =
1/i
α

,

for i = 1, . . . ,∞, where α =
∑∞

i=1 1/i.
The entropy of X is
H(X) = −

∑
x Pr

[
X = x

]
lg Pr

[
X = x

]
equal to

1. O(1).
2. O(n).
3. 0.
4. ∞.
5. This question is nonsense.
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Entropy IV
Clicker question

Consider X a random variable that

Pr[X = i] =
1/i2

α
,

for i = 2, . . . ,∞, where α =
∑∞

i=2 1/i2.
The entropy of X is
H(X) = −

∑
x Pr

[
X = x

]
lg Pr

[
X = x

]
equal to

1. O(1).
2. O(n).
3. 0.
4. ∞.
5. lg n.
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Entropy V
Clicker question

Consider X a random variable that

Pr[X = i] = 2−i

for i = 1, . . . ,∞. The entropy of X is
H(X) = −

∑
x Pr

[
X = x

]
lg Pr

[
X = x

]
equal to

1. O(1).
2. O(n).
3. 0.
4. ∞.
5. lg n.
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Entropy of a geometric distribution...

H(X) = −
∑

x

Pr
[
X = x

]
lg Pr

[
X = x

]
= −

∞∑
i=1

1
2i

lg
1
2i

=
∞∑

i=1

1
2i

lg 2i

=
∞∑

i=1

i
2i

= 2.
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Binary entropy
H(X) = −

∑
x Pr

[
X = x

]
lg Pr

[
X = x

]
=⇒
Definition
The binary entropy function H(p) for a random binary
variable that is 1 with probability p, is
H(p) = −p lg p − (1 − p) lg(1 − p). We define
H(0) = H(1) = 0.
Q: How many truly random bits are there when given
the result of flipping a single coin with probability p for
heads?
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Binary entropy:
H(p) = −p lg p − (1 − p) lg(1 − p)

H(p) = −p lg p− (1− p) lg(1− p)

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1. H(p) is a concave symmetric around 1/2 on the
interval [0, 1].

2. maximum at 1/2.
3. H(3/4) ≈ 0.8113 and H(7/8) ≈ 0.5436.
4. =⇒ coin that has 3/4 probably to be heads have

higher amount of “randomness” in it than a coin
that has probability 7/8 for heads.
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And now for some unnecessary math
1. H(p) = −p lg p − (1 − p) lg(1 − p)
2. H′(p) = − lg p + lg(1 − p) = lg 1−p

p

3. H′′(p) = p
1−p ·

(
− 1

p2

)
= − 1

p(1−p) .
4. =⇒ H′′(p) ≤ 0, for all p ∈ (0, 1), and the

H(·) is concave.
5. H′(1/2) = 0 =⇒ H(1/2) = 1 max of binary

entropy.
6. =⇒ balanced coin has the largest amount of

randomness in it.
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26.3: Squeezing randomness
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Task at hand: Squeezing good random bits...
...out of bad random bits...

1. b1, . . . , bn: result of n coin flips...
2. From a faulty coin!
3. p: probability for head.
4. We need fair bit coins!
5. Convert b1, . . . , bn =⇒ b′

1, . . . , b′
m.

6. New bits must be truly random: Probability for
head is 1/2.

7. Q: How many truly random bits can we extract?

15/35
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Intuitively...
Squeezing good random bits out of bad random bits...

Question...
Given the result of n coin flips: b1, . . . , bn from a
faulty coin, with head with probability p, how many truly
random bits can we extract?
If believe intuition about entropy, then this number
should be ≈ nH(p).

16/35
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Back to Entropy
1. entropy of X is

H(X) = −
∑

x Pr
[
X = x

]
lg Pr

[
X = x

]
.

2. Entropy of uniform variable..
Example
A random variable X that has probability 1/n to be i,
for i = 1, . . . ,n, has entropy
H(X) = −

∑n
i=1

1
n lg 1

n = lg n.
3. Entropy is oblivious to the exact values random

variable can have.
4. =⇒ random variables over −1,+1 with equal

probability has the same entropy (i.e., 1) as a fair
coin.
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Flipper
Clicker question

You are given a coin that is head with probability p, and
tail with probability q = 1 − p. We flip it three times,
and get the string S = s1s2s3. We have the following:

1. Pr[S = 001] = Pr[S = 011] = pq2.
2. Pr[S = 101] = Pr[S = 110] =

Pr[S = 011] = pq2.
3. Pr[S = 111] = Pr[S = 000] = q3.
4. Pr[S = 001] = Pr[S = 010] =

Pr[S = 100] = pq2.
5. Pr[S = 000] + Pr[S = 111] = (p + q)3.
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Lemma: Entropy additive for independent
variables

Lemma
Let X and Y be two independent random variables, and
let Z be the random variable (X,Y ). Then
H(Z) = H(X) + H(Y ).
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Proof
In the following, summation are over all possible values
that the variables can have. By the independence of X
and Y we have

H(Z) =
∑
x,y

Pr
[
(X,Y ) = (x, y)

]
lg

1
Pr[(X,Y ) = (x, y)]

=
∑
x,y

Pr
[
X = x

]
Pr

[
Y = y

]
lg

1
Pr[X = x]Pr[Y = y]

=
∑

x

∑
y

Pr[X = x]Pr[Y = y] lg
1

Pr[X = x]

+
∑

y

∑
x

Pr[X = x]Pr[Y = y] lg
1

Pr[Y = y]
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Proof continued

H(Z) =
∑

x

∑
y

Pr[X = x]Pr[Y = y] lg
1

Pr[X = x]

+
∑

y

∑
x

Pr[X = x]Pr[Y = y] lg
1

Pr[Y = y]

=
∑

x

Pr[X = x] lg
1

Pr[X = x]

+
∑

y

Pr[Y = y] lg
1

Pr[Y = y]

= H(X) + H(Y ).
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The entropy of Y ...
Clicker question

Consider a binary string Y generated by flipping a coin
n times, where the probability for heads is p. Then we
have that

1. H(Y ) = ln
( n

np

)
.

2. H(Y ) = np.
3. H(Y ) = nH(p).
4. H(Y ) = n − nH(p).
5. H(Y ) = H(np).
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Bounding the binomial coefficient using
entropy

Lemma
q ∈ [0, 1]
nq is integer in the range [0,n].
Then

2nH(q)

n + 1
≤

( n
nq

)
≤ 2nH(q).
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Proof
Holds if q = 0 or q = 1, so assume 0 < q < 1. We
have( n

nq

)
qnq(1 − q)n−nq ≤ (q + (1 − q))n = 1.

We also have: q−nq(1 − q)−(1−q)n =
2n (−q lg q−(1−q) lg(1−q)) = 2nH(q), we have( n

nq

)
≤ q−nq(1 − q)−(1−q)n = 2nH(q).
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Proof continued
Other direction...

1. µ(k) =
(n

k

)
qk(1 − q)n−k

2.
∑n

i=0
(n

i

)
qi(1 − q)n−i =

∑n
i=0 µ(i).

3. Claim: µ(nq) =
( n

nq

)
qnq(1 − q)n−nq largest term

in
∑n

k=0 µ(k) = 1.
4. ∆k = µ(k) − µ(k + 1) =(n

k

)
qk(1 − q)n−k

(
1 − n−k

k+1
q

1−q

)
,

5. sign of ∆k = size of last term...
6. sign(∆k) = sign

(
1 − (n−k)q

(k+1)(1−q)

)
= sign

(
(k+1)(1−q)−(n−k)q

(k+1)(1−q)

)
.
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Proof continued
1. (k + 1)(1 − q) − (n − k)q =

k + 1 − kq − q − nq + kq = 1 + k − q − nq.
2. =⇒ ∆k ≥ 0 when k ≥ nq + q − 1

∆k < 0 otherwise.
3. µ(k) =

(n
k

)
qk(1 − q)n−k

4. µ(k) < µ(k + 1), for k < nq, and
µ(k) ≥ µ(k + 1) for k ≥ nq.

5. =⇒ µ(nq) is the largest term in∑n
k=0 µ(k) = 1.

6. µ(nq) larger than the average in sum.
7. =⇒

(n
k

)
qk(1 − q)n−k ≥ 1

n+1 .
8. =⇒( n

nq

)
≥ 1

n+1q−nq(1 − q)−(n−nq) = 1
n+12nH(q).

26/35
59



Proof continued
1. (k + 1)(1 − q) − (n − k)q =

k + 1 − kq − q − nq + kq = 1 + k − q − nq.
2. =⇒ ∆k ≥ 0 when k ≥ nq + q − 1

∆k < 0 otherwise.
3. µ(k) =

(n
k

)
qk(1 − q)n−k

4. µ(k) < µ(k + 1), for k < nq, and
µ(k) ≥ µ(k + 1) for k ≥ nq.

5. =⇒ µ(nq) is the largest term in∑n
k=0 µ(k) = 1.

6. µ(nq) larger than the average in sum.
7. =⇒

(n
k

)
qk(1 − q)n−k ≥ 1

n+1 .
8. =⇒( n

nq

)
≥ 1

n+1q−nq(1 − q)−(n−nq) = 1
n+12nH(q).

26/35
60



Proof continued
1. (k + 1)(1 − q) − (n − k)q =

k + 1 − kq − q − nq + kq = 1 + k − q − nq.
2. =⇒ ∆k ≥ 0 when k ≥ nq + q − 1

∆k < 0 otherwise.
3. µ(k) =

(n
k

)
qk(1 − q)n−k

4. µ(k) < µ(k + 1), for k < nq, and
µ(k) ≥ µ(k + 1) for k ≥ nq.

5. =⇒ µ(nq) is the largest term in∑n
k=0 µ(k) = 1.

6. µ(nq) larger than the average in sum.
7. =⇒

(n
k

)
qk(1 − q)n−k ≥ 1

n+1 .
8. =⇒( n

nq

)
≥ 1

n+1q−nq(1 − q)−(n−nq) = 1
n+12nH(q).

26/35
61



Proof continued
1. (k + 1)(1 − q) − (n − k)q =

k + 1 − kq − q − nq + kq = 1 + k − q − nq.
2. =⇒ ∆k ≥ 0 when k ≥ nq + q − 1

∆k < 0 otherwise.
3. µ(k) =

(n
k

)
qk(1 − q)n−k

4. µ(k) < µ(k + 1), for k < nq, and
µ(k) ≥ µ(k + 1) for k ≥ nq.

5. =⇒ µ(nq) is the largest term in∑n
k=0 µ(k) = 1.

6. µ(nq) larger than the average in sum.
7. =⇒

(n
k

)
qk(1 − q)n−k ≥ 1

n+1 .
8. =⇒( n

nq

)
≥ 1

n+1q−nq(1 − q)−(n−nq) = 1
n+12nH(q).

26/35
62



Proof continued
1. (k + 1)(1 − q) − (n − k)q =

k + 1 − kq − q − nq + kq = 1 + k − q − nq.
2. =⇒ ∆k ≥ 0 when k ≥ nq + q − 1

∆k < 0 otherwise.
3. µ(k) =

(n
k

)
qk(1 − q)n−k

4. µ(k) < µ(k + 1), for k < nq, and
µ(k) ≥ µ(k + 1) for k ≥ nq.

5. =⇒ µ(nq) is the largest term in∑n
k=0 µ(k) = 1.

6. µ(nq) larger than the average in sum.
7. =⇒

(n
k

)
qk(1 − q)n−k ≥ 1

n+1 .
8. =⇒( n

nq

)
≥ 1

n+1q−nq(1 − q)−(n−nq) = 1
n+12nH(q).

26/35
63



Proof continued
1. (k + 1)(1 − q) − (n − k)q =

k + 1 − kq − q − nq + kq = 1 + k − q − nq.
2. =⇒ ∆k ≥ 0 when k ≥ nq + q − 1

∆k < 0 otherwise.
3. µ(k) =

(n
k

)
qk(1 − q)n−k

4. µ(k) < µ(k + 1), for k < nq, and
µ(k) ≥ µ(k + 1) for k ≥ nq.

5. =⇒ µ(nq) is the largest term in∑n
k=0 µ(k) = 1.

6. µ(nq) larger than the average in sum.
7. =⇒

(n
k

)
qk(1 − q)n−k ≥ 1

n+1 .
8. =⇒( n

nq

)
≥ 1

n+1q−nq(1 − q)−(n−nq) = 1
n+12nH(q).

26/35
64



Proof continued
1. (k + 1)(1 − q) − (n − k)q =

k + 1 − kq − q − nq + kq = 1 + k − q − nq.
2. =⇒ ∆k ≥ 0 when k ≥ nq + q − 1

∆k < 0 otherwise.
3. µ(k) =

(n
k

)
qk(1 − q)n−k

4. µ(k) < µ(k + 1), for k < nq, and
µ(k) ≥ µ(k + 1) for k ≥ nq.

5. =⇒ µ(nq) is the largest term in∑n
k=0 µ(k) = 1.

6. µ(nq) larger than the average in sum.
7. =⇒

(n
k

)
qk(1 − q)n−k ≥ 1

n+1 .
8. =⇒( n

nq

)
≥ 1

n+1q−nq(1 − q)−(n−nq) = 1
n+12nH(q).

26/35
65



Proof continued
1. (k + 1)(1 − q) − (n − k)q =

k + 1 − kq − q − nq + kq = 1 + k − q − nq.
2. =⇒ ∆k ≥ 0 when k ≥ nq + q − 1

∆k < 0 otherwise.
3. µ(k) =

(n
k

)
qk(1 − q)n−k

4. µ(k) < µ(k + 1), for k < nq, and
µ(k) ≥ µ(k + 1) for k ≥ nq.

5. =⇒ µ(nq) is the largest term in∑n
k=0 µ(k) = 1.

6. µ(nq) larger than the average in sum.
7. =⇒

(n
k

)
qk(1 − q)n−k ≥ 1

n+1 .
8. =⇒( n

nq

)
≥ 1

n+1q−nq(1 − q)−(n−nq) = 1
n+12nH(q).

26/35
66



Flipper revisited...
Clicker question

p: coin returns head with this probability. q = 1 − p.
Flip coin n times, let X be the resulting string. Assume
np and nq are integer.
Si : set of all binary strings length n with i ones in
them. Then:

1. Pr[X ∈ Si] is maximal for i = np.
2. ∀s, s′ ∈ Si , we have

Pr[X = s] = Pr[X = s′] =
(n

i

)
piqn−i .

3. If X ∈ Si then entropy of X is lg
(n

i

)
.

4. H(X) = nH(p)
5. All of the above.
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Generalization...
Corollary
We have:

1. q ∈ [0, 1/2] ⇒
( n
bnqc

)
≤ 2nH(q).

2. q ∈ [1/2, 1]
( n
dnqe

)
≤ 2nH(q).

3. q ∈ [1/2, 1] ⇒ 2nH(q)

n+1 ≤
( n
bnqc

)
.

4. q ∈ [0, 1/2] ⇒ 2nH(q)

n+1 ≤
( n
dnqe

)
.

Proof is straightforward but tedious.
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What we have...
1. Proved that

( n
nq

)
≈ 2nH(q).

2. Estimate is loose.
3. Sanity check...

3.1 A sequence of n bits generated by coin with
probability q for head.

3.2 By Chernoff inequality... roughly nq heads in this
sequence.

3.3 Generated sequence Y belongs to
( n

nq
)
≈ 2nH(q)

possible sequences .
3.4 ...of similar probability.
3.5 =⇒ H(Y ) = nH(q) ≈ lg

( n
nq
)
.
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Just one bit...
question
Given a coin C with:
p: Probability for head.
q = 1 − p: Probability for tail.
Q: How to get one true random bit, by flipping C .
Describe an algorithm!
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Extracting randomness...
Entropy can be interpreted as the amount of unbiased
random coin flips can be extracted from a random
variable.
Definition
An extraction function Ext takes as input the value of a
random variable X and outputs a sequence of bits y,
such that Pr

[
Ext(X) = y

∣∣∣ |y| = k
]
= 1

2k , whenever
Pr[|y| = k] > 0, where |y| denotes the length of y.
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Extracting randomness...
1. X: uniform random integer variable out of

0, . . . , 7.
2. Ext(X): binary representation of x.
3. Def. subtle: all extracted seqs of same len have

same probability.
4. Another example of extraction scheme:

4.1 X: uniform random integer variable 0, . . . , 11.
4.2 Ext(x): output the binary representation for x if

0 ≤ x ≤ 7.
4.3 If x is between 8 and 11?
4.4 Idea... Output binary representation of x − 8 as a

two bit number.
5. A valid extractor...

Pr
[
Ext(X) = 00

∣∣∣ |Ext(X)| = 2
]
= 1

4 ,
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Technical lemma
The following is obvious, but we provide a proof anyway.
Lemma
Let x/y be a faction, such that x/y < 1. Then, for
any i, we have x/y < (x + i)/(y + i).

Proof.
We need to prove that x(y + i) − (x + i)y < 0. The
left size is equal to i(x − y), but since y > x (as
x/y < 1), this quantity is negative, as required.
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A uniform variable extractor...
Theorem

1. X: random variable chosen uniformly at random
from {0, . . . ,m − 1}.

2. Then there is an extraction function for X:
2.1 outputs on average at least

blg mc − 1 = bH(X)c − 1

independent and unbiased bits.
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Proof
1. m: A sum of unique powers of 2, namely

m =
∑

i ai2i , where ai ∈ {0, 1}.

2. Example:
3. decomposed {0, . . . ,m − 1} into disjoint union

of blocks sizes are powers of 2.
4. If x is in block 2k, output its relative location in the

block in binary representation.
5. Example: x = 10:

then falls into block 22...
x relative location is 2. Output 2 written using two
bits,
Output: “10”.

35/35
88



Proof
1. m: A sum of unique powers of 2, namely

m =
∑

i ai2i , where ai ∈ {0, 1}.

2. Example: 1 2 3 4 5 60 7 8 9 10
11

12
13

14

3. decomposed {0, . . . ,m − 1} into disjoint union
of blocks sizes are powers of 2.

4. If x is in block 2k, output its relative location in the
block in binary representation.

5. Example: x = 10:
then falls into block 22...
x relative location is 2. Output 2 written using two
bits,
Output: “10”.

35/35
89



Proof
1. m: A sum of unique powers of 2, namely

m =
∑

i ai2i , where ai ∈ {0, 1}.

2. Example: 1 2 3 4 5 60 7 8 9 10
11

12
13

14

1 2 3 4 5 60 7 8 9 10
11

12
13

14

3. decomposed {0, . . . ,m − 1} into disjoint union
of blocks sizes are powers of 2.

4. If x is in block 2k, output its relative location in the
block in binary representation.

5. Example: x = 10:
then falls into block 22...
x relative location is 2. Output 2 written using two
bits,
Output: “10”.

35/3590



Proof
1. m: A sum of unique powers of 2, namely

m =
∑

i ai2i , where ai ∈ {0, 1}.

2. Example: 1 2 3 4 5 60 7 8 9 10
11

12
13

14

1 2 3 4 5 60 7 8 9 10
11

12
13

14

3. decomposed {0, . . . ,m − 1} into disjoint union
of blocks sizes are powers of 2.

4. If x is in block 2k, output its relative location in the
block in binary representation.

5. Example: x = 10:
then falls into block 22...
x relative location is 2. Output 2 written using two
bits,
Output: “10”.

35/3591



Proof
1. m: A sum of unique powers of 2, namely

m =
∑

i ai2i , where ai ∈ {0, 1}.

2. Example: 1 2 3 4 5 60 7 8 9 10
11

12
13

14

1 2 3 4 5 60 7 8 9 10
11

12
13

14

3. decomposed {0, . . . ,m − 1} into disjoint union
of blocks sizes are powers of 2.

4. If x is in block 2k, output its relative location in the
block in binary representation.

5. Example: x = 10: 1 2 3 4 5 60 7 8 9 10
11

12
13

14

0 1 2 3

then falls into block 22...
x relative location is 2. Output 2 written using two
bits,
Output: “10”.

35/35

92



Proof
1. m: A sum of unique powers of 2, namely

m =
∑

i ai2i , where ai ∈ {0, 1}.

2. Example: 1 2 3 4 5 60 7 8 9 10
11

12
13

14

1 2 3 4 5 60 7 8 9 10
11

12
13

14

3. decomposed {0, . . . ,m − 1} into disjoint union
of blocks sizes are powers of 2.

4. If x is in block 2k, output its relative location in the
block in binary representation.

5. Example: x = 10: 1 2 3 4 5 60 7 8 9 10
11

12
13

14

0 1 2 3

then falls into block 22...
x relative location is 2. Output 2 written using two
bits,
Output: “10”.

35/35

93



Proof
1. m: A sum of unique powers of 2, namely

m =
∑

i ai2i , where ai ∈ {0, 1}.

2. Example: 1 2 3 4 5 60 7 8 9 10
11

12
13

14

1 2 3 4 5 60 7 8 9 10
11

12
13

14

3. decomposed {0, . . . ,m − 1} into disjoint union
of blocks sizes are powers of 2.

4. If x is in block 2k, output its relative location in the
block in binary representation.

5. Example: x = 10: 1 2 3 4 5 60 7 8 9 10
11

12
13

14

0 1 2 3

then falls into block 22...
x relative location is 2. Output 2 written using two
bits,
Output: “10”.

35/35

94



Proof
1. m: A sum of unique powers of 2, namely

m =
∑

i ai2i , where ai ∈ {0, 1}.

2. Example: 1 2 3 4 5 60 7 8 9 10
11

12
13

14

1 2 3 4 5 60 7 8 9 10
11

12
13

14

3. decomposed {0, . . . ,m − 1} into disjoint union
of blocks sizes are powers of 2.

4. If x is in block 2k, output its relative location in the
block in binary representation.

5. Example: x = 10: 1 2 3 4 5 60 7 8 9 10
11

12
13

14

0 1 2 3

then falls into block 22...
x relative location is 2. Output 2 written using two
bits,
Output: “10”.

35/35

95



Proof continued
1. Valid extractor...
2. Theorem holds if m is a power of two. Only one

block.
3. m not a power of 2...
4. X falls in block of size 2k: then output k complete

random bits..
... entropy is k.

5. Let 2k < m < 2k+1 biggest block.
6. u =

⌊
lg(m − 2k)

⌋
< k.

There must be a block of size u in the
decomposition of m.

7. two blocks in decomposition of m: sizes 2k and 2u.
8. Largest two blocks...
9. 2k + 2 ∗ 2u > m =⇒ 2u+1 + 2k − m > 0.

10. Y : random variable = number of bits output by
extractor.
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Proof continued
1. By lemma, since m−2k

m < 1:
m − 2k

m
≤

m − 2k +
(
2u+1 + 2k − m

)
m + (2u+1 + 2k − m)

=
2u+1

2u+1 + 2k
.

2. By induction (assumed holds for all numbers smaller
than m):

E[Y ] ≥
2k

m
k +

m − 2k

m

( ⌊
lg(m − 2k)

⌋︸ ︷︷ ︸
u

−1
)

=
2k

m
k +

m − 2k

m
(k − k︸ ︷︷ ︸

=0

+u − 1)

= k +
m − 2k

m
(u − k − 1)
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Proof continued..
1. We have:

E
[
Y

]
≥ k +

m − 2k

m
(u − k − 1)

≥ k +
2u+1

2u+1 + 2k
(u − k − 1)

= k −
2u+1

2u+1 + 2k
(1 + k − u),

since u − k − 1 ≤ 0 as k > u.
2. If u = k − 1, then E[Y ] ≥ k − 1

2 · 2 = k − 1,
as required.

3. If u = k − 2 then E[Y ] ≥ k − 1
3 · 3 = k − 1.
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Proof continued.....
1. E[Y ] ≥ k − 2u+1

2u+1+2k (1 + k − u).
And u − k − 1 ≤ 0 as k > u.

2. If u < k − 2 then

E[Y ] ≥ k −
2u+1

2k
(1 + k − u)

= k −
k − u + 1

2k−u−1

= k −
2 + (k − u − 1)

2k−u−1

≥ k − 1,

since (2 + i)/2i ≤ 1 for i ≥ 2.
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