
CS 473: Algorithms, Fall 2019

Universal and Perfect
Hashing
Lecture 10
September 26, 2019

Chandra and Michael (UIUC) cs473 1 Fall 2019 1 / 45

Announcements and Overview

Pset 4 released and due on Thursday, October 3 at 10am. Note
one day extension over usual deadline.

Midterm 1 is on Monday, Oct 7th from 7-9.30pm. More details
and conflict exam information will be posted on Piazza.

Next pset will be released after the midterm exam.

Today’s lecture:

Review pairwise independence and related constructions

(Strongly) Universal hashing

Perfect hashing

Chandra and Michael (UIUC) cs473 2 Fall 2019 2 / 45

Announcements and Overview

Pset 4 released and due on Thursday, October 3 at 10am. Note
one day extension over usual deadline.

Midterm 1 is on Monday, Oct 7th from 7-9.30pm. More details
and conflict exam information will be posted on Piazza.

Next pset will be released after the midterm exam.

Today’s lecture:

Review pairwise independence and related constructions

(Strongly) Universal hashing

Perfect hashing

Chandra and Michael (UIUC) cs473 2 Fall 2019 2 / 45

Part I

Review

Chandra and Michael (UIUC) cs473 3 Fall 2019 3 / 45

Pairwise independent random variables

Definition
Random variables X1,X2, . . . ,Xn from a range B are pairwise
independent if for all 1 ≤ i < j ≤ n and for all b, b′ ∈ B,

Pr[Xi = b,Xj = b′] = Pr[Xi = b] · Pr[Xj = b′] .

Chandra and Michael (UIUC) cs473 4 Fall 2019 4 / 45

Constructing pairwise independent rvs

Suppose we want to create n pairwise independent random variables
in range 0, 1, . . . ,m − 1. That is we want to generate
X0,X2, . . . ,Xn−1 such that

Pr[Xi = α] = 1/m for each α ∈ {0, 1, 2, . . . ,m − 1}
Xi and Xj are independent for any i 6= j

Interesting case: n = m = p where p is a prime number

Pick a, b uniformly at random from {0, 1, 2, . . . , p − 1}
Set Xi = ai + b
Only need to store a, b. Can generate Xi from i .

Relies on the fact that Zp = {0, 1, 2, . . . , p − 1} is a field

Chandra and Michael (UIUC) cs473 5 Fall 2019 5 / 45

Constructing pairwise independent rvs

Suppose we want to create n pairwise independent random variables
in range 0, 1, . . . ,m − 1. That is we want to generate
X0,X2, . . . ,Xn−1 such that

Pr[Xi = α] = 1/m for each α ∈ {0, 1, 2, . . . ,m − 1}
Xi and Xj are independent for any i 6= j

Interesting case: n = m = p where p is a prime number

Pick a, b uniformly at random from {0, 1, 2, . . . , p − 1}
Set Xi = ai + b
Only need to store a, b. Can generate Xi from i .

Relies on the fact that Zp = {0, 1, 2, . . . , p − 1} is a field

Chandra and Michael (UIUC) cs473 5 Fall 2019 5 / 45

Constructing pairwise independent rvs

Suppose we want to create n pairwise independent random variables
in range 0, 1, . . . ,m − 1. That is we want to generate
X0,X2, . . . ,Xn−1 such that

Pr[Xi = α] = 1/m for each α ∈ {0, 1, 2, . . . ,m − 1}
Xi and Xj are independent for any i 6= j

Interesting case: n = m = p where p is a prime number

Pick a, b uniformly at random from {0, 1, 2, . . . , p − 1}
Set Xi = ai + b
Only need to store a, b. Can generate Xi from i .

Relies on the fact that Zp = {0, 1, 2, . . . , p − 1} is a field

Chandra and Michael (UIUC) cs473 5 Fall 2019 5 / 45

Pairwise independence for general n and m

A rough sketch.
If n < m we can use a prime p ∈ [m, 2m] (one always exists) and
use the previous construction based on Zp.

n > m is the more difficult case and also relevant.

The following is a fundamental theorem on finite fields.

Theorem
Every finite field F has order pk for some prime p and some integer
k ≥ 1. For every prime p and integer k ≥ 1 there is a finite field F
of order pk and is unique up to isomorphism.

We will assume n and m are powers of 2. From above can assume
we have a field F of size n = 2k .

Chandra and Michael (UIUC) cs473 6 Fall 2019 6 / 45

Pairwise independence when n, m are powers of 2

We will assume n and m are powers of 2.
We have a field F of size n = 2k .

Generate n pairwise independent random variables from [n] to [n] by
picking random a, b ∈ F and setting Xi = ai + b (operations in F).
From previous proof X1, . . . ,Xn are pairwise independent.

Now Xi ∈ [n]. Truncate Xi to [m] by dropping the most significant
log n − log m bits. Resulting variables are still pairwise independent
(both n,m being powers of 2 important here).

Skipping details on computational aspects of F which are closely tied
to the proof of the theorem on fields.

Chandra and Michael (UIUC) cs473 7 Fall 2019 7 / 45

Pairwise Independence and Chebyshev’s Inequality

Chebyshev’s Inequality

For a ≥ 0, Pr[|X − E[X] | ≥ a] ≤ Var(X)
a2 equivalently for any

t > 0, Pr[|X − E[X] | ≥ tσX] ≤ 1
t2 where σX =

√
Var(X) is

the standard deviation of X .

Suppose X = X1 + X2 + . . . + Xn.
If X1,X2, . . . ,Xn are independent then Var(X) =

∑
i Var(Xi).

Lemma
Suppose X =

∑
i Xi and X1,X2, . . . ,Xn are pairwise independent,

then Var(X) =
∑

i Var(Xi).

Hence pairwise independence suffices if one relies only on Chebyshev
inequality.

Chandra and Michael (UIUC) cs473 8 Fall 2019 8 / 45

Pairwise Independence and Chebyshev’s Inequality

Chebyshev’s Inequality

For a ≥ 0, Pr[|X − E[X] | ≥ a] ≤ Var(X)
a2 equivalently for any

t > 0, Pr[|X − E[X] | ≥ tσX] ≤ 1
t2 where σX =

√
Var(X) is

the standard deviation of X .

Suppose X = X1 + X2 + . . . + Xn.
If X1,X2, . . . ,Xn are independent then Var(X) =

∑
i Var(Xi).

Lemma
Suppose X =

∑
i Xi and X1,X2, . . . ,Xn are pairwise independent,

then Var(X) =
∑

i Var(Xi).

Hence pairwise independence suffices if one relies only on Chebyshev
inequality.

Chandra and Michael (UIUC) cs473 8 Fall 2019 8 / 45

Part II

Hash Tables

Chandra and Michael (UIUC) cs473 9 Fall 2019 9 / 45

Dictionary Data Structure

1 U : universe of keys with total order: numbers, strings, etc.

2 Data structure to store a subset S ⊆ U
3 Operations:

1 Search/look up: given x ∈ U is x ∈ S?
2 Insert: given x 6∈ S add x to S .
3 Delete: given x ∈ S delete x from S

4 Static structure: S given in advance or changes very
infrequently, main operations are lookups.

5 Dynamic structure: S changes rapidly so inserts and deletes as
important as lookups.

Can we do everything in O(1) time?

Chandra and Michael (UIUC) cs473 10 Fall 2019 10 / 45

Hashing and Hash Tables

Hash Table data structure:
1 A (hash) table/array T of size m (the table size).
2 A hash function h : U → {0, . . . ,m − 1}.
3 Item x ∈ U hashes to slot h(x) in T .

Given S ⊆ U . How do we store S and how do we do lookups?

Ideal situation:
1 Each element x ∈ S hashes to a distinct slot in T . Store x in

slot h(x)

2 Lookup: Given y ∈ U check if T [h(y)] = y . O(1) time!

Collisions unavoidable if |T | < |U|.

Chandra and Michael (UIUC) cs473 11 Fall 2019 11 / 45

Hashing and Hash Tables

Hash Table data structure:
1 A (hash) table/array T of size m (the table size).
2 A hash function h : U → {0, . . . ,m − 1}.
3 Item x ∈ U hashes to slot h(x) in T .

Given S ⊆ U . How do we store S and how do we do lookups?

Ideal situation:
1 Each element x ∈ S hashes to a distinct slot in T . Store x in

slot h(x)

2 Lookup: Given y ∈ U check if T [h(y)] = y . O(1) time!

Collisions unavoidable if |T | < |U|.
Chandra and Michael (UIUC) cs473 11 Fall 2019 11 / 45

Handling Collisions: Chaining

Collision: h(x) = h(y) for some x 6= y .

Chaining/Open hashing to handle collisions:
1 For each slot i store all items hashed to slot i in a linked list.

T [i] points to the linked list
2 Lookup: to find if y ∈ U is in T , check the linked list at

T [h(y)]. Time proportion to size of linked list.

y

s

f

Does hashing give O(1) time per operation for dictionaries?
Chandra and Michael (UIUC) cs473 12 Fall 2019 12 / 45

Hash Functions

Parameters: N = |U| (very large), m = |T |, n = |S|
Goal: O(1)-time lookup, insertion, deletion.

Single hash function

If N ≥ m2, then for any hash function h : U → T there exists
i < m such that at least N/m ≥ m elements of U get hashed to
slot i . Any S containing all of these is a very very bad set for h!

Such a bad set may lead to O(m) lookup time!

In practice:

Dictionary applications: choose a simple hash function and hope
that worst-case bad sets do not arise

Crypto applications: create “hard” and “complex” function very
carefully which makes finding collisions difficult

Chandra and Michael (UIUC) cs473 13 Fall 2019 13 / 45

Hashing from a theoretical point of view

Consider a family H of hash functions with good properties and
choose h randomly from H
Guarantees: small # collisions in expectation for any given S .

H should allow efficient sampling.

Each h ∈ H should be efficient to evaluate and require small
memory to store.

In other words a hash function is a “pseudorandom” function

Chandra and Michael (UIUC) cs473 14 Fall 2019 14 / 45

Strongly Universal Hashing

1 Uniform: Consider any element x ∈ U . Then if h ∈ H is
picked randomly then x should go into a random slot in T . In
other words Pr[h(x) = i] = 1/m for every 0 ≤ i < m.

2 (2)-Strongly Universal: Consider any two distinct elements
x, y ∈ U . Then if h ∈ H is picked randomly then h(x) and
h(y) should be independent random variables.

Chandra and Michael (UIUC) cs473 15 Fall 2019 15 / 45

Universal Hashing

(2)-Universal: Consider any two distinct elements x, y ∈ U .
Then if h ∈ H is picked randomly then the probability of a
collision between x and y should be at most 1/m. In other
words Pr[h(x) = h(y)] ≤ 1/m.

Note: we do not insist on uniformity.

Universal hashing is a relaxation of strong universal hashing and
simpler to construct while retaining most of the useful properties.

Chandra and Michael (UIUC) cs473 16 Fall 2019 16 / 45

Universal Hashing

(2)-Universal: Consider any two distinct elements x, y ∈ U .
Then if h ∈ H is picked randomly then the probability of a
collision between x and y should be at most 1/m. In other
words Pr[h(x) = h(y)] ≤ 1/m.

Note: we do not insist on uniformity.

Universal hashing is a relaxation of strong universal hashing and
simpler to construct while retaining most of the useful properties.

Chandra and Michael (UIUC) cs473 16 Fall 2019 16 / 45

(Strongly) Universal Hashing

Definition
A family of hash functions H is (2-)strongly universal if for all
distinct x, y ∈ U , h(x) and h(y) are independent for h chosen
uniformly at random from H, and for all x , h(x) is uniformly
distributed.

Definition
A family of hash functions H is (2-)universal if for all distinct
x, y ∈ U , Prh∼H[h(x) = h(y)] ≤ 1/m where m is the table size.

Chandra and Michael (UIUC) cs473 17 Fall 2019 17 / 45

Analyzing Universal Hashing

1 T is hash table of size m.

2 S ⊆ U is a fixed set of size n
3 h is chosen randomly from a universal hash family H.

4 x is a fixed element of U .

Question: What is the expected time to look up x in T using h
assuming chaining used to resolve collisions?

1 The time to look up x is the size of the list at T [h(x)]: same
as the number of elements in S that collide with x under h.

2 `(x) be this number. We want E[`(x)]

3 Let Cx,y be indicator random variable for x, y colloding under
h, that Cx,y = 1 iff h(x) = h(y)

Chandra and Michael (UIUC) cs473 18 Fall 2019 18 / 45

Analyzing Universal Hashing

1 T is hash table of size m.

2 S ⊆ U is a fixed set of size n
3 h is chosen randomly from a universal hash family H.

4 x is a fixed element of U .

Question: What is the expected time to look up x in T using h
assuming chaining used to resolve collisions?

1 The time to look up x is the size of the list at T [h(x)]: same
as the number of elements in S that collide with x under h.

2 `(x) be this number. We want E[`(x)]

3 Let Cx,y be indicator random variable for x, y colloding under
h, that Cx,y = 1 iff h(x) = h(y)

Chandra and Michael (UIUC) cs473 18 Fall 2019 18 / 45

Analyzing Universal Hashing
Continued...

Number of elements colliding with x : `(x) =
∑

y∈S Cx,y .

⇒ E[`(x)] =
∑

y∈S,y 6=x

E[Cx,y] linearity of expectation

=
∑

y∈S,y 6=x

Pr [h(x) = h(y)]

≤
∑

y∈S,y 6=x

1

m
(since H is a universal hash family)

≤ |S|/m

≤
n
m

≤ 1 (if |S| ≤ m)

Chandra and Michael (UIUC) cs473 19 Fall 2019 19 / 45

Analyzing Universal Hashing

Comments:

1 Expected time for insertion and deletion also O(1) if n ≤ m.

2 Analysis assumes static set S but holds as long as S is a set
formed with at most O(m) insertions and deletions.
Assumption is that insertions and deletions are not adaptive.

3 Worst-case: look up time can be large! How large? Technically
O(n) if all elements collide.

Chandra and Michael (UIUC) cs473 20 Fall 2019 20 / 45

Analyzing Universal Hashing: Maximum Load

If h is a fully random function and m = n then expected maximum
load in any bucket of T is O(log n/ log log n) via balls and bin
analogy.

If h is chosen from a universal hash family H what is the expected
maximum load?

Lemma
Let h be chosen from a universal hash family and let m ≥ n and let
L be maximum load of any slot. Then Pr

[
L > t

√
n
]
≤ 1/t2 for

t ≥ 1.

Thus L = O(
√

n) with probability at least 1/2.

Chandra and Michael (UIUC) cs473 21 Fall 2019 21 / 45

Analyzing Universal Hashing: Maximum Load

If h is a fully random function and m = n then expected maximum
load in any bucket of T is O(log n/ log log n) via balls and bin
analogy.

If h is chosen from a universal hash family H what is the expected
maximum load?

Lemma
Let h be chosen from a universal hash family and let m ≥ n and let
L be maximum load of any slot. Then Pr

[
L > t

√
n
]
≤ 1/t2 for

t ≥ 1.

Thus L = O(
√

n) with probability at least 1/2.

Chandra and Michael (UIUC) cs473 21 Fall 2019 21 / 45

Analyzing Universal Hashing: Maximum Load

Lemma
Let h be chosen from a universal hash family and let m ≥ n and let
L be maximum load of any slot. Then Pr

[
L > t

√
n
]
≤ 1/t2 for

t ≥ 1.

Let C =
∑

x,y∈S,x 6=y Cx,y be total number of collisions.

E[C] ≤
(n

2

)
/m ≤ (n − 1)/2 if m ≥ n.

Observation: C ≥
(L

2

)
. Why?

L > t
√

n implies C > t2n/2.

By Markov Pr
[
C > t2n/2

]
≤ E[C] /(t2n/2) ≤ 1/t2

Hence Pr
[
L > t

√
n
]
≤ 1/t2.

Chandra and Michael (UIUC) cs473 22 Fall 2019 22 / 45

Analyzing Universal Hashing: Maximum Load

Lemma
Let h be chosen from a universal hash family and let m ≥ n and let
L be maximum load of any slot. Then E[L] = O(

√
n).

Direct proof: (E[L])2 ≤ E
[
L2
]
≤ E[C] ≤ n (using Jensen’s ineq)

L is a non-negative random variable in range. Hence

E [L] =
n∑

i=1

Pr[L ≥ i] (from defn of expectation)

≤

√
n∑

i=1

1 +
n∑

i=
√

n+1

n/i 2 (from previous lemma)

≤
√

n + n
∫ n

√
n

1/i 2 ≤ 2
√

n.

Chandra and Michael (UIUC) cs473 23 Fall 2019 23 / 45

Compact Strongly Universal Hash Family

Parameters: N = |U|, m = |T |, n = |S|

Question: How do we construct strongly universal hash family?

If N and m are powers of 2 then use construction of N pairwise
independent random variables over range [m] discussed previously

Disadvantage: Need m to be power of 2 and requires complicated
field operations

Chandra and Michael (UIUC) cs473 24 Fall 2019 24 / 45

Compact Strongly Universal Hash Family

Parameters: N = |U|, m = |T |, n = |S|

Question: How do we construct strongly universal hash family?

If N and m are powers of 2 then use construction of N pairwise
independent random variables over range [m] discussed previously

Disadvantage: Need m to be power of 2 and requires complicated
field operations

Chandra and Michael (UIUC) cs473 24 Fall 2019 24 / 45

Compact Strongly Universal Hash Family

Parameters: N = |U|, m = |T |, n = |S|

Question: How do we construct strongly universal hash family?

If N and m are powers of 2 then use construction of N pairwise
independent random variables over range [m] discussed previously

Disadvantage: Need m to be power of 2 and requires complicated
field operations

Chandra and Michael (UIUC) cs473 24 Fall 2019 24 / 45

Compact Universal Hash Family

Parameters: N = |U|, m = |T |, n = |S|
1 Choose a prime number p > N . Define function

ha,b(x) = ((ax + b) mod p) mod m.

2 Let H = {ha,b | a, b ∈ Zp, a 6= 0} (Zp = {0, 1, . . . , p − 1}).
Note that |H| = p(p − 1).

Theorem
H is a universal hash family.

Comments:

1 ha,b can be evaluated in O(1) time.

2 Easy to store, i.e., just store a, b. Easy to sample.

Chandra and Michael (UIUC) cs473 25 Fall 2019 25 / 45

Compact Universal Hash Family

Parameters: N = |U|, m = |T |, n = |S|
1 Choose a prime number p > N . Define function

ha,b(x) = ((ax + b) mod p) mod m.

2 Let H = {ha,b | a, b ∈ Zp, a 6= 0} (Zp = {0, 1, . . . , p − 1}).
Note that |H| = p(p − 1).

Theorem
H is a universal hash family.

Comments:

1 ha,b can be evaluated in O(1) time.

2 Easy to store, i.e., just store a, b. Easy to sample.

Chandra and Michael (UIUC) cs473 25 Fall 2019 25 / 45

Compact Universal Hash Family

Parameters: N = |U|, m = |T |, n = |S|
1 Choose a prime number p > N . Define function

ha,b(x) = ((ax + b) mod p) mod m.

2 Let H = {ha,b | a, b ∈ Zp, a 6= 0} (Zp = {0, 1, . . . , p − 1}).
Note that |H| = p(p − 1).

Theorem
H is a universal hash family.

Comments:

1 ha,b can be evaluated in O(1) time.

2 Easy to store, i.e., just store a, b. Easy to sample.

Chandra and Michael (UIUC) cs473 25 Fall 2019 25 / 45

Understanding the hashing

Once we fix a and b, and we are given a value x , we compute the
hash value of x in two stages:

1 Compute: r ← (ax + b) mod p.

2 Fold: r ′ ← r mod m
Let ga,b(x) = (ax + b) mod p.
ha,b(x) = ga,b(x) mod m.

Fix x :

ga,b(x) is uniformly distributed in {0, 1, . . . , p − 1}. Why?

However ha,b(x) is not necessarily uniformly distributed over
{0, 1, 2, . . . ,m}. Why?

Chandra and Michael (UIUC) cs473 26 Fall 2019 26 / 45

Understanding the hashing

Once we fix a and b, and we are given a value x , we compute the
hash value of x in two stages:

1 Compute: r ← (ax + b) mod p.

2 Fold: r ′ ← r mod m
Let ga,b(x) = (ax + b) mod p.
ha,b(x) = ga,b(x) mod m.

Fix x :

ga,b(x) is uniformly distributed in {0, 1, . . . , p − 1}. Why?

However ha,b(x) is not necessarily uniformly distributed over
{0, 1, 2, . . . ,m}. Why?

Chandra and Michael (UIUC) cs473 26 Fall 2019 26 / 45

Some math required...

Recall Zp is a field.

a 6= 0 implies unique a′ such that aa′ = 1 mod p
For a, x, y ∈ Zp such that x 6= y and a 6= 0 we have
ax 6= ay mod p.

For x 6= y and any r , s there is a unique solution (a, b) to the
equations ax + b = r and ay + b = s.

Chandra and Michael (UIUC) cs473 27 Fall 2019 27 / 45

Proof of the Theorem: Outline

ha,b(x) = ((ax + b) mod p) mod m).

Theorem
H = {ha,b | a, b ∈ Zp, a 6= 0} is universal.

Proof.
Fix x, y ∈ U , x 6= y . Show that
Prha,b∼H[ha,b(x) = ha,b(y)] ≤ 1/m.
Note that |H| = p(p − 1).

1 Let (a, b) (equivalently ha,b) be bad for x, y if
ha,b(x) = ha,b(y).

2 Claim: Number of bad (a, b) is at most p(p − 1)/m.

3 Total number of hash functions is p(p − 1) and hence
probability of a collision is ≤ 1/m.

Chandra and Michael (UIUC) cs473 28 Fall 2019 28 / 45

Proof of the Theorem: Outline

ha,b(x) = ((ax + b) mod p) mod m).

Theorem
H = {ha,b | a, b ∈ Zp, a 6= 0} is universal.

Proof.
Fix x, y ∈ U , x 6= y . Show that
Prha,b∼H[ha,b(x) = ha,b(y)] ≤ 1/m.
Note that |H| = p(p − 1).

1 Let (a, b) (equivalently ha,b) be bad for x, y if
ha,b(x) = ha,b(y).

2 Claim: Number of bad (a, b) is at most p(p − 1)/m.

3 Total number of hash functions is p(p − 1) and hence
probability of a collision is ≤ 1/m.

Chandra and Michael (UIUC) cs473 28 Fall 2019 28 / 45

Proof of the Theorem: Outline

ha,b(x) = ((ax + b) mod p) mod m).

Theorem
H = {ha,b | a, b ∈ Zp, a 6= 0} is universal.

Proof.
Fix x, y ∈ U , x 6= y . Show that
Prha,b∼H[ha,b(x) = ha,b(y)] ≤ 1/m.
Note that |H| = p(p − 1).

1 Let (a, b) (equivalently ha,b) be bad for x, y if
ha,b(x) = ha,b(y).

2 Claim: Number of bad (a, b) is at most p(p − 1)/m.

3 Total number of hash functions is p(p − 1) and hence
probability of a collision is ≤ 1/m.

Chandra and Michael (UIUC) cs473 28 Fall 2019 28 / 45

Proof of the Theorem: Outline

ha,b(x) = ((ax + b) mod p) mod m).

Theorem
H = {ha,b | a, b ∈ Zp, a 6= 0} is universal.

Proof.
Fix x, y ∈ U , x 6= y . Show that
Prha,b∼H[ha,b(x) = ha,b(y)] ≤ 1/m.
Note that |H| = p(p − 1).

1 Let (a, b) (equivalently ha,b) be bad for x, y if
ha,b(x) = ha,b(y).

2 Claim: Number of bad (a, b) is at most p(p − 1)/m.

3 Total number of hash functions is p(p − 1) and hence
probability of a collision is ≤ 1/m.

Chandra and Michael (UIUC) cs473 28 Fall 2019 28 / 45

Proof of Claim

ha,b(x) = (((ax + b) mod p) mod m)
2 lemmas ...

Fix x 6= y ∈ Zp, and let r = (ax + b) mod p and
s = (ay + b) mod p.

1 1-to-1 correspondence between p(p − 1) pairs of (a, b)
(equivalently ha,b) and p(p − 1) pairs of (r , s).

2 Out of all possible p(p − 1) pairs of (r , s), at most
p(p − 1)/m fraction satisfies r mod m = s mod m.

Chandra and Michael (UIUC) cs473 29 Fall 2019 29 / 45

Proof of Claim

ha,b(x) = (((ax + b) mod p) mod m)
2 lemmas ...

Fix x 6= y ∈ Zp, and let r = (ax + b) mod p and
s = (ay + b) mod p.

1 1-to-1 correspondence between p(p − 1) pairs of (a, b)
(equivalently ha,b) and p(p − 1) pairs of (r , s).

2 Out of all possible p(p − 1) pairs of (r , s), at most
p(p − 1)/m fraction satisfies r mod m = s mod m.

Chandra and Michael (UIUC) cs473 29 Fall 2019 29 / 45

Proof of Claim

ha,b(x) = (((ax + b) mod p) mod m)
2 lemmas ...

Fix x 6= y ∈ Zp, and let r = (ax + b) mod p and
s = (ay + b) mod p.

1 1-to-1 correspondence between p(p − 1) pairs of (a, b)
(equivalently ha,b) and p(p − 1) pairs of (r , s).

2 Out of all possible p(p − 1) pairs of (r , s), at most
p(p − 1)/m fraction satisfies r mod m = s mod m.

Chandra and Michael (UIUC) cs473 29 Fall 2019 29 / 45

Correspondence Lemma

Lemma
If x 6= y then for each (r , s) such that r 6= s and
0 ≤ r , s ≤ p−1 there is exactly one pair (a, b) such that a 6= 0 and

ax + b mod p = r and ay + b mod p = s .

Proof.
Solve the two equations:

ax + b = r mod p and ay + b = s mod p

We get a = r−s
x−y mod p and b = r − ax mod p.

One-to-one correspondence between (a, b) and (r , s)

Chandra and Michael (UIUC) cs473 30 Fall 2019 30 / 45

Collisions due to folding

Once we fix a and b, and we are given a value x , we compute the
hash value of x in two stages:

1 Compute: r ← (ax + b) mod p.

2 Fold: r ′ ← r mod m

Collision...
Given two distinct values x and y they might collide only because of
folding.

Lemma
of pairs (r , s) of Zp × Zp such that r 6= s and r mod m = s
mod m is at most p(p − 1)/m.

Chandra and Michael (UIUC) cs473 31 Fall 2019 31 / 45

Collisions due to folding

Once we fix a and b, and we are given a value x , we compute the
hash value of x in two stages:

1 Compute: r ← (ax + b) mod p.

2 Fold: r ′ ← r mod m

Collision...
Given two distinct values x and y they might collide only because of
folding.

Lemma
of pairs (r , s) of Zp × Zp such that r 6= s and r mod m = s
mod m is at most p(p − 1)/m.

Chandra and Michael (UIUC) cs473 31 Fall 2019 31 / 45

Folding numbers

Lemma
pairs (r , s) ∈ Zp × Zp such that r 6= s and r mod m = s
mod m (folded to the same number) is p(p − 1)/m.

Proof.

Consider a pair (r , s) ∈ {0, 1, . . . , p − 1}2 s.t. r 6= s. Fix r :

1 Let d = r mod m.

2 There are dp/me values of s such that r mod m = s
mod m.

3 One of them is when r = s.

4 =⇒ # of colliding pairs (dp/me − 1)p ≤ (p − 1)p/m

Chandra and Michael (UIUC) cs473 32 Fall 2019 32 / 45

Folding numbers

Lemma
pairs (r , s) ∈ Zp × Zp such that r 6= s and r mod m = s
mod m (folded to the same number) is p(p − 1)/m.

Proof.

Consider a pair (r , s) ∈ {0, 1, . . . , p − 1}2 s.t. r 6= s. Fix r :

1 Let d = r mod m.

2 There are dp/me values of s such that r mod m = s
mod m.

3 One of them is when r = s.

4 =⇒ # of colliding pairs

(dp/me − 1)p ≤ (p − 1)p/m

Chandra and Michael (UIUC) cs473 32 Fall 2019 32 / 45

Folding numbers

Lemma
pairs (r , s) ∈ Zp × Zp such that r 6= s and r mod m = s
mod m (folded to the same number) is p(p − 1)/m.

Proof.

Consider a pair (r , s) ∈ {0, 1, . . . , p − 1}2 s.t. r 6= s. Fix r :

1 Let d = r mod m.

2 There are dp/me values of s such that r mod m = s
mod m.

3 One of them is when r = s.

4 =⇒ # of colliding pairs (dp/me − 1)p ≤ (p − 1)p/m

Chandra and Michael (UIUC) cs473 32 Fall 2019 32 / 45

Proof of Claim
of bad pairs is p(p− 1)/m

Proof.
Let a, b ∈ Zp such that a 6= 0 and ha,b(x) = ha,b(y).

1 Let r = ax + b mod p and s = ay + b mod p.

2 Collision if and only if r mod m = s mod m.

3 (Folding error): Number of pairs (r , s) such that r 6= s and
0 ≤ r , s ≤ p − 1 and r mod m = s mod m is
p(p − 1)/m.

4 From previous lemma there is one-to-one correspondence
between (a, b) and (r , s). Hence total number of bad (a, b)
pairs is p(p − 1)/m.

Prob of x and y to collide: # bad (a, b) pairs

#(a, b) pairs
= p(p−1)/m

p(p−1)
= 1

m .

Chandra and Michael (UIUC) cs473 33 Fall 2019 33 / 45

Proof of Claim
of bad pairs is p(p− 1)/m

Proof.
Let a, b ∈ Zp such that a 6= 0 and ha,b(x) = ha,b(y).

1 Let r = ax + b mod p and s = ay + b mod p.

2 Collision if and only if r mod m = s mod m.

3 (Folding error): Number of pairs (r , s) such that r 6= s and
0 ≤ r , s ≤ p − 1 and r mod m = s mod m is
p(p − 1)/m.

4 From previous lemma there is one-to-one correspondence
between (a, b) and (r , s). Hence total number of bad (a, b)
pairs is p(p − 1)/m.

Prob of x and y to collide: # bad (a, b) pairs

#(a, b) pairs
= p(p−1)/m

p(p−1)
= 1

m .

Chandra and Michael (UIUC) cs473 33 Fall 2019 33 / 45

Part III

Perfect Hashing

Chandra and Michael (UIUC) cs473 34 Fall 2019 34 / 45

Perfect Hashing

Question: Suppose we get a set S ⊂ U of size n. Can we design an
“efficient” and “perfect” hash function?

Create a table T of size m = O(n).

Create a hash function h : S → [m] with no collisions!

h should be fast and efficient to evaluate

Construct h efficiently given S . Construction of h can be
randomized (Las Vegas algorithm)

A perfect hash function would guarantee lookup time of O(1).

Chandra and Michael (UIUC) cs473 35 Fall 2019 35 / 45

Perfect Hashing

Question: Suppose we get a set S ⊂ U of size n. Can we design an
“efficient” and “perfect” hash function?

Create a table T of size m = O(n).

Create a hash function h : S → [m] with no collisions!

h should be fast and efficient to evaluate

Construct h efficiently given S . Construction of h can be
randomized (Las Vegas algorithm)

A perfect hash function would guarantee lookup time of O(1).

Chandra and Michael (UIUC) cs473 35 Fall 2019 35 / 45

Perfect Hashing via Large Space

Suppose m = n2. Table size is much bigger than n

Lemma
Suppose H is a universal hash family and m = n2. Then
Prh∈H[no collisions in S] ≥ 1/2.

Proof.
Total number of collisions is C =

∑
x,y∈S,x 6=y Cx,y .

E[C] ≤
(n

2

)
/m < 1/2.

By Markov inequality Pr[C ≥ 1] < 1/2.

Algorithm: pick h ∈ H randomly and check if h is perfect. Repeat
until success.

Chandra and Michael (UIUC) cs473 36 Fall 2019 36 / 45

Perfect Hashing via Large Space

Suppose m = n2. Table size is much bigger than n

Lemma
Suppose H is a universal hash family and m = n2. Then
Prh∈H[no collisions in S] ≥ 1/2.

Proof.
Total number of collisions is C =

∑
x,y∈S,x 6=y Cx,y .

E[C] ≤
(n

2

)
/m < 1/2.

By Markov inequality Pr[C ≥ 1] < 1/2.

Algorithm: pick h ∈ H randomly and check if h is perfect. Repeat
until success.

Chandra and Michael (UIUC) cs473 36 Fall 2019 36 / 45

Perfect Hashing via Large Space

Suppose m = n2. Table size is much bigger than n

Lemma
Suppose H is a universal hash family and m = n2. Then
Prh∈H[no collisions in S] ≥ 1/2.

Proof.
Total number of collisions is C =

∑
x,y∈S,x 6=y Cx,y .

E[C] ≤
(n

2

)
/m < 1/2.

By Markov inequality Pr[C ≥ 1] < 1/2.

Algorithm: pick h ∈ H randomly and check if h is perfect. Repeat
until success.

Chandra and Michael (UIUC) cs473 36 Fall 2019 36 / 45

Perfect Hashing
Two levels of hash tables

Question: Can we obtain perfect hashing with m = O(n)?

Perfect Hashing
Do hashing once with table T of size m
For each slot i in T let Yi be number of elements hashed to
slot i . If Yi > 1 use perfect hashing with second table Ti of
size Y 2

i .

Construction gives perfect hashing. What is the space used?

Z = m +
m−1∑
i=0

Y 2
i

a random variable (depends on random choice of first level hash
function)

Chandra and Michael (UIUC) cs473 37 Fall 2019 37 / 45

Perfect Hashing
Two levels of hash tables

Question: Can we obtain perfect hashing with m = O(n)?

Perfect Hashing
Do hashing once with table T of size m
For each slot i in T let Yi be number of elements hashed to
slot i . If Yi > 1 use perfect hashing with second table Ti of
size Y 2

i .

Construction gives perfect hashing. What is the space used?

Z = m +
m−1∑
i=0

Y 2
i

a random variable (depends on random choice of first level hash
function)

Chandra and Michael (UIUC) cs473 37 Fall 2019 37 / 45

Perfect Hashing
Two levels of hash tables

Question: Can we obtain perfect hashing with m = O(n)?

Perfect Hashing
Do hashing once with table T of size m
For each slot i in T let Yi be number of elements hashed to
slot i . If Yi > 1 use perfect hashing with second table Ti of
size Y 2

i .

Construction gives perfect hashing. What is the space used?

Z = m +
m−1∑
i=0

Y 2
i

a random variable (depends on random choice of first level hash
function)

Chandra and Michael (UIUC) cs473 37 Fall 2019 37 / 45

Perfect Hashing
O(n) space usage

h the primary random hash function.

Claim

E
[∑m−1

i=0 Y 2
i

]
≤ 3n/2 if m ≥ n.

Proof.
Let C be total number of collisions. We already saw E[C] ≤

(n
2

)
/m.∑

i
(Yi

2

)
= C and hence

∑
i Y

2
i = 2C +

∑
i Yi .

Therefore

E

[∑
i

Y 2
i

]
≤ 2

(
n
2

)
/m + E

[∑
i

Yi

]
= 2

(
n
2

)
/m + n ≤ 3n/2.

Chandra and Michael (UIUC) cs473 38 Fall 2019 38 / 45

Perfect Hashing
O(n) space usage

h the primary random hash function.

Claim

E
[∑m−1

i=0 Y 2
i

]
≤ 3n/2 if m ≥ n.

Proof.
Let C be total number of collisions. We already saw E[C] ≤

(n
2

)
/m.∑

i
(Yi

2

)
= C and hence

∑
i Y

2
i = 2C +

∑
i Yi .

Therefore

E

[∑
i

Y 2
i

]
≤ 2

(
n
2

)
/m + E

[∑
i

Yi

]
= 2

(
n
2

)
/m + n ≤ 3n/2.

Chandra and Michael (UIUC) cs473 38 Fall 2019 38 / 45

Perfect Hashing
O(n) space usage

h the primary random hash function.

Claim

E
[∑m−1

i=0 Y 2
i

]
≤ 3n/2 if m ≥ n.

Proof.
Let C be total number of collisions. We already saw E[C] ≤

(n
2

)
/m.

∑
i
(Yi

2

)
= C and hence

∑
i Y

2
i = 2C +

∑
i Yi .

Therefore

E

[∑
i

Y 2
i

]
≤ 2

(
n
2

)
/m + E

[∑
i

Yi

]
= 2

(
n
2

)
/m + n ≤ 3n/2.

Chandra and Michael (UIUC) cs473 38 Fall 2019 38 / 45

Perfect Hashing
O(n) space usage

h the primary random hash function.

Claim

E
[∑m−1

i=0 Y 2
i

]
≤ 3n/2 if m ≥ n.

Proof.
Let C be total number of collisions. We already saw E[C] ≤

(n
2

)
/m.∑

i
(Yi

2

)
= C and hence

∑
i Y

2
i = 2C +

∑
i Yi .

Therefore

E

[∑
i

Y 2
i

]
≤ 2

(
n
2

)
/m + E

[∑
i

Yi

]
= 2

(
n
2

)
/m + n ≤ 3n/2.

Chandra and Michael (UIUC) cs473 38 Fall 2019 38 / 45

Perfect Hashing

Perfect Hashing
Do hashing once with table T of size m
For each slot i in T let Yi be number of elements hashed to
slot i . If Yi > 1 use perfect hashing with second table Ti of
size Y 2

i .

Space usage is Z = m +
∑m−1

i=0 Y 2
i and E[Z] ≤ 5n/2 if m = n.

Use algorithm to create perfect hash table
By Markov space usage is < 5n with probability at least 1/2
Repeat if space usage is larger than 5n. Expected number of
repetitions is 2. Hence it leads to O(n) time Las Vegas
algorithm
Technically also need to count the space to store multiple hash
functions: O(n) overhead

Chandra and Michael (UIUC) cs473 39 Fall 2019 39 / 45

Rehashing, amortization and...
... making the hash table dynamic

So far we assumed fixed S of size ' m.
Question: What happens as items are inserted and deleted?

1 If |S| grows to more than cm for some constant c then hash
table performance clearly degrades.

2 If |S| stays around ' m but incurs many insertions and
deletions then the initial random hash function is no longer
random enough!

Solution: Rebuild hash table periodically!

1 Choose a new table size based on current number of elements in
the table.

2 Choose a new random hash function and rehash the elements.

3 Discard old table and hash function.

Question: When to rebuild? How expensive?

Chandra and Michael (UIUC) cs473 40 Fall 2019 40 / 45

Rehashing, amortization and...
... making the hash table dynamic

So far we assumed fixed S of size ' m.
Question: What happens as items are inserted and deleted?

1 If |S| grows to more than cm for some constant c then hash
table performance clearly degrades.

2 If |S| stays around ' m but incurs many insertions and
deletions then the initial random hash function is no longer
random enough!

Solution: Rebuild hash table periodically!

1 Choose a new table size based on current number of elements in
the table.

2 Choose a new random hash function and rehash the elements.

3 Discard old table and hash function.

Question: When to rebuild? How expensive?
Chandra and Michael (UIUC) cs473 40 Fall 2019 40 / 45

Rebuilding the hash table

1 Start with table size m where m is some estimate of |S| (can
be some large constant).

2 If |S| grows to more than twice current table size, build new
hash table (choose a new random hash function) with double
the current number of elements. Can also use similar trick if
table size falls below quarter the size.

3 If |S| stays roughly the same but more than c|S| operations on
table for some chosen constant c (say 10), rebuild.

The amortize cost of rebuilding to previously performed operations.
Rebuilding ensures O(1) expected analysis holds even when S
changes. Hence O(1) expected look up/insert/delete time dynamic
data dictionary data structure!

Chandra and Michael (UIUC) cs473 41 Fall 2019 41 / 45

Rebuilding the hash table

1 Start with table size m where m is some estimate of |S| (can
be some large constant).

2 If |S| grows to more than twice current table size, build new
hash table (choose a new random hash function) with double
the current number of elements. Can also use similar trick if
table size falls below quarter the size.

3 If |S| stays roughly the same but more than c|S| operations on
table for some chosen constant c (say 10), rebuild.

The amortize cost of rebuilding to previously performed operations.
Rebuilding ensures O(1) expected analysis holds even when S
changes. Hence O(1) expected look up/insert/delete time dynamic
data dictionary data structure!

Chandra and Michael (UIUC) cs473 41 Fall 2019 41 / 45

Rebuilding the hash table

1 Start with table size m where m is some estimate of |S| (can
be some large constant).

2 If |S| grows to more than twice current table size, build new
hash table (choose a new random hash function) with double
the current number of elements. Can also use similar trick if
table size falls below quarter the size.

3 If |S| stays roughly the same but more than c|S| operations on
table for some chosen constant c (say 10), rebuild.

The amortize cost of rebuilding to previously performed operations.
Rebuilding ensures O(1) expected analysis holds even when S
changes. Hence O(1) expected look up/insert/delete time dynamic
data dictionary data structure!

Chandra and Michael (UIUC) cs473 41 Fall 2019 41 / 45

Practical Issues

Hashing used typically for integers, vectors, strings etc.

Universal hashing is defined for integers. To implement for other
objects need to map objects in some fashion to integers (via
representation)

Practical methods for various important cases such as vectors, strings
are studied extensively. See
http://en.wikipedia.org/wiki/Universal_hashing for some
pointers.

Details on Cuckoo hashing and its advantage over chaining
http://en.wikipedia.org/wiki/Cuckoo_hashing.

Relatively recent important paper bridging theory and practice of
hashing. “The power of simple tabulation hashing” by Mikkel
Thorup and Mihai Patrascu, 2011. See
http://en.wikipedia.org/wiki/Tabulation_hashing

Cryptographic hash functions have a different motivation and
requirements. Consequently they explore different tradeoffs and are
constructed in a different way. See http:

//en.wikipedia.org/wiki/Cryptographic_hash_function

Chandra and Michael (UIUC) cs473 42 Fall 2019 42 / 45

http://en.wikipedia.org/wiki/Universal_hashing
http://en.wikipedia.org/wiki/Cuckoo_hashing
http://en.wikipedia.org/wiki/Tabulation_hashing
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Cryptographic_hash_function

Part IV

Bloom Filters

Chandra and Michael (UIUC) cs473 43 Fall 2019 43 / 45

Bloom Filters

Hashing:

1 To insert x in dictionary store x in table in location h(x)

2 To lookup y in dictionary check contents of location h(y)

3 Storing items in dictionary expensive in terms of memory,
especially if items are unwieldy objects such a long strings,
images, etc with non-uniform sizes.

Bloom Filter: tradeoff space for false positives

1 To insert x in dictionary set bit to 1 in location h(x) (initially
all bits are set to 0)

2 To lookup y if bit in location h(y) is 1 say yes, else no.

Chandra and Michael (UIUC) cs473 44 Fall 2019 44 / 45

Bloom Filters

Hashing:

1 To insert x in dictionary store x in table in location h(x)

2 To lookup y in dictionary check contents of location h(y)

3 Storing items in dictionary expensive in terms of memory,
especially if items are unwieldy objects such a long strings,
images, etc with non-uniform sizes.

Bloom Filter: tradeoff space for false positives

1 To insert x in dictionary set bit to 1 in location h(x) (initially
all bits are set to 0)

2 To lookup y if bit in location h(y) is 1 say yes, else no.

Chandra and Michael (UIUC) cs473 44 Fall 2019 44 / 45

Bloom Filters

Bloom Filter: tradeoff space for false positives

1 To insert x in dictionary set bit to 1 in location h(x) (initially
all bits are set to 0)

2 To lookup y if bit in location h(y) is 1 say yes, else no

3 No false negatives but false positives possible due to collisions

Reducing false positives:

1 Pick k hash functions h1, h2, . . . , hk independently

2 To insert set hi(x)th bit to one in table i for each 1 ≤ i ≤ k
3 To lookup y compute hi(y) for 1 ≤ i ≤ k and say yes only if

each bit in the corresponding location is 1, otherwise say no. If
probability of false positive for one hash function is α < 1 then
with k independent hash function it is αk .

Chandra and Michael (UIUC) cs473 45 Fall 2019 45 / 45

Bloom Filters

Bloom Filter: tradeoff space for false positives

1 To insert x in dictionary set bit to 1 in location h(x) (initially
all bits are set to 0)

2 To lookup y if bit in location h(y) is 1 say yes, else no

3 No false negatives but false positives possible due to collisions

Reducing false positives:

1 Pick k hash functions h1, h2, . . . , hk independently

2 To insert set hi(x)th bit to one in table i for each 1 ≤ i ≤ k
3 To lookup y compute hi(y) for 1 ≤ i ≤ k and say yes only if

each bit in the corresponding location is 1, otherwise say no. If
probability of false positive for one hash function is α < 1 then
with k independent hash function it is αk .

Chandra and Michael (UIUC) cs473 45 Fall 2019 45 / 45

Bloom Filters

Bloom Filter: tradeoff space for false positives

1 To insert x in dictionary set bit to 1 in location h(x) (initially
all bits are set to 0)

2 To lookup y if bit in location h(y) is 1 say yes, else no

3 No false negatives but false positives possible due to collisions

Reducing false positives:

1 Pick k hash functions h1, h2, . . . , hk independently

2 To insert set hi(x)th bit to one in table i for each 1 ≤ i ≤ k

3 To lookup y compute hi(y) for 1 ≤ i ≤ k and say yes only if
each bit in the corresponding location is 1, otherwise say no. If
probability of false positive for one hash function is α < 1 then
with k independent hash function it is αk .

Chandra and Michael (UIUC) cs473 45 Fall 2019 45 / 45

Bloom Filters

Bloom Filter: tradeoff space for false positives

1 To insert x in dictionary set bit to 1 in location h(x) (initially
all bits are set to 0)

2 To lookup y if bit in location h(y) is 1 say yes, else no

3 No false negatives but false positives possible due to collisions

Reducing false positives:

1 Pick k hash functions h1, h2, . . . , hk independently

2 To insert set hi(x)th bit to one in table i for each 1 ≤ i ≤ k
3 To lookup y compute hi(y) for 1 ≤ i ≤ k and say yes only if

each bit in the corresponding location is 1, otherwise say no. If
probability of false positive for one hash function is α < 1 then
with k independent hash function it is αk .

Chandra and Michael (UIUC) cs473 45 Fall 2019 45 / 45

	Review
	Hash Tables
	Introduction
	Universal Hashing

	Perfect Hashing
	Bloom Filters

