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Fingerprinting
Source: Wikipedia

Process of mapping a large data item to a much shorter bit string,
called its fingerprint.

Fingerprints uniquely identifies data “for all practical purposes”.

Typically used to avoid comparison and transmission of bulky data.
Eg: Web browser can store/fetch file fingerprints to check if it is
changed.

Hash functions are an example of fingerprinting.
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Outline

Use of fingerprinting for designing fast algorithms

String equality
Given two strings x and y determine if x = y with very little
communication.

Problem
Given a text T of length m and pattern P of length n, m � n, find
all occurrences of P in T .

Karp-Rabin Randomized Algorithm
It involves:

Sampling a prime

String equality via mod p arithmetic

Rabin’s fingerprinting scheme – rolling hash

Karp-Rabin pattern matching algorithm: O(m + n) time.
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Part I

Sampling a Prime
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Sampling a prime

Problem
Given an integer x > 0, sample a prime uniformly at random from all
the primes between 1 and x .

Procedure
1 Sample a number p uniformly at random from {1, . . . , x}.
2 If p is a prime, then output p. Else go to Step (1).

Checking if p is prime
Agrawal-Kayal-Saxena primality test: deterministic but slow

Miller-Rabin randomized primality test: fast but randomized

outputs ‘prime’ when it is not with very low probability.
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Sampling a Prime: Analysis

Is the returned prime sampled uniformly at random?

π(x) : number of primes in {1, . . . , x},

Lemma
For a fixed prime p∗ ≤ x , Pr[algorithm outputs p∗] = 1/π(x).

Proof.
Event A : a prime is picked in a round. Pr[A] = π(x)/x .
Event B : number (prime) p∗ is picked. Pr[B] = 1/x .
Pr[A ∩ B] = Pr[B] = 1/x. Why? Because B ⊂ A.

Pr[B|A] =
Pr[A ∩ B]

Pr[A]
=

Pr[B]

Pr[A]
=

1/x
π(x)/x

=
1

π(x)

Chandra and Michael (UIUC) cs473 6 Fall 2019 6 / 31



Sampling a Prime: Analysis

Is the returned prime sampled uniformly at random?
π(x) : number of primes in {1, . . . , x},

Lemma
For a fixed prime p∗ ≤ x , Pr[algorithm outputs p∗] = 1/π(x).

Proof.
Event A : a prime is picked in a round. Pr[A] = π(x)/x .
Event B : number (prime) p∗ is picked. Pr[B] = 1/x .
Pr[A ∩ B] = Pr[B] = 1/x. Why? Because B ⊂ A.

Pr[B|A] =
Pr[A ∩ B]

Pr[A]
=

Pr[B]

Pr[A]
=

1/x
π(x)/x

=
1

π(x)

Chandra and Michael (UIUC) cs473 6 Fall 2019 6 / 31



Sampling a Prime: Analysis

Is the returned prime sampled uniformly at random?
π(x) : number of primes in {1, . . . , x},

Lemma
For a fixed prime p∗ ≤ x , Pr[algorithm outputs p∗] = 1/π(x).

Proof.
Event A : a prime is picked in a round. Pr[A] = π(x)/x .
Event B : number (prime) p∗ is picked. Pr[B] = 1/x .
Pr[A ∩ B] = Pr[B] = 1/x. Why? Because B ⊂ A.

Pr[B|A] =
Pr[A ∩ B]

Pr[A]
=

Pr[B]

Pr[A]
=

1/x
π(x)/x

=
1

π(x)

Chandra and Michael (UIUC) cs473 6 Fall 2019 6 / 31



Sampling a prime: Expected number of samples

Procedure
1 Sample a number p uniformly at random from {1, . . . , x}.
2 If p is a prime, then output p. Else go to Step (1).

Running time in expectation
Q: How many samples in expectation before termination?
A: x/π(x). Exercise.
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How many primes between 0 and x

π(x) : Number of primes between 0 and x .

J. Hadamard and C. J. de la Vallée-Poussin (1896)

Prime Number Theorem: limx→∞
π(x)

x/ ln x = 1

Chebyshev (from 1848)

π(x) ≥
7

8

x
ln x

= (1.262..)
x

lg x
>

x
lg x

y ∼ {1, . . . , x} u.a.r., then y is a prime w.p. π(x)
x > 1

lg x .

If we want k ≥ 4 primes then x ≥ 2k lg k suffices.

π(x) ≥ π(2k lg k) =
2k lg k

lg 2 + lg k + lg lg k
≥

k(2 lg k)

2 lg k
= k
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Part II

String Equality
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String Equality

Problem
Alice, the captain of a Mars lander, receives an N-bit string x , and
Bob, back at mission control, receives a string y . They know nothing
about each others strings, but want to check if x = y .

Alice sends Bob x , and Bob confirms if x = y . But sending N bits is
costly! Can they share less communication and check equality?

Possibilities:
If want 100% surety then NO.

If OK with 99.99% surety then O(lg N) may suffice!!!

If x = y , then Pr[Bob says equal] = 1.
If x 6= y , then Pr[Bob says un-equal] = 0.9999.
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N versus log N

Question: Given x, y what is basic information that Alice can send
to Bob about x?

Alice can send |x|. How many bits does this take? dlog Ne

Thus one can assume that Alice and Bob have equal length strings
for simplicity.

If x 6= y they differ in at least one bit. How many bits does it take
to specify the location of a bit where they differ? dlog Ne

How many binary strings of length N are there? 2N Information
theoretically no deterministic protocol can send less than N bits but
randomization with smaller error allows one to get O(log N) bits.
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N versus log N

If x and y are copies of Wikipedia, about 25 billion characters.
Assuming 8 bits per character, then N ≈ 238 bits.

lg N = 38
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Universal Hashing?

Question: Can we use universal hashing? Alice sends h(x) to Bob
and Bob checks if h(x) = h(y). If range of h is [m] and h is
universal then Pr[h(x) = h(y)] ≤ 1/m if x 6= q. Can choose m
sufficiently large to make this small. Only need to send O(log m)
bits?

Scenario 1: Both Alice and Bob know h apriori

This means Alice cannot pick randomness specifically for each
new x . Will violate randomized guarantee if used repeatedly.

Scenario 2; Alice has to send h also to Bob

Consider scheme using primes. Universe U is set of all 2N

strings implies p > 2N and a, b ∈ Zp. Alice needs to send
p, a, b which is Ω(N) bits!
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String Equality: Randomized Algorithm

x, y : N-bit strings. Interpret them as integers in binary

(Recall) If M = d2(5N) lg 5Ne, then 5N primes in {1, . . . ,M}.

Procedure
Define hp(x) = x mod p

1 Alice picks a random prime p from {1, . . .M}.
2 She sends Bob prime p, and also hp(x) = x mod p.

3 Bob checks if hp(y) = hp(x). If so, he says equal else un-equal.

Lemma
If x = y then Bob always says equal.
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String Equality: Randomized Algorithm

x, y : N-bit strings.
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String Equality: Randomized Algorithm

x, y : N-bit strings.

(Recall) If M = d2(sN) lg sNe, then sN primes in {1, . . . ,M}.

Procedure
Define hp(x) = x mod p

1 Alice picks a random prime p from {1, . . .M}.
2 She sends Bob prime p, and also hp(x) = x mod p.

3 Bob checks if hp(y) = hp(x). If so, he says equal else un-equal.

Lemma
If x 6= y then, Pr[Bob says equal] ≤ 1/s (error probability).
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Question.

Let x = 6 = 2 ∗ 3. If we draw a p u.a.r. from {2, 3, 5, 7}, then
what is the probability that x mod p = 0?

(A) 0.

(B) 1.

(C) 1/4.

(D) 1/2.

(E) none of the above.

Now, let y = 21. What is the probability that (y − x) mod p
= 15 mod p = 0?

(A) 0.

(B) 1.

(C) 1/4.

(D) 1/2.
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String Equality: Randomized Algorithm
Error probability

x, y N-bit string, M = d2(sN) lg sNe, and hp(x) = x mod p

Lemma
If x 6= y then, Pr[Bob says equal] = Pr[hp(x) = hp(y)] ≤ 1/s

Proof.
Given x 6= y , hp(x) = hp(y)⇒ x mod p = y mod p.

D = |x − y |, then D mod p = 0, and D ≤ 2N .

D = p1 . . . pk prime factorization with repetitions. All
pi ≥ 2⇒ D ≥ 2k .

2k ≤ D ≤ 2N ⇒ k ≤ N . D has at most N prime divisors.

Probability that a random prime p from {1, . . . ,M} is a divisor
= k

π(M)
≤ N

π(M)
≤ N

M/ lg M = N
2(sN) lg sN lg M ≤ 1

s
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Error Probability and Communication

Low Error Probability
1 Choose large enough s. Error prob: 1/s.

2 Alice repeats the process R times, and Bob says equal only if he
gets equal all R times.

Error probability: 1
sR . For s = 5,R = 10, 1

510 ≤ 0.000001.

M = d2(sN) lg sNe

Amount of Communication
Each round sends 2 integers ≤ M . # bits: 2 lg M ≤ 4(lg s + lg N).

If x and y are copies of Wikipedia, about 25 billion characters. If 8
bits per character, then N ≈ 238 bits.

Second approach will send 10(2 lg (10N lg 5N)) ≤ 1280 bits.
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Verifying inequality

Question: Algorithm is Monte Carlo. Suppose x 6= y . Can Alice
and Bob find with high probability an index i such that xi 6= yi and
verify it? Assuming here that Alice and Bob can communicate over
multiple rounds adaptively.

Exercise: Show how Alice and Bob can do this with O(log2 N) bits
of communication. Hint: Use binary search.

Using above find a Las Vegas algorithm that communicates
O(log N) bits in expectation and O(N) bits in the worst case but is
always correct.
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Multiple strings

We want to check equality between several pairs of strings
(x1, y1), . . . , (xk , yk) where all strings are N-bits long.

Suppose we pick random prime p and use hash function hp to check
equality of all pairs. Will it work? What range should p be chosen
from to ensure that all of the answers are correct with probability at
least (1− δ) for some given parameter δ?

Use union bound to figure out how large s should be.
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Part III

Karp-Rabin Pattern Matching
Algorithm
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Pattern Matching

Given a string T of length m and pattern P of length n, s.t.
m � n,

find whether P is a substring of T
more generally, find all positions where P matches with T .

Example
T=abracadabra, P=ab.

Index set of all matches: S = {1, 8}.

For j ≥ i , let T [i , j ] = T [i ]T [i + 1] . . .T [j ].

Brute force algorithm

S = ∅. For each i = 1 . . .m − n + 1

If match(T [i , i + n − 1],P) then S = S ∪ {i}.
O(mn) run-time.
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Using Fingerprinting

Pick a prime p u.a.r. from {1, . . . ,M}. hp(x) = x mod p.

Brute force algorithm using fingerprinting

S = ∅. For each i = 1 . . .m − n + 1

If hp(T [i , i + n − 1]) = hp(P) then S = S ∪ {i}.

If x is of length n, then computing hp(x) takes O(n) running time.

Overall O(mn) running time.

Do we need to recompute fingerprints from scratch for each i?
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mod p math

Let a and b be (non-negative) integers.

(a + b) mod p = ((a mod p) + (b mod p)) mod p

(a · b) mod p = ((a mod p) · (b mod p)) mod p
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Rolling Hash

x = T [i . . . i + n − 1] and x ′ = T [i + 1, i + n].
Let x = x1x2 . . . xn and x ′ = x ′1x

′
2 . . . x

′
n

Example
x = 1011001, and x ′ = 0110010 or x ′ = 0110011.

x ′ = 2(x − x12n−1) + x ′n
= 2x − x12n + x ′n

hp(x ′) = x ′ mod p
= (2(x mod p)− x1(2n mod p) + x ′n) mod p
= (2hp(x)− x1hp(2n) + x ′n) mod p
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Karp-Rabin Algorithm

p : a random prime from {1, . . . ,M}.
1 Set S = ∅. Compute hp(T [1, n]), hp(2n), and hp(P).
2 For each i = 1, . . . ,m − n + 1

1 If hp(T [i , i + n − 1]) = hp(P), then S = S ∪ {i}.
2 Compute hp(T [i + 1, i + n]) using hp(T [i , i + n − 1]) and

hp(2n) by applying rolling hash.

Running Time

In Step 1, computing hp(x) for an n bit x is in O(n) time.

Assuming O(lg M) bit arithmetic can be done in O(1) time,

Since hp(.) produces lg M bit numbers, both steps inside for
loop can be done in O(1) time.

Overall O(m + n) time. Can’t do better.
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Karp-Rabin Algorithm: Error Analysis

1 For each i = 1, . . . ,m − n + 1
1 If hp(T [i , i + n − 1]) = hp(P), then S = S ∪ {i}.
2 Compute hp(T [i + 1, i + n]) using hp(T [i , i + n − 1]) and

hp(2n).

Lemma
If match at any position i then i ∈ S . In otherwords if
T [i , i + n − 1] = P, then i ∈ S .

All matched positions are in S .

Can it contain unmatched positions? YES! With what probability?
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Karp-Rabin Algorithm: Error Analysis
Pr[S contains an index i, while there is no match at i]

Set M = d2(sn) lg sne. Given x 6= y , Pr[hp(x) = hp(y)] ≤ 1/s.

False positive: Pr[S contains an i, while no match at i]

If T [i , i + n − 1] 6= P, Pr[i ∈ S] ≤ 1/s.

Pr[S contains an incorrect index] ≤ m/s (Union bound).

To ensure S is correct with at least 0.99 probability, we need

1−
m
s
≥ 0.99⇒

m
s
≤

1

100
⇒ s ≥ 100m

.
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Karp-Rabin Algorithm
Back to running time

Running Time

In Step 1, computing hp(x) for an n bit x is in O(n) time.

Assuming O(lg M) bit arithmetic can be done in O(1) time,

Since hp(.) produces lg M bit numbers, both steps inside for
loop can be done in O(1) time.

Overall O(m + n) time. Can’t do better.

M = d200mn lg 100mne ⇒ lg M = O(lg m)

Even if T is entire Wikipedia, with bit length m ≈ 238,

lg M ≈ 64 (assuming bit-length of n ≤ 216)

64-bit arithmetic is doable on laptops!
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Deterministic Pattern Matching

O(n + m) (linear time) deterministic algorithms are known

Boyer-Moore algorithm

Knuth-Morris-Pratt (KMP) algorithm

Why randomization?

generalizes to settings (two-dimensional settings) where standard
algorithms do not

generalizes to multiple string pattern matchings easily
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