Fingerprinting for String Matching

Lecture 11 Feb 20, 2019

Fingerprinting

Source: Wikipedia

Process of mapping a large data item to a much shorter bit string, called its fingerprint.

Fingerprints uniquely identifies data "for all practical purposes".

Typically used to avoid comparison and transmission of bulky data. Eg: Web browser can store/fetch file fingerprints to check if it is changed.

Fingerprinting

Source: Wikipedia

Process of mapping a large data item to a much shorter bit string, called its fingerprint.

Fingerprints uniquely identifies data "for all practical purposes".

Typically used to avoid comparison and transmission of bulky data. Eg: Web browser can store/fetch file fingerprints to check if it is changed.

Hash functions are an example of fingerprinting.

Use of fingerprinting for designing fast algorithms

String equality

Given two strings x and y determine if x = y with very little communication.

Use of fingerprinting for designing fast algorithms

String equality

Given two strings x and y determine if x = y with very little communication.

Problem

Given a text T of length m and pattern P of length n, $m \gg n$, find all occurrences of P in T.

Use of fingerprinting for designing fast algorithms

String equality

Given two strings x and y determine if x = y with very little communication.

Problem

Given a text T of length m and pattern P of length n, $m \gg n$, find all occurrences of P in T.

Karp-Rabin Randomized Algorithm

Use of fingerprinting for designing fast algorithms

String equality

Given two strings x and y determine if x = y with very little communication.

Problem

Given a text T of length m and pattern P of length n, $m \gg n$, find all occurrences of P in T.

Karp-Rabin Randomized Algorithm

It involves:

- Sampling a prime
- String equality via mod p arithmetic
- Rabin's fingerprinting scheme rolling hash

Part I

Sampling a Prime

Sampling a prime

Problem

Given an integer x > 0, sample a prime uniformly at random from all the primes between 1 and x.

Sampling a prime

Problem

Given an integer x > 0, sample a prime uniformly at random from all the primes between 1 and x.

Procedure

- **1** Sample a number p uniformly at random from $\{1, \ldots, x\}$.
- ② If p is a prime, then output p. Else go to Step (1).

Sampling a prime

Problem

Given an integer x > 0, sample a prime uniformly at random from all the primes between 1 and x.

Procedure

- **1** Sample a number p uniformly at random from $\{1, \ldots, x\}$.
- ② If p is a prime, then output p. Else go to Step (1).

Checking if p is prime

- Agrawal-Kayal-Saxena primality test: deterministic but slow
- Miller-Rabin randomized primality test: fast but randomized outputs 'prime' when it is not with very low probability.

Sampling a Prime: Analysis

Is the returned prime sampled uniformly at random?

Sampling a Prime: Analysis

Is the returned prime sampled uniformly at random? $\pi(x)$: number of primes in $\{1,\ldots,x\}$,

Lemma

For a fixed prime $p^* \le x$, $\Pr[algorithm outputs p^*] = 1/\pi(x)$.

6

Sampling a Prime: Analysis

Is the returned prime sampled uniformly at random? $\pi(x)$: number of primes in $\{1,\ldots,x\}$,

Lemma

For a fixed prime $p^* \le x$, $\Pr[algorithm outputs p^*] = 1/\pi(x)$.

Proof.

Event A: a prime is picked in a round. $Pr[A] = \pi(x)/x$.

Event B: number (prime) p^* is picked. Pr[B] = 1/x.

 $Pr[A \cap B] = Pr[B] = 1/x$. Why? Because $B \subset A$.

$$\Pr[B|A] = \frac{\Pr[A \cap B]}{\Pr[A]} = \frac{\Pr[B]}{\Pr[A]} = \frac{1/x}{\pi(x)/x} = \frac{1}{\pi(x)}$$

Sampling a prime: Expected number of samples

Procedure

- **1** Sample a number p uniformly at random from $\{1, \ldots, x\}$.
- ② If p is a prime, then output p. Else go to Step (1).

Running time in expectation

Q: How many samples in expectation before termination?

A: $x/\pi(x)$. Exercise.

 $\pi(x)$: Number of primes between **0** and x.

J. Hadamard and C. J. de la Vallée-Poussin (1896)

Prime Number Theorem: $\lim_{x\to\infty} \frac{\pi(x)}{x/\ln x} = 1$

 $\pi(x)$: Number of primes between **0** and x.

J. Hadamard and C. J. de la Vallée-Poussin (1896)

Prime Number Theorem: $\lim_{x\to\infty} \frac{\pi(x)}{x/\ln x} = 1$

Chebyshev (from 1848)

$$\pi(x) \ge \frac{7}{8} \frac{x}{\ln x} = (1.262..) \frac{x}{\lg x} > \frac{x}{\lg x}$$

8

 $\pi(x)$: Number of primes between **0** and x.

J. Hadamard and C. J. de la Vallée-Poussin (1896)

Prime Number Theorem: $\lim_{x\to\infty} \frac{\pi(x)}{x/\ln x} = 1$

Chebyshev (from 1848)

$$\pi(x) \ge \frac{7}{8} \frac{x}{\ln x} = (1.262..) \frac{x}{\lg x} > \frac{x}{\lg x}$$

• $y \sim \{1, \ldots, x\}$ u.a.r., then y is a prime w.p. $\frac{\pi(x)}{x} > \frac{1}{\lg x}$.

 $\pi(x)$: Number of primes between **0** and x.

J. Hadamard and C. J. de la Vallée-Poussin (1896)

Prime Number Theorem: $\lim_{x\to\infty} \frac{\pi(x)}{x/\ln x} = 1$

Chebyshev (from 1848)

$$\pi(x) \ge \frac{7}{8} \frac{x}{\ln x} = (1.262..) \frac{x}{\lg x} > \frac{x}{\lg x}$$

- $y \sim \{1, \dots, x\}$ u.a.r., then y is a prime w.p. $\frac{\pi(x)}{x} > \frac{1}{\lg x}$.
- If we want $k \ge 4$ primes then $x \ge 2k \lg k$ suffices.

$$\pi(x) \ge \pi(2k \lg k) = \frac{2k \lg k}{\lg 2 + \lg k + \lg \lg k} \ge \frac{k(2 \lg k)}{2 \lg k} = k$$

Part II

String Equality

Problem

Alice, the captain of a Mars lander, receives an N-bit string x, and Bob, back at mission control, receives a string y. They know nothing about each others strings, but want to check if x = y.

Problem

Alice, the captain of a Mars lander, receives an N-bit string x, and Bob, back at mission control, receives a string y. They know nothing about each others strings, but want to check if x = y.

Alice sends Bob x, and Bob confirms if x = y. But sending N bits is costly! Can they share less communication and check equality?

Problem

Alice, the captain of a Mars lander, receives an N-bit string x, and Bob, back at mission control, receives a string y. They know nothing about each others strings, but want to check if x = y.

Alice sends Bob x, and Bob confirms if x = y. But sending N bits is costly! Can they share less communication and check equality?

Possibilities:

- If want 100% surety then NO.
- If OK with 99.99% surety then $O(\lg N)$ may suffice!!!

Problem

Alice, the captain of a Mars lander, receives an N-bit string x, and Bob, back at mission control, receives a string y. They know nothing about each others strings, but want to check if x = y.

Alice sends Bob x, and Bob confirms if x = y. But sending N bits is costly! Can they share less communication and check equality?

Possibilities:

- If want 100% surety then NO.
- If OK with 99.99% surety then $O(\lg N)$ may suffice!!!
 - If x = y, then Pr[Bob says equal] = 1.
 - If $x \neq y$, then Pr[Bob says un-equal] = 0.9999.

Question: Given x, y what is basic information that Alice can send to Bob about x?

Question: Given x, y what is basic information that Alice can send to Bob about x?

Alice can send |x|. How many bits does this take?

Question: Given x, y what is basic information that Alice can send to Bob about x?

Alice can send |x|. How many bits does this take? $\lceil \log N \rceil$

Thus one can assume that Alice and Bob have equal length strings for simplicity.

Question: Given x, y what is basic information that Alice can send to Bob about x?

Alice can send |x|. How many bits does this take? $\lceil \log N \rceil$

Thus one can assume that Alice and Bob have equal length strings for simplicity.

If $x \neq y$ they differ in at least one bit. How many bits does it take to specify the location of a bit where they differ?

Question: Given x, y what is basic information that Alice can send to Bob about x?

Alice can send |x|. How many bits does this take? $\lceil \log N \rceil$

Thus one can assume that Alice and Bob have equal length strings for simplicity.

If $x \neq y$ they differ in at least one bit. How many bits does it take to specify the location of a bit where they differ? $\lceil \log N \rceil$

How many binary strings of length N are there?

Question: Given x, y what is basic information that Alice can send to Bob about x?

Alice can send |x|. How many bits does this take? $\lceil \log N \rceil$

Thus one can assume that Alice and Bob have equal length strings for simplicity.

If $x \neq y$ they differ in at least one bit. How many bits does it take to specify the location of a bit where they differ? $\lceil \log N \rceil$

How many binary strings of length N are there? 2^N Information theoretically no deterministic protocol can send less than N bits but randomization with smaller error allows one to get $O(\log N)$ bits.

If x and y are copies of Wikipedia, about 25 billion characters. Assuming 8 bits per character, then $N \approx 2^{38}$ bits.

If x and y are copies of Wikipedia, about 25 billion characters. Assuming 8 bits per character, then $N \approx 2^{38}$ bits.

lg N = 38

Universal Hashing?

Question: Can we use universal hashing? Alice sends h(x) to Bob and Bob checks if h(x) = h(y). If range of h is [m] and h is universal then $\Pr[h(x) = h(y)] \le 1/m$ if $x \ne q$. Can choose m sufficiently large to make this small. Only need to send $O(\log m)$ bits?

Universal Hashing?

Question: Can we use universal hashing? Alice sends h(x) to Bob and Bob checks if h(x) = h(y). If range of h is [m] and h is universal then $\Pr[h(x) = h(y)] \le 1/m$ if $x \ne q$. Can choose m sufficiently large to make this small. Only need to send $O(\log m)$ bits?

- **Scenario 1:** Both Alice and Bob know *h* apriori
 - This means Alice cannot pick randomness specifically for each new x. Will violate randomized guarantee if used repeatedly.
- Scenario 2; Alice has to send h also to Bob
 - Consider scheme using primes. Universe \mathcal{U} is set of all 2^N strings implies $p>2^N$ and $a,b\in\mathbb{Z}_p$. Alice needs to send p,a,b which is $\Omega(N)$ bits!

String Equality: Randomized Algorithm

x, y : N-bit strings. Interpret them as integers in binary

String Equality: Randomized Algorithm

x, y : N-bit strings. Interpret them as integers in binary (Recall) If $M = \lceil 2(5N) \lg 5N \rceil$, then 5N primes in $\{1, \ldots, M\}$.

x, y : N-bit strings. Interpret them as integers in binary (Recall) If $M = \lceil 2(5N) \lg 5N \rceil$, then 5N primes in $\{1, \ldots, M\}$.

Procedure

Define $h_p(x) = x \mod p$

• Alice picks a random prime p from $\{1, \ldots M\}$.

x, y : N-bit strings. Interpret them as integers in binary (Recall) If $M = \lceil 2(5N) \lg 5N \rceil$, then 5N primes in $\{1, \ldots, M\}$.

Procedure

Define $h_p(x) = x \mod p$

- Alice picks a random prime p from $\{1, \ldots M\}$.
- ② She sends Bob prime p, and also $h_p(x) = x \mod p$.
- **3** Bob checks if $h_p(y) = h_p(x)$. If so, he says equal else un-equal.

x, y : N-bit strings. Interpret them as integers in binary (Recall) If $M = \lceil 2(5N) \lg 5N \rceil$, then 5N primes in $\{1, \ldots, M\}$.

Procedure

Define
$$h_p(x) = x \mod p$$

- Alice picks a random prime p from $\{1, \ldots M\}$.
- ② She sends Bob prime p, and also $h_p(x) = x \mod p$.
- **3** Bob checks if $h_p(y) = h_p(x)$. If so, he says equal else un-equal.

Lemma

If x = y then Bob always says equal.

x, y: N-bit strings.

(Recall) If $M = \lceil 2(5N) \lg 5N \rceil$, then 5N primes in $\{1, \ldots, M\}$.

Procedure

Define $h_p(x) = x \mod p$

- Alice picks a random prime p from $\{1, \ldots M\}$.
- ② She sends Bob prime p, and also $h_p(x) = x \mod p$.
- **3** Bob checks if $h_p(y) = h_p(x)$. If so, he says *equal* else *un-equal*.

Lemma

If $x \neq y$ then, $\Pr[Bob \text{ says equal}] \leq 1/5$ (error probability).

x, y: N-bit strings.

(Recall) If $M = \lceil 2(sN) \lg sN \rceil$, then sN primes in $\{1, \ldots, M\}$.

Procedure

Define $h_p(x) = x \mod p$

- Alice picks a random prime p from $\{1, \ldots M\}$.
- ② She sends Bob prime p, and also $h_p(x) = x \mod p$.
- **3** Bob checks if $h_p(y) = h_p(x)$. If so, he says *equal* else *un-equal*.

Lemma

If $x \neq y$ then, $\Pr[Bob \ says \ equal] \leq 1/s$ (error probability).

Question.

Let x = 6 = 2 * 3. If we draw a p u.a.r. from $\{2, 3, 5, 7\}$, then what is the probability that $x \mod p = 0$?

- **(A)** 0.
- **(B)** 1.
- **(C)** 1/4.
- **(D)** 1/2.
- (E) none of the above.

Question.

Let x = 6 = 2 * 3. If we draw a p u.a.r. from $\{2, 3, 5, 7\}$, then what is the probability that $x \mod p = 0$?

- (A) 0.
- **(B)** 1.
- **(C)** 1/4.
- **(D)** 1/2.
- (E) none of the above.

Now, let y = 21. What is the probability that $(y - x) \mod p = 15 \mod p = 0$?

- (A) 0.
- **(B)** 1.
- (C) 1/4.
- **(D)** 1/2.

Error probability

$$x, y$$
 N-bit string, $M = \lceil 2(sN) \lg sN \rceil$, and $h_p(x) = x \mod p$

Lemma

If
$$x \neq y$$
 then, $\Pr[Bob \ says \ equal] = \Pr[h_p(x) = h_p(y)] \leq 1/s$

Proof.

Given
$$x \neq y$$
, $h_p(x) = h_p(y) \Rightarrow x \mod p = y \mod p$.

Error probability

$$x, y$$
 N-bit string, $M = \lceil 2(sN) \lg sN \rceil$, and $h_p(x) = x \mod p$

Lemma

If
$$x \neq y$$
 then, $\Pr[Bob \ says \ equal] = \Pr[h_p(x) = h_p(y)] \leq 1/s$

Proof.

Given
$$x \neq y$$
, $h_p(x) = h_p(y) \Rightarrow x \mod p = y \mod p$.

•
$$D = |x - y|$$
, then $D \mod p = 0$, and $D \le 2^N$.

Error probability

$$x, y$$
 N-bit string, $M = \lceil 2(sN) \lg sN \rceil$, and $h_p(x) = x \mod p$

Lemma

If
$$x \neq y$$
 then, $\Pr[Bob \ says \ equal] = \Pr[h_p(x) = h_p(y)] \leq 1/s$

Proof.

- D = |x y|, then $D \mod p = 0$, and $D \le 2^N$.
- $D = p_1 \dots p_k$ prime factorization with repetitions.

Error probability

$$x, y$$
 N-bit string, $M = \lceil 2(sN) \lg sN \rceil$, and $h_p(x) = x \mod p$

Lemma

If
$$x \neq y$$
 then, $\Pr[Bob \ says \ equal] = \Pr[h_p(x) = h_p(y)] \leq 1/s$

Proof.

- D = |x y|, then $D \mod p = 0$, and $D \le 2^N$.
- $D = p_1 \dots p_k$ prime factorization with repetitions. All $p_i \ge 2 \Rightarrow D \ge 2^k$.

Error probability

$$x, y$$
 N-bit string, $M = \lceil 2(sN) \lg sN \rceil$, and $h_p(x) = x \mod p$

Lemma

If
$$x \neq y$$
 then, $\Pr[Bob \ says \ equal] = \Pr[h_p(x) = h_p(y)] \leq 1/s$

Proof.

- D = |x y|, then $D \mod p = 0$, and $D \le 2^N$.
- $D = p_1 \dots p_k$ prime factorization with repetitions. All $p_i \ge 2 \Rightarrow D \ge 2^k$.
- $2^k \le D \le 2^N \Rightarrow k \le N$. D has at most N prime divisors.

Error probability

$$x, y$$
 N-bit string, $M = \lceil 2(sN) \lg sN \rceil$, and $h_p(x) = x \mod p$

Lemma

If
$$x \neq y$$
 then, $\Pr[Bob \ says \ equal] = \Pr[h_p(x) = h_p(y)] \leq 1/s$

Proof.

- D = |x y|, then $D \mod p = 0$, and $D \le 2^N$.
- $D = p_1 \dots p_k$ prime factorization with repetitions. All $p_i \ge 2 \Rightarrow D \ge 2^k$.
- $2^k \le D \le 2^N \Rightarrow k \le N$. D has at most N prime divisors.
- Probability that a random prime p from $\{1, \ldots, M\}$ is a divisor $=\frac{k}{\pi(M)} \leq \frac{N}{\pi(M)}$

Error probability

$$x, y$$
 N-bit string, $M = \lceil 2(sN) \lg sN \rceil$, and $h_p(x) = x \mod p$

Lemma

If
$$x \neq y$$
 then, $\Pr[Bob \ says \ equal] = \Pr[h_p(x) = h_p(y)] \leq 1/s$

Proof.

- D = |x y|, then $D \mod p = 0$, and $D \le 2^N$.
- $D = p_1 \dots p_k$ prime factorization with repetitions. All $p_i \ge 2 \Rightarrow D \ge 2^k$.
- $2^k \le D \le 2^N \Rightarrow k \le N$. D has at most N prime divisors.
- Probability that a random prime p from $\{1, ..., M\}$ is a divisor $= \frac{k}{\pi(M)} \le \frac{N}{\pi(M)} \le \frac{N}{M/\lg M} = \frac{N}{2(sN)\lg sN} \lg M \le \frac{1}{s}$

Low Error Probability

① Choose large enough s. Error prob: 1/s.

Low Error Probability

- **1** Choose large enough s. Error prob: 1/s.
- Alice repeats the process R times, and Bob says equal only if he gets equal all R times.

Low Error Probability

- **1** Choose large enough s. Error prob: 1/s.
- Alice repeats the process R times, and Bob says equal only if he gets equal all R times.

Error probability: $\frac{1}{s^R}$.

Low Error Probability

- Choose large enough s. Error prob: 1/s.
- Alice repeats the process R times, and Bob says equal only if he gets equal all R times.

Error probability: $\frac{1}{s^R}$. For $s = 5, R = 10, \frac{1}{5^{10}} \le 0.000001$.

Low Error Probability

- **1** Choose large enough s. Error prob: 1/s.
- Alice repeats the process R times, and Bob says equal only if he gets equal all R times.

Error probability: $\frac{1}{s^R}$. For $s=5, R=10, \frac{1}{5^{10}} \leq 0.000001$.

$$M = \lceil 2(sN) \lg sN \rceil$$

Amount of Communication

Each round sends 2 integers $\leq M$. # bits: $2 \lg M \leq 4(\lg s + \lg N)$.

Low Error Probability

- **1** Choose large enough s. Error prob: 1/s.
- Alice repeats the process R times, and Bob says equal only if he gets equal all R times.

Error probability: $\frac{1}{s^R}$. For $s=5, R=10, \frac{1}{5^{10}} \leq 0.000001$.

$$M = \lceil 2(sN) \lg sN \rceil$$

Amount of Communication

Each round sends 2 integers $\leq M$. # bits: $2 \lg M \leq 4(\lg s + \lg N)$.

If x and y are copies of Wikipedia, about 25 billion characters. If 8 bits per character, then $N \approx 2^{38}$ bits.

Low Error Probability

- **1** Choose large enough s. Error prob: 1/s.
- Alice repeats the process R times, and Bob says equal only if he gets equal all R times.

Error probability: $\frac{1}{s^R}$. For $s=5, R=10, \frac{1}{5^{10}} \leq 0.000001$.

$$M = \lceil 2(sN) \lg sN \rceil$$

Amount of Communication

Each round sends 2 integers $\leq M$. # bits: $2 \lg M \leq 4(\lg s + \lg N)$.

If x and y are copies of Wikipedia, about 25 billion characters. If 8 bits per character, then $N \approx 2^{38}$ bits.

Second approach will send $10(2 \lg (10N \lg 5N)) \le 1280$ bits.

Verifying inequality

Question: Algorithm is Monte Carlo. Suppose $x \neq y$. Can Alice and Bob find with high probability an index i such that $x_i \neq y_i$ and verify it? Assuming here that Alice and Bob can communicate over multiple rounds adaptively.

Verifying inequality

Question: Algorithm is Monte Carlo. Suppose $x \neq y$. Can Alice and Bob find with high probability an index i such that $x_i \neq y_i$ and verify it? Assuming here that Alice and Bob can communicate over multiple rounds adaptively.

Exercise: Show how Alice and Bob can do this with $O(\log^2 N)$ bits of communication. *Hint:* Use binary search.

Verifying inequality

Question: Algorithm is Monte Carlo. Suppose $x \neq y$. Can Alice and Bob find with high probability an index i such that $x_i \neq y_i$ and verify it? Assuming here that Alice and Bob can communicate over multiple rounds adaptively.

Exercise: Show how Alice and Bob can do this with $O(\log^2 N)$ bits of communication. *Hint:* Use binary search.

Using above find a Las Vegas algorithm that communicates $O(\log N)$ bits in expectation and O(N) bits in the worst case but is always correct.

Multiple strings

We want to check equality between several pairs of strings $(x_1, y_1), \ldots, (x_k, y_k)$ where all strings are N-bits long.

Suppose we pick random prime p and use hash function h_p to check equality of all pairs. Will it work? What range should p be chosen from to ensure that **all** of the answers are correct with probability at least $(1 - \delta)$ for some given parameter δ ?

Multiple strings

We want to check equality between several pairs of strings $(x_1, y_1), \ldots, (x_k, y_k)$ where all strings are N-bits long.

Suppose we pick random prime p and use hash function h_p to check equality of all pairs. Will it work? What range should p be chosen from to ensure that **all** of the answers are correct with probability at least $(1 - \delta)$ for some given parameter δ ?

Use union bound to figure out how large s should be.

Part III

Karp-Rabin Pattern Matching Algorithm

Given a string T of length m and pattern P of length n, s.t.

- $m\gg n$,
 - find whether P is a substring of T
 - more generally, find all positions where *P* matches with *T*.

Example

T=abracadabra, **P**=ab.

Given a string T of length m and pattern P of length n, s.t. $m \gg n$,

- find whether **P** is a substring of **T**
- more generally, find all positions where **P** matches with **T**.

Example

T=abracadabra, P=ab.

Index set of all matches: $S = \{1, 8\}$.

Given a string T of length m and pattern P of length n, s.t. $m \gg n$,

- find whether **P** is a substring of **T**
- more generally, find all positions where *P* matches with *T*.

Example

T=abracadabra, P=ab.

Index set of all matches: $S = \{1, 8\}$.

For
$$j \geq i$$
, let $T[i,j] = T[i]T[i+1]...T[j]$.

Given a string T of length m and pattern P of length n, s.t. $m \gg n$,

- find whether **P** is a substring of **T**
- ullet more generally, find all positions where $m{P}$ matches with $m{T}$.

Example

T=abracadabra, **P**=ab.

Index set of all matches: $S = \{1, 8\}$.

For
$$j \geq i$$
, let $T[i,j] = T[i]T[i+1]...T[j]$.

Brute force algorithm

$$S = \emptyset$$
. For each $i = 1 \dots m - n + 1$

• If match(T[i, i+n-1], P) then $S = S \cup \{i\}$.

Given a string T of length m and pattern P of length n, s.t. $m \gg n$,

- find whether P is a substring of T
- more generally, find all positions where P matches with T.

Example

T=abracadabra, **P**=ab.

Index set of all matches: $S = \{1, 8\}$.

For
$$j \geq i$$
, let $T[i,j] = T[i]T[i+1]...T[j]$.

Brute force algorithm

$$S = \emptyset$$
. For each $i = 1 \dots m - n + 1$

• If match(T[i, i + n - 1], P) then $S = S \cup \{i\}$. O(mn) run-time.

Using Fingerprinting

Pick a prime p u.a.r. from $\{1, \ldots, M\}$. $h_p(x) = x \mod p$.

Brute force algorithm using fingerprinting

$$S = \emptyset$$
. For each $i = 1 \dots m - n + 1$

• If $h_p(T[i, i + n - 1]) = h_p(P)$ then $S = S \cup \{i\}$.

Using Fingerprinting

Pick a prime p u.a.r. from $\{1, \ldots, M\}$. $h_p(x) = x \mod p$.

Brute force algorithm using fingerprinting

$$S = \emptyset$$
. For each $i = 1 \dots m - n + 1$

• If
$$h_p(T[i, i + n - 1]) = h_p(P)$$
 then $S = S \cup \{i\}$.

If x is of length n, then computing $h_p(x)$ takes O(n) running time.

Overall O(mn) running time.

Using Fingerprinting

Pick a prime p u.a.r. from $\{1, \ldots, M\}$. $h_p(x) = x \mod p$.

Brute force algorithm using fingerprinting

$$S = \emptyset$$
. For each $i = 1 \dots m - n + 1$

• If
$$h_p(T[i, i + n - 1]) = h_p(P)$$
 then $S = S \cup \{i\}$.

If x is of length n, then computing $h_p(x)$ takes O(n) running time.

Overall O(mn) running time.

Do we need to recompute fingerprints from scratch for each i?

mod p math

Let a and b be (non-negative) integers.

$$(a+b) \bmod p = ((a \bmod p) + (b \bmod p)) \bmod p$$

mod p math

Let a and b be (non-negative) integers.

$$(a+b) \bmod p = ((a \bmod p) + (b \bmod p)) \bmod p$$

$$(a \cdot b) \mod p = ((a \mod p) \cdot (b \mod p)) \mod p$$

$$x = T[i \dots i + n - 1]$$
 and $x' = T[i + 1, i + n]$.
Let $x = x_1 x_2 \dots x_n$ and $x' = x'_1 x'_2 \dots x'_n$

Example

$$x = T[i \dots i + n - 1]$$
 and $x' = T[i + 1, i + n]$.
Let $x = x_1 x_2 \dots x_n$ and $x' = x'_1 x'_2 \dots x'_n$

Example

$$x' = 2(x - x_1 2^{n-1}) + x'_n$$

$$x = T[i \dots i + n - 1]$$
 and $x' = T[i + 1, i + n]$.
Let $x = x_1 x_2 \dots x_n$ and $x' = x'_1 x'_2 \dots x'_n$

Example

$$x' = 2(x - x_1 2^{n-1}) + x'_n$$

= $2x - x_1 2^n + x'_n$

$$x = T[i \dots i + n - 1]$$
 and $x' = T[i + 1, i + n]$.
Let $x = x_1 x_2 \dots x_n$ and $x' = x'_1 x'_2 \dots x'_n$

Example

$$x' = 2(x - x_1 2^{n-1}) + x'_n$$

= $2x - x_1 2^n + x'_n$

$$h_p(x') = x' \mod p$$

= $(2(x \mod p) - x_1(2^n \mod p) + x'_n) \mod p$
= $(2h_p(x) - x_1h_p(2^n) + x'_n) \mod p$

- p: a random prime from $\{1, \ldots, M\}$.
 - Set $S = \emptyset$. Compute $h_p(T[1, n])$, $h_p(2^n)$, and $h_p(P)$.
 - - If $h_p(T[i, i + n 1]) = h_p(P)$, then $S = S \cup \{i\}$.
 - ② Compute $h_p(T[i+1,i+n])$ using $h_p(T[i,i+n-1])$ and $h_p(2^n)$ by applying rolling hash.

- p: a random prime from $\{1, \ldots, M\}$.
 - **1** Set $S = \emptyset$. Compute $h_p(T[1, n])$, $h_p(2^n)$, and $h_p(P)$.
 - ② For each i = 1, ..., m n + 1
 - If $h_p(T[i, i + n 1]) = h_p(P)$, then $S = S \cup \{i\}$.
 - ② Compute $h_p(T[i+1,i+n])$ using $h_p(T[i,i+n-1])$ and $h_p(2^n)$ by applying rolling hash.

Running Time

• In Step 1, computing $h_p(x)$ for an n bit x is in O(n) time.

- p: a random prime from $\{1, \ldots, M\}$.
 - Set $S = \emptyset$. Compute $h_p(T[1, n])$, $h_p(2^n)$, and $h_p(P)$.
 - ② For each i = 1, ..., m n + 1
 - If $h_p(T[i, i + n 1]) = h_p(P)$, then $S = S \cup \{i\}$.
 - ② Compute $h_p(T[i+1,i+n])$ using $h_p(T[i,i+n-1])$ and $h_p(2^n)$ by applying rolling hash.

Running Time

• In Step 1, computing $h_p(x)$ for an n bit x is in O(n) time.

Assuming $O(\lg M)$ bit arithmetic can be done in O(1) time,

• Since $h_p(.)$ produces $\lg M$ bit numbers, both steps inside for loop can be done in O(1) time.

- p: a random prime from $\{1, \ldots, M\}$.
 - Set $S = \emptyset$. Compute $h_p(T[1, n])$, $h_p(2^n)$, and $h_p(P)$.
 - ② For each i = 1, ..., m n + 1
 - If $h_p(T[i, i + n 1]) = h_p(P)$, then $S = S \cup \{i\}$.
 - ② Compute $h_p(T[i+1,i+n])$ using $h_p(T[i,i+n-1])$ and $h_p(2^n)$ by applying rolling hash.

Running Time

• In Step 1, computing $h_p(x)$ for an n bit x is in O(n) time.

Assuming $O(\lg M)$ bit arithmetic can be done in O(1) time,

- Since $h_p(.)$ produces $\lg M$ bit numbers, both steps inside for loop can be done in O(1) time.
- Overall O(m+n) time.

- p: a random prime from $\{1, \ldots, M\}$.
 - **1** Set $S = \emptyset$. Compute $h_p(T[1, n])$, $h_p(2^n)$, and $h_p(P)$.
 - ② For each i = 1, ..., m n + 1
 - If $h_p(T[i, i+n-1]) = h_p(P)$, then $S = S \cup \{i\}$.
 - ② Compute $h_p(T[i+1,i+n])$ using $h_p(T[i,i+n-1])$ and $h_p(2^n)$ by applying rolling hash.

Running Time

• In Step 1, computing $h_p(x)$ for an n bit x is in O(n) time.

Assuming $O(\lg M)$ bit arithmetic can be done in O(1) time,

- Since $h_p(.)$ produces $\lg M$ bit numbers, both steps inside for loop can be done in O(1) time.
- Overall O(m+n) time. Can't do better.

- **1** For each i = 1, ..., m n + 1
 - If $h_p(T[i, i+n-1]) = h_p(P)$, then $S = S \cup \{i\}$.
 - Ompute $h_p(T[i+1,i+n])$ using $h_p(T[i,i+n-1])$ and $h_p(2^n)$.

Lemma

If match at any position i then $i \in S$. In otherwords if T[i, i + n - 1] = P, then $i \in S$.

All matched positions are in **S**.

- **1** For each i = 1, ..., m n + 1
 - If $h_p(T[i, i+n-1]) = h_p(P)$, then $S = S \cup \{i\}$.
 - Ompute $h_p(T[i+1,i+n])$ using $h_p(T[i,i+n-1])$ and $h_p(2^n)$.

Lemma

If match at any position i then $i \in S$. In otherwords if T[i, i + n - 1] = P, then $i \in S$.

All matched positions are in **S**.

Can it contain unmatched positions?

- **1** For each i = 1, ..., m n + 1
 - If $h_p(T[i, i + n 1]) = h_p(P)$, then $S = S \cup \{i\}$.
 - Ompute $h_p(T[i+1,i+n])$ using $h_p(T[i,i+n-1])$ and $h_p(2^n)$.

Lemma

If match at any position i then $i \in S$. In otherwords if T[i, i + n - 1] = P, then $i \in S$.

All matched positions are in **S**.

Can it contain unmatched positions? YES!

- **1** For each i = 1, ..., m n + 1
 - If $h_p(T[i, i + n 1]) = h_p(P)$, then $S = S \cup \{i\}$.
 - Ocompute $h_p(T[i+1,i+n])$ using $h_p(T[i,i+n-1])$ and $h_p(2^n)$.

Lemma

If match at any position i then $i \in S$. In otherwords if T[i, i + n - 1] = P, then $i \in S$.

All matched positions are in **S**.

Can it contain unmatched positions? YES! With what probability?

Pr[S contains an index i, while there is no match at i]

Set
$$M = \lceil 2(sn) \lg sn \rceil$$
. Given $x \neq y$, $\Pr[h_p(x) = h_p(y)] \leq 1/s$.

Pr[S contains an index i, while there is no match at i]

Set
$$M = \lceil 2(sn) \lg sn \rceil$$
. Given $x \neq y$, $\Pr[h_p(x) = h_p(y)] \leq 1/s$.

Pr[S contains an index i, while there is no match at i]

Set
$$M = \lceil 2(sn) \lg sn \rceil$$
. Given $x \neq y$, $\Pr[h_p(x) = h_p(y)] \leq 1/s$.

• If
$$T[i, i + n - 1] \neq P$$
, $\Pr[i \in S] \leq 1/s$.

Pr[S contains an index i, while there is no match at i]

Set
$$M = \lceil 2(sn) \lg sn \rceil$$
. Given $x \neq y$, $\Pr[h_p(x) = h_p(y)] \leq 1/s$.

- If $T[i, i + n 1] \neq P$, $Pr[i \in S] \leq 1/s$.
- Pr[S contains an incorrect index]

Pr[S contains an index i, while there is no match at i]

Set
$$M = \lceil 2(sn) \lg sn \rceil$$
. Given $x \neq y$, $\Pr[h_p(x) = h_p(y)] \leq 1/s$.

- If $T[i, i + n 1] \neq P$, $\Pr[i \in S] \leq 1/s$.
- Pr[S contains an incorrect index] < m/s (Union bound).

Pr[S contains an index i, while there is no match at i]

Set
$$M = \lceil 2(sn) \lg sn \rceil$$
. Given $x \neq y$, $\Pr[h_p(x) = h_p(y)] \leq 1/s$.

- If $T[i, i + n 1] \neq P$, $\Pr[i \in S] \leq 1/s$.
- $Pr[S \text{ contains an incorrect index}] \leq m/s$ (Union bound).
- To ensure S is correct with at least 0.99 probability, we need

$$1 - \frac{m}{s} \ge 0.99 \Rightarrow \frac{m}{s} \le \frac{1}{100} \Rightarrow s \ge 100m$$

Back to running time

Running Time

• In Step 1, computing $h_p(x)$ for an n bit x is in O(n) time.

Assuming $O(\lg M)$ bit arithmetic can be done in O(1) time,

- Since $h_p(.)$ produces $\lg M$ bit numbers, both steps inside for loop can be done in O(1) time.
- Overall O(m+n) time. Can't do better.

$$M = \lceil 200mn \lg 100mn \rceil \Rightarrow \lg M = O(\lg m)$$

Back to running time

Running Time

• In Step 1, computing $h_p(x)$ for an n bit x is in O(n) time.

Assuming $O(\lg M)$ bit arithmetic can be done in O(1) time,

- Since $h_p(.)$ produces $\lg M$ bit numbers, both steps inside for loop can be done in O(1) time.
- Overall O(m+n) time. Can't do better.

$$M = \lceil 200mn \lg 100mn \rceil \Rightarrow \lg M = O(\lg m)$$

Even if T is entire Wikipedia, with bit length $m \approx 2^{38}$,

Back to running time

Running Time

• In Step 1, computing $h_p(x)$ for an n bit x is in O(n) time.

Assuming $O(\lg M)$ bit arithmetic can be done in O(1) time,

- Since $h_p(.)$ produces $\lg M$ bit numbers, both steps inside for loop can be done in O(1) time.
- Overall O(m+n) time. Can't do better.

$$M = \lceil 200mn \lg 100mn \rceil \Rightarrow \lg M = O(\lg m)$$

Even if T is entire Wikipedia, with bit length $m \approx 2^{38}$,

$$\lg M pprox 64$$
 (assuming bit-length of $n \leq 2^{16}$)

Back to running time

Running Time

• In Step 1, computing $h_p(x)$ for an n bit x is in O(n) time.

Assuming $O(\lg M)$ bit arithmetic can be done in O(1) time,

- Since $h_p(.)$ produces $\lg M$ bit numbers, both steps inside for loop can be done in O(1) time.
- Overall O(m+n) time. Can't do better.

$$M = \lceil 200mn \lg 100mn \rceil \Rightarrow \lg M = O(\lg m)$$

Even if T is entire Wikipedia, with bit length $m \approx 2^{38}$,

$$\lg M pprox 64$$
 (assuming bit-length of $n \leq 2^{16}$)

64-bit arithmetic is doable on laptops!

Deterministic Pattern Matching

O(n + m) (linear time) deterministic algorithms are known

- Boyer-Moore algorithm
- Knuth-Morris-Pratt (KMP) algorithm

Why randomization?

- generalizes to settings (two-dimensional settings) where standard algorithms do not
- generalizes to multiple string pattern matchings easily