CS 473: Algorithms, Fall 2019

Fingerprinting for String Matching

Lecture 11
Feb 20, 2019

Fingerprinting Source: Wikipedia

Process of mapping a large data item to a much shorter bit string, called its fingerprint.

Fingerprints uniquely identifies data "for all practical purposes".
Typically used to avoid comparison and transmission of bulky data. Eg: Web browser can store/fetch file fingerprints to check if it is changed.

Fingerprinting Source: Wikipedia

Process of mapping a large data item to a much shorter bit string, called its fingerprint.

Fingerprints uniquely identifies data "for all practical purposes".
Typically used to avoid comparison and transmission of bulky data. Eg: Web browser can store/fetch file fingerprints to check if it is changed.

Hash functions are an example of fingerprinting.

Outline

Use of fingerprinting for designing fast algorithms

String equality

Given two strings x and y determine if $x=y$ with very little communication.

Outline

Use of fingerprinting for designing fast algorithms

String equality

Given two strings x and y determine if $x=y$ with very little communication.

Problem

Given a text \boldsymbol{T} of length \boldsymbol{m} and pattern P of length $\boldsymbol{n}, \boldsymbol{m} \gg \boldsymbol{n}$, find all occurrences of P in T.

Outline

Use of fingerprinting for designing fast algorithms

String equality

Given two strings x and y determine if $x=y$ with very little communication.

Problem

Given a text \boldsymbol{T} of length \boldsymbol{m} and pattern P of length $\boldsymbol{n}, \boldsymbol{m} \gg \boldsymbol{n}$, find all occurrences of P in T.

Karp-Rabin Randomized Algorithm

Outline

Use of fingerprinting for designing fast algorithms

String equality

Given two strings x and y determine if $x=y$ with very little communication.

Problem

Given a text \boldsymbol{T} of length \boldsymbol{m} and pattern P of length $\boldsymbol{n}, \boldsymbol{m} \gg \boldsymbol{n}$, find all occurrences of P in T.

Karp-Rabin Randomized Algorithm

It involves:

- Sampling a prime
- String equality via mod \boldsymbol{p} arithmetic
- Rabin's fingerprinting scheme - rolling hash

Part I

Sampling a Prime

Sampling a prime

Problem

Given an integer $\boldsymbol{x}>\mathbf{0}$, sample a prime uniformly at random from all the primes between $\mathbf{1}$ and \boldsymbol{x}.

Sampling a prime

Problem

Given an integer $\boldsymbol{x}>\mathbf{0}$, sample a prime uniformly at random from all the primes between $\mathbf{1}$ and \boldsymbol{x}.

Procedure

(1) Sample a number p uniformly at random from $\{1, \ldots, x\}$.
(2) If \boldsymbol{p} is a prime, then output \boldsymbol{p}. Else go to Step (1).

Sampling a prime

Problem

Given an integer $\boldsymbol{x}>\mathbf{0}$, sample a prime uniformly at random from all the primes between $\mathbf{1}$ and \boldsymbol{x}.

Procedure

(1) Sample a number p uniformly at random from $\{1, \ldots, x\}$.
(2) If \boldsymbol{p} is a prime, then output \boldsymbol{p}. Else go to Step (1).

Checking if p is prime

- Agrawal-Kayal-Saxena primality test: deterministic but slow
- Miller-Rabin randomized primality test: fast but randomized outputs 'prime' when it is not with very low probability.

Sampling a Prime: Analysis

Is the returned prime sampled uniformly at random?

Sampling a Prime: Analysis

Is the returned prime sampled uniformly at random?
$\pi(x)$: number of primes in $\{1, \ldots, x\}$,

Lemma

For a fixed prime $p^{*} \leq x, \operatorname{Pr}\left[\right.$ algorithm outputs $\left.p^{*}\right]=1 / \pi(x)$.

Sampling a Prime: Analysis

Is the returned prime sampled uniformly at random? $\pi(x)$: number of primes in $\{1, \ldots, x\}$,

Lemma

For a fixed prime $p^{*} \leq x, \operatorname{Pr}\left[\right.$ algorithm outputs $\left.p^{*}\right]=1 / \pi(x)$.

Proof.

Event A : a prime is picked in a round. $\operatorname{Pr}[A]=\pi(x) / x$. Event B : number (prime) p^{*} is picked. $\operatorname{Pr}[B]=1 / x$. $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[B]=1 / x$. Why? Because $B \subset A$.

$$
\operatorname{Pr}[B \mid A]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[A]}=\frac{\operatorname{Pr}[B]}{\operatorname{Pr}[A]}=\frac{1 / x}{\pi(x) / x}=\frac{1}{\pi(x)}
$$

Sampling a prime: Expected number of samples

Procedure

(1) Sample a number p uniformly at random from $\{1, \ldots, x\}$.
(2) If \boldsymbol{p} is a prime, then output \boldsymbol{p}. Else go to Step (1).

Running time in expectation

Q: How many samples in expectation before termination?
A: $x / \pi(x)$. Exercise.

How many primes between 0 and x

$\pi(x)$: Number of primes between $\mathbf{0}$ and x.
J. Hadamard and C. J. de la Vallée-Poussin (1896)

Prime Number Theorem: $\quad \lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \ln x}=1$

How many primes between 0 and x

$\pi(x)$: Number of primes between $\mathbf{0}$ and x.

J. Hadamard and C. J. de la Vallée-Poussin (1896)

Prime Number Theorem: $\quad \lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \ln x}=1$
Chebyshev (from 1848)

$$
\pi(x) \geq \frac{7}{8} \frac{x}{\ln x}=(1.262 . .) \frac{x}{\lg x}>\frac{x}{\lg x}
$$

How many primes between 0 and x

$\pi(x)$: Number of primes between $\mathbf{0}$ and x.

J. Hadamard and C. J. de la Vallée-Poussin (1896)

Prime Number Theorem: $\quad \lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \ln x}=1$
Chebyshev (from 1848)

$$
\pi(x) \geq \frac{7}{8} \frac{x}{\ln x}=(1.262 . .) \frac{x}{\lg x}>\frac{x}{\lg x}
$$

- $y \sim\{1, \ldots, x\}$ u.a.r., then y is a prime w.p. $\frac{\pi(x)}{x}>\frac{1}{\lg x}$.

How many primes between 0 and x

$\pi(x)$: Number of primes between $\mathbf{0}$ and x.

J. Hadamard and C. J. de la Vallée-Poussin (1896)

Prime Number Theorem: $\quad \lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \ln x}=1$
Chebyshev (from 1848)

$$
\pi(x) \geq \frac{7}{8} \frac{x}{\ln x}=(1.262 . .) \frac{x}{\lg x}>\frac{x}{\lg x}
$$

- $y \sim\{1, \ldots, x\}$ u.a.r., then y is a prime w.p. $\frac{\pi(x)}{x}>\frac{1}{\lg x}$.
- If we want $k \geq 4$ primes then $x \geq 2 k \lg k$ suffices.

$$
\pi(x) \geq \pi(2 k \lg k)=\frac{2 k \lg k}{\lg 2+\lg k+\lg \lg k} \geq \frac{k(2 \lg k)}{2 \lg k}=k
$$

Part II

String Equality

String Equality

Problem

Alice, the captain of a Mars lander, receives an \boldsymbol{N}-bit string \boldsymbol{x}, and Bob, back at mission control, receives a string y. They know nothing about each others strings, but want to check if $x=y$.

String Equality

Problem

Alice, the captain of a Mars lander, receives an N-bit string \boldsymbol{x}, and Bob, back at mission control, receives a string y. They know nothing about each others strings, but want to check if $x=y$.
Alice sends Bob x, and Bob confirms if $x=y$. But sending N bits is costly! Can they share less communication and check equality?

String Equality

Problem

Alice, the captain of a Mars lander, receives an N-bit string \boldsymbol{x}, and Bob, back at mission control, receives a string y. They know nothing about each others strings, but want to check if $x=y$.
Alice sends Bob x, and Bob confirms if $x=y$. But sending N bits is costly! Can they share less communication and check equality?

Possibilities:

- If want 100% surety then NO.
- If OK with 99.99% surety then $O(\lg N)$ may suffice!!!

String Equality

Problem

Alice, the captain of a Mars lander, receives an N-bit string \boldsymbol{x}, and Bob, back at mission control, receives a string y. They know nothing about each others strings, but want to check if $x=y$.
Alice sends Bob x, and Bob confirms if $x=y$. But sending N bits is costly! Can they share less communication and check equality?

Possibilities:

- If want 100% surety then NO.
- If OK with 99.99% surety then $O(\lg N)$ may suffice!!!
- If $\boldsymbol{x}=\boldsymbol{y}$, then $\operatorname{Pr}[$ Bob says equal $]=\mathbf{1}$.
- If $\boldsymbol{x} \neq \boldsymbol{y}$, then $\operatorname{Pr}[$ Bob says un-equal $]=0.9999$.

N versus $\log N$

Question: Given x, y what is basic information that Alice can send to Bob about x ?

N versus $\log N$

Question: Given x, y what is basic information that Alice can send to Bob about x ?

Alice can send $|x|$. How many bits does this take?

N versus $\log N$

Question: Given x, y what is basic information that Alice can send to Bob about x ?

Alice can send $|x|$. How many bits does this take? $\lceil\log N\rceil$
Thus one can assume that Alice and Bob have equal length strings for simplicity.

N versus $\log N$

Question: Given x, y what is basic information that Alice can send to Bob about x ?

Alice can send $|x|$. How many bits does this take? $\lceil\log N\rceil$
Thus one can assume that Alice and Bob have equal length strings for simplicity.

If $x \neq y$ they differ in at least one bit. How many bits does it take to specify the location of a bit where they differ?

N versus $\log N$

Question: Given x, y what is basic information that Alice can send to Bob about x ?

Alice can send $|x|$. How many bits does this take? $\lceil\log N\rceil$
Thus one can assume that Alice and Bob have equal length strings for simplicity.

If $x \neq y$ they differ in at least one bit. How many bits does it take to specify the location of a bit where they differ? $\lceil\log N\rceil$

How many binary strings of length N are there?

N versus $\log N$

Question: Given x, y what is basic information that Alice can send to Bob about x ?

Alice can send $|x|$. How many bits does this take? $\lceil\log N\rceil$
Thus one can assume that Alice and Bob have equal length strings for simplicity.

If $x \neq y$ they differ in at least one bit. How many bits does it take to specify the location of a bit where they differ? $\lceil\log N\rceil$

How many binary strings of length N are there? $\mathbf{2}^{N}$ Information theoretically no deterministic protocol can send less than N bits but randomization with smaller error allows one to get $O(\log N)$ bits.

N versus $\log N$

If \boldsymbol{x} and \boldsymbol{y} are copies of Wikipedia, about 25 billion characters. Assuming 8 bits per character, then $N \approx 2^{38}$ bits.

N versus $\log N$

If \boldsymbol{x} and \boldsymbol{y} are copies of Wikipedia, about 25 billion characters. Assuming 8 bits per character, then $N \approx 2^{38}$ bits.
$\lg N=38$

Universal Hashing?

Question: Can we use universal hashing? Alice sends $\boldsymbol{h (x)}$ to Bob and Bob checks if $h(x)=h(y)$. If range of h is [m] and h is universal then $\operatorname{Pr}[h(x)=h(y)] \leq \mathbf{1 / m}$ if $x \neq q$. Can choose m sufficiently large to make this small. Only need to send $O(\log m)$ bits?

Universal Hashing?

Question: Can we use universal hashing? Alice sends $\boldsymbol{h (x)}$ to Bob and Bob checks if $\boldsymbol{h}(x)=\boldsymbol{h}(y)$. If range of \boldsymbol{h} is [m] and \boldsymbol{h} is universal then $\operatorname{Pr}[h(x)=h(y)] \leq 1 / m$ if $x \neq q$. Can choose m sufficiently large to make this small. Only need to send $O(\log m)$ bits?

- Scenario 1: Both Alice and Bob know h apriori
- This means Alice cannot pick randomness specifically for each new \boldsymbol{x}. Will violate randomized guarantee if used repeatedly.
- Scenario 2; Alice has to send \boldsymbol{h} also to Bob
- Consider scheme using primes. Universe \mathcal{U} is set of all $\mathbf{2}^{N}$ strings implies $\boldsymbol{p}>2^{N}$ and $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{Z}_{\boldsymbol{p}}$. Alice needs to send $\boldsymbol{p}, \boldsymbol{a}, \boldsymbol{b}$ which is $\Omega(N)$ bits!

String Equality: Randomized Algorithm

$x, y: N$-bit strings. Interpret them as integers in binary

String Equality: Randomized Algorithm

$x, y: N$-bit strings. Interpret them as integers in binary (Recall) If $M=\lceil 2(5 N) \lg 5 N\rceil$, then $5 N$ primes in $\{1, \ldots, M\}$.

String Equality: Randomized Algorithm

$x, y: N$-bit strings. Interpret them as integers in binary (Recall) If $M=\lceil 2(5 N) \lg 5 N\rceil$, then $5 N$ primes in $\{1, \ldots, M\}$.

Procedure
Define $h_{p}(x)=x \bmod p$
(1) Alice picks a random prime p from $\{1, \ldots M\}$.

String Equality: Randomized Algorithm

$x, y: N$-bit strings. Interpret them as integers in binary (Recall) If $M=\lceil 2(5 N) \lg 5 N\rceil$, then $5 N$ primes in $\{1, \ldots, M\}$.

Procedure

Define $h_{p}(x)=x \bmod p$

(1) Alice picks a random prime p from $\{1, \ldots M\}$.
(2) She sends Bob prime p, and also $h_{p}(x)=x \bmod p$.
(3) Bob checks if $\boldsymbol{h}_{\boldsymbol{p}}(\boldsymbol{y})=\boldsymbol{h}_{\boldsymbol{p}}(\boldsymbol{x})$. If so, he says equal else un-equal.

String Equality: Randomized Algorithm

$x, y: N$-bit strings. Interpret them as integers in binary (Recall) If $M=\lceil 2(5 N) \lg 5 N\rceil$, then $5 N$ primes in $\{1, \ldots, M\}$.

Procedure

Define $h_{p}(x)=x \bmod p$
(1) Alice picks a random prime p from $\{1, \ldots M\}$.
(2) She sends Bob prime p, and also $h_{p}(x)=x \bmod p$.
(3) Bob checks if $\boldsymbol{h}_{\boldsymbol{p}}(\boldsymbol{y})=\boldsymbol{h}_{\boldsymbol{p}}(\boldsymbol{x})$. If so, he says equal else un-equal.

Lemma

If $\boldsymbol{x}=\boldsymbol{y}$ then Bob always says equal.

String Equality: Randomized Algorithm

$x, y: N$-bit strings.
(Recall) If $M=\lceil 2(5 N) \lg 5 N\rceil$, then $5 N$ primes in $\{1, \ldots, M\}$.

Procedure

Define $h_{p}(x)=x \bmod p$
(1) Alice picks a random prime p from $\{1, \ldots M\}$.
(2) She sends Bob prime p, and also $h_{p}(x)=x \bmod p$.
(3) Bob checks if $\boldsymbol{h}_{\boldsymbol{p}}(\boldsymbol{y})=\boldsymbol{h}_{\boldsymbol{p}}(\boldsymbol{x})$. If so, he says equal else un-equal.

Lemma

If $\boldsymbol{x} \neq \boldsymbol{y}$ then, $\operatorname{Pr[Bob}$ says equal] $\leq \mathbf{1} / \mathbf{5}$ (error probability).

String Equality: Randomized Algorithm

$x, y: N$-bit strings.
(Recall) If $M=\lceil 2(s N) \lg s N\rceil$, then $s N$ primes in $\{1, \ldots, M\}$.

Procedure

Define $h_{p}(x)=x \bmod p$
(1) Alice picks a random prime p from $\{1, \ldots M\}$.
(2) She sends Bob prime p, and also $h_{p}(x)=x \bmod p$.
(3) Bob checks if $\boldsymbol{h}_{\boldsymbol{p}}(\boldsymbol{y})=\boldsymbol{h}_{\boldsymbol{p}}(\boldsymbol{x})$. If so, he says equal else un-equal.

Lemma

If $\boldsymbol{x} \neq \boldsymbol{y}$ then, $\operatorname{Pr}[$ Bob says equal $] \leq \mathbf{1} /$ s (error probability).

Question.

Let $x=6=2 * 3$. If we draw a p u.a.r. from $\{2,3,5,7\}$, then what is the probability that $x \bmod p=0$?
(A) 0 .
(B) 1 .
(C) $1 / 4$.
(D) $1 / 2$.
(E) none of the above.

Question.

Let $x=6=2 * 3$. If we draw a p u.a.r. from $\{2,3,5,7\}$, then what is the probability that $x \bmod p=0$?
(A) 0 .
(B) 1 .
(C) $1 / 4$.
(D) $1 / 2$.
(E) none of the above.

Now, let $y=21$. What is the probability that $(y-x) \bmod p$ $=15 \bmod p=0$?
(A) 0 .
(B) 1 .
(C) $1 / 4$.
(D) $1 / 2$.

String Equality: Randomized Algorithm

Error probability

$x, y N$-bit string, $M=\lceil 2(s N) \lg s N\rceil$, and $h_{p}(x)=x \bmod p$

Lemma

If $x \neq y$ then, $\operatorname{Pr}[$ Bob says equal $]=\operatorname{Pr}\left[h_{p}(x)=h_{p}(y)\right] \leq 1 / s$

Proof.

Given $x \neq y, h_{p}(x)=h_{p}(y) \Rightarrow x \bmod p=y \bmod p$.

String Equality: Randomized Algorithm

Error probability

$x, y N$-bit string, $M=\lceil 2(s N) \lg s N\rceil$, and $h_{p}(x)=x \bmod p$

Lemma

If $x \neq y$ then, $\operatorname{Pr}[$ Bob says equal $]=\operatorname{Pr}\left[h_{p}(x)=h_{p}(y)\right] \leq 1 / s$

Proof.

Given $x \neq y, h_{p}(x)=h_{p}(y) \Rightarrow x \bmod p=y \bmod p$. - $D=|x-y|$, then $D \bmod p=0$, and $D \leq 2^{N}$.

String Equality: Randomized Algorithm

Error probability

$x, y N$-bit string, $M=\lceil 2(s N) \lg s N\rceil$, and $h_{p}(x)=x \bmod p$

Lemma

If $x \neq y$ then, $\operatorname{Pr}[$ Bob says equal $]=\operatorname{Pr}\left[h_{p}(x)=h_{p}(y)\right] \leq 1 / s$

Proof.

Given $x \neq y, h_{p}(x)=h_{p}(y) \Rightarrow x \bmod p=y \bmod p$. - $D=|x-y|$, then $D \bmod p=0$, and $D \leq 2^{N}$.

- $D=p_{1} \ldots p_{k}$ prime factorization with repetitions.

String Equality: Randomized Algorithm

Error probability

$x, y N$-bit string, $M=\lceil 2(\mathrm{~s} N) \lg s N\rceil$, and $h_{p}(x)=x \bmod p$

Lemma

If $x \neq y$ then, $\operatorname{Pr}[$ Bob says equal $]=\operatorname{Pr}\left[h_{p}(x)=h_{p}(y)\right] \leq 1 / s$

Proof.

Given $x \neq y, h_{p}(x)=h_{p}(y) \Rightarrow x \bmod p=y \bmod p$.

- $D=|x-y|$, then $D \bmod p=0$, and $D \leq 2^{N}$.
- $D=p_{1} \ldots p_{k}$ prime factorization with repetitions. All

$$
p_{i} \geq 2 \Rightarrow D \geq 2^{k}
$$

String Equality: Randomized Algorithm

Error probability

$x, y N$-bit string, $M=\lceil 2(\mathrm{~s} N) \lg s N\rceil$, and $h_{p}(x)=x \bmod p$

Lemma

If $x \neq y$ then, $\operatorname{Pr}[$ Bob says equal $]=\operatorname{Pr}\left[h_{p}(x)=h_{p}(y)\right] \leq 1 / s$

Proof.

Given $x \neq y, h_{p}(x)=h_{p}(y) \Rightarrow x \bmod p=y \bmod p$.

- $D=|x-y|$, then $D \bmod p=0$, and $D \leq 2^{N}$.
- $D=p_{1} \ldots p_{k}$ prime factorization with repetitions. All $p_{i} \geq 2 \Rightarrow D \geq 2^{k}$.
- $2^{k} \leq D \leq 2^{N} \Rightarrow k \leq N$. D has at most N prime divisors.

String Equality: Randomized Algorithm

Error probability

$x, y N$-bit string, $M=\lceil 2(s N) \lg s N\rceil$, and $h_{p}(x)=x \bmod p$

Lemma

If $x \neq y$ then, $\operatorname{Pr}[$ Bob says equal $]=\operatorname{Pr}\left[h_{p}(x)=h_{p}(y)\right] \leq 1 / s$

Proof.

Given $x \neq y, h_{p}(x)=h_{p}(y) \Rightarrow x \bmod p=y \bmod p$.

- $D=|x-y|$, then $D \bmod p=0$, and $D \leq 2^{N}$.
- $D=p_{1} \ldots p_{k}$ prime factorization with repetitions. All $p_{i} \geq 2 \Rightarrow D \geq 2^{k}$.
- $2^{k} \leq D \leq 2^{N} \Rightarrow k \leq N$. D has at most N prime divisors.
- Probability that a random prime \boldsymbol{p} from $\{\mathbf{1}, \ldots, M\}$ is a divisor

$$
=\frac{k}{\pi(M)} \leq \frac{N}{\pi(M)}
$$

String Equality: Randomized Algorithm

Error probability

$x, y N$-bit string, $M=\lceil 2(s N) \lg s N\rceil$, and $h_{p}(x)=x \bmod p$

Lemma

If $x \neq y$ then, $\operatorname{Pr}[$ Bob says equal $]=\operatorname{Pr}\left[h_{p}(x)=h_{p}(y)\right] \leq 1 / s$

Proof.

Given $x \neq y, h_{p}(x)=h_{p}(y) \Rightarrow x \bmod p=y \bmod p$.

- $D=|x-y|$, then $D \bmod p=0$, and $D \leq 2^{N}$.
- $D=p_{1} \ldots p_{k}$ prime factorization with repetitions. All

$$
p_{i} \geq 2 \Rightarrow D \geq 2^{k}
$$

- $2^{k} \leq D \leq 2^{N} \Rightarrow k \leq N$. D has at most N prime divisors.
- Probability that a random prime \boldsymbol{p} from $\{\mathbf{1}, \ldots, M\}$ is a divisor

$$
=\frac{k}{\pi(M)} \leq \frac{N}{\pi(M)} \leq \frac{N}{M / \lg M}=\frac{N}{2(s N) \lg s N} \lg M \leq \frac{1}{s}
$$

Error Probability and Communication

Low Error Probability

(1) Choose large enough \boldsymbol{s}. Error prob: $\mathbf{1} / \mathbf{s}$.

Error Probability and Communication

Low Error Probability

(1) Choose large enough s. Error prob: $\mathbf{1 / s}$.
(2) Alice repeats the process R times, and Bob says equal only if he gets equal all R times.

Error Probability and Communication

Low Error Probability

(1) Choose large enough s. Error prob: $\mathbf{1 / s}$.
(2) Alice repeats the process R times, and Bob says equal only if he gets equal all R times.
Error probability: $\frac{1}{s^{R}}$.

Error Probability and Communication

Low Error Probability

(1) Choose large enough s. Error prob: $\mathbf{1 / s}$.
(2) Alice repeats the process R times, and Bob says equal only if he gets equal all R times.
Error probability: $\frac{1}{s^{R}}$. For $s=5, R=10, \frac{1}{5^{10}} \leq 0.000001$.

Error Probability and Communication

Low Error Probability

(1) Choose large enough s. Error prob: $1 / s$.
(2) Alice repeats the process R times, and Bob says equal only if he gets equal all R times.
Error probability: $\frac{1}{s^{\mathrm{R}}}$. For $s=5, R=10, \frac{1}{5^{10}} \leq \mathbf{0 . 0 0 0 0 0 1}$.

$$
M=\lceil 2(s N) \lg s N\rceil
$$

Amount of Communication

Each round sends 2 integers $\leq M$. \# bits: $2 \lg M \leq 4(\lg s+\lg N)$.

Error Probability and Communication

Low Error Probability

(1) Choose large enough s. Error prob: $1 / s$.
(2) Alice repeats the process R times, and Bob says equal only if he gets equal all R times.
Error probability: $\frac{1}{s^{R}}$. For $s=5, R=10, \frac{1}{5^{10}} \leq \mathbf{0 . 0 0 0 0 0 1}$.

$$
M=\lceil 2(s N) \lg s N\rceil
$$

Amount of Communication

Each round sends 2 integers $\leq M$. \# bits: $2 \lg M \leq 4(\lg s+\lg N)$. If \boldsymbol{x} and \boldsymbol{y} are copies of Wikipedia, about 25 billion characters. If 8 bits per character, then $N \approx 2^{38}$ bits.

Error Probability and Communication

Low Error Probability

(1) Choose large enough s. Error prob: $\mathbf{1 / s}$.
(2) Alice repeats the process R times, and Bob says equal only if he gets equal all R times.
Error probability: $\frac{1}{s^{R}}$. For $s=5, R=10, \frac{1}{5^{10}} \leq \mathbf{0 . 0 0 0 0 0 1}$.

$$
M=\lceil 2(s N) \lg s N\rceil
$$

Amount of Communication

Each round sends 2 integers $\leq M$. \# bits: $2 \lg M \leq 4(\lg s+\lg N)$. If x and y are copies of Wikipedia, about 25 billion characters. If 8 bits per character, then $N \approx 2^{38}$ bits. Second approach will send $10(2 \lg (10 N \lg 5 N)) \leq 1280$ bits.

Verifying inequality

Question: Algorithm is Monte Carlo. Suppose $x \neq y$. Can Alice and Bob find with high probability an index i such that $x_{i} \neq y_{i}$ and verify it? Assuming here that Alice and Bob can communicate over multiple rounds adaptively.

Verifying inequality

Question: Algorithm is Monte Carlo. Suppose $x \neq y$. Can Alice and Bob find with high probability an index i such that $x_{i} \neq y_{i}$ and verify it? Assuming here that Alice and Bob can communicate over multiple rounds adaptively.

Exercise: Show how Alice and Bob can do this with $O\left(\log ^{2} N\right)$ bits of communication. Hint: Use binary search.

Verifying inequality

Question: Algorithm is Monte Carlo. Suppose $x \neq y$. Can Alice and Bob find with high probability an index i such that $x_{i} \neq y_{i}$ and verify it? Assuming here that Alice and Bob can communicate over multiple rounds adaptively.

Exercise: Show how Alice and Bob can do this with $O\left(\log ^{2} N\right)$ bits of communication. Hint: Use binary search.

Using above find a Las Vegas algorithm that communicates $O(\log N)$ bits in expectation and $O(N)$ bits in the worst case but is always correct.

Multiple strings

We want to check equality between several pairs of strings $\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)$ where all strings are N-bits long.

Suppose we pick random prime p and use hash function $h_{\boldsymbol{p}}$ to check equality of all pairs. Will it work? What range should p be chosen from to ensure that all of the answers are correct with probability at least $(1-\delta)$ for some given parameter δ ?

Multiple strings

We want to check equality between several pairs of strings $\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)$ where all strings are N-bits long.

Suppose we pick random prime \boldsymbol{p} and use hash function $\boldsymbol{h}_{\boldsymbol{p}}$ to check equality of all pairs. Will it work? What range should p be chosen from to ensure that all of the answers are correct with probability at least $(\mathbf{1}-\boldsymbol{\delta})$ for some given parameter δ ?

Use union bound to figure out how large s should be.

Part III

Karp-Rabin Pattern Matching Algorithm

Pattern Matching

Given a string T of length \boldsymbol{m} and pattern P of length \boldsymbol{n}, s.t.
$m \gg n$,

- find whether P is a substring of T
- more generally, find all positions where P matches with \boldsymbol{T}.

Example

$\boldsymbol{T}=$ abracadabra, $\boldsymbol{P}=\mathrm{ab}$.

Pattern Matching

Given a string T of length \boldsymbol{m} and pattern P of length \boldsymbol{n}, s.t.
$m \gg n$,

- find whether P is a substring of T
- more generally, find all positions where P matches with \boldsymbol{T}.

Example

$\boldsymbol{T}=$ abracadabra, $\boldsymbol{P}=\mathrm{ab}$.
Index set of all matches: $S=\{1,8\}$.

Pattern Matching

Given a string T of length \boldsymbol{m} and pattern P of length \boldsymbol{n}, s.t.
$m \gg n$,

- find whether P is a substring of T
- more generally, find all positions where P matches with \boldsymbol{T}.

Example

$\boldsymbol{T}=$ abracadabra, $\boldsymbol{P}=\mathrm{ab}$.
Index set of all matches: $S=\{\mathbf{1 , 8}\}$.

$$
\text { For } j \geq i \text {, let } T[i, j]=T[i] T[i+1] \ldots T[j]
$$

Pattern Matching

Given a string T of length \boldsymbol{m} and pattern P of length \boldsymbol{n}, s.t. $m>n$,

- find whether P is a substring of T
- more generally, find all positions where P matches with \boldsymbol{T}.

Example

$\boldsymbol{T}=$ abracadabra, $\boldsymbol{P}=\mathrm{ab}$.
Index set of all matches: $S=\{1,8\}$.

$$
\text { For } j \geq i \text {, let } T[i, j]=T[i] T[i+1] \ldots T[j] .
$$

Brute force algorithm

$S=\emptyset$. For each $i=1 \ldots m-n+1$

- If $\operatorname{match}(T[i, i+n-1], P)$ then $S=S \cup\{i\}$.

Pattern Matching

Given a string T of length m and pattern P of length n, s.t.
$m>n$,

- find whether P is a substring of T
- more generally, find all positions where P matches with T.

Example

$\boldsymbol{T}=$ abracadabra, $\boldsymbol{P}=\mathrm{ab}$.
Index set of all matches: $S=\{\mathbf{1 , 8}\}$.
For $j \geq i$, let $T[i, j]=T[i] T[i+1] \ldots T[j]$.
Brute force algorithm
$S=\emptyset$. For each $i=1 \ldots m-n+1$

- If $\operatorname{match}(T[i, i+n-1], P)$ then $S=S \cup\{i\}$. $O(m n)$ run-time.

Using Fingerprinting

Pick a prime p u.a.r. from $\{1, \ldots, M\} . h_{p}(x)=x \bmod p$.
Brute force algorithm using fingerprinting
$S=\emptyset$. For each $i=1 \ldots m-n+\mathbf{1}$

- If $h_{p}(T[i, i+n-1])=h_{p}(P)$ then $S=S \cup\{i\}$.

Using Fingerprinting

Pick a prime p u.a.r. from $\{1, \ldots, M\} . h_{p}(x)=x \bmod p$.
Brute force algorithm using fingerprinting
$S=\emptyset$. For each $i=1 \ldots m-n+\mathbf{1}$

- If $h_{p}(T[i, i+n-1])=h_{p}(P)$ then $S=S \cup\{i\}$.

If x is of length n, then computing $h_{p}(x)$ takes $O(n)$ running time.
Overall $O(m n)$ running time.

Using Fingerprinting

Pick a prime p u.a.r. from $\{1, \ldots, M\} . h_{p}(x)=x \bmod p$.

Brute force algorithm using fingerprinting

$S=\emptyset$. For each $i=1 \ldots m-n+\mathbf{1}$

- If $h_{p}(T[i, i+n-1])=h_{p}(P)$ then $S=S \cup\{i\}$.

If x is of length n, then computing $h_{p}(x)$ takes $O(n)$ running time.
Overall $O(m n)$ running time.

Do we need to recompute fingerprints from scratch for each i?

$\bmod p$ math

Let \boldsymbol{a} and \boldsymbol{b} be (non-negative) integers.
$(a+b) \bmod p=((a \bmod p)+(b \bmod p)) \bmod p$

$\bmod p$ math

Let \boldsymbol{a} and \boldsymbol{b} be (non-negative) integers.

$$
(a+b) \bmod p=((a \bmod p)+(b \bmod p)) \bmod p
$$

$(a \cdot b) \bmod p=((\operatorname{a\operatorname {mod}p)\cdot (b\operatorname {mod}p))\operatorname {mod}p.0.}$

Rolling Hash

$x=T[i \ldots i+n-1]$ and $x^{\prime}=T[i+1, i+n]$.
Let $x=x_{1} x_{2} \ldots x_{n}$ and $x^{\prime}=x_{1}^{\prime} x_{2}^{\prime} \ldots x_{n}^{\prime}$

Example
 $x=1011001$, and $x^{\prime}=0110010$ or $x^{\prime}=0110011$.

Rolling Hash

$x=T[i \ldots i+n-1]$ and $x^{\prime}=T[i+1, i+n]$.
Let $x=x_{1} x_{2} \ldots x_{n}$ and $x^{\prime}=x_{1}^{\prime} x_{2}^{\prime} \ldots x_{n}^{\prime}$

Example

$x=1011001$, and $x^{\prime}=0110010$ or $x^{\prime}=0110011$.

$$
x^{\prime}=2\left(x-x_{1} 2^{n-1}\right)+x_{n}^{\prime}
$$

Rolling Hash

$x=T[i \ldots i+n-1]$ and $x^{\prime}=T[i+1, i+n]$.
Let $x=x_{1} x_{2} \ldots x_{n}$ and $x^{\prime}=x_{1}^{\prime} x_{2}^{\prime} \ldots x_{n}^{\prime}$

Example

$x=1011001$, and $x^{\prime}=0110010$ or $x^{\prime}=0110011$.

$$
\begin{aligned}
x^{\prime} & =2\left(x-x_{1} 2^{n-1}\right)+x_{n}^{\prime} \\
& =2 x-x_{1} 2^{n}+x_{n}^{\prime}
\end{aligned}
$$

Rolling Hash

$x=T[i \ldots i+n-1]$ and $x^{\prime}=T[i+1, i+n]$.
Let $x=x_{1} x_{2} \ldots x_{n}$ and $x^{\prime}=x_{1}^{\prime} x_{2}^{\prime} \ldots x_{n}^{\prime}$

Example

$x=1011001$, and $x^{\prime}=0110010$ or $x^{\prime}=0110011$.

$$
\begin{aligned}
x^{\prime} & =2\left(x-x_{1} 2^{n-1}\right)+x_{n}^{\prime} \\
& =2 x-x_{1} 2^{n}+x_{n}^{\prime}
\end{aligned}
$$

$h_{p}\left(x^{\prime}\right)=x^{\prime} \bmod p$

$$
\begin{aligned}
& =\left(2(x \bmod p)-x_{1}\left(2^{n} \bmod p\right)+x_{n}^{\prime}\right) \bmod p \\
& =\left(2 h_{p}(x)-x_{1} h_{p}\left(2^{n}\right)+x_{n}^{\prime}\right) \bmod p
\end{aligned}
$$

Karp-Rabin Algorithm

p : a random prime from $\{1, \ldots, M\}$.
(1) Set $S=\emptyset$. Compute $h_{p}(T[1, n]), h_{p}\left(2^{n}\right)$, and $h_{p}(P)$.
(2) For each $i=1, \ldots, m-n+1$
(1) If $h_{p}(T[i, i+n-1])=h_{p}(P)$, then $S=S \cup\{i\}$.
(0) Compute $h_{p}(T[i+1, i+n])$ using $h_{p}(T[i, i+n-1])$ and $h_{p}\left(2^{n}\right)$ by applying rolling hash.

Karp-Rabin Algorithm

p : a random prime from $\{1, \ldots, M\}$.
(1) Set $S=\emptyset$. Compute $h_{p}(T[1, n]), h_{p}\left(2^{n}\right)$, and $h_{p}(P)$.
(2) For each $i=1, \ldots, m-n+1$
(1) If $h_{p}(T[i, i+n-1])=h_{p}(P)$, then $S=S \cup\{i\}$.
(2) Compute $h_{p}(T[i+1, i+n])$ using $h_{p}(T[i, i+n-1])$ and $\boldsymbol{h}_{\boldsymbol{p}}\left(\mathbf{2}^{\boldsymbol{n}}\right)$ by applying rolling hash.

Running Time

- In Step 1, computing $\boldsymbol{h}_{\boldsymbol{p}}(\boldsymbol{x})$ for an \boldsymbol{n} bit \boldsymbol{x} is in $\boldsymbol{O}(\boldsymbol{n})$ time.

Karp-Rabin Algorithm

p : a random prime from $\{1, \ldots, M\}$.
(1) Set $S=\emptyset$. Compute $h_{p}(T[1, n]), h_{p}\left(2^{n}\right)$, and $h_{p}(P)$.
(2) For each $i=1, \ldots, m-n+1$
(1) If $h_{p}(T[i, i+n-1])=h_{p}(P)$, then $S=S \cup\{i\}$.
(2) Compute $h_{p}(T[i+1, i+n])$ using $h_{p}(T[i, i+n-1])$ and $\boldsymbol{h}_{\boldsymbol{p}}\left(\mathbf{2}^{\boldsymbol{n}}\right)$ by applying rolling hash.

Running Time

- In Step 1, computing $\boldsymbol{h}_{\boldsymbol{p}}(\boldsymbol{x})$ for an \boldsymbol{n} bit \boldsymbol{x} is in $\boldsymbol{O}(\boldsymbol{n})$ time. Assuming $O(\lg M)$ bit arithmetic can be done in $O(1)$ time,
- Since $h_{p}($.$) produces \lg M$ bit numbers, both steps inside for loop can be done in $O(1)$ time.

Karp-Rabin Algorithm

p : a random prime from $\{1, \ldots, M\}$.
(1) Set $S=\emptyset$. Compute $h_{p}(T[1, n]), h_{p}\left(2^{n}\right)$, and $h_{p}(P)$.
(2) For each $i=1, \ldots, m-n+1$
(1) If $h_{p}(T[i, i+n-1])=h_{p}(P)$, then $S=S \cup\{i\}$.
(2) Compute $h_{p}(T[i+1, i+n])$ using $h_{p}(T[i, i+n-1])$ and $\boldsymbol{h}_{\boldsymbol{p}}\left(\mathbf{2}^{\boldsymbol{n}}\right)$ by applying rolling hash.

Running Time

- In Step 1, computing $\boldsymbol{h}_{\boldsymbol{p}}(\boldsymbol{x})$ for an \boldsymbol{n} bit \boldsymbol{x} is in $\boldsymbol{O}(\boldsymbol{n})$ time. Assuming $O(\lg M)$ bit arithmetic can be done in $O(1)$ time,
- Since $h_{p}($.$) produces \lg M$ bit numbers, both steps inside for loop can be done in $O(1)$ time.
- Overall $O(m+n)$ time.

Karp-Rabin Algorithm

p : a random prime from $\{1, \ldots, M\}$.
(1) Set $S=\emptyset$. Compute $h_{p}(T[1, n]), h_{p}\left(2^{n}\right)$, and $h_{p}(P)$.
(2) For each $i=1, \ldots, m-n+1$
(1) If $h_{p}(T[i, i+n-1])=h_{p}(P)$, then $S=S \cup\{i\}$.
(2) Compute $h_{p}(T[i+1, i+n])$ using $h_{p}(T[i, i+n-1])$ and $\boldsymbol{h}_{\boldsymbol{p}}\left(\mathbf{2}^{\boldsymbol{n}}\right)$ by applying rolling hash.

Running Time

- In Step 1, computing $\boldsymbol{h}_{\boldsymbol{p}}(\boldsymbol{x})$ for an \boldsymbol{n} bit \boldsymbol{x} is in $\boldsymbol{O}(\boldsymbol{n})$ time. Assuming $O(\lg M)$ bit arithmetic can be done in $O(1)$ time,
- Since $h_{p}($.$) produces \lg M$ bit numbers, both steps inside for loop can be done in $O(1)$ time.
- Overall $O(m+n)$ time. Can't do better.

Karp-Rabin Algorithm: Error Analysis

(1) For each $i=1, \ldots, m-n+1$
(1) If $h_{p}(T[i, i+n-1])=h_{p}(P)$, then $S=S \cup\{i\}$.
(2) Compute $h_{p}(T[i+1, i+n])$ using $h_{p}(T[i, i+n-1])$ and $h_{p}\left(2^{n}\right)$.

Lemma

If match at any position i then $i \in S$. In otherwords if $T[i, i+n-1]=P$, then $i \in S$.

All matched positions are in S.

Karp-Rabin Algorithm: Error Analysis

(1) For each $i=1, \ldots, m-n+1$
(1) If $h_{p}(T[i, i+n-1])=h_{p}(P)$, then $S=S \cup\{i\}$.
(2) Compute $h_{p}(T[i+1, i+n])$ using $h_{p}(T[i, i+n-1])$ and $h_{p}\left(2^{n}\right)$.

Lemma

If match at any position \boldsymbol{i} then $\boldsymbol{i} \in S$. In otherwords if $T[i, i+n-1]=P$, then $i \in S$.

All matched positions are in S.
Can it contain unmatched positions?

Karp-Rabin Algorithm: Error Analysis

(1) For each $i=1, \ldots, m-n+1$
(1) If $h_{p}(T[i, i+n-1])=h_{p}(P)$, then $S=S \cup\{i\}$.
(2) Compute $h_{p}(T[i+1, i+n])$ using $h_{p}(T[i, i+n-1])$ and $h_{p}\left(2^{n}\right)$.

Lemma

If match at any position \boldsymbol{i} then $\boldsymbol{i} \in S$. In otherwords if $T[i, i+n-1]=P$, then $i \in S$.

All matched positions are in S.
Can it contain unmatched positions? YES!

Karp-Rabin Algorithm: Error Analysis

(1) For each $i=1, \ldots, m-n+1$
(1) If $h_{p}(T[i, i+n-1])=h_{p}(P)$, then $S=S \cup\{i\}$.
(2) Compute $h_{p}(T[i+1, i+n])$ using $h_{p}(T[i, i+n-1])$ and $h_{p}\left(2^{n}\right)$.

Lemma

If match at any position i then $i \in S$. In otherwords if $T[i, i+n-1]=P$, then $i \in S$.

All matched positions are in S.

Can it contain unmatched positions? YES! With what probability?

Karp-Rabin Algorithm: Error Analysis

$\operatorname{Pr}[S$ contains an index i, while there is no match at $i]$

Set $M=\lceil 2(s n) \lg s n\rceil$. Given $x \neq y, \operatorname{Pr}\left[h_{p}(x)=h_{p}(y)\right] \leq 1 / s$.

Karp-Rabin Algorithm: Error Analysis

$\operatorname{Pr}[\mathrm{S}$ contains an index i , while there is no match at i]

Set $M=\lceil 2(s n) \lg s n\rceil$. Given $x \neq y, \operatorname{Pr}\left[h_{p}(x)=h_{p}(y)\right] \leq 1 / s$.
False positive: $\operatorname{Pr}[S$ contains an i , while no match at $i]$

Karp-Rabin Algorithm: Error Analysis

 $\operatorname{Pr}[\mathrm{S}$ contains an index i , while there is no match at i$]$Set $M=\lceil 2(s n) \lg s n\rceil$. Given $x \neq y, \operatorname{Pr}\left[h_{p}(x)=h_{p}(y)\right] \leq 1 / s$.
False positive: $\operatorname{Pr}[\mathrm{S}$ contains an i , while no match at i$]$

- If $T[i, i+n-1] \neq P, \operatorname{Pr}[i \in S] \leq 1 / s$.

Karp-Rabin Algorithm: Error Analysis

$\operatorname{Pr}[S$ contains an index i , while there is no match at i]

Set $M=\lceil 2(s n) \lg s n\rceil$. Given $x \neq y, \operatorname{Pr}\left[h_{p}(x)=h_{p}(y)\right] \leq 1 / s$.
False positive: $\operatorname{Pr}[S$ contains an i , while no match at i$]$

- If $T[i, i+n-1] \neq P, \operatorname{Pr}[i \in S] \leq 1 / s$.
- $\operatorname{Pr}[S$ contains an incorrect index]

Karp-Rabin Algorithm: Error Analysis

 $\operatorname{Pr}[S$ contains an index i , while there is no match at i$]$Set $M=\lceil 2(s n) \lg s n\rceil$. Given $x \neq y, \operatorname{Pr}\left[h_{p}(x)=h_{p}(y)\right] \leq 1 / s$.
False positive: $\operatorname{Pr}[S$ contains an i, while no match at $i]$

- If $T[i, i+n-1] \neq P, \operatorname{Pr}[i \in S] \leq 1 / s$.
- $\operatorname{Pr}[S$ contains an incorrect index $] \leq m / s$ (Union bound).

Karp-Rabin Algorithm: Error Analysis

 $\operatorname{Pr}[\mathrm{S}$ contains an index i , while there is no match at i]Set $M=\lceil 2(s n) \lg s n\rceil$. Given $x \neq y, \operatorname{Pr}\left[h_{p}(x)=h_{p}(y)\right] \leq 1 / s$.
False positive: $\operatorname{Pr}[S$ contains an i, while no match at $i]$

- If $T[i, i+n-1] \neq P, \operatorname{Pr}[i \in S] \leq 1 / s$.
- $\operatorname{Pr}[S$ contains an incorrect index] $\leq m / s$ (Union bound).
- To ensure \boldsymbol{S} is correct with at least $\mathbf{0 . 9 9}$ probability, we need

$$
1-\frac{m}{s} \geq 0.99 \Rightarrow \frac{m}{s} \leq \frac{1}{100} \Rightarrow s \geq 100 m
$$

Karp-Rabin Algorithm

Back to running time

Running Time

- In Step 1, computing $h_{p}(x)$ for an n bit x is in $O(n)$ time. Assuming $O(\lg M)$ bit arithmetic can be done in $O(\mathbf{1})$ time,
- Since $h_{p}($.$) produces \lg M$ bit numbers, both steps inside for loop can be done in $O(1)$ time.
- Overall $O(m+n)$ time. Can't do better.

$$
M=\lceil 200 m n \lg 100 m n\rceil \Rightarrow \lg M=O(\lg m)
$$

Karp-Rabin Algorithm

Back to running time

Running Time

- In Step 1, computing $h_{p}(x)$ for an n bit x is in $O(n)$ time. Assuming $O(\lg M)$ bit arithmetic can be done in $O(\mathbf{1})$ time,
- Since $h_{p}($.$) produces \lg M$ bit numbers, both steps inside for loop can be done in $O(1)$ time.
- Overall $O(m+n)$ time. Can't do better.

$$
M=\lceil 200 m n \lg 100 m n\rceil \Rightarrow \lg M=O(\lg m)
$$

Even if \boldsymbol{T} is entire Wikipedia, with bit length $\boldsymbol{m} \approx 2^{38}$,

Karp-Rabin Algorithm

Back to running time

Running Time

- In Step 1, computing $h_{p}(x)$ for an n bit x is in $O(n)$ time. Assuming $O(\lg M)$ bit arithmetic can be done in $O(1)$ time,
- Since $h_{p}($.$) produces \lg M$ bit numbers, both steps inside for loop can be done in $O(1)$ time.
- Overall $O(m+n)$ time. Can't do better.

$$
M=\lceil 200 m n \lg 100 m n\rceil \Rightarrow \lg M=O(\lg m)
$$

Even if T is entire Wikipedia, with bit length $\boldsymbol{m} \approx 2^{38}$, $\boldsymbol{\operatorname { l g }} M \approx \mathbf{6 4}$ (assuming bit-length of $n \leq \mathbf{2}^{16}$)

Karp-Rabin Algorithm

Back to running time

Running Time

- In Step 1, computing $h_{p}(x)$ for an n bit x is in $O(n)$ time. Assuming $O(\lg M)$ bit arithmetic can be done in $O(1)$ time,
- Since $h_{p}($.$) produces \lg M$ bit numbers, both steps inside for loop can be done in $O(1)$ time.
- Overall $O(m+n)$ time. Can't do better.

$$
M=\lceil 200 m n \lg 100 m n\rceil \Rightarrow \lg M=O(\lg m)
$$

Even if T is entire Wikipedia, with bit length $\boldsymbol{m} \approx 2^{38}$,

$$
\lg M \approx 64 \text { (assuming bit-length of } n \leq 2^{16} \text {) }
$$

64-bit arithmetic is doable on laptops!

Deterministic Pattern Matching

$O(n+m)$ (linear time) deterministic algorithms are known

- Boyer-Moore algorithm
- Knuth-Morris-Pratt (KMP) algorithm

Why randomization?

- generalizes to settings (two-dimensional settings) where standard algorithms do not
- generalizes to multiple string pattern matchings easily

