
CS 473: Algorithms, Fall 2019

Fingerprinting for String
Matching
Lecture 11
Feb 20, 2019

Chandra and Michael (UIUC) cs473 1 Fall 2019 1 / 31

Fingerprinting
Source: Wikipedia

Process of mapping a large data item to a much shorter bit string,
called its fingerprint.

Fingerprints uniquely identifies data “for all practical purposes”.

Typically used to avoid comparison and transmission of bulky data.
Eg: Web browser can store/fetch file fingerprints to check if it is
changed.

Hash functions are an example of fingerprinting.

Chandra and Michael (UIUC) cs473 2 Fall 2019 2 / 31

Fingerprinting
Source: Wikipedia

Process of mapping a large data item to a much shorter bit string,
called its fingerprint.

Fingerprints uniquely identifies data “for all practical purposes”.

Typically used to avoid comparison and transmission of bulky data.
Eg: Web browser can store/fetch file fingerprints to check if it is
changed.

Hash functions are an example of fingerprinting.

Chandra and Michael (UIUC) cs473 2 Fall 2019 2 / 31

Outline

Use of fingerprinting for designing fast algorithms

String equality
Given two strings x and y determine if x = y with very little
communication.

Problem
Given a text T of length m and pattern P of length n, m � n, find
all occurrences of P in T .

Karp-Rabin Randomized Algorithm
It involves:

Sampling a prime

String equality via mod p arithmetic

Rabin’s fingerprinting scheme – rolling hash

Karp-Rabin pattern matching algorithm: O(m + n) time.

Chandra and Michael (UIUC) cs473 3 Fall 2019 3 / 31

Outline

Use of fingerprinting for designing fast algorithms

String equality
Given two strings x and y determine if x = y with very little
communication.

Problem
Given a text T of length m and pattern P of length n, m � n, find
all occurrences of P in T .

Karp-Rabin Randomized Algorithm
It involves:

Sampling a prime

String equality via mod p arithmetic

Rabin’s fingerprinting scheme – rolling hash

Karp-Rabin pattern matching algorithm: O(m + n) time.

Chandra and Michael (UIUC) cs473 3 Fall 2019 3 / 31

Outline

Use of fingerprinting for designing fast algorithms

String equality
Given two strings x and y determine if x = y with very little
communication.

Problem
Given a text T of length m and pattern P of length n, m � n, find
all occurrences of P in T .

Karp-Rabin Randomized Algorithm

It involves:

Sampling a prime

String equality via mod p arithmetic

Rabin’s fingerprinting scheme – rolling hash

Karp-Rabin pattern matching algorithm: O(m + n) time.

Chandra and Michael (UIUC) cs473 3 Fall 2019 3 / 31

Outline

Use of fingerprinting for designing fast algorithms

String equality
Given two strings x and y determine if x = y with very little
communication.

Problem
Given a text T of length m and pattern P of length n, m � n, find
all occurrences of P in T .

Karp-Rabin Randomized Algorithm
It involves:

Sampling a prime

String equality via mod p arithmetic

Rabin’s fingerprinting scheme – rolling hash

Karp-Rabin pattern matching algorithm: O(m + n) time.
Chandra and Michael (UIUC) cs473 3 Fall 2019 3 / 31

Part I

Sampling a Prime

Chandra and Michael (UIUC) cs473 4 Fall 2019 4 / 31

Sampling a prime

Problem
Given an integer x > 0, sample a prime uniformly at random from all
the primes between 1 and x .

Procedure
1 Sample a number p uniformly at random from {1, . . . , x}.
2 If p is a prime, then output p. Else go to Step (1).

Checking if p is prime
Agrawal-Kayal-Saxena primality test: deterministic but slow

Miller-Rabin randomized primality test: fast but randomized

outputs ‘prime’ when it is not with very low probability.

Chandra and Michael (UIUC) cs473 5 Fall 2019 5 / 31

Sampling a prime

Problem
Given an integer x > 0, sample a prime uniformly at random from all
the primes between 1 and x .

Procedure
1 Sample a number p uniformly at random from {1, . . . , x}.
2 If p is a prime, then output p. Else go to Step (1).

Checking if p is prime
Agrawal-Kayal-Saxena primality test: deterministic but slow

Miller-Rabin randomized primality test: fast but randomized

outputs ‘prime’ when it is not with very low probability.

Chandra and Michael (UIUC) cs473 5 Fall 2019 5 / 31

Sampling a prime

Problem
Given an integer x > 0, sample a prime uniformly at random from all
the primes between 1 and x .

Procedure
1 Sample a number p uniformly at random from {1, . . . , x}.
2 If p is a prime, then output p. Else go to Step (1).

Checking if p is prime
Agrawal-Kayal-Saxena primality test: deterministic but slow

Miller-Rabin randomized primality test: fast but randomized

outputs ‘prime’ when it is not with very low probability.

Chandra and Michael (UIUC) cs473 5 Fall 2019 5 / 31

Sampling a Prime: Analysis

Is the returned prime sampled uniformly at random?

π(x) : number of primes in {1, . . . , x},

Lemma
For a fixed prime p∗ ≤ x , Pr[algorithm outputs p∗] = 1/π(x).

Proof.
Event A : a prime is picked in a round. Pr[A] = π(x)/x .
Event B : number (prime) p∗ is picked. Pr[B] = 1/x .
Pr[A ∩ B] = Pr[B] = 1/x. Why? Because B ⊂ A.

Pr[B|A] =
Pr[A ∩ B]

Pr[A]
=

Pr[B]

Pr[A]
=

1/x
π(x)/x

=
1

π(x)

Chandra and Michael (UIUC) cs473 6 Fall 2019 6 / 31

Sampling a Prime: Analysis

Is the returned prime sampled uniformly at random?
π(x) : number of primes in {1, . . . , x},

Lemma
For a fixed prime p∗ ≤ x , Pr[algorithm outputs p∗] = 1/π(x).

Proof.
Event A : a prime is picked in a round. Pr[A] = π(x)/x .
Event B : number (prime) p∗ is picked. Pr[B] = 1/x .
Pr[A ∩ B] = Pr[B] = 1/x. Why? Because B ⊂ A.

Pr[B|A] =
Pr[A ∩ B]

Pr[A]
=

Pr[B]

Pr[A]
=

1/x
π(x)/x

=
1

π(x)

Chandra and Michael (UIUC) cs473 6 Fall 2019 6 / 31

Sampling a Prime: Analysis

Is the returned prime sampled uniformly at random?
π(x) : number of primes in {1, . . . , x},

Lemma
For a fixed prime p∗ ≤ x , Pr[algorithm outputs p∗] = 1/π(x).

Proof.
Event A : a prime is picked in a round. Pr[A] = π(x)/x .
Event B : number (prime) p∗ is picked. Pr[B] = 1/x .
Pr[A ∩ B] = Pr[B] = 1/x. Why? Because B ⊂ A.

Pr[B|A] =
Pr[A ∩ B]

Pr[A]
=

Pr[B]

Pr[A]
=

1/x
π(x)/x

=
1

π(x)

Chandra and Michael (UIUC) cs473 6 Fall 2019 6 / 31

Sampling a prime: Expected number of samples

Procedure
1 Sample a number p uniformly at random from {1, . . . , x}.
2 If p is a prime, then output p. Else go to Step (1).

Running time in expectation
Q: How many samples in expectation before termination?
A: x/π(x). Exercise.

Chandra and Michael (UIUC) cs473 7 Fall 2019 7 / 31

How many primes between 0 and x

π(x) : Number of primes between 0 and x .

J. Hadamard and C. J. de la Vallée-Poussin (1896)

Prime Number Theorem: limx→∞
π(x)

x/ ln x = 1

Chebyshev (from 1848)

π(x) ≥
7

8

x
ln x

= (1.262..)
x

lg x
>

x
lg x

y ∼ {1, . . . , x} u.a.r., then y is a prime w.p. π(x)
x > 1

lg x .

If we want k ≥ 4 primes then x ≥ 2k lg k suffices.

π(x) ≥ π(2k lg k) =
2k lg k

lg 2 + lg k + lg lg k
≥

k(2 lg k)

2 lg k
= k

Chandra and Michael (UIUC) cs473 8 Fall 2019 8 / 31

How many primes between 0 and x

π(x) : Number of primes between 0 and x .

J. Hadamard and C. J. de la Vallée-Poussin (1896)

Prime Number Theorem: limx→∞
π(x)

x/ ln x = 1

Chebyshev (from 1848)

π(x) ≥
7

8

x
ln x

= (1.262..)
x

lg x
>

x
lg x

y ∼ {1, . . . , x} u.a.r., then y is a prime w.p. π(x)
x > 1

lg x .

If we want k ≥ 4 primes then x ≥ 2k lg k suffices.

π(x) ≥ π(2k lg k) =
2k lg k

lg 2 + lg k + lg lg k
≥

k(2 lg k)

2 lg k
= k

Chandra and Michael (UIUC) cs473 8 Fall 2019 8 / 31

How many primes between 0 and x

π(x) : Number of primes between 0 and x .

J. Hadamard and C. J. de la Vallée-Poussin (1896)

Prime Number Theorem: limx→∞
π(x)

x/ ln x = 1

Chebyshev (from 1848)

π(x) ≥
7

8

x
ln x

= (1.262..)
x

lg x
>

x
lg x

y ∼ {1, . . . , x} u.a.r., then y is a prime w.p. π(x)
x > 1

lg x .

If we want k ≥ 4 primes then x ≥ 2k lg k suffices.

π(x) ≥ π(2k lg k) =
2k lg k

lg 2 + lg k + lg lg k
≥

k(2 lg k)

2 lg k
= k

Chandra and Michael (UIUC) cs473 8 Fall 2019 8 / 31

How many primes between 0 and x

π(x) : Number of primes between 0 and x .

J. Hadamard and C. J. de la Vallée-Poussin (1896)

Prime Number Theorem: limx→∞
π(x)

x/ ln x = 1

Chebyshev (from 1848)

π(x) ≥
7

8

x
ln x

= (1.262..)
x

lg x
>

x
lg x

y ∼ {1, . . . , x} u.a.r., then y is a prime w.p. π(x)
x > 1

lg x .

If we want k ≥ 4 primes then x ≥ 2k lg k suffices.

π(x) ≥ π(2k lg k) =
2k lg k

lg 2 + lg k + lg lg k
≥

k(2 lg k)

2 lg k
= k

Chandra and Michael (UIUC) cs473 8 Fall 2019 8 / 31

Part II

String Equality

Chandra and Michael (UIUC) cs473 9 Fall 2019 9 / 31

String Equality

Problem
Alice, the captain of a Mars lander, receives an N-bit string x , and
Bob, back at mission control, receives a string y . They know nothing
about each others strings, but want to check if x = y .

Alice sends Bob x , and Bob confirms if x = y . But sending N bits is
costly! Can they share less communication and check equality?

Possibilities:
If want 100% surety then NO.

If OK with 99.99% surety then O(lg N) may suffice!!!

If x = y , then Pr[Bob says equal] = 1.
If x 6= y , then Pr[Bob says un-equal] = 0.9999.

Chandra and Michael (UIUC) cs473 10 Fall 2019 10 / 31

String Equality

Problem
Alice, the captain of a Mars lander, receives an N-bit string x , and
Bob, back at mission control, receives a string y . They know nothing
about each others strings, but want to check if x = y .

Alice sends Bob x , and Bob confirms if x = y . But sending N bits is
costly! Can they share less communication and check equality?

Possibilities:
If want 100% surety then NO.

If OK with 99.99% surety then O(lg N) may suffice!!!

If x = y , then Pr[Bob says equal] = 1.
If x 6= y , then Pr[Bob says un-equal] = 0.9999.

Chandra and Michael (UIUC) cs473 10 Fall 2019 10 / 31

String Equality

Problem
Alice, the captain of a Mars lander, receives an N-bit string x , and
Bob, back at mission control, receives a string y . They know nothing
about each others strings, but want to check if x = y .

Alice sends Bob x , and Bob confirms if x = y . But sending N bits is
costly! Can they share less communication and check equality?

Possibilities:
If want 100% surety then NO.

If OK with 99.99% surety then O(lg N) may suffice!!!

If x = y , then Pr[Bob says equal] = 1.
If x 6= y , then Pr[Bob says un-equal] = 0.9999.

Chandra and Michael (UIUC) cs473 10 Fall 2019 10 / 31

String Equality

Problem
Alice, the captain of a Mars lander, receives an N-bit string x , and
Bob, back at mission control, receives a string y . They know nothing
about each others strings, but want to check if x = y .

Alice sends Bob x , and Bob confirms if x = y . But sending N bits is
costly! Can they share less communication and check equality?

Possibilities:
If want 100% surety then NO.

If OK with 99.99% surety then O(lg N) may suffice!!!

If x = y , then Pr[Bob says equal] = 1.
If x 6= y , then Pr[Bob says un-equal] = 0.9999.

Chandra and Michael (UIUC) cs473 10 Fall 2019 10 / 31

N versus log N

Question: Given x, y what is basic information that Alice can send
to Bob about x?

Alice can send |x|. How many bits does this take? dlog Ne

Thus one can assume that Alice and Bob have equal length strings
for simplicity.

If x 6= y they differ in at least one bit. How many bits does it take
to specify the location of a bit where they differ? dlog Ne

How many binary strings of length N are there? 2N Information
theoretically no deterministic protocol can send less than N bits but
randomization with smaller error allows one to get O(log N) bits.

Chandra and Michael (UIUC) cs473 11 Fall 2019 11 / 31

N versus log N

Question: Given x, y what is basic information that Alice can send
to Bob about x?

Alice can send |x|. How many bits does this take?

dlog Ne

Thus one can assume that Alice and Bob have equal length strings
for simplicity.

If x 6= y they differ in at least one bit. How many bits does it take
to specify the location of a bit where they differ? dlog Ne

How many binary strings of length N are there? 2N Information
theoretically no deterministic protocol can send less than N bits but
randomization with smaller error allows one to get O(log N) bits.

Chandra and Michael (UIUC) cs473 11 Fall 2019 11 / 31

N versus log N

Question: Given x, y what is basic information that Alice can send
to Bob about x?

Alice can send |x|. How many bits does this take? dlog Ne

Thus one can assume that Alice and Bob have equal length strings
for simplicity.

If x 6= y they differ in at least one bit. How many bits does it take
to specify the location of a bit where they differ? dlog Ne

How many binary strings of length N are there? 2N Information
theoretically no deterministic protocol can send less than N bits but
randomization with smaller error allows one to get O(log N) bits.

Chandra and Michael (UIUC) cs473 11 Fall 2019 11 / 31

N versus log N

Question: Given x, y what is basic information that Alice can send
to Bob about x?

Alice can send |x|. How many bits does this take? dlog Ne

Thus one can assume that Alice and Bob have equal length strings
for simplicity.

If x 6= y they differ in at least one bit. How many bits does it take
to specify the location of a bit where they differ?

dlog Ne

How many binary strings of length N are there? 2N Information
theoretically no deterministic protocol can send less than N bits but
randomization with smaller error allows one to get O(log N) bits.

Chandra and Michael (UIUC) cs473 11 Fall 2019 11 / 31

N versus log N

Question: Given x, y what is basic information that Alice can send
to Bob about x?

Alice can send |x|. How many bits does this take? dlog Ne

Thus one can assume that Alice and Bob have equal length strings
for simplicity.

If x 6= y they differ in at least one bit. How many bits does it take
to specify the location of a bit where they differ? dlog Ne

How many binary strings of length N are there?

2N Information
theoretically no deterministic protocol can send less than N bits but
randomization with smaller error allows one to get O(log N) bits.

Chandra and Michael (UIUC) cs473 11 Fall 2019 11 / 31

N versus log N

Question: Given x, y what is basic information that Alice can send
to Bob about x?

Alice can send |x|. How many bits does this take? dlog Ne

Thus one can assume that Alice and Bob have equal length strings
for simplicity.

If x 6= y they differ in at least one bit. How many bits does it take
to specify the location of a bit where they differ? dlog Ne

How many binary strings of length N are there? 2N Information
theoretically no deterministic protocol can send less than N bits but
randomization with smaller error allows one to get O(log N) bits.

Chandra and Michael (UIUC) cs473 11 Fall 2019 11 / 31

N versus log N

If x and y are copies of Wikipedia, about 25 billion characters.
Assuming 8 bits per character, then N ≈ 238 bits.

lg N = 38

Chandra and Michael (UIUC) cs473 12 Fall 2019 12 / 31

N versus log N

If x and y are copies of Wikipedia, about 25 billion characters.
Assuming 8 bits per character, then N ≈ 238 bits.

lg N = 38

Chandra and Michael (UIUC) cs473 12 Fall 2019 12 / 31

Universal Hashing?

Question: Can we use universal hashing? Alice sends h(x) to Bob
and Bob checks if h(x) = h(y). If range of h is [m] and h is
universal then Pr[h(x) = h(y)] ≤ 1/m if x 6= q. Can choose m
sufficiently large to make this small. Only need to send O(log m)
bits?

Scenario 1: Both Alice and Bob know h apriori

This means Alice cannot pick randomness specifically for each
new x . Will violate randomized guarantee if used repeatedly.

Scenario 2; Alice has to send h also to Bob

Consider scheme using primes. Universe U is set of all 2N

strings implies p > 2N and a, b ∈ Zp. Alice needs to send
p, a, b which is Ω(N) bits!

Chandra and Michael (UIUC) cs473 13 Fall 2019 13 / 31

Universal Hashing?

Question: Can we use universal hashing? Alice sends h(x) to Bob
and Bob checks if h(x) = h(y). If range of h is [m] and h is
universal then Pr[h(x) = h(y)] ≤ 1/m if x 6= q. Can choose m
sufficiently large to make this small. Only need to send O(log m)
bits?

Scenario 1: Both Alice and Bob know h apriori

This means Alice cannot pick randomness specifically for each
new x . Will violate randomized guarantee if used repeatedly.

Scenario 2; Alice has to send h also to Bob

Consider scheme using primes. Universe U is set of all 2N

strings implies p > 2N and a, b ∈ Zp. Alice needs to send
p, a, b which is Ω(N) bits!

Chandra and Michael (UIUC) cs473 13 Fall 2019 13 / 31

String Equality: Randomized Algorithm

x, y : N-bit strings. Interpret them as integers in binary

(Recall) If M = d2(5N) lg 5Ne, then 5N primes in {1, . . . ,M}.

Procedure
Define hp(x) = x mod p

1 Alice picks a random prime p from {1, . . .M}.
2 She sends Bob prime p, and also hp(x) = x mod p.

3 Bob checks if hp(y) = hp(x). If so, he says equal else un-equal.

Lemma
If x = y then Bob always says equal.

Chandra and Michael (UIUC) cs473 14 Fall 2019 14 / 31

String Equality: Randomized Algorithm

x, y : N-bit strings. Interpret them as integers in binary

(Recall) If M = d2(5N) lg 5Ne, then 5N primes in {1, . . . ,M}.

Procedure
Define hp(x) = x mod p

1 Alice picks a random prime p from {1, . . .M}.
2 She sends Bob prime p, and also hp(x) = x mod p.

3 Bob checks if hp(y) = hp(x). If so, he says equal else un-equal.

Lemma
If x = y then Bob always says equal.

Chandra and Michael (UIUC) cs473 14 Fall 2019 14 / 31

String Equality: Randomized Algorithm

x, y : N-bit strings. Interpret them as integers in binary

(Recall) If M = d2(5N) lg 5Ne, then 5N primes in {1, . . . ,M}.

Procedure
Define hp(x) = x mod p

1 Alice picks a random prime p from {1, . . .M}.

2 She sends Bob prime p, and also hp(x) = x mod p.

3 Bob checks if hp(y) = hp(x). If so, he says equal else un-equal.

Lemma
If x = y then Bob always says equal.

Chandra and Michael (UIUC) cs473 14 Fall 2019 14 / 31

String Equality: Randomized Algorithm

x, y : N-bit strings. Interpret them as integers in binary

(Recall) If M = d2(5N) lg 5Ne, then 5N primes in {1, . . . ,M}.

Procedure
Define hp(x) = x mod p

1 Alice picks a random prime p from {1, . . .M}.
2 She sends Bob prime p, and also hp(x) = x mod p.

3 Bob checks if hp(y) = hp(x). If so, he says equal else un-equal.

Lemma
If x = y then Bob always says equal.

Chandra and Michael (UIUC) cs473 14 Fall 2019 14 / 31

String Equality: Randomized Algorithm

x, y : N-bit strings. Interpret them as integers in binary

(Recall) If M = d2(5N) lg 5Ne, then 5N primes in {1, . . . ,M}.

Procedure
Define hp(x) = x mod p

1 Alice picks a random prime p from {1, . . .M}.
2 She sends Bob prime p, and also hp(x) = x mod p.

3 Bob checks if hp(y) = hp(x). If so, he says equal else un-equal.

Lemma
If x = y then Bob always says equal.

Chandra and Michael (UIUC) cs473 14 Fall 2019 14 / 31

String Equality: Randomized Algorithm

x, y : N-bit strings.

(Recall) If M = d2(5N) lg 5Ne, then 5N primes in {1, . . . ,M}.

Procedure
Define hp(x) = x mod p

1 Alice picks a random prime p from {1, . . .M}.
2 She sends Bob prime p, and also hp(x) = x mod p.

3 Bob checks if hp(y) = hp(x). If so, he says equal else un-equal.

Lemma
If x 6= y then, Pr[Bob says equal] ≤ 1/5 (error probability).

Chandra and Michael (UIUC) cs473 15 Fall 2019 15 / 31

String Equality: Randomized Algorithm

x, y : N-bit strings.

(Recall) If M = d2(sN) lg sNe, then sN primes in {1, . . . ,M}.

Procedure
Define hp(x) = x mod p

1 Alice picks a random prime p from {1, . . .M}.
2 She sends Bob prime p, and also hp(x) = x mod p.

3 Bob checks if hp(y) = hp(x). If so, he says equal else un-equal.

Lemma
If x 6= y then, Pr[Bob says equal] ≤ 1/s (error probability).

Chandra and Michael (UIUC) cs473 16 Fall 2019 16 / 31

Question.

Let x = 6 = 2 ∗ 3. If we draw a p u.a.r. from {2, 3, 5, 7}, then
what is the probability that x mod p = 0?

(A) 0.

(B) 1.

(C) 1/4.

(D) 1/2.

(E) none of the above.

Now, let y = 21. What is the probability that (y − x) mod p
= 15 mod p = 0?

(A) 0.

(B) 1.

(C) 1/4.

(D) 1/2.

Chandra and Michael (UIUC) cs473 17 Fall 2019 17 / 31

Question.

Let x = 6 = 2 ∗ 3. If we draw a p u.a.r. from {2, 3, 5, 7}, then
what is the probability that x mod p = 0?

(A) 0.

(B) 1.

(C) 1/4.

(D) 1/2.

(E) none of the above.

Now, let y = 21. What is the probability that (y − x) mod p
= 15 mod p = 0?

(A) 0.

(B) 1.

(C) 1/4.

(D) 1/2.
Chandra and Michael (UIUC) cs473 17 Fall 2019 17 / 31

String Equality: Randomized Algorithm
Error probability

x, y N-bit string, M = d2(sN) lg sNe, and hp(x) = x mod p

Lemma
If x 6= y then, Pr[Bob says equal] = Pr[hp(x) = hp(y)] ≤ 1/s

Proof.
Given x 6= y , hp(x) = hp(y)⇒ x mod p = y mod p.

D = |x − y |, then D mod p = 0, and D ≤ 2N .

D = p1 . . . pk prime factorization with repetitions. All
pi ≥ 2⇒ D ≥ 2k .

2k ≤ D ≤ 2N ⇒ k ≤ N . D has at most N prime divisors.

Probability that a random prime p from {1, . . . ,M} is a divisor
= k

π(M)
≤ N

π(M)
≤ N

M/ lg M = N
2(sN) lg sN lg M ≤ 1

s

Chandra and Michael (UIUC) cs473 18 Fall 2019 18 / 31

String Equality: Randomized Algorithm
Error probability

x, y N-bit string, M = d2(sN) lg sNe, and hp(x) = x mod p

Lemma
If x 6= y then, Pr[Bob says equal] = Pr[hp(x) = hp(y)] ≤ 1/s

Proof.
Given x 6= y , hp(x) = hp(y)⇒ x mod p = y mod p.

D = |x − y |, then D mod p = 0, and D ≤ 2N .

D = p1 . . . pk prime factorization with repetitions. All
pi ≥ 2⇒ D ≥ 2k .

2k ≤ D ≤ 2N ⇒ k ≤ N . D has at most N prime divisors.

Probability that a random prime p from {1, . . . ,M} is a divisor
= k

π(M)
≤ N

π(M)
≤ N

M/ lg M = N
2(sN) lg sN lg M ≤ 1

s

Chandra and Michael (UIUC) cs473 18 Fall 2019 18 / 31

String Equality: Randomized Algorithm
Error probability

x, y N-bit string, M = d2(sN) lg sNe, and hp(x) = x mod p

Lemma
If x 6= y then, Pr[Bob says equal] = Pr[hp(x) = hp(y)] ≤ 1/s

Proof.
Given x 6= y , hp(x) = hp(y)⇒ x mod p = y mod p.

D = |x − y |, then D mod p = 0, and D ≤ 2N .

D = p1 . . . pk prime factorization with repetitions.

All
pi ≥ 2⇒ D ≥ 2k .

2k ≤ D ≤ 2N ⇒ k ≤ N . D has at most N prime divisors.

Probability that a random prime p from {1, . . . ,M} is a divisor
= k

π(M)
≤ N

π(M)
≤ N

M/ lg M = N
2(sN) lg sN lg M ≤ 1

s

Chandra and Michael (UIUC) cs473 18 Fall 2019 18 / 31

String Equality: Randomized Algorithm
Error probability

x, y N-bit string, M = d2(sN) lg sNe, and hp(x) = x mod p

Lemma
If x 6= y then, Pr[Bob says equal] = Pr[hp(x) = hp(y)] ≤ 1/s

Proof.
Given x 6= y , hp(x) = hp(y)⇒ x mod p = y mod p.

D = |x − y |, then D mod p = 0, and D ≤ 2N .

D = p1 . . . pk prime factorization with repetitions. All
pi ≥ 2⇒ D ≥ 2k .

2k ≤ D ≤ 2N ⇒ k ≤ N . D has at most N prime divisors.

Probability that a random prime p from {1, . . . ,M} is a divisor
= k

π(M)
≤ N

π(M)
≤ N

M/ lg M = N
2(sN) lg sN lg M ≤ 1

s

Chandra and Michael (UIUC) cs473 18 Fall 2019 18 / 31

String Equality: Randomized Algorithm
Error probability

x, y N-bit string, M = d2(sN) lg sNe, and hp(x) = x mod p

Lemma
If x 6= y then, Pr[Bob says equal] = Pr[hp(x) = hp(y)] ≤ 1/s

Proof.
Given x 6= y , hp(x) = hp(y)⇒ x mod p = y mod p.

D = |x − y |, then D mod p = 0, and D ≤ 2N .

D = p1 . . . pk prime factorization with repetitions. All
pi ≥ 2⇒ D ≥ 2k .

2k ≤ D ≤ 2N ⇒ k ≤ N . D has at most N prime divisors.

Probability that a random prime p from {1, . . . ,M} is a divisor
= k

π(M)
≤ N

π(M)
≤ N

M/ lg M = N
2(sN) lg sN lg M ≤ 1

s

Chandra and Michael (UIUC) cs473 18 Fall 2019 18 / 31

String Equality: Randomized Algorithm
Error probability

x, y N-bit string, M = d2(sN) lg sNe, and hp(x) = x mod p

Lemma
If x 6= y then, Pr[Bob says equal] = Pr[hp(x) = hp(y)] ≤ 1/s

Proof.
Given x 6= y , hp(x) = hp(y)⇒ x mod p = y mod p.

D = |x − y |, then D mod p = 0, and D ≤ 2N .

D = p1 . . . pk prime factorization with repetitions. All
pi ≥ 2⇒ D ≥ 2k .

2k ≤ D ≤ 2N ⇒ k ≤ N . D has at most N prime divisors.

Probability that a random prime p from {1, . . . ,M} is a divisor
= k

π(M)
≤ N

π(M)

≤ N
M/ lg M = N

2(sN) lg sN lg M ≤ 1
s

Chandra and Michael (UIUC) cs473 18 Fall 2019 18 / 31

String Equality: Randomized Algorithm
Error probability

x, y N-bit string, M = d2(sN) lg sNe, and hp(x) = x mod p

Lemma
If x 6= y then, Pr[Bob says equal] = Pr[hp(x) = hp(y)] ≤ 1/s

Proof.
Given x 6= y , hp(x) = hp(y)⇒ x mod p = y mod p.

D = |x − y |, then D mod p = 0, and D ≤ 2N .

D = p1 . . . pk prime factorization with repetitions. All
pi ≥ 2⇒ D ≥ 2k .

2k ≤ D ≤ 2N ⇒ k ≤ N . D has at most N prime divisors.

Probability that a random prime p from {1, . . . ,M} is a divisor
= k

π(M)
≤ N

π(M)
≤ N

M/ lg M = N
2(sN) lg sN lg M ≤ 1

s

Chandra and Michael (UIUC) cs473 18 Fall 2019 18 / 31

Error Probability and Communication

Low Error Probability
1 Choose large enough s. Error prob: 1/s.

2 Alice repeats the process R times, and Bob says equal only if he
gets equal all R times.

Error probability: 1
sR . For s = 5,R = 10, 1

510 ≤ 0.000001.

M = d2(sN) lg sNe

Amount of Communication
Each round sends 2 integers ≤ M . # bits: 2 lg M ≤ 4(lg s + lg N).

If x and y are copies of Wikipedia, about 25 billion characters. If 8
bits per character, then N ≈ 238 bits.

Second approach will send 10(2 lg (10N lg 5N)) ≤ 1280 bits.

Chandra and Michael (UIUC) cs473 19 Fall 2019 19 / 31

Error Probability and Communication

Low Error Probability
1 Choose large enough s. Error prob: 1/s.

2 Alice repeats the process R times, and Bob says equal only if he
gets equal all R times.

Error probability: 1
sR . For s = 5,R = 10, 1

510 ≤ 0.000001.

M = d2(sN) lg sNe

Amount of Communication
Each round sends 2 integers ≤ M . # bits: 2 lg M ≤ 4(lg s + lg N).

If x and y are copies of Wikipedia, about 25 billion characters. If 8
bits per character, then N ≈ 238 bits.

Second approach will send 10(2 lg (10N lg 5N)) ≤ 1280 bits.

Chandra and Michael (UIUC) cs473 19 Fall 2019 19 / 31

Error Probability and Communication

Low Error Probability
1 Choose large enough s. Error prob: 1/s.

2 Alice repeats the process R times, and Bob says equal only if he
gets equal all R times.

Error probability: 1
sR .

For s = 5,R = 10, 1
510 ≤ 0.000001.

M = d2(sN) lg sNe

Amount of Communication
Each round sends 2 integers ≤ M . # bits: 2 lg M ≤ 4(lg s + lg N).

If x and y are copies of Wikipedia, about 25 billion characters. If 8
bits per character, then N ≈ 238 bits.

Second approach will send 10(2 lg (10N lg 5N)) ≤ 1280 bits.

Chandra and Michael (UIUC) cs473 19 Fall 2019 19 / 31

Error Probability and Communication

Low Error Probability
1 Choose large enough s. Error prob: 1/s.

2 Alice repeats the process R times, and Bob says equal only if he
gets equal all R times.

Error probability: 1
sR . For s = 5,R = 10, 1

510 ≤ 0.000001.

M = d2(sN) lg sNe

Amount of Communication
Each round sends 2 integers ≤ M . # bits: 2 lg M ≤ 4(lg s + lg N).

If x and y are copies of Wikipedia, about 25 billion characters. If 8
bits per character, then N ≈ 238 bits.

Second approach will send 10(2 lg (10N lg 5N)) ≤ 1280 bits.

Chandra and Michael (UIUC) cs473 19 Fall 2019 19 / 31

Error Probability and Communication

Low Error Probability
1 Choose large enough s. Error prob: 1/s.

2 Alice repeats the process R times, and Bob says equal only if he
gets equal all R times.

Error probability: 1
sR . For s = 5,R = 10, 1

510 ≤ 0.000001.

M = d2(sN) lg sNe

Amount of Communication
Each round sends 2 integers ≤ M . # bits: 2 lg M ≤ 4(lg s + lg N).

If x and y are copies of Wikipedia, about 25 billion characters. If 8
bits per character, then N ≈ 238 bits.

Second approach will send 10(2 lg (10N lg 5N)) ≤ 1280 bits.

Chandra and Michael (UIUC) cs473 19 Fall 2019 19 / 31

Error Probability and Communication

Low Error Probability
1 Choose large enough s. Error prob: 1/s.

2 Alice repeats the process R times, and Bob says equal only if he
gets equal all R times.

Error probability: 1
sR . For s = 5,R = 10, 1

510 ≤ 0.000001.

M = d2(sN) lg sNe

Amount of Communication
Each round sends 2 integers ≤ M . # bits: 2 lg M ≤ 4(lg s + lg N).

If x and y are copies of Wikipedia, about 25 billion characters. If 8
bits per character, then N ≈ 238 bits.

Second approach will send 10(2 lg (10N lg 5N)) ≤ 1280 bits.

Chandra and Michael (UIUC) cs473 19 Fall 2019 19 / 31

Error Probability and Communication

Low Error Probability
1 Choose large enough s. Error prob: 1/s.

2 Alice repeats the process R times, and Bob says equal only if he
gets equal all R times.

Error probability: 1
sR . For s = 5,R = 10, 1

510 ≤ 0.000001.

M = d2(sN) lg sNe

Amount of Communication
Each round sends 2 integers ≤ M . # bits: 2 lg M ≤ 4(lg s + lg N).

If x and y are copies of Wikipedia, about 25 billion characters. If 8
bits per character, then N ≈ 238 bits.

Second approach will send 10(2 lg (10N lg 5N)) ≤ 1280 bits.

Chandra and Michael (UIUC) cs473 19 Fall 2019 19 / 31

Verifying inequality

Question: Algorithm is Monte Carlo. Suppose x 6= y . Can Alice
and Bob find with high probability an index i such that xi 6= yi and
verify it? Assuming here that Alice and Bob can communicate over
multiple rounds adaptively.

Exercise: Show how Alice and Bob can do this with O(log2 N) bits
of communication. Hint: Use binary search.

Using above find a Las Vegas algorithm that communicates
O(log N) bits in expectation and O(N) bits in the worst case but is
always correct.

Chandra and Michael (UIUC) cs473 20 Fall 2019 20 / 31

Verifying inequality

Question: Algorithm is Monte Carlo. Suppose x 6= y . Can Alice
and Bob find with high probability an index i such that xi 6= yi and
verify it? Assuming here that Alice and Bob can communicate over
multiple rounds adaptively.

Exercise: Show how Alice and Bob can do this with O(log2 N) bits
of communication. Hint: Use binary search.

Using above find a Las Vegas algorithm that communicates
O(log N) bits in expectation and O(N) bits in the worst case but is
always correct.

Chandra and Michael (UIUC) cs473 20 Fall 2019 20 / 31

Verifying inequality

Question: Algorithm is Monte Carlo. Suppose x 6= y . Can Alice
and Bob find with high probability an index i such that xi 6= yi and
verify it? Assuming here that Alice and Bob can communicate over
multiple rounds adaptively.

Exercise: Show how Alice and Bob can do this with O(log2 N) bits
of communication. Hint: Use binary search.

Using above find a Las Vegas algorithm that communicates
O(log N) bits in expectation and O(N) bits in the worst case but is
always correct.

Chandra and Michael (UIUC) cs473 20 Fall 2019 20 / 31

Multiple strings

We want to check equality between several pairs of strings
(x1, y1), . . . , (xk , yk) where all strings are N-bits long.

Suppose we pick random prime p and use hash function hp to check
equality of all pairs. Will it work? What range should p be chosen
from to ensure that all of the answers are correct with probability at
least (1− δ) for some given parameter δ?

Use union bound to figure out how large s should be.

Chandra and Michael (UIUC) cs473 21 Fall 2019 21 / 31

Multiple strings

We want to check equality between several pairs of strings
(x1, y1), . . . , (xk , yk) where all strings are N-bits long.

Suppose we pick random prime p and use hash function hp to check
equality of all pairs. Will it work? What range should p be chosen
from to ensure that all of the answers are correct with probability at
least (1− δ) for some given parameter δ?

Use union bound to figure out how large s should be.

Chandra and Michael (UIUC) cs473 21 Fall 2019 21 / 31

Part III

Karp-Rabin Pattern Matching
Algorithm

Chandra and Michael (UIUC) cs473 22 Fall 2019 22 / 31

Pattern Matching

Given a string T of length m and pattern P of length n, s.t.
m � n,

find whether P is a substring of T
more generally, find all positions where P matches with T .

Example
T=abracadabra, P=ab.

Index set of all matches: S = {1, 8}.

For j ≥ i , let T [i , j] = T [i]T [i + 1] . . .T [j].

Brute force algorithm

S = ∅. For each i = 1 . . .m − n + 1

If match(T [i , i + n − 1],P) then S = S ∪ {i}.
O(mn) run-time.

Chandra and Michael (UIUC) cs473 23 Fall 2019 23 / 31

Pattern Matching

Given a string T of length m and pattern P of length n, s.t.
m � n,

find whether P is a substring of T
more generally, find all positions where P matches with T .

Example
T=abracadabra, P=ab.

Index set of all matches: S = {1, 8}.

For j ≥ i , let T [i , j] = T [i]T [i + 1] . . .T [j].

Brute force algorithm

S = ∅. For each i = 1 . . .m − n + 1

If match(T [i , i + n − 1],P) then S = S ∪ {i}.
O(mn) run-time.

Chandra and Michael (UIUC) cs473 23 Fall 2019 23 / 31

Pattern Matching

Given a string T of length m and pattern P of length n, s.t.
m � n,

find whether P is a substring of T
more generally, find all positions where P matches with T .

Example
T=abracadabra, P=ab.

Index set of all matches: S = {1, 8}.

For j ≥ i , let T [i , j] = T [i]T [i + 1] . . .T [j].

Brute force algorithm

S = ∅. For each i = 1 . . .m − n + 1

If match(T [i , i + n − 1],P) then S = S ∪ {i}.
O(mn) run-time.

Chandra and Michael (UIUC) cs473 23 Fall 2019 23 / 31

Pattern Matching

Given a string T of length m and pattern P of length n, s.t.
m � n,

find whether P is a substring of T
more generally, find all positions where P matches with T .

Example
T=abracadabra, P=ab.

Index set of all matches: S = {1, 8}.

For j ≥ i , let T [i , j] = T [i]T [i + 1] . . .T [j].

Brute force algorithm

S = ∅. For each i = 1 . . .m − n + 1

If match(T [i , i + n − 1],P) then S = S ∪ {i}.

O(mn) run-time.

Chandra and Michael (UIUC) cs473 23 Fall 2019 23 / 31

Pattern Matching

Given a string T of length m and pattern P of length n, s.t.
m � n,

find whether P is a substring of T
more generally, find all positions where P matches with T .

Example
T=abracadabra, P=ab.

Index set of all matches: S = {1, 8}.

For j ≥ i , let T [i , j] = T [i]T [i + 1] . . .T [j].

Brute force algorithm

S = ∅. For each i = 1 . . .m − n + 1

If match(T [i , i + n − 1],P) then S = S ∪ {i}.
O(mn) run-time.

Chandra and Michael (UIUC) cs473 23 Fall 2019 23 / 31

Using Fingerprinting

Pick a prime p u.a.r. from {1, . . . ,M}. hp(x) = x mod p.

Brute force algorithm using fingerprinting

S = ∅. For each i = 1 . . .m − n + 1

If hp(T [i , i + n − 1]) = hp(P) then S = S ∪ {i}.

If x is of length n, then computing hp(x) takes O(n) running time.

Overall O(mn) running time.

Do we need to recompute fingerprints from scratch for each i?

Chandra and Michael (UIUC) cs473 24 Fall 2019 24 / 31

Using Fingerprinting

Pick a prime p u.a.r. from {1, . . . ,M}. hp(x) = x mod p.

Brute force algorithm using fingerprinting

S = ∅. For each i = 1 . . .m − n + 1

If hp(T [i , i + n − 1]) = hp(P) then S = S ∪ {i}.

If x is of length n, then computing hp(x) takes O(n) running time.

Overall O(mn) running time.

Do we need to recompute fingerprints from scratch for each i?

Chandra and Michael (UIUC) cs473 24 Fall 2019 24 / 31

Using Fingerprinting

Pick a prime p u.a.r. from {1, . . . ,M}. hp(x) = x mod p.

Brute force algorithm using fingerprinting

S = ∅. For each i = 1 . . .m − n + 1

If hp(T [i , i + n − 1]) = hp(P) then S = S ∪ {i}.

If x is of length n, then computing hp(x) takes O(n) running time.

Overall O(mn) running time.

Do we need to recompute fingerprints from scratch for each i?

Chandra and Michael (UIUC) cs473 24 Fall 2019 24 / 31

mod p math

Let a and b be (non-negative) integers.

(a + b) mod p = ((a mod p) + (b mod p)) mod p

(a · b) mod p = ((a mod p) · (b mod p)) mod p

Chandra and Michael (UIUC) cs473 25 Fall 2019 25 / 31

mod p math

Let a and b be (non-negative) integers.

(a + b) mod p = ((a mod p) + (b mod p)) mod p

(a · b) mod p = ((a mod p) · (b mod p)) mod p

Chandra and Michael (UIUC) cs473 25 Fall 2019 25 / 31

Rolling Hash

x = T [i . . . i + n − 1] and x ′ = T [i + 1, i + n].
Let x = x1x2 . . . xn and x ′ = x ′1x

′
2 . . . x

′
n

Example
x = 1011001, and x ′ = 0110010 or x ′ = 0110011.

x ′ = 2(x − x12n−1) + x ′n
= 2x − x12n + x ′n

hp(x ′) = x ′ mod p
= (2(x mod p)− x1(2n mod p) + x ′n) mod p
= (2hp(x)− x1hp(2n) + x ′n) mod p

Chandra and Michael (UIUC) cs473 26 Fall 2019 26 / 31

Rolling Hash

x = T [i . . . i + n − 1] and x ′ = T [i + 1, i + n].
Let x = x1x2 . . . xn and x ′ = x ′1x

′
2 . . . x

′
n

Example
x = 1011001, and x ′ = 0110010 or x ′ = 0110011.

x ′ = 2(x − x12n−1) + x ′n

= 2x − x12n + x ′n

hp(x ′) = x ′ mod p
= (2(x mod p)− x1(2n mod p) + x ′n) mod p
= (2hp(x)− x1hp(2n) + x ′n) mod p

Chandra and Michael (UIUC) cs473 26 Fall 2019 26 / 31

Rolling Hash

x = T [i . . . i + n − 1] and x ′ = T [i + 1, i + n].
Let x = x1x2 . . . xn and x ′ = x ′1x

′
2 . . . x

′
n

Example
x = 1011001, and x ′ = 0110010 or x ′ = 0110011.

x ′ = 2(x − x12n−1) + x ′n
= 2x − x12n + x ′n

hp(x ′) = x ′ mod p
= (2(x mod p)− x1(2n mod p) + x ′n) mod p
= (2hp(x)− x1hp(2n) + x ′n) mod p

Chandra and Michael (UIUC) cs473 26 Fall 2019 26 / 31

Rolling Hash

x = T [i . . . i + n − 1] and x ′ = T [i + 1, i + n].
Let x = x1x2 . . . xn and x ′ = x ′1x

′
2 . . . x

′
n

Example
x = 1011001, and x ′ = 0110010 or x ′ = 0110011.

x ′ = 2(x − x12n−1) + x ′n
= 2x − x12n + x ′n

hp(x ′) = x ′ mod p
= (2(x mod p)− x1(2n mod p) + x ′n) mod p
= (2hp(x)− x1hp(2n) + x ′n) mod p

Chandra and Michael (UIUC) cs473 26 Fall 2019 26 / 31

Karp-Rabin Algorithm

p : a random prime from {1, . . . ,M}.
1 Set S = ∅. Compute hp(T [1, n]), hp(2n), and hp(P).
2 For each i = 1, . . . ,m − n + 1

1 If hp(T [i , i + n − 1]) = hp(P), then S = S ∪ {i}.
2 Compute hp(T [i + 1, i + n]) using hp(T [i , i + n − 1]) and

hp(2n) by applying rolling hash.

Running Time

In Step 1, computing hp(x) for an n bit x is in O(n) time.

Assuming O(lg M) bit arithmetic can be done in O(1) time,

Since hp(.) produces lg M bit numbers, both steps inside for
loop can be done in O(1) time.

Overall O(m + n) time. Can’t do better.

Chandra and Michael (UIUC) cs473 27 Fall 2019 27 / 31

Karp-Rabin Algorithm

p : a random prime from {1, . . . ,M}.
1 Set S = ∅. Compute hp(T [1, n]), hp(2n), and hp(P).
2 For each i = 1, . . . ,m − n + 1

1 If hp(T [i , i + n − 1]) = hp(P), then S = S ∪ {i}.
2 Compute hp(T [i + 1, i + n]) using hp(T [i , i + n − 1]) and

hp(2n) by applying rolling hash.

Running Time

In Step 1, computing hp(x) for an n bit x is in O(n) time.

Assuming O(lg M) bit arithmetic can be done in O(1) time,

Since hp(.) produces lg M bit numbers, both steps inside for
loop can be done in O(1) time.

Overall O(m + n) time. Can’t do better.

Chandra and Michael (UIUC) cs473 27 Fall 2019 27 / 31

Karp-Rabin Algorithm

p : a random prime from {1, . . . ,M}.
1 Set S = ∅. Compute hp(T [1, n]), hp(2n), and hp(P).
2 For each i = 1, . . . ,m − n + 1

1 If hp(T [i , i + n − 1]) = hp(P), then S = S ∪ {i}.
2 Compute hp(T [i + 1, i + n]) using hp(T [i , i + n − 1]) and

hp(2n) by applying rolling hash.

Running Time

In Step 1, computing hp(x) for an n bit x is in O(n) time.

Assuming O(lg M) bit arithmetic can be done in O(1) time,

Since hp(.) produces lg M bit numbers, both steps inside for
loop can be done in O(1) time.

Overall O(m + n) time. Can’t do better.

Chandra and Michael (UIUC) cs473 27 Fall 2019 27 / 31

Karp-Rabin Algorithm

p : a random prime from {1, . . . ,M}.
1 Set S = ∅. Compute hp(T [1, n]), hp(2n), and hp(P).
2 For each i = 1, . . . ,m − n + 1

1 If hp(T [i , i + n − 1]) = hp(P), then S = S ∪ {i}.
2 Compute hp(T [i + 1, i + n]) using hp(T [i , i + n − 1]) and

hp(2n) by applying rolling hash.

Running Time

In Step 1, computing hp(x) for an n bit x is in O(n) time.

Assuming O(lg M) bit arithmetic can be done in O(1) time,

Since hp(.) produces lg M bit numbers, both steps inside for
loop can be done in O(1) time.

Overall O(m + n) time.

Can’t do better.

Chandra and Michael (UIUC) cs473 27 Fall 2019 27 / 31

Karp-Rabin Algorithm

p : a random prime from {1, . . . ,M}.
1 Set S = ∅. Compute hp(T [1, n]), hp(2n), and hp(P).
2 For each i = 1, . . . ,m − n + 1

1 If hp(T [i , i + n − 1]) = hp(P), then S = S ∪ {i}.
2 Compute hp(T [i + 1, i + n]) using hp(T [i , i + n − 1]) and

hp(2n) by applying rolling hash.

Running Time

In Step 1, computing hp(x) for an n bit x is in O(n) time.

Assuming O(lg M) bit arithmetic can be done in O(1) time,

Since hp(.) produces lg M bit numbers, both steps inside for
loop can be done in O(1) time.

Overall O(m + n) time. Can’t do better.

Chandra and Michael (UIUC) cs473 27 Fall 2019 27 / 31

Karp-Rabin Algorithm: Error Analysis

1 For each i = 1, . . . ,m − n + 1
1 If hp(T [i , i + n − 1]) = hp(P), then S = S ∪ {i}.
2 Compute hp(T [i + 1, i + n]) using hp(T [i , i + n − 1]) and

hp(2n).

Lemma
If match at any position i then i ∈ S . In otherwords if
T [i , i + n − 1] = P, then i ∈ S .

All matched positions are in S .

Can it contain unmatched positions? YES! With what probability?

Chandra and Michael (UIUC) cs473 28 Fall 2019 28 / 31

Karp-Rabin Algorithm: Error Analysis

1 For each i = 1, . . . ,m − n + 1
1 If hp(T [i , i + n − 1]) = hp(P), then S = S ∪ {i}.
2 Compute hp(T [i + 1, i + n]) using hp(T [i , i + n − 1]) and

hp(2n).

Lemma
If match at any position i then i ∈ S . In otherwords if
T [i , i + n − 1] = P, then i ∈ S .

All matched positions are in S .

Can it contain unmatched positions?

YES! With what probability?

Chandra and Michael (UIUC) cs473 28 Fall 2019 28 / 31

Karp-Rabin Algorithm: Error Analysis

1 For each i = 1, . . . ,m − n + 1
1 If hp(T [i , i + n − 1]) = hp(P), then S = S ∪ {i}.
2 Compute hp(T [i + 1, i + n]) using hp(T [i , i + n − 1]) and

hp(2n).

Lemma
If match at any position i then i ∈ S . In otherwords if
T [i , i + n − 1] = P, then i ∈ S .

All matched positions are in S .

Can it contain unmatched positions? YES!

With what probability?

Chandra and Michael (UIUC) cs473 28 Fall 2019 28 / 31

Karp-Rabin Algorithm: Error Analysis

1 For each i = 1, . . . ,m − n + 1
1 If hp(T [i , i + n − 1]) = hp(P), then S = S ∪ {i}.
2 Compute hp(T [i + 1, i + n]) using hp(T [i , i + n − 1]) and

hp(2n).

Lemma
If match at any position i then i ∈ S . In otherwords if
T [i , i + n − 1] = P, then i ∈ S .

All matched positions are in S .

Can it contain unmatched positions? YES! With what probability?

Chandra and Michael (UIUC) cs473 28 Fall 2019 28 / 31

Karp-Rabin Algorithm: Error Analysis
Pr[S contains an index i, while there is no match at i]

Set M = d2(sn) lg sne. Given x 6= y , Pr[hp(x) = hp(y)] ≤ 1/s.

False positive: Pr[S contains an i, while no match at i]

If T [i , i + n − 1] 6= P, Pr[i ∈ S] ≤ 1/s.

Pr[S contains an incorrect index] ≤ m/s (Union bound).

To ensure S is correct with at least 0.99 probability, we need

1−
m
s
≥ 0.99⇒

m
s
≤

1

100
⇒ s ≥ 100m

.

Chandra and Michael (UIUC) cs473 29 Fall 2019 29 / 31

Karp-Rabin Algorithm: Error Analysis
Pr[S contains an index i, while there is no match at i]

Set M = d2(sn) lg sne. Given x 6= y , Pr[hp(x) = hp(y)] ≤ 1/s.

False positive: Pr[S contains an i, while no match at i]

If T [i , i + n − 1] 6= P, Pr[i ∈ S] ≤ 1/s.

Pr[S contains an incorrect index] ≤ m/s (Union bound).

To ensure S is correct with at least 0.99 probability, we need

1−
m
s
≥ 0.99⇒

m
s
≤

1

100
⇒ s ≥ 100m

.

Chandra and Michael (UIUC) cs473 29 Fall 2019 29 / 31

Karp-Rabin Algorithm: Error Analysis
Pr[S contains an index i, while there is no match at i]

Set M = d2(sn) lg sne. Given x 6= y , Pr[hp(x) = hp(y)] ≤ 1/s.

False positive: Pr[S contains an i, while no match at i]

If T [i , i + n − 1] 6= P, Pr[i ∈ S] ≤ 1/s.

Pr[S contains an incorrect index] ≤ m/s (Union bound).

To ensure S is correct with at least 0.99 probability, we need

1−
m
s
≥ 0.99⇒

m
s
≤

1

100
⇒ s ≥ 100m

.

Chandra and Michael (UIUC) cs473 29 Fall 2019 29 / 31

Karp-Rabin Algorithm: Error Analysis
Pr[S contains an index i, while there is no match at i]

Set M = d2(sn) lg sne. Given x 6= y , Pr[hp(x) = hp(y)] ≤ 1/s.

False positive: Pr[S contains an i, while no match at i]

If T [i , i + n − 1] 6= P, Pr[i ∈ S] ≤ 1/s.

Pr[S contains an incorrect index]

≤ m/s (Union bound).

To ensure S is correct with at least 0.99 probability, we need

1−
m
s
≥ 0.99⇒

m
s
≤

1

100
⇒ s ≥ 100m

.

Chandra and Michael (UIUC) cs473 29 Fall 2019 29 / 31

Karp-Rabin Algorithm: Error Analysis
Pr[S contains an index i, while there is no match at i]

Set M = d2(sn) lg sne. Given x 6= y , Pr[hp(x) = hp(y)] ≤ 1/s.

False positive: Pr[S contains an i, while no match at i]

If T [i , i + n − 1] 6= P, Pr[i ∈ S] ≤ 1/s.

Pr[S contains an incorrect index] ≤ m/s (Union bound).

To ensure S is correct with at least 0.99 probability, we need

1−
m
s
≥ 0.99⇒

m
s
≤

1

100
⇒ s ≥ 100m

.

Chandra and Michael (UIUC) cs473 29 Fall 2019 29 / 31

Karp-Rabin Algorithm: Error Analysis
Pr[S contains an index i, while there is no match at i]

Set M = d2(sn) lg sne. Given x 6= y , Pr[hp(x) = hp(y)] ≤ 1/s.

False positive: Pr[S contains an i, while no match at i]

If T [i , i + n − 1] 6= P, Pr[i ∈ S] ≤ 1/s.

Pr[S contains an incorrect index] ≤ m/s (Union bound).

To ensure S is correct with at least 0.99 probability, we need

1−
m
s
≥ 0.99⇒

m
s
≤

1

100
⇒ s ≥ 100m

.

Chandra and Michael (UIUC) cs473 29 Fall 2019 29 / 31

Karp-Rabin Algorithm
Back to running time

Running Time

In Step 1, computing hp(x) for an n bit x is in O(n) time.

Assuming O(lg M) bit arithmetic can be done in O(1) time,

Since hp(.) produces lg M bit numbers, both steps inside for
loop can be done in O(1) time.

Overall O(m + n) time. Can’t do better.

M = d200mn lg 100mne ⇒ lg M = O(lg m)

Even if T is entire Wikipedia, with bit length m ≈ 238,

lg M ≈ 64 (assuming bit-length of n ≤ 216)

64-bit arithmetic is doable on laptops!

Chandra and Michael (UIUC) cs473 30 Fall 2019 30 / 31

Karp-Rabin Algorithm
Back to running time

Running Time

In Step 1, computing hp(x) for an n bit x is in O(n) time.

Assuming O(lg M) bit arithmetic can be done in O(1) time,

Since hp(.) produces lg M bit numbers, both steps inside for
loop can be done in O(1) time.

Overall O(m + n) time. Can’t do better.

M = d200mn lg 100mne ⇒ lg M = O(lg m)

Even if T is entire Wikipedia, with bit length m ≈ 238,

lg M ≈ 64 (assuming bit-length of n ≤ 216)

64-bit arithmetic is doable on laptops!

Chandra and Michael (UIUC) cs473 30 Fall 2019 30 / 31

Karp-Rabin Algorithm
Back to running time

Running Time

In Step 1, computing hp(x) for an n bit x is in O(n) time.

Assuming O(lg M) bit arithmetic can be done in O(1) time,

Since hp(.) produces lg M bit numbers, both steps inside for
loop can be done in O(1) time.

Overall O(m + n) time. Can’t do better.

M = d200mn lg 100mne ⇒ lg M = O(lg m)

Even if T is entire Wikipedia, with bit length m ≈ 238,

lg M ≈ 64 (assuming bit-length of n ≤ 216)

64-bit arithmetic is doable on laptops!

Chandra and Michael (UIUC) cs473 30 Fall 2019 30 / 31

Karp-Rabin Algorithm
Back to running time

Running Time

In Step 1, computing hp(x) for an n bit x is in O(n) time.

Assuming O(lg M) bit arithmetic can be done in O(1) time,

Since hp(.) produces lg M bit numbers, both steps inside for
loop can be done in O(1) time.

Overall O(m + n) time. Can’t do better.

M = d200mn lg 100mne ⇒ lg M = O(lg m)

Even if T is entire Wikipedia, with bit length m ≈ 238,

lg M ≈ 64 (assuming bit-length of n ≤ 216)

64-bit arithmetic is doable on laptops!

Chandra and Michael (UIUC) cs473 30 Fall 2019 30 / 31

Deterministic Pattern Matching

O(n + m) (linear time) deterministic algorithms are known

Boyer-Moore algorithm

Knuth-Morris-Pratt (KMP) algorithm

Why randomization?

generalizes to settings (two-dimensional settings) where standard
algorithms do not

generalizes to multiple string pattern matchings easily

Chandra and Michael (UIUC) cs473 31 Fall 2019 31 / 31

	Sampling a Prime
	String Equality
	Karp-Rabin Pattern Matching Algorithm

