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Part I

Reductions Continued
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Polynomial Time Reduction
Karp reduction

A polynomial time reduction from a decision problem X to a
decision problem Y is an algorithm A that has the following
properties:

1 given an instance IX of X , A produces an instance IY of Y
2 A runs in time polynomial in |IX |. This implies that |IY | (size of

IY ) is polynomial in |IX |
3 Answer to IX YES iff answer to IY is YES.

Notation: X ≤P Y if X reduces to Y

Proposition
If X ≤P Y then a polynomial time algorithm for Y implies a
polynomial time algorithm for X .

Such a reduction is called a Karp reduction. Most reductions we
will need are Karp reductions.
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A More General Reduction
Turing Reduction

Definition (Turing reduction.)

Problem X polynomial time reduces to Y if there is an algorithm A
for X that has the following properties:

1 on any given instance IX of X , A uses polynomial in |IX |
“steps”

2 a step is either a standard computation step, or

3 a sub-routine call to an algorithm that solves Y .

This is a Turing reduction.

Note: In making sub-routine call to algorithm to solve Y , A can only
ask questions of size polynomial in |IX |. Why?
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Comparing reductions

1 Karp reduction:

Reduction
IX

Solver for Y

yes

no
Solver forX

IY

2 Turing reduction:

Algorithm
IX

Solver for Y

yes

no

Turing reduction

1 Algorithm to solve X can
call solver for Y many
times.

2 Conceptually, every call
to the solver of Y takes
constant time.
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Relation between reductions

Consider two problems X and Y . Which of the following statements
is correct?

(A) If there is a Turing reduction from X to Y , then there is a
Karp reduction from X to Y .

(B) If there is a Karp reduction from X to Y , then there is a
Turing reduction from X to Y .

(C) If there is a Karp reduction from X to Y , then there is a
Karp reduction from Y to X .

(D) If there is a Turing reduction from X to Y , then there is a
Turing reduction from Y to X .

(E) All of the above.
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Example of Turing Reduction

Problem (Independent set in circular arcs graph.)

Input: Collection of arcs on a circle.
Goal: Compute the maximum number of non-overlapping arcs.

Reduced to the following problem:?

Problem (Independent set of intervals.)

Input: Collection of intervals on the line.
Goal: Compute the maximum number of non-overlapping intervals.

How? Used algorithm for interval problem multiple times.
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Turing vs Karp Reductions

1 Turing reductions more general than Karp reductions.

2 Turing reduction useful in obtaining algorithms via reductions.

3 Karp reduction is simpler and easier to use to prove hardness of
problems.

4 Perhaps surprisingly, Karp reductions, although limited, suffice
for most known NP-Completeness proofs.

5 Karp reductions allow us to distinguish between NP and co-NP
(more on this later).
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Propositional Formulas

Definition
Consider a set of boolean variables x1, x2, . . . xn.

1 A literal is either a boolean variable xi or its negation ¬xi .

2 A clause is a disjunction of literals.
For example, x1 ∨ x2 ∨ ¬x4 is a clause.

3 A formula in conjunctive normal form (CNF) is
propositional formula which is a conjunction of clauses

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is a CNF formula.

4 A formula ϕ is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x1) is a 3CNF formula, but
(x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is not.
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Satisfiability

Problem: SAT

Instance: A CNF formula ϕ.
Question: Is there a truth assignment to the variable of
ϕ such that ϕ evaluates to true?

Problem: 3SAT

Instance: A 3CNF formula ϕ.
Question: Is there a truth assignment to the variable of
ϕ such that ϕ evaluates to true?
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Satisfiability

SAT
Given a CNF formula ϕ, is there a truth assignment to variables
such that ϕ evaluates to true?

Example
1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is satisfiable; take

x1, x2, . . . x5 to be all true

2 (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (x1 ∨ x2) is not
satisfiable.

3SAT
Given a 3CNF formula ϕ, is there a truth assignment to variables
such that ϕ evaluates to true?

(More on 2SAT in a bit...)
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Importance of SAT and 3SAT

1 SAT and 3SAT are basic constraint satisfaction problems.

2 Many different problems can reduced to them because of the
simple yet powerful expressively of logical constraints.

3 Arise naturally in many applications involving hardware and
software verification and correctness.

4 As we will see, it is a fundamental problem in theory of
NP-Completeness.
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3SAT ≤P SAT

1 3SAT ≤P SAT.

2 Because...
A 3SAT instance is also an instance of SAT.
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SAT ≤P 3SAT

Claim
SAT ≤P 3SAT.

Given ϕ a SAT formula we create a 3SAT formula ϕ′ such that

1 ϕ is satisfiable iff ϕ′ is satisfiable.

2 ϕ′ can be constructed from ϕ in time polynomial in |ϕ|.

Idea: if a clause of ϕ is not of length 3, replace it with several
clauses of length exactly 3.
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SAT ≤P 3SAT

How SAT is different from 3SAT?
In SAT clauses might have arbitrary length: 1, 2, 3, . . . variables:(

x ∨ y ∨ z ∨ w ∨ u
)
∧
(
¬x ∨ ¬y ∨ ¬z ∨ w ∨ u

)
∧
(
¬x
)

In 3SAT every clause must have exactly 3 different literals.

To reduce from an instance of SAT to an instance of 3SAT, we
must make all clauses to have exactly 3 variables...

Basic idea
1 Pad short clauses so they have 3 literals.

2 Break long clauses into shorter clauses.

3 Repeat the above till we have a 3CNF.
Note: Need to add new variables.
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What about 2SAT?

2SAT can be solved in polynomial time! (specifically, linear time!)

No known polynomial time reduction from SAT (or 3SAT) to
2SAT. If there was, then SAT and 3SAT would be solvable in
polynomial time.

Why the reduction from 3SAT to 2SAT fails?

Consider a clause (x ∨ y ∨ z). We need to reduce it to a collection
of 2CNF clauses. Introduce a face variable α, and rewrite this as

(x ∨ y ∨ α) ∧ (¬α ∨ z) (bad! clause with 3 vars)

or (x ∨ α) ∧ (¬α ∨ y ∨ z) (bad! clause with 3 vars).

(In animal farm language: 2SAT good, 3SAT bad.)
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What about 2SAT?

A challenging exercise: Given a 2SAT formula show to compute its
satisfying assignment...

Look in books etc.
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Independent Set

Problem: Independent Set

Instance: A graph G, integer k .
Question: Is there an independent set in G of size k?
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3SAT ≤P Independent Set

The reduction 3SAT ≤P Independent Set
Input: Given a 3CNF formula ϕ
Goal: Construct a graph Gϕ and number k such that Gϕ has an
independent set of size k if and only if ϕ is satisfiable.

Gϕ should be constructable in time polynomial in size of ϕ

Importance of reduction: Although 3SAT is much more expressive, it
can be reduced to a seemingly specialized Independent Set problem.
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Interpreting 3SAT

There are two ways to think about 3SAT

1 Find a way to assign 0/1 (false/true) to the variables such that
the formula evaluates to true, that is each clause evaluates to
true.

2 Pick a literal from each clause and find a truth assignment to
make all of them true

. You will fail if two of the literals you pick
are in conflict, i.e., you pick xi and ¬xi

We will take the second view of 3SAT to construct the reduction.
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The Reduction

1 Gϕ will have one vertex for each literal in a clause

2 Connect the 3 literals in a clause to form a triangle; the
independent set will pick at most one vertex from each clause,
which will correspond to the literal to be set to true

3 Connect 2 vertices if they label complementary literals; this
ensures that the literals corresponding to the independent set do
not have a conflict

4 Take k to be the number of clauses

¬x1 ¬x2 ¬x1

x1 x3x3x2 x2 x4

Figure: Graph for
ϕ = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x4)
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Correctness

Proposition

ϕ is satisfiable iff Gϕ has an independent set of size k (= number of
clauses in ϕ).

Proof.
⇒ Let a be the truth assignment satisfying ϕ

1 Pick one of the vertices, corresponding to true literals under a,
from each triangle. This is an independent set of the
appropriate size
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Correctness (contd)

Proposition

ϕ is satisfiable iff Gϕ has an independent set of size k (= number of
clauses in ϕ).

Proof.
⇐ Let S be an independent set of size k

1 S must contain exactly one vertex from each clause
2 S cannot contain vertices labeled by conflicting clauses
3 Thus, it is possible to obtain a truth assignment that makes in

the literals in S true; such an assignment satisfies one literal in
every clause
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Transitivity of Reductions

Lemma
X ≤P Y and Y ≤P Z implies that X ≤P Z .

Note: X ≤P Y does not imply that Y ≤P X and hence it is very
important to know the FROM and TO in a reduction.

To prove X ≤P Y you need to show a reduction FROM X TO Y
In other words show that an algorithm for Y implies an algorithm for
X .

Chandra and Michael (UIUC) cs473 24 Fall 2019 24 / 65



Part II

Definition of NP
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Recap . . .

Problems
1 Independent Set

2 Vertex Cover

3 Set Cover

4 SAT

5 3SAT
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Problems and Algorithms: Formal Approach

Decision Problems
1 Problem Instance: Binary string s, with size |s|
2 Problem: A set X of strings on which the answer should be

“yes”; we call these YES instances of X . Strings not in X are
NO instances of X .

Definition
1 A is an algorithm for problem X if A(s) = ”yes” iff s ∈ X .

2 A is said to have a polynomial running time if there is a
polynomial p(·) such that for every string s, A(s) terminates in
at most O(p(|s|)) steps.

Chandra and Michael (UIUC) cs473 27 Fall 2019 27 / 65



Polynomial Time

Definition
Polynomial time (denoted by P) is the class of all (decision)
problems that have an algorithm that solves it in polynomial time.
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Polynomial Time

Definition
Polynomial time (denoted by P) is the class of all (decision)
problems that have an algorithm that solves it in polynomial time.

Example
Problems in P include

1 Is there a shortest path from s to t of length ≤ k in G?

2 Is there a flow of value ≥ k in network G?

3 Is there an assignment to variables to satisfy given linear
constraints?
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Efficiency Hypothesis

A problem X has an efficient algorithm iff X ∈ P, that is X has a
polynomial time algorithm.
Justifications:

1 Robustness of definition to variations in machines.

2 A sound theoretical definition.

3 Most known polynomial time algorithms for “natural” problems
have small polynomial running times.
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Problems with no known polynomial time

algorithms

Problems
1 Independent Set

2 Vertex Cover

3 Set Cover

4 SAT

5 3SAT

There are of course undecidable problems (no algorithm at all!) but
many problems that we want to solve are of similar flavor to the
above.

Question: What is common to above problems?
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Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance IX of X there is a proof/certificate/solution
that is of length poly(|IX |) such that given a proof one can efficiently
check that IX is indeed a YES instance.

Examples:

1 SAT formula ϕ: proof is a satisfying assignment.

2 Independent Set in graph G and k : a subset S of vertices.
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Certifiers

Definition
An algorithm C(·, ·) is a certifier for problem X if for every s ∈ X
there is some string t such that C(s, t) = ”yes”, and conversely, if
for some s and t, C(s, t) = ”yes” then s ∈ X .
The string t is called a certificate or proof for s.
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Definition (Efficient Certifier.)

A certifier C is an efficient certifier for problem X if there is a
polynomial p(·) such that for every string s, we have that
? s ∈ X if and only if
? there is a string t:

1 |t| ≤ p(|s|),
2 C(s, t) = ”yes”,
3 and C runs in polynomial time.
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Example: Independent Set

1 Problem: Does G = (V ,E) have an independent set of size
≥ k?

1 Certificate: Set S ⊆ V .
2 Certifier: Check |S| ≥ k and no pair of vertices in S is

connected by an edge.
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Example: Vertex Cover

1 Problem: Does G have a vertex cover of size ≤ k?
1 Certificate: S ⊆ V .
2 Certifier: Check |S| ≤ k and that for every edge at least one

endpoint is in S .
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Example: SAT

1 Problem: Does formula ϕ have a satisfying truth assignment?
1 Certificate: Assignment a of 0/1 values to each variable.
2 Certifier: Check each clause under a and say “yes” if all clauses

are true.
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Example: Composites

Problem: Composite

Instance: A number s.
Question: Is the number s a composite?

1 Problem: Composite.
1 Certificate: A factor t ≤ s such that t 6= 1 and t 6= s.
2 Certifier: Check that t divides s.
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Not composite?

Problem: Not Composite

Instance: A number s.
Question: Is the number s not a composite?

The problem Not Composite is

(A) Can be solved in linear time.

(B) in P.

(C) Can be solved in exponential time.

(D) Does not have a certificate or an efficient certifier.

(E) The status of this problem is still open.
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Post Correspondence Problem

Given: Dominoes, each with a top-word and a bottom-word.

b

bbb

ba

bbb

abb

a

abb

baa

a

ab

Can one arrange them, using any number of copies of each type, so
that the top and bottom strings are equal?

abb

a

ba

bbb

abb

a

a

ab

abb

baa

b

bbb
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Example: A String Problem

Problem: PCP

Instance: Two sets of binary strings α1, . . . , αn and
β1, . . . , βn
Question: Are there indices i1, i2, . . . , ik such that
αi1αi2 . . . αik = βi1βi2 . . . βik

1 Problem: PCP
1 Certificate: A sequence of indices i1, i2, . . . , ik
2 Certifier: Check that αi1αi2 . . . αik = βi1βi2 . . . βik

PCP = Posts Correspondence Problem and it is undecidable!
Implies no finite bound on length of certificate!
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Nondeterministic Polynomial Time

Definition
Nondeterministic Polynomial Time (denoted by NP) is the class of
all problems that have efficient certifiers.
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Nondeterministic Polynomial Time

Definition
Nondeterministic Polynomial Time (denoted by NP) is the class of
all problems that have efficient certifiers.

Example
Independent Set, Vertex Cover, Set Cover, SAT, 3SAT, and
Composite are all examples of problems in NP.
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Why is it called...
Nondeterministic Polynomial Time

A certifier is an algorithm C(I , c) with two inputs:

1 I : instance.

2 c : proof/certificate that the instance is indeed a YES instance
of the given problem.

One can think about C as an algorithm for the original problem, if:

1 Given I , the algorithm guesses (non-deterministically, and who
knows how) a certificate c .

2 The algorithm now verifies the certificate c for the instance I .

NP can be equivalently described using Turing machines.
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Asymmetry in Definition of NP

Note that only YES instances have a short proof/certificate. NO
instances need not have a short certificate.

Example
SAT formula ϕ. No easy way to prove that ϕ is NOT satisfiable!

More on this and co-NP later on.
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P versus NP

Proposition
P ⊆ NP.

For a problem in P no need for a certificate!

Proof.
Consider problem X ∈ P with algorithm A. Need to demonstrate
that X has an efficient certifier:

1 Certifier C on input s, t, runs A(s) and returns the answer.

2 C runs in polynomial time.

3 If s ∈ X , then for every t, C(s, t) = ”yes”.

4 If s 6∈ X , then for every t, C(s, t) = ”no”.
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Exponential Time

Definition
Exponential Time (denoted EXP) is the collection of all problems
that have an algorithm which on input s runs in exponential time,
i.e., O(2poly(|s|)).

Example: O(2n), O(2n log n), O(2n3
), ...
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NP versus EXP

Proposition
NP ⊆ EXP.

Proof.
Let X ∈ NP with certifier C . Need to design an exponential time
algorithm for X .

1 For every t, with |t| ≤ p(|s|) run C(s, t); answer “yes” if any
one of these calls returns “yes”.

2 The above algorithm correctly solves X (exercise).

3 Algorithm runs in O(q(|s|+ |p(s)|)2p(|s|)), where q is the
running time of C .
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Examples

1 SAT: try all possible truth assignment to variables.

2 Independent Set: try all possible subsets of vertices.

3 Vertex Cover: try all possible subsets of vertices.
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Is NP efficiently solvable?

We know P ⊆ NP ⊆ EXP.

Chandra and Michael (UIUC) cs473 47 Fall 2019 47 / 65



Is NP efficiently solvable?

We know P ⊆ NP ⊆ EXP.

Big Question

Is there are problem in NP that does not belong to P? Is P = NP?
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If P = NP . . .
Or: If pigs could fly then life would be sweet.

1 Many important optimization problems can be solved efficiently.

2 The RSA cryptosystem can be broken.

3 No security on the web.

4 No e-commerce . . .

5 Creativity can be automated! Proofs for mathematical statement
can be found by computers automatically (if short ones exist).
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If P = NP this implies that...

(A) Vertex Cover can be solved in polynomial time.

(B) P = EXP.

(C) EXP ⊆ P.

(D) All of the above.
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P versus NP

Status
Relationship between P and NP remains one of the most important
open problems in mathematics/computer science.

Consensus: Most people feel/believe P 6= NP.

Resolving P versus NP is a Clay Millennium Prize Problem. You can
win a million dollars in addition to a Turing award and major fame!
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Linear Programming in NP

Is LP in NP? Recall LP in (one) standard form is max cx,Ax ≤ b.

Given c,A, b where c ∈ Zn,A ∈ Zm×n, b ∈ Zm and integer K , is
optimum value ≥ K? Input has n + mn + m + 1 numbers.

What is the certificate?

What is the certifier?

Certificate: A solution y ∈ Rn consisting of n numbers?
Certifier: Check that Ay ≤ b and that cy ≥ K

Caveat: What is the representation size of y? Are we even
guaranteed rational numbers? How many bits do we need to
represent y and is it polynomial in the input size?
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Linear Programming in NP

Given c,A, b where c ∈ Zn,A ∈ Zm×n, b ∈ Zm and integer K , is
optimum value ≥ B?

Assume for simplicity that Ax ≤ b defines a bounded polytope

there is an optimum solution x∗ which is a vertex

x∗ is defined as the unique solution to A′x = b′ where A′ is a
full-rank sub-matrix of A and b′ is the corresponding sub-vector
of b
thus x∗ = (A′)−1b′ = 1

det(A′)
(adjoint(A′))Tb′

Main question: How many bits does det(A) have as a function of
numbers in A?
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Linear Programming in NP

Main question: How many bits does det(A) have as a function of
numbers in A?

One definition of determinant of a n × n matrix A is:

det(A) =
∑
σ∈Sn

sign(σ)
n∏

i=1

Aiσ(i)

Here Sn is the set of all n! permutations of {1, 2, . . . , n} and
sign(σ) ∈ {−1, 1} is the signature of σ depending on whether σ
can be obtained by odd or even number of transpositions.

Therefore |det(A)| ≤ n!× (maxij |Aij |)n and hence

log |det(A)| ≤ n log n + n log(max
ij
|Aij |)
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Integer Linear Programming in NP

Is ILP in NP? Recall ILP in (one) standard form is
max cx,Ax ≤ b, x ∈ Zn.

Given c,A, b where c ∈ Zn,A ∈ Zm×n, b ∈ Zm and integer K , is
optimum value ≥ K? Input has n + mn + m + 1 numbers.
Certificate: A solution y ∈ Rn consisting of n numbers?
Certifier: Check that Ay ≤ b and that cy ≥ K

Caveat: What is the representation size of y? How many bits do we
need to represent y and is it polynomial in the input size? Note that
unlike LP y is not necessarily a vertex of the polytope defined by
Ax ≤ b. Can be in the interior.

Need some advanced tools to prove that there always exists a y with
representation size polynomial in input size.
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Part III

NP-Completeness and Cook-Levin
Theorem
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“Hardest” Problems

Question
What is the hardest problem in NP? How do we define it?

Towards a definition
1 Hardest problem must be in NP.

2 Hardest problem must be at least as “difficult” as every other
problem in NP.
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NP-Complete Problems

Definition
A problem X is said to be NP-Complete if

1 X ∈ NP, and

2 (Hardness) For any Y ∈ NP, Y ≤P X.
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Solving NP-Complete Problems

Proposition
Suppose X is NP-Complete. Then X can be solved in polynomial
time if and only if P = NP.

Proof.
⇒ Suppose X can be solved in polynomial time

1 Let Y ∈ NP. We know Y ≤P X.
2 We showed that if Y ≤P X and X can be solved in polynomial

time, then Y can be solved in polynomial time.
3 Thus, every problem Y ∈ NP is such that Y ∈ P; NP ⊆ P.
4 Since P ⊆ NP, we have P = NP.

⇐ Since P = NP, and X ∈ NP, we have a polynomial time
algorithm for X .
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NP-Hard Problems

Definition
A problem X is said to be NP-Hard if

1 (Hardness) For any Y ∈ NP, we have that Y ≤P X.

An NP-Hard problem need not be in NP!

Example: Halting problem is NP-Hard (why?) but not
NP-Complete.
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Consequences of proving NP-Completeness

If X is NP-Complete

1 Since we believe P 6= NP,

2 and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find
an efficient algorithm for X .
(This is proof by mob opinion — take with a grain of salt.)
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NP-Complete Problems

Question
Are there any problems that are NP-Complete?

Answer
Yes! Many, many problems are NP-Complete.
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Cook-Levin Theorem

Theorem
SAT is NP-Complete.

Using reductions one can prove that many other problems are
NP-Complete
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Proving that a problem X is NP-Complete

To prove X is NP-Complete, show
1 Show X is in NP.

1 certificate/proof of polynomial size in input
2 polynomial time certifier C(s, t)

2 Reduction from a known NP-Complete problem such as CSAT
or SAT to X

SAT ≤P X implies that every NP problem Y ≤P X . Why?
Transitivity of reductions:

Y ≤P SAT and SAT ≤P X and hence Y ≤P X .
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Integer Linear Programming is NP Complete

ILP in (one) standard form is max cx,Ax ≤ b, x ∈ Zn.

Non-trivial statement: ILP is in NP.

Special case of ILP: Boolean ILP where we require x ∈ {0, 1}n.

Can easily reduce 3SAT to Boolean ILP. Also many other standard
problems such as Independent Set etc.
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NP-Completeness via Reductions

1 SAT is NP-Complete.
2 SAT ≤P 3-SAT and hence 3-SAT is NP-Complete.
3 3-SAT ≤P Independent Set (which is in NP) and hence

Independent Set is NP-Complete.
4 Clique is NP-Complete
5 Vertex Cover is NP-Complete
6 Set Cover is NP-Complete
7 Hamilton Cycle is NP-Complete
8 3-Color is NP-Complete
9 Integer Linear Programming is NP-Complete

Hundreds and thousands of different problems from many areas of
science and engineering have been shown to be NP-Complete.

A surprisingly frequent phenomenon!
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