CS 473: Algorithms, Fall 2019

SAT, NP, NP-Completeness

Lecture 23 Nov 19, 2019

Part I

Reductions Continued

Polynomial Time Reduction

Karp reduction

A **polynomial time reduction** from a *decision* problem X to a *decision* problem Y is an *algorithm* A that has the following properties:

- lacktriangle given an instance I_X of X, A produces an instance I_Y of Y
- 2 \mathcal{A} runs in time polynomial in $|I_X|$. This implies that $|I_Y|$ (size of I_Y) is polynomial in $|I_X|$
- **3** Answer to I_X YES iff answer to I_Y is YES.

Notation: $X \leq_P Y$ if X reduces to Y

Proposition

If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Such a reduction is called a **Karp reduction**. Most reductions we will need are Karp reductions.

A More General Reduction

Turing Reduction

Definition (Turing reduction.)

Problem X polynomial time reduces to Y if there is an algorithm A for X that has the following properties:

- lacktriangledown on any given instance I_X of X, $\mathcal A$ uses polynomial in $|I_X|$ "steps"
- 2 a step is either a standard computation step, or
- a sub-routine call to an algorithm that solves Y.

This is a **Turing reduction**.

A More General Reduction

Turing Reduction

Definition (Turing reduction.)

Problem X polynomial time reduces to Y if there is an algorithm A for X that has the following properties:

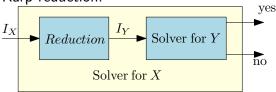
- on any given instance I_X of X, A uses polynomial in $|I_X|$ "steps"
- 2 a step is either a standard computation step, or
- a sub-routine call to an algorithm that solves Y.

This is a **Turing reduction**.

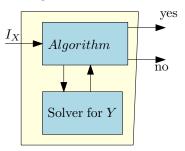
Note: In making sub-routine call to algorithm to solve Y, A can only ask questions of size polynomial in $|I_X|$. Why?

Comparing reductions

• Karp reduction:



Turing reduction:



Turing reduction

- Algorithm to solve X can call solver for Y many times.
- Conceptually, every call to the solver of Y takes constant time.

Relation between reductions

Consider two problems **X** and **Y**. Which of the following statements is correct?

- (A) If there is a Turing reduction from X to Y, then there is a Karp reduction from X to Y.
- (B) If there is a Karp reduction from X to Y, then there is a Turing reduction from X to Y.
- (C) If there is a Karp reduction from X to Y, then there is a Karp reduction from Y to X.
- (D) If there is a Turing reduction from X to Y, then there is a Turing reduction from Y to X.
- (E) All of the above.

Example of Turing Reduction

Problem (Independent set in circular arcs graph.)

Input: Collection of arcs on a circle.

Goal: Compute the maximum number of non-overlapping arcs.

Reduced to the following problem:?

Problem (Independent set of intervals.)

Input: Collection of intervals on the line.

Goal: Compute the maximum number of non-overlapping intervals.

How? Used algorithm for interval problem multiple times.

Turing vs Karp Reductions

- Turing reductions more general than Karp reductions.
- Turing reduction useful in obtaining algorithms via reductions.
- Karp reduction is simpler and easier to use to prove hardness of problems.
- Perhaps surprisingly, Karp reductions, although limited, suffice for most known NP-Completeness proofs.
- Sarp reductions allow us to distinguish between NP and co-NP (more on this later).

8

Propositional Formulas

Definition

Consider a set of boolean variables $x_1, x_2, \ldots x_n$.

- **1** A **literal** is either a boolean variable x_i or its negation $\neg x_i$.
- ② A clause is a disjunction of literals. For example, $x_1 \lor x_2 \lor \neg x_4$ is a clause.
- A formula in conjunctive normal form (CNF) is propositional formula which is a conjunction of clauses

Propositional Formulas

Definition

Consider a set of boolean variables $x_1, x_2, \ldots x_n$.

- **1** A **literal** is either a boolean variable x_i or its negation $\neg x_i$.
- ② A clause is a disjunction of literals. For example, $x_1 \lor x_2 \lor \neg x_4$ is a clause.
- A formula in conjunctive normal form (CNF) is propositional formula which is a conjunction of clauses
- **4** A formula φ is a 3CNF:
 - A CNF formula such that every clause has **exactly** 3 literals.
 - ① $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3 \lor x_1)$ is a 3CNF formula, but $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is not.

Satisfiability

Problem: SAT

Instance: A CNF formula φ .

Question: Is there a truth assignment to the variable of

 φ such that φ evaluates to true?

Problem: 3SAT

Instance: A 3CNF formula φ .

Question: Is there a truth assignment to the variable of

 φ such that φ evaluates to true?

Satisfiability

SAT

Given a CNF formula φ , is there a truth assignment to variables such that φ evaluates to true?

Example

- $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is satisfiable; take $x_1, x_2, \dots x_5$ to be all true
- ② $(x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2) \wedge (\neg x_1 \vee \neg x_2) \wedge (x_1 \vee x_2)$ is not satisfiable.

3SAT

Given a 3 CNF formula φ , is there a truth assignment to variables such that φ evaluates to true?

(More on **2SAT** in a bit...)

Importance of **SAT** and **3SAT**

- SAT and 3SAT are basic constraint satisfaction problems.
- Many different problems can reduced to them because of the simple yet powerful expressively of logical constraints.
- Arise naturally in many applications involving hardware and software verification and correctness.
- As we will see, it is a fundamental problem in theory of NP-Completeness.

- **3** 3SAT \leq_P SAT.
- Because...
 A 3SAT instance is also an instance of SAT.

Claim

 $SAT \leq_P 3SAT$.

Claim

 $SAT <_P 3SAT$.

Given φ a SAT formula we create a 3SAT formula φ' such that

- $oldsymbol{9} \ \varphi$ is satisfiable iff φ' is satisfiable.

Claim

 $SAT \leq_P 3SAT$.

Given φ a SAT formula we create a 3SAT formula φ' such that

- lacktriangledown is satisfiable iff $m{\varphi}'$ is satisfiable.
- ② φ' can be constructed from φ in time polynomial in $|\varphi|$.

Idea: if a clause of φ is not of length 3, replace it with several clauses of length exactly 3.

How **SAT** is different from **3SAT**?

In SAT clauses might have arbitrary length: $1, 2, 3, \ldots$ variables:

$$(x \lor y \lor z \lor w \lor u) \land (\neg x \lor \neg y \lor \neg z \lor w \lor u) \land (\neg x)$$

In **3SAT** every clause must have **exactly 3** different literals.

To reduce from an instance of **SAT** to an instance of **3SAT**, we must make all clauses to have exactly **3** variables...

Basic idea

- Pad short clauses so they have 3 literals.
- ② Break long clauses into shorter clauses.
- Repeat the above till we have a 3CNF. Note: Need to add new variables.

What about **2SAT**?

2SAT can be solved in polynomial time! (specifically, linear time!)

No known polynomial time reduction from **SAT** (or **3SAT**) to **2SAT**. If there was, then **SAT** and **3SAT** would be solvable in polynomial time.

Why the reduction from **3SAT** to **2SAT** fails?

Consider a clause $(x \lor y \lor z)$. We need to reduce it to a collection of **2**CNF clauses. Introduce a face variable α , and rewrite this as

$$(x \lor y \lor \alpha) \land (\neg \alpha \lor z)$$
 (bad! clause with 3 vars) or $(x \lor \alpha) \land (\neg \alpha \lor y \lor z)$ (bad! clause with 3 vars).

(In animal farm language: **2SAT** good, **3SAT** bad.)

What about **2SAT**?

A challenging exercise: Given a **2SAT** formula show to compute its satisfying assignment...

Look in books etc.

Independent Set

Problem: Independent Set

Instance: A graph G, integer **k**.

Question: Is there an independent set in G of size k?

$3SAT \leq_P Independent Set$

The reduction 3SAT \leq_P Independent Set

Input: Given a 3CNF formula φ

Goal: Construct a graph $extbf{\emph{G}}_{arphi}$ and number $extbf{\emph{\emph{k}}}$ such that $extbf{\emph{\emph{G}}}_{arphi}$ has an

independent set of size k if and only if φ is satisfiable.

$3SAT \leq_P Independent Set$

The reduction **3SAT** \leq_{P} **Independent Set**

Input: Given a 3 CNF formula φ

Goal: Construct a graph G_{φ} and number k such that G_{φ} has an

independent set of size k if and only if φ is satisfiable.

 G_{φ} should be constructable in time polynomial in size of φ

$3SAT \leq_P Independent Set$

The reduction **3SAT** \leq_{P} **Independent Set**

Input: Given a 3CNF formula φ

Goal: Construct a graph G_{φ} and number k such that G_{φ} has an independent set of size k if and only if φ is satisfiable.

 $G_{\!arphi}$ should be constructable in time polynomial in size of arphi

Importance of reduction: Although **3SAT** is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.

There are two ways to think about **3SAT**

There are two ways to think about **3SAT**

ullet Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.

There are two ways to think about **3SAT**

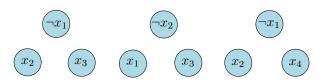
- Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- Pick a literal from each clause and find a truth assignment to make all of them true

There are two ways to think about **3SAT**

- ullet Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- ② Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in conflict, i.e., you pick x_i and $\neg x_i$

We will take the second view of **3SAT** to construct the reduction.

1 G_{ω} will have one vertex for each literal in a clause



- **1** G_{φ} will have one vertex for each literal in a clause
- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true

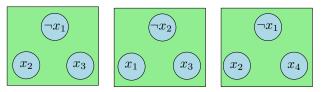
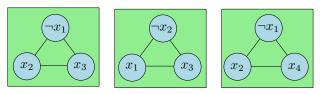
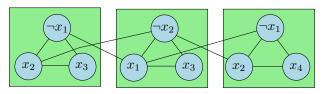


Figure: Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

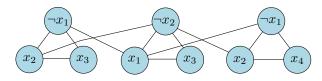
- **1** G_{ω} will have one vertex for each literal in a clause
- Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true



- **1** G_{φ} will have one vertex for each literal in a clause
- Onnect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Onnect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict



- **1** G_{φ} will have one vertex for each literal in a clause
- Onnect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Onnect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- Take k to be the number of clauses



Correctness

Proposition

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

 \Rightarrow Let a be the truth assignment satisfying arphi

Correctness

Proposition

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

- \Rightarrow Let a be the truth assignment satisfying arphi
 - Pick one of the vertices, corresponding to true literals under **a**, from each triangle. This is an independent set of the appropriate size

Correctness (contd)

Proposition

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

- \leftarrow Let **S** be an independent set of size **k**
 - S must contain exactly one vertex from each clause
 - S cannot contain vertices labeled by conflicting clauses
 - Thus, it is possible to obtain a truth assignment that makes in the literals in S true; such an assignment satisfies one literal in every clause

Transitivity of Reductions

Lemma

 $X \leq_P Y$ and $Y \leq_P Z$ implies that $X \leq_P Z$.

Note: $X \leq_P Y$ does not imply that $Y \leq_P X$ and hence it is very important to know the FROM and TO in a reduction.

To prove $X \leq_P Y$ you need to show a reduction FROM X TO Y In other words show that an algorithm for Y implies an algorithm for X.

Part II

Definition of NP

Recap ...

Problems

- Independent Set
- Vertex Cover
- Set Cover
- SAT
- **3SAT**

Recap ...

Problems

- Independent Set
- Vertex Cover
- Set Cover
- SAT
- **3SAT**

Relationship

3SAT \leq_P Independent Set

Recap ...

Problems

- Independent Set
- Vertex Cover
- Set Cover
- SAT
- **3SAT**

Relationship

3SAT \leq_P Independent Set $\overset{\leq_P}{\geq_P}$ Vertex Cover

Recap . . .

Problems

- Independent Set
- Vertex Cover
- Set Cover
- SAT
- **3** 3SAT

Relationship

3SAT \leq_P Independent Set $\overset{\leq_P}{\geq_P}$ Vertex Cover \leq_P Set Cover

Recap . . .

Problems

- Independent Set
- Vertex Cover
- Set Cover
- SAT
- **3** 3SAT

Relationship

3SAT \leq_P Independent Set $\overset{\leq_P}{\geq_P}$ Vertex Cover \leq_P Set Cover 3SAT $<_P$ SAT $<_P$ 3SAT

Problems and Algorithms: Formal Approach

Decision Problems

- **1** Problem Instance: Binary string s, with size |s|
- Problem: A set X of strings on which the answer should be "yes"; we call these YES instances of X. Strings not in X are NO instances of X.

Definition

- **1** A is an algorithm for problem X if A(s) = "yes" iff $s \in X$.
- 2 A is said to have a polynomial running time if there is a polynomial $p(\cdot)$ such that for every string s, A(s) terminates in at most O(p(|s|)) steps.

Polynomial Time

Definition

Polynomial time (denoted by **P**) is the class of all (decision) problems that have an algorithm that solves it in polynomial time.

Polynomial Time

Definition

Polynomial time (denoted by **P**) is the class of all (decision) problems that have an algorithm that solves it in polynomial time.

Example

Problems in P include

- Is there a shortest path from s to t of length $\leq k$ in G?
- ② Is there a flow of value $\geq k$ in network G?
- Is there an assignment to variables to satisfy given linear constraints?

Efficiency Hypothesis

A problem X has an efficient algorithm iff $X \in P$, that is X has a polynomial time algorithm.

Justifications:

- Robustness of definition to variations in machines.
- 2 A sound theoretical definition.
- Most known polynomial time algorithms for "natural" problems have small polynomial running times.

Problems with no known polynomial time algorithms

Problems

- Independent Set
- Vertex Cover
- Set Cover
- SAT
- **3SAT**

There are of course undecidable problems (no algorithm at all!) but many problems that we want to solve are of similar flavor to the above.

Question: What is common to above problems?

Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance I_X of X there is a proof/certificate/solution that is of length poly($|I_X|$) such that given a proof one can efficiently check that I_X is indeed a YES instance.

Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance I_X of X there is a proof/certificate/solution that is of length poly($|I_X|$) such that given a proof one can efficiently check that I_X is indeed a YES instance.

Examples:

- **SAT** formula φ : proof is a satisfying assignment.
- 2 Independent Set in graph G and k: a subset S of vertices.

Certifiers

Definition

An algorithm $C(\cdot, \cdot)$ is a **certifier** for problem X if for every $s \in X$ there is some string t such that C(s, t) = "yes", and conversely, if for some s and t, C(s, t) = "yes" then $s \in X$. The string t is called a **certificate** or **proof** for s.

Certifiers

Definition

An algorithm $C(\cdot, \cdot)$ is a **certifier** for problem X if for every $s \in X$ there is some string t such that C(s, t) = "yes", and conversely, if for some s and t, C(s, t) = "yes" then $s \in X$. The string t is called a **certificate** or proof for s.

Definition (Efficient Certifier.)

A certifier C is an **efficient certifier** for problem X if there is a polynomial $p(\cdot)$ such that for every string s, we have that

- $\star s \in X$ if and only if
- ★ there is a string *t*:

 - **2** C(s, t) = "yes",
 - 3 and C runs in polynomial time.

Example: Independent Set

- Problem: Does G = (V, E) have an independent set of size $\geq k$?
 - Certificate: Set $S \subset V$.
 - **Q** Certifier: Check $|S| \ge k$ and no pair of vertices in S is connected by an edge.

Example: Vertex Cover

- **1** Problem: Does G have a vertex cover of size $\leq k$?
 - Certificate: $S \subset V$.
 - **Q** Certifier: Check $|S| \leq k$ and that for every edge at least one endpoint is in S.

Example: **SAT**

- **1** Problem: Does formula φ have a satisfying truth assignment?
 - Certificate: Assignment a of 0/1 values to each variable.
 - Certifier: Check each clause under a and say "yes" if all clauses are true.

Example: Composites

Problem: Composite

Instance: A number *s*.

Question: Is the number **s** a composite?

Problem: Composite.

• Certificate: A factor $t \leq s$ such that $t \neq 1$ and $t \neq s$.

Certifier: Check that t divides s.

Not composite?

Problem: Not Composite

Instance: A number s.

Question: Is the number s not a composite?

The problem **Not Composite** is

- (A) Can be solved in linear time.
- (B) in P.
- (C) Can be solved in exponential time.
- (D) Does not have a certificate or an efficient certifier.
- (E) The status of this problem is still open.

Post Correspondence Problem

Given: Dominoes, each with a top-word and a bottom-word.



Can one arrange them, using any number of copies of each type, so that the top and bottom strings are equal?

abb	ba	abb	а	abb	b
а	bbb	а	ab	baa	bbb

Example: A String Problem

Problem: PCP

Instance: Two sets of binary strings $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n **Question:** Are there indices i_1, i_2, \ldots, i_k such that $\alpha_i, \alpha_i, \ldots, \alpha_{i_k} = \beta_i, \beta_i, \ldots, \beta_{i_k}$

- Problem: PCP
 - Certificate: A sequence of indices i_1, i_2, \ldots, i_k
 - **Q** Certifier: Check that $\alpha_{i_1}\alpha_{i_2}\ldots\alpha_{i_k}=\beta_{i_1}\beta_{i_2}\ldots\beta_{i_k}$

Example: A String Problem

Problem: PCP

```
Instance: Two sets of binary strings \alpha_1, \ldots, \alpha_n and \beta_1, \ldots, \beta_n Question: Are there indices i_1, i_2, \ldots, i_k such that \alpha_{i_1}\alpha_{i_2}\ldots\alpha_{i_k}=\beta_{i_1}\beta_{i_2}\ldots\beta_{i_k}
```

- Problem: PCP
 - Certificate: A sequence of indices i_1, i_2, \ldots, i_k
 - ② Certifier: Check that $\alpha_{i_1}\alpha_{i_2}\ldots\alpha_{i_k}=\beta_{i_1}\beta_{i_2}\ldots\beta_{i_k}$

PCP = Posts Correspondence Problem and it is undecidable! Implies no finite bound on length of certificate!

Nondeterministic Polynomial Time

Definition

Nondeterministic Polynomial Time (denoted by NP) is the class of all problems that have efficient certifiers.

Nondeterministic Polynomial Time

Definition

Nondeterministic Polynomial Time (denoted by NP) is the class of all problems that have efficient certifiers.

Example

Independent Set, Vertex Cover, Set Cover, SAT, 3SAT, and Composite are all examples of problems in NP.

Why is it called...

Nondeterministic Polynomial Time

A certifier is an algorithm C(I, c) with two inputs:

- 1: instance.
- c: proof/certificate that the instance is indeed a YES instance of the given problem.

One can think about C as an algorithm for the original problem, if:

- Given I, the algorithm guesses (non-deterministically, and who knows how) a certificate c.
- $oldsymbol{\circ}$ The algorithm now verifies the certificate $oldsymbol{c}$ for the instance $oldsymbol{I}$.
- NP can be equivalently described using Turing machines.

Asymmetry in Definition of NP

Note that only YES instances have a short proof/certificate. NO instances need not have a short certificate.

Example

SAT formula φ . No easy way to prove that φ is NOT satisfiable!

More on this and co-NP later on.

P versus NP

Proposition

 $P \subseteq NP$.

43

P versus NP

Proposition

 $P \subseteq NP$.

For a problem in P no need for a certificate!

Proof.

Consider problem $X \in P$ with algorithm A. Need to demonstrate that X has an efficient certifier:

- Certifier C on input s, t, runs A(s) and returns the answer.
- C runs in polynomial time.
- \bullet If $s \in X$, then for every t, C(s,t) = "yes".
- If $s \not\in X$, then for every t, C(s, t) = "no".

Exponential Time

Definition

Exponential Time (denoted **EXP**) is the collection of all problems that have an algorithm which on input s runs in exponential time, i.e., $O(2^{\text{poly}(|s|)})$.

Exponential Time

Definition

Exponential Time (denoted **EXP**) is the collection of all problems that have an algorithm which on input s runs in exponential time, i.e., $O(2^{\text{poly}(|s|)})$.

Example: $O(2^n)$, $O(2^{n \log n})$, $O(2^{n^3})$, ...

NP versus EXP

Proposition

 $NP \subset EXP$.

Proof.

Let $X \in \mathbb{NP}$ with certifier C. Need to design an exponential time algorithm for X.

- For every t, with $|t| \le p(|s|)$ run C(s, t); answer "yes" if any one of these calls returns "yes".
- $oldsymbol{\circ}$ The above algorithm correctly solves $oldsymbol{X}$ (exercise).
- 3 Algorithm runs in $O(q(|s| + |p(s)|)2^{p(|s|)})$, where q is the running time of C.

Examples

- SAT: try all possible truth assignment to variables.
- Independent Set: try all possible subsets of vertices.
- Vertex Cover: try all possible subsets of vertices.

Is NP efficiently solvable?

We know $P \subseteq NP \subseteq EXP$.

Is NP efficiently solvable?

We know $P \subseteq NP \subseteq EXP$.

Big Question

Is there are problem in NP that does not belong to P? Is P = NP?

If $P = \overline{NP \dots}$

Or: If pigs could fly then life would be sweet.

Many important optimization problems can be solved efficiently.

- Many important optimization problems can be solved efficiently.
- The RSA cryptosystem can be broken.

- Many important optimization problems can be solved efficiently.
- The RSA cryptosystem can be broken.
- No security on the web.

- Many important optimization problems can be solved efficiently.
- 2 The RSA cryptosystem can be broken.
- No security on the web.
- No e-commerce . . .

- Many important optimization problems can be solved efficiently.
- The RSA cryptosystem can be broken.
- No security on the web.
- No e-commerce . . .
- Creativity can be automated! Proofs for mathematical statement can be found by computers automatically (if short ones exist).

If $\overline{P} = \overline{NP}$ this implies that...

- (A) Vertex Cover can be solved in polynomial time.
- (B) P = EXP.
- (C) EXP \subseteq P.
- (D) All of the above.

P versus NP

Status

Relationship between **P** and **NP** remains one of the most important open problems in mathematics/computer science.

Consensus: Most people feel/believe $P \neq NP$.

Resolving **P** versus **NP** is a Clay Millennium Prize Problem. You can win a million dollars in addition to a Turing award and major fame!

Is LP in *NP*? Recall LP in (one) standard form is $\max cx$, $Ax \leq b$.

Given c, A, b where $c \in \mathbb{Z}^n, A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^m$ and integer K, is optimum value $\geq K$? Input has n + mn + m + 1 numbers.

- What is the certificate?
- What is the certifier?

Is LP in *NP*? Recall LP in (one) standard form is $\max cx$, $Ax \leq b$.

Given c, A, b where $c \in \mathbb{Z}^n, A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^m$ and integer K, is optimum value $\geq K$? Input has n + mn + m + 1 numbers.

- What is the certificate?
- What is the certifier?

Certificate: A solution $y \in \mathbb{R}^n$ consisting of n numbers?

Certifier: Check that $Ay \leq b$ and that $cy \geq K$

Is LP in *NP*? Recall LP in (one) standard form is $\max cx$, $Ax \leq b$.

Given c, A, b where $c \in \mathbb{Z}^n, A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^m$ and integer K, is optimum value $\geq K$? Input has n + mn + m + 1 numbers.

- What is the certificate?
- What is the certifier?

Certificate: A solution $y \in \mathbb{R}^n$ consisting of n numbers?

Certifier: Check that $Ay \leq b$ and that $cy \geq K$

Caveat: What is the representation size of y? Are we even guaranteed rational numbers? How many bits do we need to represent y and is it polynomial in the input size?

Given c, A, b where $c \in \mathbb{Z}^n, A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^m$ and integer K, is optimum value $\geq B$?

Assume for simplicity that $Ax \leq b$ defines a bounded polytope

- there is an optimum solution x^* which is a vertex
- x^* is defined as the unique solution to A'x = b' where A' is a full-rank sub-matrix of A and b' is the corresponding sub-vector of b
- thus $x^* = (A')^{-1}b' = \frac{1}{\det(A')}(\operatorname{adjoint}(A'))^Tb'$

Given c, A, b where $c \in \mathbb{Z}^n, A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^m$ and integer K, is optimum value $\geq B$?

Assume for simplicity that $Ax \leq b$ defines a bounded polytope

- there is an optimum solution x^* which is a vertex
- x^* is defined as the unique solution to A'x = b' where A' is a full-rank sub-matrix of A and b' is the corresponding sub-vector of b
- thus $x^* = (A')^{-1}b' = \frac{1}{\det(A')}(\operatorname{adjoint}(A'))^Tb'$

Main question: How many bits does det(A) have as a function of numbers in A?

Main question: How many bits does det(A) have as a function of numbers in A?

One definition of determinant of a $n \times n$ matrix A is:

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) \prod_{i=1}^n A_{i\sigma(i)}$$

Here S_n is the set of all n! permutations of $\{1, 2, \ldots, n\}$ and $sign(\sigma) \in \{-1, 1\}$ is the signature of σ depending on whether σ can be obtained by odd or even number of transpositions.

Therefore
$$|\det(A)| \le n! \times (\max_{ij} |A_{ij}|)^n$$
 and hence $\log |\det(A)| \le n \log n + n \log(\max_{ij} |A_{ij}|)$

Integer Linear Programming in NP

Is ILP in *NP*? Recall ILP in (one) standard form is $\max cx$, $Ax \leq b$, $x \in \mathbb{Z}^n$.

Given c, A, b where $c \in \mathbb{Z}^n, A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^m$ and integer K, is optimum value $\geq K$? Input has n + mn + m + 1 numbers.

Certificate: A solution $y \in \mathbb{R}^n$ consisting of n numbers?

Certifier: Check that $Ay \leq b$ and that $cy \geq K$

Integer Linear Programming in NP

Is ILP in *NP*? Recall ILP in (one) standard form is $\max cx$, $Ax \leq b$, $x \in \mathbb{Z}^n$.

Given c, A, b where $c \in \mathbb{Z}^n, A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Z}^m$ and integer K, is optimum value $\geq K$? Input has n + mn + m + 1 numbers.

Certificate: A solution $y \in \mathbb{R}^n$ consisting of n numbers?

Certifier: Check that $Ay \leq b$ and that $cy \geq K$

Caveat: What is the representation size of y? How many bits do we need to represent y and is it polynomial in the input size? Note that unlike LP y is not necessarily a vertex of the polytope defined by $Ax \leq b$. Can be in the interior.

Need some advanced tools to prove that there always exists a y with representation size polynomial in input size.

Part III

NP-Completeness and Cook-Levin Theorem

"Hardest" Problems

Question

What is the hardest problem in NP? How do we define it?

Towards a definition

- Hardest problem must be in NP.
- We Hardest problem must be at least as "difficult" as every other problem in NP.

NP-Complete Problems

Definition

A problem X is said to be NP-Complete if

- **2** (Hardness) For any $Y \in NP$, $Y \leq_P X$.

Solving NP-Complete Problems

Proposition

Suppose X is NP-Complete. Then X can be solved in polynomial time if and only if P = NP.

Proof.

- \Rightarrow Suppose X can be solved in polynomial time
 - Let $Y \in NP$. We know $Y \leq_P X$.
 - We showed that if $Y \leq_P X$ and X can be solved in polynomial time, then Y can be solved in polynomial time.
 - **3** Thus, every problem $Y \in NP$ is such that $Y \in P$; $NP \subseteq P$.
 - **3** Since $P \subset NP$, we have P = NP.
- \Leftarrow Since P = NP, and $X \in NP$, we have a polynomial time algorithm for X.

NP-Hard Problems

Definition

A problem **X** is said to be **NP-Hard** if

1 (Hardness) For any $Y \in NP$, we have that $Y \leq_P X$.

An NP-Hard problem need not be in NP!

Example: Halting problem is NP-Hard (why?) but not NP-Complete.

If X is NP-Complete

- **1** Since we believe $P \neq NP$,
- 2 and solving X implies P = NP.
- **X** is unlikely to be efficiently solvable.

If X is NP-Complete

- Since we believe $P \neq NP$,
- 2 and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

If X is NP-Complete

- Since we believe $P \neq NP$,
- 2 and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

If X is NP-Complete

- Since we believe $P \neq NP$,
- 2 and solving X implies P = NP.

X is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X.

(This is proof by mob opinion — take with a grain of salt.)

NP-Complete Problems

Question

Are there any problems that are NP-Complete?

Answer

Yes! Many, many problems are NP-Complete.

61

Cook-Levin Theorem

Theorem

SAT *is* NP-Complete.

62

Cook-Levin Theorem

Theorem

SAT *is* NP-Complete.

Using reductions one can prove that many other problems are **NP-Complete**

Proving that a problem X is NP-Complete

To prove **X** is **NP-Complete**, show

- Show X is in NP.
 - certificate/proof of polynomial size in input
 - 2 polynomial time certifier C(s, t)
- Reduction from a known NP-Complete problem such as CSAT or SAT to X

63

Proving that a problem X is NP-Complete

To prove **X** is **NP-Complete**, show

- Show X is in NP.
 - certificate/proof of polynomial size in input
 - 2 polynomial time certifier C(s, t)
- Reduction from a known NP-Complete problem such as CSAT or SAT to X

SAT $\leq_P X$ implies that every **NP** problem $Y \leq_P X$. Why?

Proving that a problem X is NP-Complete

To prove **X** is **NP-Complete**, show

- Show X is in NP.
 - certificate/proof of polynomial size in input
 - 2 polynomial time certifier C(s, t)
- Reduction from a known NP-Complete problem such as CSAT or SAT to X

SAT $\leq_P X$ implies that every **NP** problem $Y \leq_P X$. Why? Transitivity of reductions:

 $Y \leq_P SAT$ and $SAT \leq_P X$ and hence $Y \leq_P X$.

Integer Linear Programming is NP Complete

ILP in (one) standard form is $\max cx$, $Ax \leq b$, $x \in \mathbb{Z}^n$.

Non-trivial statement: ILP is in NP.

Special case of ILP: Boolean ILP where we require $x \in \{0,1\}^n$.

Integer Linear Programming is NP Complete

ILP in (one) standard form is $\max cx$, $Ax \leq b$, $x \in \mathbb{Z}^n$.

Non-trivial statement: ILP is in NP.

Special case of ILP: Boolean ILP where we require $x \in \{0,1\}^n$.

Can easily reduce **3SAT** to Boolean ILP. Also many other standard problems such as **Independent Set** etc.

NP-Completeness via Reductions

- SAT is NP-Complete.
- **SAT** \leq_P **3-SAT** and hence 3-SAT is NP-Complete.
- 3-SAT ≤_P Independent Set (which is in NP) and hence Independent Set is NP-Complete.
- Clique is NP-Complete
- **5 Vertex Cover is NP-Complete**
- Set Cover is NP-Complete
- Mamilton Cycle is NP-Complete
- **3-Color** is NP-Complete
- Integer Linear Programming is NP-Complete

NP-Completeness via Reductions

- SAT is NP-Complete.
- **SAT** \leq_P **3-SAT** and hence 3-SAT is NP-Complete.
- 3-SAT ≤_P Independent Set (which is in NP) and hence Independent Set is NP-Complete.
- Clique is NP-Complete
- **5 Vertex Cover is NP-Complete**
- Set Cover is NP-Complete
- Mamilton Cycle is NP-Complete
- **3-Color** is NP-Complete
- Integer Linear Programming is NP-Complete

Hundreds and thousands of different problems from many areas of science and engineering have been shown to be **NP-Complete**.

A surprisingly frequent phenomenon!