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Coping with Intractability

Question: Many useful /important problems are NP-Hard or worse.
How does one cope with them?
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Coping with Intractability

Question: Many useful /important problems are NP-Hard or worse.
How does one cope with them?

Some general things that people do.
© Consider special cases of the problem which may be tractable.
@ Run inefficient algorithms (for example exponential time
algorithms for NP-Hard problems) augmented with (very)
clever heuristics
@ stop algorithm when time/resources run out
@ use massive computational power
© Exploit properties of instances that arise in practice which may
be much easier. Give up on hard instances, which may be
reasonable.
@ Settle for sub-optimal (aka approximate) solutions, especially for
optimization problems
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NP and EXP

EXP: all problems that have an exponential time algorithm.

Proposition
NP C EXP.

Let X € NP with certifier C. To prove X € EXP, here is an
algorithm for X. Given input s,

@ For every t, with |t| < p(|s|) run C(s, t); answer “yes” if any
one of these calls returns “yes”, otherwise say “no”. O]

Every problem in NP has a brute-force “try all possibilities”
algorithm that runs in exponential time.
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@ SAT: try all possible truth assignment to variables.
@ Independent set: try all possible subsets of vertices.
© Vertex cover: try all possible subsets of vertices.
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Improving brute-force via intelligent backtracking

© Backtrack search: enumeration with bells and whistles to
“heuristically” cut down search space.

@ Works quite well in practice for several problems, especially for
small enough problem sizes.
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Backtrack Search Algorithm for SAT

Input: CNF Formula ¢ on n variables xq, ..., X, and m clauses
Output: Is ¢ satisfiable or not.

@ Pick a variable x;

@ ¢’ is CNF formula obtained by setting x; = 0 and simplifying

@ Run a simple (heuristic) check on ¢’: returns “yes”, “no” or
“not sure”

@ If “not sure” recursively solve ¢’
@ If ¢’ is satisfiable, return “yes”
Q@ " is CNF formula obtained by setting x; = 1
© Run simple check on ¢”: returns “yes”, “no” or “not sure”
@ If “not sure” recursively solve ¢’
@ If " is satisfiable, return “yes”
@ Return “no”

Certain part of the search space is pruned.
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Example
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Figure: Backtrack search. Formula is not satisfiable.

Figure taken from Dasgupta etal book.

Chandra and Michael (UIUC) cs473 8 Fall 2019 8 /34



Backtrack Search Algorithm for SAT

How do we pick the order of variables?
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Backtrack Search Algorithm for SAT

How do we pick the order of variables? Heuristically! Examples:
@ pick variable that occurs in most clauses first
@ pick variable that appears in most size 2 clauses first
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Backtrack Search Algorithm for SAT

How do we pick the order of variables? Heuristically! Examples:
@ pick variable that occurs in most clauses first

@ pick variable that appears in most size 2 clauses first

What are quick tests for Satisfiability?
Depends on known special cases and heuristics. Examples.

@ Obvious test: return “no” if empty clause, “yes” if no clauses
left and otherwise “not sure”

@ Run obvious test and in addition if all clauses are of size 2 then
run 2-SAT polynomial time algorithm
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Branch-and-Bound

Backtracking for optimization problems

Intelligent backtracking can be used also for optimization problems.
Consider a minimization problem.
Notation: for instance I, opt(/) is optimum value on /.

Py initial instance of given problem.
© Keep track of the best solution value B found so far. Initialize
B to be crude upper bound on opt(/).
@ Let P be a subproblem at some stage of exploration.
© If P is a complete solution, update B.
@ Else use a lower bounding heuristic to quickly/efficiently find a
lower bound b on opt(P).
@ If b > B then prune P
@ Else explore P further by breaking it into subproblems and
recurse on them.
© Output best solution found.
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Example: Vertex Cover

Given G = (V, E), find a minimum sized vertex cover in G.
@ Initialize B = n — 1.
Pick a vertex u. Branch on u: either choose u or discard it.
Let by be a lower bound on G; = G — u.
If 1 + by < B, recursively explore Gy

Let b, be a lower bound on G, = G — u — N(u) where N(u)
is the set of neighbors of u.

If IN(u)| + b2 < B, recursively explore G
Output B.

©06 0000
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Example: Vertex Cover

Given G = (V, E), find a minimum sized vertex cover in G.
@ Initialize B = n — 1.
Pick a vertex u. Branch on u: either choose u or discard it.
Let by be a lower bound on G; = G — u.
If 1 + by < B, recursively explore Gy

Let b, be a lower bound on G, = G — u — N(u) where N(u)
is the set of neighbors of u.

If IN(u)| + b2 < B, recursively explore G
Output B.

©06 0000

How do we compute a lower bound?
One possibility: solve an LP relaxation.
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Local Search

Local Search: a simple and broadly applicable heuristic method

@ Start with some arbitrary solution s

Let N(s) be solutions in the "neighborhood” of s obtained from
s via "local” moves/changes

o

@ If there is a solution s’ € N(s) that is better than s, move to
s’ and continue search with s’

o

Else, stop search and output s.
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Local Search

Main ingredients in local search:
@ Initial solution.
@ Definition of neighborhood of a solution.
© Efficient algorithm to find a good solution in the neighborhood.
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Example: TSP

TSP: Given a complete graph G = (V/, E) with c; denoting cost of
edge (i, ), compute a Hamiltonian cycle/tour of minimum edge cost.
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Example: TSP

TSP: Given a complete graph G = (V/, E) with c; denoting cost of
edge (i, ), compute a Hamiltonian cycle/tour of minimum edge cost.

2-change local search:
© Start with an arbitrary tour sp

@ For a solution s define s’ to be a neighbor if s’ can be obtained
from s by replacing two edges in s with two other edges.

© For a solution s at most O(n?) neighbors and one can try all of
them to find an improvement.
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TSP: 2-change example
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TSP: 2-change example
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TSP: 2-change example
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Figure below shows a bad local optimum for 2-change heuristic...

Chandra and Michael (UIUC) Fall 2019 15 / 34



TSP: 2-change example
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Figure below shows a bad local optimum for 2-change heuristic...
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TSP: 2-change example
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Figure below shows a bad local optimum for 2-change heuristic...
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TSP: 3-change example

3-change local search: swap 3 edges out.

-

Neighborhood of s has now increased to a size of Q(n?)

Can define k-change heuristic where k edges are swapped out.
Increases neighborhood size and makes each local improvement step
less efficient.
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TSP: 3-change example

3-change local search: swap 3 edges out.

—

Neighborhood of s has now increased to a size of Q(n3)

Can define k-change heuristic where k edges are swapped out.
Increases neighborhood size and makes each local improvement step
less efficient.
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Local Search Variants

Local search terminates with a local optimum which may be far from
a global optimum. Many variants to improve plain local search.

@ Randomization and restarts. Initial solution may strongly
influence the quality of the final solution. Try many random
initial solutions.

© Simulated annealing is a general method where one allows the
algorithm to move to worse solutions with some probability. At
the beginning this is done more aggressively and then slowly the
algorithm converges to plain local search. Controlled by a
parameter called “temperature”.

© Tabu search. Store already visited solutions and do not visit
them again (they are “taboo”).
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Heuristics

Several other heuristics used in practice.

@ Heuristics for solving integer linear programs such as cutting
planes, branch-and-cut etc are quite effective. They exploit the
geometry of the problem.

@ Heuristics to solve SAT (SAT-solvers) have gained prominence in
recent years

© Genetic algorithms
Q...

Heuristics design is somewhat ad hoc and depends heavily on the
problem and the instances that are of interest. Rigorous analysis is
sometimes possible.
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Approximation algorithms

Consider the following optimization problems:

o
2]
o
o

Max Knapsack: Given knapsack of capacity W, n items each
with a value and weight, pack the knapsack with the most
profitable subset of items whose weight does not exceed the
knapsack capacity.

Min Vertex Cover: given a graph G = (V, E) find the
minimum cardinality vertex cover.

Min Set Cover: given Set Cover instance, find the smallest
number of sets that cover all elements in the universe.

Max Independent Set: given graph G = (V, E) find
maximum independent set.

Min Traveling Salesman Tour: given a directed graph G with
edge costs, find minimum length/cost Hamiltonian cycle in G.

Solving one in polynomial time implies solving all the others.
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Approximation algorithms

However, the problems behave very differently if one wants to solve
them approximately.

Informal definition: An approximation algorithm for an
optimization problem is an efficient (polynomial-time) algorithm that
guarantees for every instance a solution of some given quality when
compared to an optimal solution.
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Some known approximation results

@ Knapsack: For every fixed € > 0 there is a polynomial time
algorithm that guarantees a solution of quality (1 — €) times
the best solution for the given instance. Hence can get a
0.99-approximation efficiently.

©@ Min Vertex Cover: There is a polynomial time algorithm that
guarantees a solution of cost at most 2 times the cost of an
optimum solution.

© Min Set Cover: There is a polynomial time algorithm that
guarantees a solution of cost at most (In n + 1) times the cost
of an optimal solution.

@ Max Independent Set: Unless P = NP, for any fixed € > 0,
no polynomial time algorithm can give a n'~¢ relative
approximation . Here n is number of vertices in the graph.

© Min TSP: No polynomial factor relative approximation possible.
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Approximation algorithms

© Although NP optimization problems are all equivalent with
respect to polynomial-time solvability they behave quite
differently under approximation (in both theory and practice).

© Approximation is a useful lens to examine NP optimization
problems more closely.

© Approximation also useful for problems that we can solve
efficiently:

©@ We may have other constraints such a space (streaming
problems) or time (need linear time or less for very large
problems)

@ Data may be uncertain (online and stochastic problems).
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Formal definition of approximation algorithm

An algorithm A for an optimization problem X is an
a-approximation algorithm if the following conditions hold:
@ for each instance I of X the algorithm A correctly outputs a
valid solution to /
e A is a polynomial-time algorithm

o Letting OPT (/) and A(/) denote the values of an optimum
solution and the solution output by .4 on instances /,
OPT(1)/A(l) £ o and A(l)/OPT(I) < . Alternatively:

o If X is a minimization problem: A(/)/OPT(l) < «
o If X is a maximization problem: OPT(1)/A(l) < «
Definition ensures that a > 1

To be formal we need to say a(n) where n = |l| since in some cases
the approximation ratio depends on the size of the instance.
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Formal definition of approximation algorithm

Unfortunately notation is not consistently used. Some times people
use the following convention:

e If X is a minimization problem then A(/)/OPT(I) < o and
here a > 1.

e If X is a maximization problem then A(/)/OPT(l) > « and
here a < 1.

Usually clear from the context.
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Relative vs Additive

We defined approximation ratio in a relative sense. Some times it
makes sense to ask for an additive approximation. For instance in
continuous optimization such as linear/convex optimization we talk
about e-error where we want a solution / such that

|A(I) — OPT(1)| < e.

For most NP-Hard optimization problems it is not hard to show that
one cannot obtain a good additive approximation in polynomial time
unless P = NP and hence relative approximation is a more robust
and useful notion.
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Part 1l

Approximation for Vertex Cover
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Given a graph G = (V/, E), a set of vertices S is:
@ A vertex cover if every e € E has at least one endpoint in S.

Problem (Vertex Cover)

Input: A graph G
Goal: Find a vertex cover of minimum size in G
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Given a graph G = (V/, E), a set of vertices S is:
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Problem (Vertex Cover)

Input: A graph G
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Greedy Algorithm

Greedy (G) :
Initialize S to be 0
While there are edges in G do
Let v be a vertex with maximum degree

S+ Su{v}
G+~ G—v
endWhile
Output S

Chandra and Michael (UIUC) Fall 2019 28 / 34



Greedy Algorithm

Greedy (G) :
Initialize S to be 0
While there are edges in G do
Let v be a vertex with maximum degree

S+ Su{v}
G+~ G—v
endWhile
Output S

|S| < (Inn+ 1)OPT where OPT s the value of an optimum set.
Here n is number of nodes in G.

Theorem

There is an infinite family of graphs where the solution S output by
Greedy is Q(In n)OPT.
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Matching Heuristic

MatchingHeuristic(G) :
Find a maximal matching M in G
S is the set of end points of edges in M
Output S
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Matching Heuristic

MatchingHeuristic(G) :
Find a maximal matching M in G
S is the set of end points of edges in M
Output S

OPT > |M|.

S is a feasible vertex cover. l

Analysis: |S| = 2|M| < 20PT. Algorithm is a 2-approximation.
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Vertex Cover: LP Relaxation based approach

Write (weighted) vertex cover problem as an integer linear program

Minimize o\, wyX,
subjectto x, + x, > 1 foreachuv € E
x, € {0,1} foreachv € V
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Vertex Cover: LP Relaxation based approach

Write (weighted) vertex cover problem as an integer linear program

Minimize o\, wyX,
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Vertex Cover: LP Relaxation based approach

Write (weighted) vertex cover problem as an integer linear program

Minimize o\, wyX,
subjectto x, + x, > 1 foreachuv € E
x, € {0,1} foreachv € V

Relax integer program to a linear program

Minimize % o\, wyX,
subjectto x, + x, > 1 foreachuv € E
x, >0 foreach v € V

Can solve linear program in polynomial time.
Let x* be an optimum solution to the linear program.

OPT > > w,x}. \
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Vertex Cover: Rounding fractional solution

LP Relaxation

Minimize ) o\ wuX,
subjectto x, + x, > 1 foreach uv € E
x, >0 foreach v € V

Let x* be an optimum solution to the linear program.
Rounding: S = {v | x¥ > 1/2}. Output S.
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Vertex Cover: Rounding fractional solution

LP Relaxation

Minimize ) o\ wuX,
subjectto x, + x, > 1 foreach uv € E
x, >0 foreach v € V

Let x* be an optimum solution to the linear program.
Rounding: S = {v | x¥ > 1/2}. Output S.

S is a feasible vertex cover for the given graph. l
w(S) <2 wx <20PT. l
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Set Cover and Vertex Cover

Greedy gives (In n + 1)-approximation for Set Cover where n is
number of elements.

Unless P = NP no (In n + €)-approximation for Set Cover. \

2-approximation is best known for Vertex Cover.

Unless P = NP no 1.36-approximation for Vertex Cover. \

Conjecture: Unless P = NP no (2 — €)-approximation for Vertex
Cover for any fixed € > 0.
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Independent Set and Vertex Cover

Proposition

Let G = (V, E) be a graph. S is an independent set if and only if
V \ S is a vertex cover.
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Independent Set and Vertex Cover

Proposition

Let G = (V, E) be a graph. S is an independent set if and only if
V \ S is a vertex cover.

IndependentSetHeuristic(G = (V, E)) :
Find (an approximate) vertex cover S in G
Qutput V — S
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Independent Set and Vertex Cover

Proposition
Let G = (V, E) be a graph. S is an independent set if and only if
V \ S is a vertex cover.

IndependentSetHeuristic(G = (V, E)) :
Find (an approximate) vertex cover S in G
Qutput V — S

Question: Is this a good (approximation) algorithm?

If S is a minimum sized vertex cover then V — S is a max
independent set.
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Independent Set and Vertex Cover

IndependentSetHeuristic(G = (V, E)) :
Find (an approximate) vertex cover S in G
Qutput V — S

@ Let k be minimum vertex cover size.
@ Suppose k = n/2 where n = | V|
@ Then V is a 2-approximation

@ But then algorithm will output an empty independent set even
though there is an independent set of size n/2.
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Independent Set and Vertex Cover

IndependentSetHeuristic(G = (V, E)) :
Find (an approximate) vertex cover S in G
Qutput V — S

@ Let k be minimum vertex cover size.
@ Suppose k = n/2 where n = | V|
@ Then V is a 2-approximation

@ But then algorithm will output an empty independent set even
though there is an independent set of size n/2.

Unless P = NP no n'—%-approximation for Independent Set for any
fixed 6 > 0.
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