
cs473: Algorithms
Lecture 3: Dynamic Programming

Michael A. Forbes Chandra Chekuri

University of Illinois at Urbana-Champaign

September 3, 2019

1 / 33

Today

paradigms:

recursion

dynamic programming

problems:

fibonacci numbers

edit distance

knapsack

2 / 33

Recursion

Definition

A reduction transforms a given problem into a yet another problem, possibly into

several instances of another problem.

Recursion is a reduction from one instance of a problem to instances of the same

problem.

example (Karatsuba, Strassen, ...):

reduce problem instances of size n to problem instances of size n/2

terminate recursion at O(1)-size problem instances, solve straightforwardly as a

base case

3 / 33

Recursion (II)

recursive paradigms:

tail recursion: expend effort to reduce given problem to single (smaller)

problem. Often can be reformulated as a non-recursive algorithm (iterative, or

greedy).

divide and conquer: expend effort to reduce (divide) given problem to multiple,

independent smaller problems, which are solved separately. Solutions to smaller

problems are combined to solve original problem (conquer). For example:

Karatsuba, Strassen, . . .

dynamic programming: expend effort to reduce given problem to multiple

correlated smaller problems. Naive recursion often not efficient, use

memoization to avoid wasteful recomputation.

4 / 33

Recursion (II)

foo(instance X)

if X is a base case then

solve it and return solution

else

do stuff

foo(X1)

do stuff

foo(X2)

foo(X3)

more stuff

return solution for X

analysis:

recursion tree: each instance X spawns new children X1, X2, X3

dependency graph: each instance X links to sub-problems X1, X2, X3

5 / 33

Fibonacci Numbers

Definition (Fibonacci 1200, Pingala -200)

The Fibonacci sequence F0, F1, F2, F3, . . . ∈ N is the sequence of numbers defined by

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2, for n ≥ 2

remarks:

arises in surprisingly many places — the journal The Fibonacci Quarterly

Fn = ϕn−(1−ϕ)n√
5

, ϕ is the golden ratio ϕ := 1+
√
5

2 ≈ 1.618 · · ·
=⇒ 1− ϕ ≈ −.618 · · · =⇒ |(1− ϕ)n| ≤ 1, and further (1− ϕ)n →n→∞ 0

=⇒ Fn = Θ(ϕn).

6 / 33

Fibonacci Numbers (II)

question: given n, compute Fn.

answer:
fib(n):

if (n = 0)

return 0

else-if(n = 1)

return 1

else

return fib(n − 1) + fib(n − 2)

correctness: clear

complexity: let T (n) denote the number of additions. Then

T (0) = 0, T (1) = 0

T (2) = 1,

T (n) = T (n − 1) + T (n − 2)

=⇒ T (n) = Fn−1 = Θ(ϕn) =⇒ exponential time!
7 / 33

Fibonacci Numbers (III)

recursion tree: for F4

F4

F3

F2

F1 F0

F1

F2

F1 F0

dependency graph: for F4

F4

F3

F2

F1

F0

8 / 33

Fibonacci Numbers (IV)

iterative algorithm:

fib-iter(n):

if n = 0

return 0

if n = 1

return 1

F [0] = 0

F [1] = 1

for 2 ≤ i ≤ n
F [i] = F [i − 1] + F [i − 2]

return F [n]

correctness: clear

complexity: O(n) additions

remarks:

Fn = Θ(ϕn) =⇒ Fn takes Θ(n) bits =⇒ each addition takes Θ(n) steps

=⇒ O(n2) is the actual runtime
9 / 33

Memoization

recursive paradigms for Fn:

naive recursion: recurse on subproblems, solves the same subproblem multiple

times

iterative algorithm: stores solutions to subproblems to avoid recomputation —

memoization

Definition

Dynamic programming is the method of speeding up naive recursion through

memoization.

remarks:

If number of subproblems is polynomially bounded, often implies a

polynomial-time algorithm

Memoizing a recursive algorithm is done by tracing through the dependency

graph
10 / 33

Memoization (II)

question: how to memoize exactly?

fib(n):

if n = 0

return 0

if n = 1

return 1

if fib(n) was previously computed

return stored value fib(n)

else

return fib(n − 1) + fib(n − 2)

question: how to memoize exactly?

explicitly: just do it!

implicitly: allow clever data structures to do this automatically

11 / 33

Memoization (III)

global F[·]
fib(n):

if n = 0

return 0

if n = 1

return 1

if F [n] initialized

return F [n]

else

F [n] = fib(n − 1) + fib(n − 2)
return F [n]

explicit memoization: we decide ahead of
time what types of objects F stores

e.g., F is an array

requires more deliberation on problem

structure, but can be more efficient

implicit memoization: we let the data
structure for F handle whatever comes its way

e.g., F is an dictionary

requires less deliberation on problem

structure, and can be less efficient

sometimes can be done automatically by

functional programming languages (LISP,

etc.)

12 / 33

Fibonacci Numbers (V)

question: how much space do we need to memoize?

fib-iter(n):

if n = 0

return 0

if n = 1

return 1

Fprev = 1

Fprevprev = 0

for 2 ≤ i ≤ n
Fcur = Fprev + Fprevprev
Fprevprev = Fprev
Fprev = Fcur

return Fcur

correctness: clear

complexity: O(n) additions, O(1) numbers stored

13 / 33

Memoization (IV)

Definition

Dynamic programming is the method of speeding up naive recursion through

memoization.

goals:

Given a recursive algorithm, analyze the complexity of its memoized version.

Find the right recursion that can be memoized.

Recognize when dynamic programming will efficiently solve a problem.

Further optimize time- and space-complexity of dynamic programming

algorithms.

14 / 33

Edit Distance

Definition

Let x , y ∈ Σ? be two strings over the alphabet Σ. The edit distance between x and

y is the minimum number of insertions, deletions and substitutions required to

transform x into y .

Example

money boney bone bona boa boba =⇒ edit distance ≤ 5

remarks:

edit distance ≤ 4

intermediate strings can be arbitrary in Σ?

15 / 33

Edit Distance (II)

Definition

Let x , y ∈ Σ? be two strings over the alphabet Σ. An alignment is a sequence M of

pairs of indices (i , j) such that

an index could be empty, such as (, 4) or (5,)

each index appears exactly once per coordinate

no crossings: for (i , j), (i ′, j ′) ∈ M either i < i ′ and j < j ′, or i > i ′ and j > j ′

The cost of an alignment is the number of pairs (i , j) where xi 6= yj .

Example

mon ey

bo ba

M = {(1, 1), (2, 2), (3,), (3,), (4, 4), (5,)}, cost 5

16 / 33

Edit Distance (III)

question: given two strings x , y ∈ Σ?, compute their edit distance

Lemma

The edit distance between two strings x , y ∈ Σ? is the minimum cost of an

alignment.

Proof.

Exercise.

question: given two strings x , y ∈ Σ?, compute the minimum cost of an alignment

remarks:

can also ask to compute the alignment itself

widely solved in practice, e.g., the BLAST heuristic for DNA edit distance

17 / 33

Edit Distance (IV)

Lemma

Let x , y ∈ Σ∗ be strings, and a, b ∈ Σ be symbols. Then

dist(x ◦ a, y ◦ b) = min


dist(x , y) + 1Ja 6= bK
dist(x , y ◦ b) + 1

dist(x ◦ a, y) + 1

Proof.

In an optimal alignment from x ◦ a to y ◦ b, either:

a aligns to b, with cost 1Ja 6= bK
a is deleted, with cost 1

b is deleted, with cost 1

18 / 33

Edit Distance (V)

recursive algorithm:

dist(x = x1x2 · · · xn, y = y1y2 · · · yn)
if n = 0 return m

if m = 0 return n

d1 = dist(x<n, y<m) + 1Jxn 6= ymK
d2 = dist(x<n, y) + 1

d3 = dist(x , y<m) + 1

return min(d1, d2, d3)

correctness: clear

complexity: ???

19 / 33

Edit Distance (VI)

(abab,baba)

(aba,bab)

(ab,ba) (ab,bab) (aba,ba)

(aba,baba)

(ab,bab) . . .

(abab,bab)

(ab,bab) is repeated!

memoization: define subproblem (i , j) as computing dist(x≤i , y≤y)

20 / 33

Edit Distance (VII)

memoized algorithm:

global d [·][·]
dist(x1x2 · · · xn, y1y2 · · · ym, (i , j))

if d [i][j] initialized

return d [i][j]

if i = 0

d [i][j] = j

else-if j = 0

d [i][j] = i

else

d1 = dist(x , y , (i − 1, j − 1)) + 1Jxi 6= yjK
d2 = dist(x , y , (i − 1, j)) + 1
d3 = dist(x , y , (i , j − 1)) + 1
d [i][j] = min(d1, d2, d3)

return d [i][j]

21 / 33

Edit Distance (VIII)

dependency graph:

n
m

n−1
m

n
m−1

n−1
m−1

...

· · ·

. . .

n
0

n−1
0

0
m

0
m−1

...

· · · 0
0

22 / 33

Edit Distance (IX)

iterative algorithm:

dist(x1x2 · · · xn, y1y2 · · · ym)
for 0 ≤ i ≤ n

d [i][0] = i

for 0 ≤ j ≤ m
d [0][j] = j

for 0 ≤ i ≤ n
for 0 ≤ j ≤ m

d [i][j] = min


d [i − 1][j − 1] + 1Jxi 6= yjK
d [i − 1][j] + 1
d [i][j − 1] + 1

correctness: clear

complexity: O(nm) time, O(nm) space

23 / 33

Edit Distance (X)

Corollary

Given two strings x , y ∈ Σ? can compute the minimum cost alignment in

O(nm)-time and -space.

Proof.

Exercise. Hint: follow how each subproblem was solved.

24 / 33

Dynamic Programming

template:

develop recursive algorithm

understand structure of subproblems

memoize

implicity, via data structure

explicitly, converting to iterative algorithm to traverse dependency graph via

topological sort

analysis (time, space)

further optimization

25 / 33

Knapsack

the knapsack problem:

input: knapsack capacity W ∈ N (in pounds). n items with weights w1, . . . , wn ∈ N,

and values v1, . . . , vn ∈ N.

goal: a subset S ⊂ [n] of items that fit in the knapsack, with maximum value

max
S⊆[n]∑
i∈S wi≤W

∑
i∈S

vi

remarks:

prototypical problem in combinatorial optimization, can be generalized in

numerous ways

needs to be solved in practice

26 / 33

Knapsack (II)

Example

item 1 2 3 4 5

weight 1 2 5 6 7

value 1 6 18 22 28

For W = 11, the best is {3, 4} giving value 40.

Definition

In the special case of when vi = wi for all i , the knapsack problem is called the

subset sum problem.

27 / 33

Knapsack (III)

item 1 2 3 4 5

value 1 6 16 22 28

weight 1 2 5 6 7

and weight limit W = 15. What is the best solution value?

(a) 22

(b) 28

(c) 38

(d) 50

(e) 56

28 / 33

Knapsack (IV)

greedy approaches:

greedily select by maximum value:

item 1 2 3

value 2 2 3

weight 1 1 2

For W = 2, greedy-value will pick

{3}, but optimal is {1, 2}
greedily select by minimum weight:

item 1 2

value 1 3

weight 1 2

For W = 2, greedy-weight will pick

{1}, but optimal is {2}

greedily select by maximum

value/weight ratio:

item 1 2 3

value 3 3 5

weight 2 2 3

For W = 4, greedy-value will pick

{3}, but optimal is {1, 2}
remark: while greedy algorithms fail to

get the best result, they can still be useful

for getting solutions that are

approximately the best

29 / 33

Knapsack (V)

Lemma

Consider the instance W , (vi)
n
i=1, and (wi)

n
i=1, with optimal solution S ⊆ [n]. Then,

1 if n /∈ S, then S ⊆ [n − 1] is an optimal solution for the knapsack instance

(W , (vi)i<n, (wi)i<n).

2 if n ∈ S, then S \ {n} ⊆ [n − 1] is an optimal solution for the knapsack instance

(W − wn, (vi)i<n, (wi)i<n).

Proof.

1 Any S ⊆ [n − 1] feasible for (W , (vi)i<n, (wi)i<n), will also satisfy the original

weight constraint

2 Any S ⊆ [n − 1] feasible for (W − wn, (vi)i<n, (wi)i<n), will have that S ∪ {n}
will also satisfy the original weight constraint

30 / 33

Knapsack (VI)

Corollary

Fix an instance W , v1, . . . , vn, and w1, . . . , wn. Define OPT(i , w) to be the

maximum value of the knapsack instance w , v1, . . . , vi and w1, . . . , wi . Then,

OPT(i , w) =


0 i = 0

OPT(i − 1, w) wi > w

max

{
OPT(i − 1, w)

OPT(i − 1, w − wi) + vi
else

=⇒ from instance W , v1, . . . , vn, and w1, . . . , wn we generate O(n ·W)-many

subproblems (i , w)i∈[n],w≤W .

31 / 33

Knapsack (VII)

an iterative algorithm: M[i , w] will

compute OPT(i , w)

for 0 ≤ w ≤W
M[0,w] = 0

for 1 ≤ i ≤ n
for 1 ≤ w ≤W

if wi > w

M[i ,w] = M[i − 1,w]
else

M[i ,w] = max(M[i − 1,w],
M[i − 1,w − wi] + vi)

correctness: clear

complexity:

O(nW) time, but input size is

O(n + log W +
∑n
i=1(log vi + log wi))

e.g., W = 2n has O(n) bits but

requires Ω(2n) runtime =⇒ running

time is not polynomial in the input

Algorithm is pseudo-polynomial:

running time is polynomial in

magnitude of the input numbers

Knapsack is NP-hard in general =⇒
no efficient algorithm is expected to

compute the exact optimum

punchline: had to correctly parameterize

knapsack sub-problems (vj)j≤i ,(wj)j≤i by

also considering arbitrary w . This is a

common theme in dynamic programming

problems.
32 / 33

Today

today:

paradigms:

recursion

dynamic programming

problems:

fibonacci numbers

edit distance

knapsack

next time: more dynamic programming

33 / 33

TOC

1 Title

2 Today

3 Recursion

4 Recursion (II)

5 Recursion (II)

6 Fibonacci Numbers

7 Fibonacci Numbers (II)

8 Fibonacci Numbers (III)

9 Fibonacci Numbers (IV)

10 Memoization

11 Memoization (II)

12 Memoization (III)

13 Fibonacci Numbers (V)

14 Memoization (IV)

15 Edit Distance

16 Edit Distance (II)

17 Edit Distance (III)

18 Edit Distance (IV)

19 Edit Distance (V)

20 Edit Distance (VI)

21 Edit Distance (VII)

22 Edit Distance (VIII)

23 Edit Distance (IX)

24 Edit Distance (X)

25 Dynamic Programming

26 Knapsack

27 Knapsack (II)

28 Knapsack (III)

29 Knapsack (IV)

30 Knapsack (V)

31 Knapsack (VI)

32 Knapsack (VII)

33 Today

33 / 33

	Title
	Today
	Recursion
	Recursion (II)
	Recursion (II)
	Fibonacci Numbers
	Fibonacci Numbers (II)
	Fibonacci Numbers (III)
	Fibonacci Numbers (IV)
	Memoization
	Memoization (II)
	Memoization (III)
	Fibonacci Numbers (V)
	Memoization (IV)
	Edit Distance
	Edit Distance (II)
	Edit Distance (III)
	Edit Distance (IV)
	Edit Distance (V)
	Edit Distance (VI)
	Edit Distance (VII)
	Edit Distance (VIII)
	Edit Distance (IX)
	Edit Distance (X)
	Dynamic Programming
	Knapsack
	Knapsack (II)
	Knapsack (III)
	Knapsack (IV)
	Knapsack (V)
	Knapsack (VI)
	Knapsack (VII)
	Today

