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Today

paradigms:

recursion

dynamic programming

problems:

fibonacci numbers

edit distance

knapsack
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Recursion

Definition

A reduction transforms a given problem into a yet another problem, possibly into

several instances of another problem.

Recursion is a reduction from one instance of a problem to instances of the same

problem.

example (Karatsuba, Strassen, ...):

reduce problem instances of size n to problem instances of size n/2

terminate recursion at O(1)-size problem instances, solve straightforwardly as a

base case
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Recursion (II)

recursive paradigms:

tail recursion: expend effort to reduce given problem to single (smaller)

problem. Often can be reformulated as a non-recursive algorithm (iterative, or

greedy).

divide and conquer: expend effort to reduce (divide) given problem to multiple,

independent smaller problems, which are solved separately. Solutions to smaller

problems are combined to solve original problem (conquer). For example:

Karatsuba, Strassen, . . .

dynamic programming: expend effort to reduce given problem to multiple

correlated smaller problems. Naive recursion often not efficient, use

memoization to avoid wasteful recomputation.
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Recursion (II)

foo(instance X )

if X is a base case then

solve it and return solution

else

do stuff

foo(X1)

do stuff

foo(X2)

foo(X3)

more stuff

return solution for X

analysis:

recursion tree: each instance X spawns new children X1, X2, X3

dependency graph: each instance X links to sub-problems X1, X2, X3
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Fibonacci Numbers

Definition (Fibonacci 1200, Pingala -200)

The Fibonacci sequence F0, F1, F2, F3, . . . ∈ N is the sequence of numbers defined by

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2, for n ≥ 2

remarks:

arises in surprisingly many places — the journal The Fibonacci Quarterly

Fn = ϕn−(1−ϕ)n√
5

, ϕ is the golden ratio ϕ := 1+
√
5

2 ≈ 1.618 · · ·
=⇒ 1− ϕ ≈ −.618 · · · =⇒ |(1− ϕ)n| ≤ 1, and further (1− ϕ)n →n→∞ 0

=⇒ Fn = Θ(ϕn).
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Fibonacci Numbers (II)

question: given n, compute Fn.

answer:
fib(n):

if (n = 0)

return 0

else-if(n = 1)

return 1

else

return fib(n − 1) + fib(n − 2)

correctness: clear

complexity: let T (n) denote the number of additions. Then

T (0) = 0, T (1) = 0

T (2) = 1,

T (n) = T (n − 1) + T (n − 2)

=⇒ T (n) = Fn−1 = Θ(ϕn) =⇒ exponential time!
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Fibonacci Numbers (III)

recursion tree: for F4

F4

F3

F2

F1 F0

F1

F2

F1 F0

dependency graph: for F4

F4

F3

F2

F1

F0
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Fibonacci Numbers (IV)

iterative algorithm:

fib-iter(n):

if n = 0

return 0

if n = 1

return 1

F [0] = 0

F [1] = 1

for 2 ≤ i ≤ n
F [i ] = F [i − 1] + F [i − 2]

return F [n]

correctness: clear

complexity: O(n) additions

remarks:

Fn = Θ(ϕn) =⇒ Fn takes Θ(n) bits =⇒ each addition takes Θ(n) steps

=⇒ O(n2) is the actual runtime
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Memoization

recursive paradigms for Fn:

naive recursion: recurse on subproblems, solves the same subproblem multiple

times

iterative algorithm: stores solutions to subproblems to avoid recomputation —

memoization

Definition

Dynamic programming is the method of speeding up naive recursion through

memoization.

remarks:

If number of subproblems is polynomially bounded, often implies a

polynomial-time algorithm

Memoizing a recursive algorithm is done by tracing through the dependency

graph
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Memoization (II)

question: how to memoize exactly?

fib(n):

if n = 0

return 0

if n = 1

return 1

if fib(n) was previously computed

return stored value fib(n)

else

return fib(n − 1) + fib(n − 2)

question: how to memoize exactly?

explicitly: just do it!

implicitly: allow clever data structures to do this automatically
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Memoization (III)

global F[·]
fib(n):

if n = 0

return 0

if n = 1

return 1

if F [n] initialized

return F [n]

else

F [n] = fib(n − 1) + fib(n − 2)
return F [n]

explicit memoization: we decide ahead of
time what types of objects F stores

e.g., F is an array

requires more deliberation on problem

structure, but can be more efficient

implicit memoization: we let the data
structure for F handle whatever comes its way

e.g., F is an dictionary

requires less deliberation on problem

structure, and can be less efficient

sometimes can be done automatically by

functional programming languages (LISP,

etc.)
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Fibonacci Numbers (V)

question: how much space do we need to memoize?

fib-iter(n):

if n = 0

return 0

if n = 1

return 1

Fprev = 1

Fprevprev = 0

for 2 ≤ i ≤ n
Fcur = Fprev + Fprevprev
Fprevprev = Fprev
Fprev = Fcur

return Fcur

correctness: clear

complexity: O(n) additions, O(1) numbers stored
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Memoization (IV)

Definition

Dynamic programming is the method of speeding up naive recursion through

memoization.

goals:

Given a recursive algorithm, analyze the complexity of its memoized version.

Find the right recursion that can be memoized.

Recognize when dynamic programming will efficiently solve a problem.

Further optimize time- and space-complexity of dynamic programming

algorithms.
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Edit Distance

Definition

Let x , y ∈ Σ? be two strings over the alphabet Σ. The edit distance between x and

y is the minimum number of insertions, deletions and substitutions required to

transform x into y .

Example

money boney bone bona boa boba =⇒ edit distance ≤ 5

remarks:

edit distance ≤ 4

intermediate strings can be arbitrary in Σ?
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Edit Distance (II)

Definition

Let x , y ∈ Σ? be two strings over the alphabet Σ. An alignment is a sequence M of

pairs of indices (i , j) such that

an index could be empty, such as (, 4) or (5, )

each index appears exactly once per coordinate

no crossings: for (i , j), (i ′, j ′) ∈ M either i < i ′ and j < j ′, or i > i ′ and j > j ′

The cost of an alignment is the number of pairs (i , j) where xi 6= yj .

Example

mon ey

bo ba

M = {(1, 1), (2, 2), (3, ), (3, ), (4, 4), (5, )}, cost 5
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Edit Distance (III)

question: given two strings x , y ∈ Σ?, compute their edit distance

Lemma

The edit distance between two strings x , y ∈ Σ? is the minimum cost of an

alignment.

Proof.

Exercise.

question: given two strings x , y ∈ Σ?, compute the minimum cost of an alignment

remarks:

can also ask to compute the alignment itself

widely solved in practice, e.g., the BLAST heuristic for DNA edit distance
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Edit Distance (IV)

Lemma

Let x , y ∈ Σ∗ be strings, and a, b ∈ Σ be symbols. Then

dist(x ◦ a, y ◦ b) = min


dist(x , y ) + 1Ja 6= bK
dist(x , y ◦ b) + 1

dist(x ◦ a, y ) + 1

Proof.

In an optimal alignment from x ◦ a to y ◦ b, either:

a aligns to b, with cost 1Ja 6= bK
a is deleted, with cost 1

b is deleted, with cost 1
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Edit Distance (V)

recursive algorithm:

dist(x = x1x2 · · · xn, y = y1y2 · · · yn)
if n = 0 return m

if m = 0 return n

d1 = dist(x<n, y<m) + 1Jxn 6= ymK
d2 = dist(x<n, y) + 1

d3 = dist(x , y<m) + 1

return min(d1, d2, d3)

correctness: clear

complexity: ???
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Edit Distance (VI)

(abab,baba)

(aba,bab)

(ab,ba) (ab,bab) (aba,ba)

(aba,baba)

(ab,bab) . . .

(abab,bab)

(ab,bab) is repeated!

memoization: define subproblem (i , j) as computing dist(x≤i , y≤y )
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Edit Distance (VII)

memoized algorithm:

global d [·][·]
dist(x1x2 · · · xn, y1y2 · · · ym, (i , j))

if d [i ][j ] initialized

return d [i ][j ]

if i = 0

d [i ][j ] = j

else-if j = 0

d [i ][j ] = i

else

d1 = dist(x , y , (i − 1, j − 1)) + 1Jxi 6= yjK
d2 = dist(x , y , (i − 1, j)) + 1
d3 = dist(x , y , (i , j − 1)) + 1
d [i ][j ] = min(d1, d2, d3)

return d [i ][j ]
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Edit Distance (VIII)

dependency graph:

n
m

n−1
m

n
m−1

n−1
m−1

...

· · ·

. . .

n
0

n−1
0

0
m

0
m−1

...

· · · 0
0
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Edit Distance (IX)

iterative algorithm:

dist(x1x2 · · · xn, y1y2 · · · ym)
for 0 ≤ i ≤ n

d [i ][0] = i

for 0 ≤ j ≤ m
d [0][j ] = j

for 0 ≤ i ≤ n
for 0 ≤ j ≤ m

d [i ][j ] = min


d [i − 1][j − 1] + 1Jxi 6= yjK
d [i − 1][j ] + 1
d [i ][j − 1] + 1

correctness: clear

complexity: O(nm) time, O(nm) space
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Edit Distance (X)

Corollary

Given two strings x , y ∈ Σ? can compute the minimum cost alignment in

O(nm)-time and -space.

Proof.

Exercise. Hint: follow how each subproblem was solved.
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Dynamic Programming

template:

develop recursive algorithm

understand structure of subproblems

memoize

implicity, via data structure

explicitly, converting to iterative algorithm to traverse dependency graph via

topological sort

analysis (time, space)

further optimization
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Knapsack

the knapsack problem:

input: knapsack capacity W ∈ N (in pounds). n items with weights w1, . . . , wn ∈ N,

and values v1, . . . , vn ∈ N.

goal: a subset S ⊂ [n] of items that fit in the knapsack, with maximum value

max
S⊆[n]∑
i∈S wi≤W

∑
i∈S

vi

remarks:

prototypical problem in combinatorial optimization, can be generalized in

numerous ways

needs to be solved in practice
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Knapsack (II)

Example

item 1 2 3 4 5

weight 1 2 5 6 7

value 1 6 18 22 28

For W = 11, the best is {3, 4} giving value 40.

Definition

In the special case of when vi = wi for all i , the knapsack problem is called the

subset sum problem.
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Knapsack (III)

item 1 2 3 4 5

value 1 6 16 22 28

weight 1 2 5 6 7

and weight limit W = 15. What is the best solution value?

(a) 22

(b) 28

(c) 38

(d) 50

(e) 56
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Knapsack (IV)

greedy approaches:

greedily select by maximum value:

item 1 2 3

value 2 2 3

weight 1 1 2

For W = 2, greedy-value will pick

{3}, but optimal is {1, 2}
greedily select by minimum weight:

item 1 2

value 1 3

weight 1 2

For W = 2, greedy-weight will pick

{1}, but optimal is {2}

greedily select by maximum

value/weight ratio:

item 1 2 3

value 3 3 5

weight 2 2 3

For W = 4, greedy-value will pick

{3}, but optimal is {1, 2}
remark: while greedy algorithms fail to

get the best result, they can still be useful

for getting solutions that are

approximately the best
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Knapsack (V)

Lemma

Consider the instance W , (vi)
n
i=1, and (wi)

n
i=1, with optimal solution S ⊆ [n]. Then,

1 if n /∈ S, then S ⊆ [n − 1] is an optimal solution for the knapsack instance

(W , (vi)i<n, (wi)i<n).

2 if n ∈ S, then S \ {n} ⊆ [n − 1] is an optimal solution for the knapsack instance

(W − wn, (vi)i<n, (wi)i<n).

Proof.

1 Any S ⊆ [n − 1] feasible for (W , (vi)i<n, (wi)i<n), will also satisfy the original

weight constraint

2 Any S ⊆ [n − 1] feasible for (W − wn, (vi)i<n, (wi)i<n), will have that S ∪ {n}
will also satisfy the original weight constraint
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Knapsack (VI)

Corollary

Fix an instance W , v1, . . . , vn, and w1, . . . , wn. Define OPT(i , w ) to be the

maximum value of the knapsack instance w , v1, . . . , vi and w1, . . . , wi . Then,

OPT(i , w ) =


0 i = 0

OPT(i − 1, w ) wi > w

max

{
OPT(i − 1, w )

OPT(i − 1, w − wi) + vi
else

=⇒ from instance W , v1, . . . , vn, and w1, . . . , wn we generate O(n ·W )-many

subproblems (i , w )i∈[n],w≤W .
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Knapsack (VII)

an iterative algorithm: M[i , w ] will

compute OPT(i , w )

for 0 ≤ w ≤W
M[0,w ] = 0

for 1 ≤ i ≤ n
for 1 ≤ w ≤W

if wi > w

M[i ,w ] = M[i − 1,w ]
else

M[i ,w ] = max(M[i − 1,w ],
M[i − 1,w − wi ] + vi)

correctness: clear

complexity:

O(nW ) time, but input size is

O(n + log W +
∑n
i=1(log vi + log wi))

e.g., W = 2n has O(n) bits but

requires Ω(2n) runtime =⇒ running

time is not polynomial in the input

Algorithm is pseudo-polynomial:

running time is polynomial in

magnitude of the input numbers

Knapsack is NP-hard in general =⇒
no efficient algorithm is expected to

compute the exact optimum

punchline: had to correctly parameterize

knapsack sub-problems (vj)j≤i ,(wj)j≤i by

also considering arbitrary w . This is a

common theme in dynamic programming

problems.
32 / 33



Today

today:

paradigms:

recursion

dynamic programming

problems:

fibonacci numbers

edit distance

knapsack

next time: more dynamic programming
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