cs473: Algorithms Lecture 3: Dynamic Programming

Michael A. Forbes

Chandra Chekuri

University of Illinois at Urbana-Champaign

September 3, 2019

Today

paradigms:

- recursion
- dynamic programming

problems:

- fibonacci numbers
- edit distance
- knapsack

Recursion

Definition

A **reduction** transforms a given problem into a yet another problem, possibly into *several instances* of another problem.

Recursion is a reduction from one instance of a problem to instances of the *same* problem.

example (Karatsuba, Strassen, ...):

- reduce problem instances of size n to problem instances of size n/2
- terminate recursion at O(1)-size problem instances, solve straightforwardly as a base case

Recursion (II)

recursive paradigms:

- tail recursion: expend effort to reduce given problem to *single* (smaller) problem. Often can be reformulated as a non-recursive algorithm (iterative, or greedy).
- divide and conquer: expend effort to reduce (divide) given problem to multiple, independent smaller problems, which are solved separately. Solutions to smaller problems are combined to solve original problem (conquer). For example: Karatsuba, Strassen, ...
- dynamic programming: expend effort to reduce given problem to multiple correlated smaller problems. Naive recursion often not efficient, use memoization to avoid wasteful recomputation.

Recursion (II)

```
foo(instance X)
    if X is a base case then
        solve it and return solution
    else
        do stuff
        foo(X_1)
        do stuff
        foo(X_2)
        foo(X_3)
        more stuff
        return solution for X
```

analysis:

- recursion tree: each instance X spawns new children X_1, X_2, X_3
- dependency graph: each instance X links to sub-problems X_1, X_2, X_3

Fibonacci Numbers

Definition (Fibonacci 1200, Pingala -200)

The Fibonacci sequence $F_0, F_1, F_2, F_3, \ldots \in \mathbb{N}$ is the sequence of numbers defined by

- $F_0 = 0$
- $F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}$, for $n \ge 2$

remarks:

- arises in surprisingly many places the journal *The Fibonacci Quarterly*
- $F_n = \frac{\varphi^n (1-\varphi)^n}{\sqrt{5}}$, φ is the golden ratio $\varphi := \frac{1+\sqrt{5}}{2} \approx 1.618 \cdots$
- $\implies 1 \varphi \approx -.618 \cdots \implies |(1 \varphi)^n| \le 1, \text{ and further } (1 \varphi)^n \to_{n \to \infty} 0$ $\implies F_n = \Theta(\varphi^n).$

Fibonacci Numbers (II)

question: given n, compute F_n .

answer:

```
fib(n):
    if (n = 0)
        return 0
    else-if(n = 1)
        return 1
    else
        return fib(n-1) + fib(n-2)
```

correctness: clear

complexity: let T(n) denote the number of *additions*. Then

- T(0) = 0, T(1) = 0
- T(2) = 1,
- T(n) = T(n-1) + T(n-2)
- \blacksquare \Longrightarrow $T(n) = F_{n-1} = \Theta(\varphi^n) \implies$ exponential time!

Fibonacci Numbers (III)

recursion tree: for F_4

dependency graph: for F_4

Fibonacci Numbers (IV)

iterative algorithm:

```
\begin{aligned} &\textbf{fib-iter}(n): \\ &\textbf{if } n = 0 \\ &\textbf{return } 0 \\ &\textbf{if } n = 1 \\ &\textbf{return } 1 \\ &F[0] = 0 \\ &F[1] = 1 \\ &\textbf{for } 2 \leq i \leq n \\ &F[i] = F[i-1] + F[i-2] \\ &\textbf{return } F[n] \end{aligned}
```

correctness: clear

complexity: O(n) additions

remarks:

■ $F_n = \Theta(\varphi^n) \implies F_n$ takes $\Theta(n)$ bits \implies each addition takes $\Theta(n)$ steps $\implies O(n^2)$ is the *actual* runtime

Memoization

recursive paradigms for F_n :

- naive recursion: recurse on subproblems, solves the *same* subproblem multiple times
- iterative algorithm: stores solutions to subproblems to avoid recomputation memoization

Definition

Dynamic programming is the method of speeding up naive recursion through memoization.

remarks:

- If number of subproblems is polynomially bounded, often implies a polynomial-time algorithm
- Memoizing a recursive algorithm is done by tracing through the dependency graph

Memoization (II)

question: how to memoize exactly?

```
\begin{aligned} &\textbf{fib}(n): \\ & & \text{if } n = 0 \\ & & \text{return 0} \\ & & \text{if } n = 1 \\ & & \text{return 1} \\ & & \text{if } \textbf{fib}(n) \text{ was previously computed} \\ & & & \text{return stored value } \textbf{fib}(n) \\ & & & \text{else} \\ & & & & \text{return } \textbf{fib}(n-1) + \textbf{fib}(n-2) \end{aligned}
```

question: how to memoize exactly?

- explicitly: just do it!
- *implicitly*: allow clever data structures to do this automatically

Memoization (III)

```
global F[⋅]
fib(n):
    if n=0
         return 0
    if n=1
         return 1
    if F[n] initialized
         return F[n]
    else
         F[n] = \mathbf{fib}(n-1) + \mathbf{fib}(n-2)
         return F[n]
```

- *explicit* memoization: we decide *ahead* of time what types of objects *F* stores
 - \blacksquare e.g., F is an array
 - requires more deliberation on problem structure, but can be more efficient
- implicit memoization: we let the data structure for F handle whatever comes its way
 - e.g., F is an dictionary
 - requires less deliberation on problem structure, and can be less efficient
 - sometimes can be done automatically by functional programming languages (LISP, etc.)

Fibonacci Numbers (V)

question: how much space do we need to memoize?

```
fib-iter(n):
       if n = 0
              return 0
       if n=1
              return 1
       F_{\text{prev}} = 1
       F_{\text{prevprev}} = 0
       for 2 < i < n
              F_{\text{cur}} = F_{\text{prev}} + F_{\text{prevprev}}
              F_{\text{prevprev}} = F_{\text{prev}}
             F_{\text{prev}} = F_{\text{cur}}
       return F_{cur}
```

correctness: clear

complexity: O(n) additions, O(1) numbers stored

Memoization (IV)

Definition

Dynamic programming is the method of speeding up naive recursion through memoization.

goals:

- Given a recursive algorithm, analyze the complexity of its memoized version.
- Find the *right* recursion that can be memoized.
- Recognize when dynamic programming will efficiently solve a problem.
- Further optimize time- and space-complexity of dynamic programming algorithms.

Edit Distance

Definition

Let $x, y \in \Sigma^*$ be two strings over the alphabet Σ . The **edit distance** between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

Example

money bone bona boa boba \Longrightarrow edit distance ≤ 5

remarks:

- edit distance < 4
- intermediate strings can be arbitrary in Σ^*

Edit Distance (II)

Definition

Let $x, y \in \Sigma^*$ be two strings over the alphabet Σ . An **alignment** is a sequence M of pairs of indices (i,j) such that

- an index could be empty, such as (,4) or (5,)
- each index appears exactly once per coordinate
- lacksquare no crossings: for $(i,j), (i',j') \in M$ either i < i' and j < j', or i > i' and j > j'

The **cost** of an alignment is the number of pairs (i,j) where $x_i \neq y_j$.

Example

```
mon ey bo ba  M = \{(1,1),(2,2),(3,),(3,),(4,4),(5,)\}, \ \text{cost} \ 5
```

Edit Distance (III)

question: given two strings $x, y \in \Sigma^*$, compute their edit distance

Lemma

The edit distance between two strings $x, y \in \Sigma^*$ is the minimum cost of an alignment.

Proof.

Exercise.

question: given two strings $x, y \in \Sigma^*$, compute the minimum cost of an alignment **remarks:**

- can also ask to compute the alignment itself
- widely solved in practice, e.g., the BLAST heuristic for DNA edit distance

Edit Distance (IV)

Lemma

Let $x, y \in \Sigma^*$ be strings, and $a, b \in \Sigma$ be symbols. Then

$$\operatorname{dist}(x \circ a, y \circ b) = \min \begin{cases} \operatorname{dist}(x, y) + \mathbb{1}\llbracket a \neq b \rrbracket \\ \operatorname{dist}(x, y \circ b) + 1 \\ \operatorname{dist}(x \circ a, y) + 1 \end{cases}$$

Proof.

In an optimal alignment from $x \circ a$ to $y \circ b$, either:

- a aligns to b, with cost $1[a \neq b]$
- \blacksquare a is deleted, with cost 1
- \blacksquare *b* is deleted, with cost 1

Edit Distance (V)

recursive algorithm:

```
\begin{aligned} \mathbf{dist}(x &= x_1 x_2 \cdots x_n, y = y_1 y_2 \cdots y_n) \\ &\text{if } n = 0 \text{ return } m \\ &\text{if } m = 0 \text{ return } n \\ &d_1 &= \mathbf{dist}(x_{< n}, y_{< m}) + \mathbb{1}[x_n \neq y_m] \\ &d_2 &= \mathbf{dist}(x_{< n}, y) + 1 \\ &d_3 &= \mathbf{dist}(x, y_{< m}) + 1 \\ &\text{return } \min(d_1, d_2, d_3) \end{aligned}
```

correctness: clear
complexity: ???

Edit Distance (VI)

(ab,bab) is repeated!

memoization: define subproblem (i,j) as computing dist $(x_{\leq i},y_{\leq y})$

Edit Distance (VII)

memoized algorithm:

```
global d[\cdot][\cdot]
\operatorname{dist}(x_1x_2\cdots x_n, v_1v_2\cdots v_m, (i, j))
      if d[i][j] initialized
            return d[i][j]
      if i = 0
            d[i][i] = i
      else-if i = 0
            d[i][i] = i
      else
            d_1 = \mathbf{dist}(x, y, (i-1, j-1)) + \mathbb{1}[x_i \neq y_i]
            d_2 = \mathbf{dist}(x, y, (i-1, j)) + 1
            d_3 = \mathbf{dist}(x, y, (i, j - 1)) + 1
            d[i][j] = \min(d_1, d_2, d_3)
      return d[i][j]
```

Edit Distance (VIII)

dependency graph:

Edit Distance (IX)

iterative algorithm:

```
\begin{aligned} \operatorname{dist}(x_1 x_2 \cdots x_n, y_1 y_2 \cdots y_m) \\ & \text{for } 0 \leq i \leq n \\ & d[i][0] = i \\ & \text{for } 0 \leq j \leq m \\ & d[0][j] = j \\ & \text{for } 0 \leq i \leq n \\ & \text{for } 0 \leq j \leq m \end{aligned}
d[i][j] = \min \begin{cases} d[i-1][j-1] + \mathbb{1}[x_i \neq y_j] \\ d[i-1][j] + 1 \\ d[i][j-1] + 1 \end{cases}
```

correctness: clear

complexity: O(nm) time, O(nm) space

Edit Distance (X)

Corollary

Given two strings $x, y \in \Sigma^*$ can compute the minimum cost alignment in O(nm)-time and -space.

Proof.

Exercise. *Hint:* follow *how* each subproblem was solved.

Dynamic Programming

template:

- develop recursive algorithm
- understand structure of subproblems
- memoize
 - implicity, via data structure
 - explicitly, converting to iterative algorithm to traverse dependency graph via topological sort
- analysis (time, space)
- further optimization

Knapsack

the knapsack problem:

input: knapsack capacity $W \in \mathbb{N}$ (in pounds). n items with weights $w_1, \ldots, w_n \in \mathbb{N}$, and values $v_1, \ldots, v_n \in \mathbb{N}$.

goal: a subset $S \subset [n]$ of items that fit in the knapsack, with maximum value

$$\max_{S \subseteq [n]} \sum_{i \in S} v_i$$

$$\sum_{i \in S} w_i \le W$$

remarks:

- prototypical problem in combinatorial optimization, can be generalized in numerous ways
- needs to be solved in practice

Knapsack (II)

Example

item	1	2	3	4	5
weight	1	2	5	6	7
value	1	6	18	22	28

For W = 11, the best is $\{3, 4\}$ giving value 40.

Definition

In the special case of when $v_i = w_i$ for all i, the knapsack problem is called the **subset sum** problem.

Knapsack (III)

item	1	2	3	4	5
value	1	6	16	22	28
weight	1	2	5	6	7

and weight limit W = 15. What is the best solution value?

- (a) 22
- (b) 28
- (c) 38
- (d) 50
- (e) 56

Knapsack (IV)

greedy approaches:

greedily select by maximum value:

item	1	2	3
value	2	2	3
weight	1	1	2

For W=2, greedy-value will pick $\{3\}$, but optimal is $\{1,2\}$

greedily select by minimum weight:

item	1	2
value	1	3
weight	1	2

For W = 2, greedy-weight will pick $\{1\}$, but optimal is $\{2\}$

greedily select by maximum value/weight ratio:

item	1	2	3
value	3	3	5
weight	2	2	3

For W = 4, greedy-value will pick $\{3\}$, but optimal is $\{1,2\}$

remark: while greedy algorithms fail to get the *best* result, they can still be useful for getting solutions that are *approximately* the best

Knapsack (V)

Lemma

Consider the instance W, $(v_i)_{i=1}^n$, and $(w_i)_{i=1}^n$, with optimal solution $S \subseteq [n]$. Then,

- I if $n \notin S$, then $S \subseteq [n-1]$ is an optimal solution for the knapsack instance $(W, (v_i)_{i < n}, (w_i)_{i < n})$.
- if $n \in S$, then $S \setminus \{n\} \subseteq [n-1]$ is an optimal solution for the knapsack instance $(W w_n, (v_i)_{i < n}, (w_i)_{i < n})$.

Proof.

- **1** Any $S \subseteq [n-1]$ feasible for $(W, (v_i)_{i < n}, (w_i)_{i < n})$, will also satisfy the original weight constraint
- 2 Any $S \subseteq [n-1]$ feasible for $(W w_n, (v_i)_{i < n}, (w_i)_{i < n})$, will have that $S \cup \{n\}$ will also satisfy the original weight constraint

Knapsack (VI)

Corollary

Fix an instance W, v_1, \ldots, v_n , and w_1, \ldots, w_n . Define $\mathsf{OPT}(i, w)$ to be the maximum value of the knapsack instance w, v_1, \ldots, v_i and w_1, \ldots, w_i . Then,

$$OPT(i, w) = \begin{cases} 0 & i = 0 \\ OPT(i-1, w) & w_i > w \end{cases}$$

$$\max \begin{cases} OPT(i-1, w) & else \end{cases}$$

 \implies from instance W, v_1, \ldots, v_n , and w_1, \ldots, w_n we generate $O(n \cdot W)$ -many subproblems $(i, w)_{i \in [n], w < W}$.

Knapsack (VII)

an iterative algorithm: M[i, w] will compute OPT(i, w)

```
for 0 \le w \le W

M[0, w] = 0

for 1 \le i \le n

for 1 \le w \le W

if w_i > w

M[i, w] = M[i - 1, w]

else

M[i, w] = \max(M[i - 1, w], M[i - 1, w - w_i] + v_i)
```

correctness: clear **complexity:**

■ O(nW) time, but input size is $O(n + \log W + \sum_{i=1}^{n} (\log v_i + \log w_i))$

- e.g., $W = 2^n$ has O(n) bits but requires $\Omega(2^n)$ runtime \implies running time is **not** polynomial in the input
- Algorithm is pseudo-polynomial: running time is polynomial in magnitude of the input numbers
- Knapsack is NP-hard in general ⇒ no efficient algorithm is expected to compute the exact optimum

punchline: had to correctly *parameterize* knapsack sub-problems $(v_j)_{j \le i}, (w_j)_{j \le i}$ by *also* considering arbitrary w. This is a common theme in dynamic programming problems.

Today

today:

- paradigms:
 - recursion
 - dynamic programming
- problems:
 - fibonacci numbers
 - edit distance
 - knapsack

next time: more dynamic programming

TOC

- 1 Title
- 2 Today
- 3 Recursion
- 4 Recursion (II)
- 5 Recursion (II)
- 6 Fibonacci Numbers
- 7 Fibonacci Numbers (II)
- 8 Fibonacci Numbers (III)
- 9 Fibonacci Numbers (IV)
- 10 Memoization
- 11 Memoization (II)
- 12 Memoization (III)
- 13 Fibonacci Numbers (V)
- 14 Memoization (IV)
- 15 Edit Distance
- 16 Edit Distance (II)

- 17 Edit Distance (III)
- 18 Edit Distance (IV)
- 9 Edit Distance (V)
- Edit Distance (VI)
- Edit Distance (VII)
- 22 Edit Distance (VIII)
- 23 Edit Distance (IX)
- 24 Edit Distance (X)
- 25 Dynamic Programming
- 6 Knapsack
- 27 Knapsack (II)
- 28 Knapsack (III)
- 29 Knapsack (IV)
- 30 Knapsack (V)
- 31 Knapsack (VI)
- 32 Knapsack (VII)
- 33 Today