
cs473: Algorithms
Lecture 4: Dynamic Programming

Michael A. Forbes Chandra Chekuri

University of Illinois at Urbana-Champaign

September 5, 2019

1 / 29

Overview

logistics:

pset1 out, due W10 (next week) — can submit in groups of ≤ 3

if you are waiting to enroll: post private note in piazza with name, netid, major

by today — we have a limited number of additional spots in the online section

and will prioritize enrollment

last time:

recursion, memoization, dynamic programming

fibonacci numbers, edit distance, knapsack

today:

dynamic programming on trees

maximum independent set

dominating set

2 / 29

Dynamic Programming

dynamic programming:

develop recursive algorithm

understand structure of subproblems

names of subproblems

number of subproblems

dependency graph amongst subproblems

memoize (implicitly, or explicitly)

analysis (time, space)

further optimization

remarks:

memoizing a recursive algorithm does not necessarily lead to an efficient

algorithm (e.g., knapsack problem) — you need the right recursion

recognizing that dynamic programming applies to a problem can be non-obvious

3 / 29

Trees

fact:

many computational problems ask to optimize an objective over a graph

many graph optimization problems are NP-hard

yet: many NP-hard graph optimization problems can be efficiently solved when

the graph is a tree

remarks:

dynamic programming over graphs often relies on decomposing the graph into

subgraphs, but there are many subgraphs and they relate to each other in

complicated ways

trees can be easily decomposed into sub-trees, which are easily related to each

other =⇒ trees are amenable to divide and conquer, and dynamic

programming more generally

dynamic programming on trees often generalizes to graphs that have low

treewidth
4 / 29

Maximum Independent Set

Definition

Let G = (V ,E) be an undirected (simple) graph. An independent set of G is a

subset S ⊆ V such that there are no edges in G between vertices in S . That is, for

all u, v ∈ S that (u, v) /∈ E .

ex:

A

B
C

DE

F

Independent sets include ∅, {A,C}, and {B,E ,F}.
5 / 29

Maximum Independent Set (II)

Definition

The maximum independent set (MIS) problem is to, given a undirected (simple)

graph G = (V ,E) output the size of the largest independent set in G . That is,

output

α(G) := max
S⊆V ,S independent set of G

|S | .

ex:

A

B
C

DE

F

α(G) = 3
6 / 29

Maximum Independent Set (III)

Definition

The maximum weight independent set problem is to, given a undirected (simple)

graph G = (V ,E) and a weight function w : V → N, output the weight of the

maximum weight independent set in G . That is, output

max
S⊆V

S independent set of G

∑
v∈S

w (v) .

A2

B

5

C

10

D

20

E

10 F
2

7 / 29

Maximum Independent Set (IV)

remarks:

maximum (weight) independent set (MIS) is solvable via brute force: try all

possible subsets =⇒ solvable in time O(nO(1)2n)

no efficient algorithm currently known

MIS is NP-hard =⇒ an efficient algorithm not expected to exist

MIS is efficiently solvable if the underlying graph is a tree

8 / 29

Maximum Independent Set (V)

For vertex v , let N(v) denote the subset S ⊆ V of neighbors of v .

Lemma

G = (V ,E), w : V → N. Then for any v ∈ V ,

MIS(G) = max
{

MIS(G − v), MIS(G − v − N(v)) + w (v)
}
.

Proof.

For any set S independent in G , either v /∈ S or v ∈ S .

G − v : any set T ⊆ V \ {v} independent in G − v has T ⊆ V independent in G

G − v −N(v): any set T ⊆ V \ ({v} ∪ N(v)) independent in G − v −N(v) has

T ∪ {v} ⊆ V independent in G

Any set S independent in G must be of the above two cases. Now maximize.

9 / 29

Maximum Independent Set (VI)

MIS(G)=max

{
MIS(G−v)

MIS(G−v−N(v))+w(v)

10 / 29

Maximum Independent Set (VII)

recursive-MIS(G = (V ,E)):

if V = ∅
return 0

choose v ∈ V
return max

(
recursive-MIS(G − v), recursive-MIS(G − v − N(v)) + w(v)

)
correctness: clear

complexity: n := |V |
T (0),T (1) ≥ Ω(1). T (n) ≥ T (n − 1) + T (n − 1− deg(v))

silly case: G has no edges =⇒ for all v , deg(v) = 0

=⇒ T (n) ≥ 2T (n − 1) ≥ 4T (n − 2) ≥ · · · ≥ 2n · T (1) ≥ Ω(2n).

when G has no edges then clearly MIS(G) = |V |, but this worst-case runtime is

hard to avoid

memoization does not obviously help — subproblems correspond to subgraphs,

of which there are possibly exponentially many
11 / 29

Maximum Independent Set, in Trees

question: maximum weight independent set, in trees?

r
10

a
5

c
4

d
4

h
2

i
7

e
9

b

8

f
3

g
11

j
8

question:

how to bound the number of subproblems in recursive algorithm?

how to pick which vertex v ∈ V to eliminate?

12 / 29

Maximum Independent Set, in Trees (II)

MIS(G)=max

{
MIS(G−v)

MIS(G−v−N(v))+w(v)

r

a

c d

h i

e

b

f g

j

a

c d

h i

e

b

f g

j

c d

h i

e f g

j

13 / 29

Maximum Independent Set, in Trees (III)

Lemma

Let T = (V ,E) be a tree, with root v ∈ V . Then

T − v is a forest, with each tree associated to a child u of v .

T − v − N(v) is a forest, with each tree associated to a grandchild w of v .

Proof.

14 / 29

Maximum Independent Set, in Trees (III)

Lemma

Let T = (V ,E) be a tree, with root v ∈ V . Then

T − v is a forest, with each tree associated to a child u of v .

T − v − N(v) is a forest, with each tree associated to a grandchild w of v .

Corollary

Let T = (V ,E) be a tree. Pick a root r ∈ V for T to create the rooted tree (T , r).

If you run recursive-MIS on T and always eliminate the nodes who were closest to r

in T , then the result subproblems exactly correspond to rooted subtrees of (T , r)

=⇒ ≤ |V | subproblems

=⇒ memoized recursive algorithm is efficient

15 / 29

Maximum Independent Set, in Trees (IV)

For a rooted tree T with root r , for v ∈ V define T (v) to be the subtree of T

descending from v . The recursive formula is then:

MIS(T) = max

∑
v∈N(v)MIS(T (v))(∑
v∈N(N(v))MIS(T (v))

)
+ w (v)

dependency graph:

subproblems are rooted subtrees of (T , r)

a subtree T (v) depends on all of subtrees T (u) where u is a descendent of v

=⇒ iterating over V in post-order traversal of T will satisfy the dependency graph

16 / 29

Maximum Independent Set, in Trees (V)

iterative algorithm:

iter-MIS-tree(T = (V ,E)):
let v1, v2, . . . , vn be a post-order traversal of nodes of T

=⇒ vn is the root

for 1 ≤ i ≤ n

M[i] = max

{∑
j :vj∈N(vi)

M[j](∑
j :vj∈N(N(vi))

M[j]
)
+ w(vi)

return M[n]

correctness: clear

complexity:

O(n) space to store M[·]
time

naive: O(n) time per node, n nodes =⇒ O(n2)

better: each node vj has its M[j] value read by parent, and by grandparent =⇒
O(1) work per n nodes =⇒ O(n) time

17 / 29

Dynamic Programming, in Trees

question: why does dynamic programming work on trees?

Definition

G = (V ,E). A set of nodes S ⊆ V is a separator for G if G − S has at ≥ 2

connected components, that is, G − S is disconnected.

S is a balanced if each connected component of G − S has ≤ 2
3 · |V | vertices.

e.g., in trees, every vertex is a separator, but not all are balanced.

remarks:

every tree T has a balanced separator consisting of a single node

dynamic-programming + small balanced separators =⇒ 2O(
√
n)-time MIS

algorithm for planar graphs

18 / 29

Minimum Dominating Set

Definition

Let G = (V ,E) be an undirected (simple) graph. A dominating set of G is a subset

S ⊆ V such that for all v ∈ V , either v ∈ S , or v has neighbor u ∈ N(v) with u ∈ S .

ex:

A

B
C

DE

F

Dominating sets include {A,B,C ,D,E ,F}, {E ,C ,F}, and {A,B,F}.

19 / 29

Minimum Dominating Set (II)

Definition

The minimum weight dominating set problem is to, given a undirected (simple)

graph G = (V ,E) and a weight function w : V → N, output the weight of the

minimum weight dominating set in G . That is, output

max
S⊆V

S dominating set of G

∑
v∈S

w (v) .

A2

B

5

C

10

D

20

E

10 F
2

20 / 29

Minimum Dominating Set (III)

remarks:

minimum (weight) dominating set is solvable via brute force: try all possible

subsets =⇒ solvable in time O(nO(1)2n)

no efficient algorithm currently known

minimum weight dominating set is NP-hard =⇒ an efficient algorithm not

expected to exist

minimum weight dominating set is efficiently solvable if the underlying graph is

a tree

21 / 29

Minimum Dominating Set, in Trees

question: copy&paste from MIS on trees?

r

a

c d

h i

e

b

f g

j

Let T (v) denote the subtree rooted at

v ∈ V , and let S(v) be any minimum

weight dominating set for T (v).

building S(r):

r ∈ S :

could take any S(a) ∪ S(b) ∪ {r}
but can better: if we cover r then

a, b do not need to be covered —

only need a “mostly” dominating

set on T (a) and T (b)

r /∈ S :

could try to take any S(a) ∪ S(b),

but how to dominate r ?

need a “extra” dominating set from

one of T (a) and T (b)

question: how to parameterize these

subproblems?

22 / 29

Minimum Dominating Set, in Trees (II)

Definition

Let T = (V ,E) be a rooted tree with root r .

A type-0 dominating set for T is an actual dominating set.

A type-1 dominating set for T is an actual dominating set S where r ∈ S .

A type-2 dominating set for T is a subset S ⊆ V such that for all v ∈ V \ {r},
either v ∈ S or v has a neighbor u ∈ N(v) with u ∈ S .

For b ∈ {0, 1, 2}, define OPTb to be the minimum weight dominating set for T of

b-type. Define OPTb(v) to be the OPTb for the subtree of T rooted at v .

base case:

T has no vertices =⇒ OPTb(T) = 0
extends gracefully by the following conventions:

for S = ∅,
∑
v∈S f (v) = 0

for S = ∅, minv∈S f (v) =∞
23 / 29

Minimum Dominating Set, in Trees (III)

T rooted tree with root r . T (v) is subtree rooted at v .

type-0: regular dominating set

type-1: dominating set which includes root r

type-2: dominating set which is relaxed at root r

Lemma

OPT0(r) = min

(∑

v∈N(r) OPT2(v)
)

+ w (r)

minv∈N(r)
(

OPT1(v) +
∑
u∈N(r)\{v} OPT0(u)

) .

Proof.

in optimum S , r ∈ S

in optimum S , r /∈ S and r dominated by child v ∈ S

24 / 29

Minimum Dominating Set, in Trees (IV)

T rooted tree with root r . T (v) is subtree rooted at v .

type-0: regular dominating set

type-1: dominating set which includes root r

type-2: dominating set which is relaxed at root r

Lemma

OPT1(r) =

 ∑
v∈N(r)

OPT2(v)

 + w (r) .

Proof.

In optimum S , r ∈ S .

25 / 29

Minimum Dominating Set, in Trees (V)

T rooted tree with root r . T (v) is subtree rooted at v .

type-0: regular dominating set

type-1: dominating set which includes root r

type-2: dominating set which is relaxed at root r

Lemma

OPT2(r) = min

(∑

v∈N(r) OPT2(v)
)

+ w (r)∑
v∈N(r) OPT0(v)

.

Proof.

in optimum S , r ∈ S

in optimum S , r /∈ S and r does not need to be dominated by children

26 / 29

Minimum Dominating Set, in Trees (VI)

T rooted tree with root r .
subproblems:

type-0: regular dominating set

type-1: dominating set which includes root r

type-2: dominating set which is relaxed at root r

recursion:

OPT0(r)=min

(∑

v∈N(r) OPT2(v)
)
+w(r)

minv∈N(r)

(
OPT1(v)+

∑
u∈N(r)\{v} OPT0(u)

)
OPT1(r)=

(∑
v∈N(r) OPT2(v)

)
+w(r)

OPT2(r)=min

(∑

v∈N(r) OPT2(v)
)
+w(r)∑

v∈N(r) OPT0(v)

OPT0(r) is desired answer

recursive algorithm:

3 · n subproblems

can implicitly memoize

naively O(n) work per

node, can optimize to

O(n) total work as with

MIS on trees

iterative algorithm:

follow post-order

traversal of rooted tree

to satisfy dependencies

optimize analysis to

obtain O(n) total work

details are an exercise
27 / 29

Dynamic Programming, in Trees (II)

remarks:

dynamic program is about finding the correct recursion, and the correct

recursion is intimately tied to understand the structure and number of

subproblems

trees can be easily decomposed into a (small) number of subtrees, this allows a

small number of resulting subproblems

dynamic programming on trees can often be generalized to graphs of small

treewidth

28 / 29

Overview (II)

logistics:

pset1 out, due W10 (next week) — can submit in groups of ≤ 3

if you are waiting to enroll: post private note in piazza with name, netid, major

by today — we have a limited number of additional spots in the online section

and will prioritize enrollment

today:

dynamic programming on trees

maximum independent set

dominating set

next time:

more dynamic programming

29 / 29

TOC

1 Title

2 Overview

3 Dynamic Programming

4 Trees

5 Maximum Independent Set

6 Maximum Independent Set (II)

7 Maximum Independent Set (III)

8 Maximum Independent Set (IV)

9 Maximum Independent Set (V)

10 Maximum Independent Set (VI)

11 Maximum Independent Set (VII)

12 Maximum Independent Set, in Trees

13 Maximum Independent Set, in Trees (II)

14 Maximum Independent Set, in Trees (III)

15 Maximum Independent Set, in Trees (III)

16 Maximum Independent Set, in Trees (IV)

17 Maximum Independent Set, in Trees (V)

18 Dynamic Programming, in Trees

19 Minimum Dominating Set

20 Minimum Dominating Set (II)

21 Minimum Dominating Set (III)

22 Minimum Dominating Set, in Trees

23 Minimum Dominating Set, in Trees (II)

24 Minimum Dominating Set, in Trees (III)

25 Minimum Dominating Set, in Trees (IV)

26 Minimum Dominating Set, in Trees (V)

27 Minimum Dominating Set, in Trees (VI)

28 Dynamic Programming, in Trees (II)

29 Overview (II)

29 / 29

	Title
	Overview
	Dynamic Programming
	Trees
	Maximum Independent Set
	Maximum Independent Set (II)
	Maximum Independent Set (III)
	Maximum Independent Set (IV)
	Maximum Independent Set (V)
	Maximum Independent Set (VI)
	Maximum Independent Set (VII)
	Maximum Independent Set, in Trees
	Maximum Independent Set, in Trees (II)
	Maximum Independent Set, in Trees (III)
	Maximum Independent Set, in Trees (III)
	Maximum Independent Set, in Trees (IV)
	Maximum Independent Set, in Trees (V)
	Dynamic Programming, in Trees
	Minimum Dominating Set
	Minimum Dominating Set (II)
	Minimum Dominating Set (III)
	Minimum Dominating Set, in Trees
	Minimum Dominating Set, in Trees (II)
	Minimum Dominating Set, in Trees (III)
	Minimum Dominating Set, in Trees (IV)
	Minimum Dominating Set, in Trees (V)
	Minimum Dominating Set, in Trees (VI)
	Dynamic Programming, in Trees (II)
	Overview (II)

