cs473: Algorithms Lecture 4: Dynamic Programming

Michael A. Forbes

Chandra Chekuri

University of Illinois at Urbana-Champaign

September 5, 2019

Overview¹

logistics:

- lacksquare pset1 out, due W10 (next week) can submit in groups of ≤ 3
- if you are waiting to enroll: post private note in piazza with name, netid, major by today — we have a limited number of additional spots in the online section and will prioritize enrollment

last time:

- recursion, memoization, dynamic programming
- fibonacci numbers, edit distance, knapsack

today:

- dynamic programming on trees
- maximum independent set
- dominating set

Dynamic Programming

dynamic programming:

- develop recursive algorithm
- understand structure of subproblems
 - names of subproblems
 - number of subproblems
 - dependency graph amongst subproblems
- memoize (implicitly, or explicitly)
- analysis (time, space)
- further optimization

- memoizing a recursive algorithm does not necessarily lead to an efficient algorithm (e.g., knapsack problem) — you need the *right* recursion
- recognizing that dynamic programming applies to a problem can be non-obvious

Trees

fact:

- many computational problems ask to optimize an objective over a graph
- many graph optimization problems are NP-hard
- *yet*: many NP-hard graph optimization problems can be efficiently solved when the graph is a *tree*

- dynamic programming over graphs often relies on decomposing the graph into subgraphs, but there are many subgraphs and they relate to each other in complicated ways
- trees can be easily decomposed into sub-trees, which are easily related to each other ⇒ trees are amenable to divide and conquer, and dynamic programming more generally
- dynamic programming on trees often generalizes to graphs that have low treewidth

Maximum Independent Set

Definition

Let G = (V, E) be an undirected (simple) graph. An **independent set of** G is a subset $S \subseteq V$ such that there are no edges in G between vertices in S. That is, for all $u, v \in S$ that $(u, v) \notin E$.

ex:

Independent sets include \emptyset , $\{A, C\}$, and $\{B, E, F\}$.

Maximum Independent Set (II)

Definition

The **maximum independent set (MIS)** problem is to, given a undirected (simple) graph G = (V, E) output the size of the largest independent set in G. That is, output

$$\alpha(G) := \max_{S \subseteq V, S \text{ independent set of } G} |S|$$
.

ex:

$$\alpha(G) = 3$$

Maximum Independent Set (III)

Definition

The **maximum weight independent set** problem is to, given a undirected (simple) graph G = (V, E) and a weight function $w : V \to \mathbb{N}$, output the weight of the maximum weight independent set in G. That is, output

$$\max_{\substack{S \subseteq V \\ S \text{ independent set of } G}} \sum_{v \in S} w(v) \ .$$

Maximum Independent Set (IV)

- maximum (weight) independent set (MIS) is solvable via brute force: try all possible subsets \implies solvable in time $O(n^{O(1)}2^n)$
- no efficient algorithm *currently* known
- lacktriangle MIS is NP-hard \Longrightarrow an efficient algorithm *not* expected to exist
- MIS is efficiently solvable if the underlying graph is a *tree*

Maximum Independent Set (V)

For vertex v, let N(v) denote the subset $S \subseteq V$ of *neighbors* of v.

Lemma

$$G = (V, E)$$
, $w : V \to \mathbb{N}$. Then for any $v \in V$,

$$MIS(G) = \max \left\{ MIS(G - v), MIS(G - v - N(v)) + w(v) \right\}.$$

Proof.

For any set S independent in G, either $v \notin S$ or $v \in S$.

- G v: any set $T \subseteq V \setminus \{v\}$ independent in G v has $T \subseteq V$ independent in G
- G v N(v): any set $T \subseteq V \setminus (\{v\} \cup N(v))$ independent in G v N(v) has $T \cup \{v\} \subseteq V$ independent in G

Any set S independent in G must be of the above two cases. Now maximize.

Maximum Independent Set (VI)

Maximum Independent Set (VII)

```
 \begin{aligned} & \textbf{recursive-MIS}(G = (V, E)): \\ & \text{if } V = \emptyset \\ & \text{return 0} \\ & \text{choose } v \in V \\ & \text{return max} \left( \textbf{recursive-MIS}(G - v), \textbf{recursive-MIS}(G - v - N(v)) + w(v) \right) \end{aligned}
```

```
correctness: clear complexity: n := |V|
```

- $T(0), T(1) \ge \Omega(1)$. $T(n) \ge T(n-1) + T(n-1 \deg(v))$
- silly case: G has no edges \implies for all v, $\deg(v) = 0$

$$\implies T(n) \ge 2T(n-1) \ge 4T(n-2) \ge \cdots \ge 2^n \cdot T(1) \ge \Omega(2^n).$$

- when G has no edges then clearly MIS(G) = |V|, but this worst-case runtime is hard to avoid
- memoization does not obviously help subproblems correspond to subgraphs, of which there are possibly exponentially many

Maximum Independent Set, in Trees

question: maximum weight independent set, in trees?

question:

- how to bound the number of subproblems in recursive algorithm?
- how to pick which vertex $v \in V$ to eliminate?

Maximum Independent Set, in Trees (II)

Maximum Independent Set, in Trees (III)

Lemma

Let T = (V, E) be a tree, with **root** $v \in V$. Then

- \blacksquare T v is a forest, with each tree associated to a child u of v.
- \blacksquare T v N(v) is a forest, with each tree associated to a grandchild w of v.

Proof.

Maximum Independent Set, in Trees (III)

Lemma

Let T = (V, E) be a tree, with **root** $v \in V$. Then

- \blacksquare T-v is a forest, with each tree associated to a child u of v.
- \blacksquare T v N(v) is a forest, with each tree associated to a grandchild w of v.

Corollary

Let T = (V, E) be a tree. Pick a root $r \in V$ for T to create the rooted tree (T, r). If you run **recursive-MIS** on T and always eliminate the nodes who were closest to r in T, then the result subproblems exactly correspond to rooted subtrees of (T, r)

- $\implies \le |V|$ subproblems
- ⇒ memoized recursive algorithm is efficient

Maximum Independent Set, in Trees (IV)

For a rooted tree T with root r, for $v \in V$ define T(v) to be the subtree of T descending from v. The recursive formula is then:

$$MIS(T) = \max \left\{ \frac{\sum_{v \in N(v)} MIS(T(v))}{\left(\sum_{v \in N(N(v))} MIS(T(v))\right) + w(v)} \right.$$

dependency graph:

- \blacksquare subproblems are rooted subtrees of (T, r)
- \blacksquare a subtree T(v) depends on all of subtrees T(u) where u is a descendent of v
- \implies iterating over V in post-order traversal of ${\mathcal T}$ will satisfy the dependency graph

Maximum Independent Set, in Trees (V)

iterative algorithm:

```
iter-MIS-tree(T = (V, E)):

let v_1, v_2, \ldots, v_n be a post-order traversal of nodes of T

\implies v_n is the root

for 1 \le i \le n

M[i] = \max \begin{cases} \sum_{j:v_j \in N(N(v_i))} M[j] \\ \left(\sum_{j:v_j \in N(N(v_i))} M[j]\right) + w(v_i) \end{cases}

return M[n]
```

correctness: clear

complexity:

- lacksquare O(n) space to store $M[\cdot]$
- time
 - naive: O(n) time per node, n nodes $\implies O(n^2)$
 - better: each node v_j has its M[j] value read by parent, and by grandparent \Longrightarrow O(1) work per n nodes \Longrightarrow O(n) time

Dynamic Programming, in Trees

question: why does dynamic programming work on trees?

Definition

G = (V, E). A set of nodes $S \subseteq V$ is a **separator for** G if G - S has at ≥ 2 connected components, that is, G - S is disconnected.

S is a **balanced** if each connected component of G - S has $\leq \frac{2}{3} \cdot |V|$ vertices.

e.g., in trees, every vertex is a separator, but not all are balanced.

- lacktriangle every tree T has a balanced separator consisting of a single node
- dynamic-programming + small balanced separators $\implies 2^{O(\sqrt{n})}$ -time MIS algorithm for planar graphs

Minimum Dominating Set

Definition

Let G = (V, E) be an undirected (simple) graph. A **dominating set of** G is a subset $S \subseteq V$ such that for all $v \in V$, either $v \in S$, or v has neighbor $u \in N(v)$ with $u \in S$.

ex:

Dominating sets include $\{A, B, C, D, E, F\}$, $\{E, C, F\}$, and $\{A, B, F\}$.

Minimum Dominating Set (II)

Definition

The **minimum weight dominating set** problem is to, given a undirected (simple) graph G = (V, E) and a weight function $w : V \to \mathbb{N}$, output the weight of the minimum weight dominating set in G. That is, output

$$\max_{\substack{S\subseteq V\\ S \text{ dominating set of } G}} \sum_{v\in S} w(v) \ .$$

Minimum Dominating Set (III)

- minimum (weight) dominating set is solvable via brute force: try *all* possible subsets \implies solvable in time $O(n^{O(1)}2^n)$
- no efficient algorithm *currently* known
- lacktriangleright minimum weight dominating set is NP-hard \Longrightarrow an efficient algorithm not expected to exist
- minimum weight dominating set is efficiently solvable if the underlying graph is a tree

Minimum Dominating Set, in Trees

question: copy&paste from MIS on trees?

Let T(v) denote the subtree rooted at $v \in V$, and let S(v) be any minimum weight dominating set for T(v).

building S(r):

- **■** *r* ∈ *S*:
 - could take any $S(a) \cup S(b) \cup \{r\}$
 - but can better: if we cover r then a, b do not need to be covered only need a "mostly" dominating set on T(a) and T(b)
- **■** *r* ∉ *S*:
 - could try to take any $S(a) \cup S(b)$, but how to dominate r?
 - need a "extra" dominating set from one of T(a) and T(b)

question: how to parameterize these subproblems?

Minimum Dominating Set, in Trees (II)

Definition

Let T = (V, E) be a rooted tree with root r.

- A **type-0** dominating set for T is an actual dominating set.
- A **type-1** dominating set for T is an actual dominating set S where $r \in S$.
- A **type-2** dominating set for T is a subset $S \subseteq V$ such that for all $v \in V \setminus \{r\}$, either $v \in S$ or v has a neighbor $u \in N(v)$ with $u \in S$.

For $b \in \{0, 1, 2\}$, define OPT_b to be the minimum weight dominating set for \mathcal{T} of b-type. Define $\mathsf{OPT}_b(v)$ to be the OPT_b for the subtree of \mathcal{T} rooted at v.

base case:

- T has no vertices \Longrightarrow OPT $_b(T) = 0$
- extends gracefully by the following conventions:
 - for $S = \emptyset$, $\sum_{v \in S} f(v) = 0$
 - for $S = \emptyset$, $\min_{v \in S} f(v) = \infty$

Minimum Dominating Set, in Trees (III)

T rooted tree with root r. T(v) is subtree rooted at v.

- **type-0**: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

Lemma

$$\mathsf{OPT}_0(r) = \min \ \begin{cases} \left(\sum_{v \in N(r)} \mathsf{OPT}_2(v) \right) + w(r) \\ \min_{v \in N(r)} \left(\mathsf{OPT}_1(v) + \sum_{u \in N(r) \setminus \{v\}} \mathsf{OPT}_0(u) \right) \end{cases}$$

Proof.

- in optimum S, $r \in S$
- in optimum S, $r \notin S$ and r dominated by child $v \in S$

Minimum Dominating Set, in Trees (IV)

T rooted tree with root r. T(v) is subtree rooted at v.

- type-0: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

Lemma

$$\mathsf{OPT}_1(r) = \left(\sum_{v \in N(r)} \mathsf{OPT}_2(v)\right) + w(r) \ .$$

Proof.

In optimum $S, r \in S$.

Minimum Dominating Set, in Trees (V)

T rooted tree with root r. T(v) is subtree rooted at v.

- **type-0**: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

Lemma

$$\mathsf{OPT}_2(r) = \min \left\{ \frac{\left(\sum_{v \in \mathcal{N}(r)} \mathsf{OPT}_2(v)\right) + w(r)}{\sum_{v \in \mathcal{N}(r)} \mathsf{OPT}_0(v)} \right.$$

Proof.

- in optimum S, $r \in S$
- in optimum S, $r \notin S$ and r does not need to be dominated by children

Minimum Dominating Set, in Trees (VI)

T rooted tree with root *r*. **subproblems:**

- type-0: regular dominating set
- **type-1**: dominating set which includes root r
- **type-2**: dominating set which is relaxed at root r

recursion:

$$\blacksquare \text{ } \mathsf{OPT}_0(r) = \min \left\{ \left(\sum_{v \in N(r)} \mathsf{OPT}_2(v) \right) + w(r) \\ \min_{v \in N(r)} \left(\mathsf{OPT}_1(v) + \sum_{u \in N(r) \setminus \{v\}} \mathsf{OPT}_0(u) \right) \right.$$

 $\mathsf{OPT}_0(r)$ is desired answer

recursive algorithm:

- $3 \cdot n$ subproblems
- can implicitly memoize
- naively O(n) work per node, can optimize to O(n) total work as with MIS on trees

iterative algorithm:

- follow post-order traversal of rooted tree to satisfy dependencies
- optimize analysis to obtain O(n) total work

details are an exercise

Dynamic Programming, in Trees (II)

- dynamic program is about finding the correct recursion, and the correct recursion is intimately tied to understand the structure and number of subproblems
- trees can be easily decomposed into a (small) number of subtrees, this allows a small number of resulting subproblems
- dynamic programming on trees can often be generalized to graphs of small treewidth

Overview (II)

logistics:

- $lue{}$ pset1 out, due W10 (next week) can submit in *groups* of ≤ 3
- if you are waiting to enroll: post private note in piazza with name, netid, major by today — we have a limited number of additional spots in the online section and will prioritize enrollment

today:

- dynamic programming on trees
- maximum independent set
- dominating set

next time:

■ more dynamic programming

TOC

- 1 Title
- 2 Overview
- 3 Dynamic Programming
- 4 Trees
- 5 Maximum Independent Set
- 6 Maximum Independent Set (II)
- 7 Maximum Independent Set (III)
- 8 Maximum Independent Set (IV)
- 9 Maximum Independent Set (V)
- 10 Maximum Independent Set (VI)
- 11 Maximum Independent Set (VII)
- 12 Maximum Independent Set, in Trees
- 13 Maximum Independent Set, in Trees (II)
- 14 Maximum Independent Set, in Trees (III)

- 15 Maximum Independent Set, in Trees (III)
- 16 Maximum Independent Set, in Trees (IV)
- 17 Maximum Independent Set, in Trees (V)
- 18 Dynamic Programming, in Trees
- 19 Minimum Dominating Set
- 20 Minimum Dominating Set (II)
- 21 Minimum Dominating Set (III)
- 22 Minimum Dominating Set, in Trees
- 23 Minimum Dominating Set, in Trees (II)
- 24 Minimum Dominating Set, in Trees (III)
- 25 Minimum Dominating Set, in Trees (IV)
- 26 Minimum Dominating Set, in Trees (V)
- 27 Minimum Dominating Set, in Trees (VI)
- 28 Dynamic Programming, in Trees (II)
- 29 Overview (II)