cs473: Algorithms Lecture 5: Dynamic Programming

Michael A. Forbes

Chandra Chekuri

University of Illinois at Urbana-Champaign

September 10, 2019

Overview

logistics:

lacksquare pset1 out, due W10 (tomorrow) — can submit in groups of ≤ 3

last time:

- dynamic programming on trees
- maximum independent set
- dominating set

today:

- shortest paths
 - with negative lengths
 - all-pairs

Shortest Paths, with Negative Lengths

total cost:

$$9 + 10 + (-16 + 11 + 3) \cdot k + (-16) + 16$$
$$= 19 - 3k \rightarrow -\infty$$

questions:

- what is the length of the shortest path between *s* and *t*?
- what is the length of the shortest path from s to every other node?
- what happens if we get lost?
- how to deal with *negative cycles*?

remarks:

■ computing the length of the shortest simple s → t path (with possibly negative lengths) is NP-hard — contains the Hamiltonian path problem

Shortest Paths, with Negative Lengths (II)

Definition

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$.

- A **path in** G is a sequence of *distinct* vertices $v_0, v_1, \ldots, v_k \in V$ such that $(v_i, v_{i+1}) \in E$ for all i. An (s, t)-path is a path where $v_0 = s$ and $v_k = t$.
- A walk in G is a sequence of vertices $v_0, v_1, \ldots, v_k \in V$ such that $(v_i, v_{i+1}) \in E$ for all i. An (s, t)-walk is a walk where $v_0 = s$ and $v_k = t$.
- The **length of a walk** is the sum of the edge lengths $\sum_{i} \ell(v_i, v_{i+1})$.
- The **distance from** s **to** t **in** G, denoted $\operatorname{dist}(s,t)$, is the length of the shortest (s,t)-walk, $\operatorname{dist}(s,t) := \min_{(s,t)$ -walk w $\ell(w)$.

- if (s,t)-walk containing a negative length cycle \implies dist $(s,t)=-\infty$
- if no(s, t)-walk containing a negative length cycle \implies shortest walk is a path \implies shortest walk < n 1 edges and is of finite length

Shortest Paths, with Negative Lengths (III)

Definition

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. The (single-source) shortest path problem (with negative weights) is to:

- given $s,t \in V$, find a minimum length (s,t)-path or find an (s,t)-walk with a negative cycle $(\implies \operatorname{dist}(s,t) = -\infty)$
- given $s \in V$, compute dist(s, t) for all $t \in V$
- determine if *G* has *any* negative cycle

- negative lengths can be natural in modelling real life
 - e.g., demand/supply on an electrical grid
 - negative cycles manifest as arbitrage
- negative lengths can arise as by-products of other algorithms, e.g., flows in graphs

Dijkstra's Algorithm

Dijkstra's algorithm: greedily grow shortest paths from source s

Dijkstra's Algorithm, with Negative Lengths?

Dijkstra's algorithm: greedily grow shortest paths from source s

- greedy exploration, ordering vertices $v \in V$ by dist(s, v) without updates!
- \implies algorithm assumes the distance only grows as the graph is explored
 - ≡ assumes all edge lengths are non-negative

Shortest Paths, with Negative Lengths (IV)

Lemma

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. If $s = v_0 \to v_1 \to v_2 \to \cdots \to v_k = t$ is a shortest (s, t)-walk, then

- **1** $s \rightarrow v_1 \rightarrow \cdots \rightarrow v_i$ is a shortest (s, v_i) -walk, for $i \leq k$
- **2** if ℓ is non-negative, $dist(s, v_i) \leq dist(s, v_{i+1})$ for all i

Proof.

(1) Cut and paste. (2) Clear.

- shortest walks *are* shortest paths, if no negative cycle
- lacktriangle Dijkstra's algorithm defines subproblems by restricting the graph by dist (s,\cdot)
- *idea:* parameterize subproblems by *number* of edges in a walk, *and* allow updates to $dist(s, \cdot)$

Shortest Paths, with Negative Lengths (V)

Definition

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. For $s, t \in V$, define $\operatorname{dist}_k(s, t)$ to be the length of the shortest (s, t)-walk $using \le k$ edges.

$$\operatorname{dist}_k(s,t) := \min_{\substack{(s,t)-\text{walk } w \ |w| \le k}} \ell(w) .$$

- $\operatorname{dist}_k(s,t) = \infty$ if no $(\leq k)$ -edge (s,t)-walk
- $dist_0(s,s) = 0$, $dist_0(s,v) = \infty$ for $v \neq s$

Shortest Paths, with Negative Lengths (VI)

Lemma

$$G=(V,E), \ \ell:E o \mathbb{Z}.$$
 Then for all $s,t\in V$,
$$\operatorname{dist}_k(s,t)=\min\left\{ egin{array}{l} \operatorname{dist}_{k-1}(s,t) \\ \min_{v\in V}\left\{\operatorname{dist}_{k-1}(s,v)+\ell(v,t)
ight\} \end{array}
ight..$$

Proof.

Let $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_j = t$ be a shortest length $j \leq k$ (s, t)-walk. Then,

- j < k: hence this is a $(\le k 1)$ -edge (s, t)-walk of length $\operatorname{dist}_{k-1}(s, t)$
- j = k: hence $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_{k-1}$ is a shortest length $(\leq k-1)$ -edge (s, v_{k-1}) walk \Longrightarrow can add $\ell(v_{k-1}, t)$ to reach t

remark: $\ell(v,t) = \infty$ if there is no edge

Shortest Paths, with Negative Lengths (VII)

Theorem

 $G = (V, E), \ \ell : E \to \mathbb{Z}, \ s \in V$, with every vertex reachable from s.

- If there are no negative length cycles, then for all $v \in V$, $\operatorname{dist}_{n-1}(s,v) \leq \operatorname{dist}_n(s,v)$, and even $\operatorname{dist}_{n-1}(s,v) = \operatorname{dist}(s,v)$.
- If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_n(s, v)$, then there are no negative length cycles.

Shortest Paths, with Negative Lengths (VIII)

Lemma

$$G=(V,E),\ \ell:E o\mathbb{Z}.$$
 Then for all $s,t\in V,$
$$\operatorname{dist}_k(s,t)=\min \begin{cases} \operatorname{dist}_{k-1}(s,t) \\ \min_{v\in V}\{\operatorname{dist}_{k-1}(s,v)+\ell(v,t)\} \end{cases}.$$

Corollary

For all $k \geq 0$,

- \blacksquare dist_k $(s, t) \le$ dist_{k-1}(s, t)
- If for all $v \in V$, $\operatorname{dist}_k(s,t) = \operatorname{dist}_{k-1}(s,t)$
- \implies for all $v \in V$, $\operatorname{dist}_{k+1}(s,t) = \operatorname{dist}_k(s,t)$
- \implies for all $v \in V$, $\operatorname{dist}_{k+2}(s,t) = \operatorname{dist}_{k+1}(s,t) \implies \cdots$

Shortest Paths, with Negative Lengths (IX)

Proposition

 $G = (V, E), \ \ell : E \to \mathbb{Z}, \ s \in V$, with every vertex reachable from s. If there are no negative length cycles, then for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \leq \operatorname{dist}_n(s, v)$.

Proof.

Let $s = v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_{k-1} \rightarrow v_k = v$ be a walk of $(\leq n)$ -edges, with length $\operatorname{dist}_n(s, v)$.

- If k < n, then this is a (< n)-edge walk and hence of length $\geq \operatorname{dist}_{n-1}(s, v)$.
- If k = n, then the walk visits n + 1 vertices \implies some vertex is repeated \equiv there is a cycle. As the cycle is of non-negative length $C \ge 0$, we can remove it to obtain a (< n)-edge (s, v)-walk of value $d = \operatorname{dist}_n(s, v) C$ with $\operatorname{dist}_n(s, v) \ge d \ge \operatorname{dist}_{n-1}(s, v)$.

Shortest Paths, with Negative Lengths (X)

Proposition

 $G = (V, E), \ \ell : E \to \mathbb{Z}, \ s \in V, \ with \ every \ vertex \ reachable \ from \ s. \ If for all \ v \in V, \ \operatorname{dist}_{n-1}(s,v) \le \operatorname{dist}_n(s,v), \ then \ \lim_{k \to \infty} \operatorname{dist}_k(s,v) \ is \ finite \ for \ all \ v \in V.$

Proof.

By previous corollary, for all $v \in V$, $\operatorname{dist}_{n-1}(s,v) \geq \operatorname{dist}_n(s,v) \Longrightarrow$ for all $v \in V$, $\operatorname{dist}_{n-1}(s,v) = \operatorname{dist}_n(s,v) = \operatorname{dist}_{n+1}(s,v) = \operatorname{dist}_{n+2}(s,v) = \cdots$. As all v are reachable from $s \Longrightarrow \operatorname{dist}_{n-1}(s,v) \leq \infty$ for all k and v. Hence $\lim_{k \to \infty} \operatorname{dist}_k(s,v) = \operatorname{dist}_{n-1}(s,v)$ is finite for all v.

Shortest Paths, with Negative Lengths (XI)

Proposition

G = (V, E), $\ell : E \to \mathbb{Z}$, $s \in V$, with every vertex reachable from s. If there is a (s, v)-walk containing a negative length cycle, then $\lim_{k \to \infty} \operatorname{dist}_k(s, v) = -\infty$.

Proof.

Let $s \rightsquigarrow u \rightsquigarrow u \rightsquigarrow v$ be an (s,v)-walk with length L, where $u \rightsquigarrow u$ is a negative length cycle of length -C < 0. Then consider the (s,v)-walk $s \rightsquigarrow u \rightsquigarrow u \rightsquigarrow u \rightsquigarrow v$, which is of value L-C. Hence, for any j there is (s,v)-walk of length $L-C \cdot j$. Hence $\lim_{k \to \infty} \operatorname{dist}_k(s,v) = -\infty$.

Shortest Paths, with Negative Lengths (XII)

Proposition

 $G = (V, E), \ \ell : E \to \mathbb{Z}, \ s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \le \operatorname{dist}_n(s, v)$, $\operatorname{lim}_{k \to \infty} \operatorname{dist}_k(s, v)$ is finite for all $v \in V$.

Proposition

G = (V, E), $\ell : E \to \mathbb{Z}$, $s \in V$, with every vertex reachable from s. If there is a (s, v)-walk containing a negative length cycle, then $\lim_{k \to \infty} \operatorname{dist}_k(s, v) = -\infty$.

Corollary

 $G = (V, E), \ \ell : E \to \mathbb{Z}, \ s \in V$, with every vertex reachable from s. If for all $v \in V$, $\operatorname{dist}_{n-1}(s, v) \le \operatorname{dist}_n(s, v)$, then there are no negative length cycles.

Shortest Paths, with Negative Lengths (VII)

Theorem

 $G = (V, E), \ \ell : E \to \mathbb{Z}, \ s \in V$, with every vertex reachable from s.

- If there are no negative length cycles, then for all $v \in V$, $\operatorname{dist}_{n-1}(s,v) \leq \operatorname{dist}_n(s,v)$, and $\operatorname{dist}_{n-1}(s,v) = \lim_{k \to \infty} \operatorname{dist}_k(s,v) = \operatorname{dist}(s,v)$.
- If for all $v \in V$, $\operatorname{dist}_{n-1}(s,v) \leq \operatorname{dist}_n(s,v)$, then there are no negative length cycles.

Bellman-Ford

(single source) shortest paths: source $s \in V$, can reach every other node

```
for each v \in V
     d_0[s][v] = \infty
d_0[s][s] = 0
for 1 \le k < n, v \in V
     d_k[s][v] = d_{k-1}[s][v]
     for \mu \in N^-(v)
          d_k[s][v] = \min\{d_k[s][v], d_{k-1}[s][u] + \ell(u, v)\}
for v \in V
     if d_n[s][v] < d_{n-1}[s][v]
          return ''negative cycle detected''
return d_{n-1}[s][\cdot]
```

correctness: clear

complexity:

- time
 - clearly $O(n^3)$
 - better: O(mn), $d_k[s][\cdot]$ updates along edges
- space
 - clearly $O(n^2)$
 - better: only store $d_{\text{cur}}[s][\cdot]$ and $d_{\text{prev}}[s][\cdot] \implies O(n)$

Bellman-Ford (II)

remarks:

• compute actual paths by storing pointers indicating how $d_k[s][\cdot]$ was updated, e.g.,

$$v_{k-1} = \underset{u \in V}{\operatorname{arg \, min}} \left\{ \operatorname{dist}_{k-1}(s, u) + \ell(u, v_k) \right\}.$$

- detecting negative cycles
 - Bellman-Ford will detect any negative cycles *reachable from s* in *G*
 - \implies one Bellman-Ford call *per vertex* will detect if there is *any* negative cycle in G $\implies O(mn^2)$ time
 - better: consider $G' = (V \cup \{s'\}, E \cup \{(s',v)\}_{v \in V})$ with $\ell'(s',v) = 0$
 - \implies all negative cycles in G are reachable from s' in G'
 - \implies one Bellman-Ford required \implies O(mn) time
- directed acyclic graphs
 - no (negative) cycles
 - can simplify Bellman-Ford so $\operatorname{dist}_k(s,\cdot)$ only updates v_k , according to topological ordering $v_1 \prec v_2 \prec \cdots \prec v_n$ yields Dijkstra-esque algorithm
 - $\implies O(m+n)$ time (exercise)

All-Pairs Shortest Paths

Definition

G = (V, E) directed (simple) graph, $\ell : E \to \mathbb{Z}$. The **shortest path problem** is to:

- **given** $s, t \in V$, find a minimum length (s, t)-path
- given $s \in V$, compute dist(s, t) for all $t \in V$ (single-source)
- compute dist(s, t) for all $s, t \in V$ (all pairs)

single-source:

- Dijkstra:
 - non-negative lengths
 - $O((m+n)\log n)$ time (heaps), $O(m+n\log n)$ (Fibonacci heaps)
- Bellman-Ford:
 - arbitrary weights
 - O(mn) time

All-Pairs Shortest Paths (II)

Definition

G = (V, E) directed (simple) graph, $\ell : E \to \mathbb{Z}$. The **shortest path problem** is to:

- **given** $s, t \in V$, find a minimum length (s, t)-path
- given $s \in V$, compute dist(s, t) for all $t \in V$ (single-source)
- compute dist(s, t) for all $s, t \in V$ (all pairs)

all-pairs:

- *n* runs of *Dijkstra*:
 - non-negative lengths
 - $O(n \cdot (m+n) \log n)$ time (heaps), $O(n \cdot (m+n \log n))$ (Fibonacci heaps)
- *n* runs of *Bellman-Ford*:
 - arbitrary weights
 - $O(n \cdot mn) \text{ time } \mapsto \Theta(n^4) \text{ if } m = \Theta(n^2)$

question: can we do better?

All-Pairs Shortest Paths (III)

idea: use a new parameterization of the subproblems

Definition

G = (V, E) directed (simple) graph, with edge length function $\ell : E \to \mathbb{Z}$. Order V as $v_1 \prec v_2 \prec \cdots \prec v_n$. A (u, v)-walk $u = w_0 \to w_1 \to \cdots \to w_i = v$ has **intermediate index** $\leq j$, if $w_1, \ldots, w_{i-1} \in \{v_1, \ldots, v_j\}$. For $s, t \in V$, define $\text{dist}^k(s, t)$ to be the length of the shortest (s, t)-walk of intermediate index $\leq k$.

- \blacksquare dist⁰ $(v_3, v_4) = \ell(v_3, v_4) = 8$
- \bullet dist¹(v_3, v_4) = 5
- \blacksquare dist²(v_3, v_4) = 4

All-Pairs Shortest Paths (IV)

Lemma

G = (V, E), $\ell : E \to \mathbb{Z}$, with no negative cycles. Then for all $s, t \in V$, $dist^0(s, t) = \ell(s, t)$, and

$$\operatorname{dist}^{k}(s,t) = \min \begin{cases} \operatorname{dist}^{k-1}(s,t) \\ \operatorname{dist}^{k-1}(s,v_{k}) + \operatorname{dist}^{k-1}(v_{k},t) \end{cases}.$$

Proof.

Let $s = w_0 \to w_1 \to w_2 \to \cdots \to w_i = t$ be a shortest length (s, t)-walk of intermediate index $\leq k$ and length dist^k(s, t). There are two cases:

- index < k: hence is of value dist^{k-1}(s,t)
- index = k:
 - lacktriangledown no negative cycles \implies shortest walk is path \implies v_k appears exactly once
 - $\implies s \leadsto v_k$ path and $v_k \leadsto t$ path are of index < k, and must be *shortest* paths

Floyd-Warshall

for
$$1 \le i, j \le n$$

 $d^{0}[i][j] = \ell(i, j)$
for $1 \le k \le n$
for $1 \le i, j \le n$

$$d^{k}[i][j] = \min \begin{cases} d^{k-1}[i][j] \\ d^{k-1}[i][k] + d^{k-1}[k][j] \end{cases}$$
for $1 \le i \le n$
if $d^{n}[i][i] < 0$
return ''negative cycle detected''

remarks:

compute actual paths by storing pointers indicating how d^k[·][·] was updated

complexity:

- $O(n^3)$ time
- space
 - clearly $O(n^3)$
 - better: only store $d^{\text{cur}}[\cdot][\cdot]$ and $d^{\text{prev}}[\cdot][\cdot] \implies O(n^2)$

correctness:

- if *no* negative cycles, correctness is clear
- if *some* negative cycle, ???

Floyd-Warshall (II)

Proposition

G = (V, E), $\ell : E \to \mathbb{Z}$, with some negative cycle. Then the Floyd-Warshall algorithm correctly detects this cycle.

Proof.

Let $k \le n$ be the minimum index of a negative length cycle

 $k = \min_{\text{negative length } C} \max_{i:v_i \in C} i$. Pick such a cycle C, where C is

$$v_k = w_0 \rightarrow w_1 = v_i \rightarrow \cdots \rightarrow w_j = v_k$$
. By choice of k ,

$$d^{k-1}[k][i] = \operatorname{dist}^{k-1}(k,i) \le \ell(w_0,w_1)$$

$$d^{k-1}[i][k] = \operatorname{dist}^{k-1}(i,k) \le \ell(w_1, w_2) + \dots + \ell(w_{j-1}, w_j)$$

$$\implies d^{k}[k][k] \le d^{k-1}[k][i] + d^{k-1}[i][k] = \ell(w_0, w_1) + \dots + \ell(w_{j-1}, w_j) = \ell(C) < 0$$

$$\implies d^{k+1}[k][k] \le d^k[k][k] < 0$$

$$\implies d^n[k][k] < 0 \implies$$
 negative cycle detected

Floyd-Warshall

for
$$1 \le i, j \le n$$

 $d^0[i][j] = \ell(i, j)$
for $1 \le k \le n$
for $1 \le i, j \le n$

$$d^k[i][j] = \min \begin{cases} d^{k-1}[i][j] \\ d^{k-1}[i][k] + d^{k-1}[k][j] \end{cases}$$
for $1 \le i \le n$
if $d^n[i][i] < 0$
return ''negative cycle detected''

remarks:

compute actual paths by storing pointers indicating how d^k[·][·] was updated

complexity:

- $O(n^3)$ time
- space
 - clearly $O(n^3)$
 - better: only store $d^{\text{cur}}[\cdot][\cdot]$ and $d^{\text{prev}}[\cdot][\cdot] \implies O(n^2)$

correctness:

- if *no* negative cycles, correctness is clear
- if some negative cycle, correctness is now done

Overview (II)

logistics:

lacksquare pset1 out, due W10 (tomorrow) — can submit in groups of ≤ 3

today:

- shortest paths
 - \blacksquare with negative lengths Bellman-Ford in O(mn) time
 - all-pairs Floyd-Warshall in $O(n^3)$ time

next time:

more dynamic programming

TOC

- 1 Title
- 2 Overview
- 3 Shortest Paths, with Negative Lengths
- 4 Shortest Paths, with Negative Lengths (II)
- 5 Shortest Paths, with Negative Lengths (III)
- 6 Dijkstra's Algorithm
- 7 Dijkstra's Algorithm, with Negative Lengths?
- 8 Shortest Paths, with Negative Lengths (IV)
- 9 Shortest Paths, with Negative Lengths (V)
- 10 Shortest Paths, with Negative Lengths (VI)
- 11 Shortest Paths, with Negative Lengths (VII)
- 12 Shortest Paths, with Negative Lengths (VIII)
- 13 Shortest Paths, with Negative Lengths (IX)

- 14 Shortest Paths, with Negative Lengths (X)
- 15 Shortest Paths, with Negative Lengths (XI)
- 16 Shortest Paths, with Negative Lengths (XII)
- 17 Shortest Paths, with Negative Lengths (VII)
 - 18 Bellman-Ford
- 19 Bellman-Ford (II)
- 20 All-Pairs Shortest Paths
- 21 All-Pairs Shortest Paths (II)
- 22 All-Pairs Shortest Paths (III)
- 23 All-Pairs Shortest Paths (IV)
- 24 Floyd-Warshall
- 25 Floyd-Warshall (II)
- 26 Floyd-Warshall
- 27 Overview (II)