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Overview

logistics:

pset2 out, due W10 — can submit in groups of ≤ 3

last time:

shortest paths

with negative lengths

all-pairs

today:

dynamic programming optimized

edit distance

longest increasing subsequence
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Dynamic Programming

dynamic programming:

develop recursive algorithm

understand structure of subproblems

names of subproblems

number of subproblems

dependency graph amongst subproblems

memoize (implicitly, or explicitly)

analysis (time, space)

further optimization

remarks:

memoizing a recursive algorithm does not necessarily lead to an efficient

algorithm (e.g., knapsack problem) — you need the right recursion

recognizing that dynamic programming applies to a problem can be non-obvious
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Edit Distance

Definition

Let x , y ∈ Σ? be two strings over the alphabet Σ. The edit distance between x and

y is the minimum number of insertions, deletions and substitutions required to

transform x into y .

Example

money → boney → bone → bona → bo a → boba =⇒ edit distance ≤ 5

remarks:

edit distance ≤ 4

intermediate strings can be arbitrary in Σ?

4 / 26



Edit Distance (II)

Definition

Let x , y ∈ Σ? be two strings over the alphabet Σ. An alignment is a sequence M of

pairs of indices (i , j) such that

an index could be empty, such as (, 4) or (5, )

each index appears exactly once per coordinate

no crossings: for (i , j), (i ′, j ′) ∈ M either i < i ′ and j < j ′, or i > i ′ and j > j ′

The cost of an alignment is the number of pairs (i , j) where xi 6= yj .

Example

mon ey

bo ba

M = {(1, 1), (2, 2), (3, ), (, 3), (4, 4), (5, )}, cost 5
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Edit Distance (III)

question: given two strings x , y ∈ Σ?, compute their edit distance

Lemma

The edit distance between two strings x , y ∈ Σ? is the minimum cost of an

alignment.

Proof.

Exercise.

question: given two strings x , y ∈ Σ?, compute the minimum cost of an alignment

remarks:

can also ask to compute the alignment itself

widely solved in practice, e.g., the BLAST heuristic for DNA edit distance
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Edit Distance (IV)

Lemma

Let x , y ∈ Σ∗ be strings, and a, b ∈ Σ be symbols. Then

dist(x ◦ a, y ◦ b) = min


dist(x , y ) + 1Ja 6= bK
dist(x , y ◦ b) + 1

dist(x ◦ a, y ) + 1

.

Proof.

In an optimal alignment from x ◦ a to y ◦ b, either:

a aligns to b, with cost 1Ja 6= bK
a is deleted, with cost 1

b is deleted, with cost 1
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Edit Distance (V)

iterative algorithm:

dist(x1x2 · · · xn, y1y2 · · · ym)
for 0 ≤ i ≤ n

d [i ][0] = i

for 0 ≤ j ≤ m
d [0][j ] = j

for 0 ≤ i ≤ n
for 0 ≤ j ≤ m

d [i ][j ] = min


d [i − 1][j − 1] + 1Jxi 6= yjK
d [i − 1][j ] + 1
d [i ][j − 1] + 1

return d [n][m]

correctness: clear

complexity:

O(nm) time

space

clearly O(nm)

better: only store d [cur][·]
and d [prev][·] =⇒ O(m)

question: are we done?
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Edit Distance (VI)

Corollary

Given two strings x , y ∈ Σ? can compute the minimum cost alignment in

O(nm)-time and O(nm)-space.

Proof.

Exercise. Hint: follow how each subproblem was solved.
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Edit Distance (VII)

dependency graph:
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computing the alignment:

how update rule is computed yields a pointer

for each (i , j)

one pointer per optimal choice — multiple

pointers are possible

any path from (n,m) to boundary yields

optimal alignment

compute path via graph search

saving space:

only keep most recent two columns

=⇒ we lost the pointers!

question: compute the alignment in O(n + m)

space?
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Edit Distance, Better

Lemma

Let x , y ∈ Σ? be strings, with n = |x | and m = |y |. Then for any 1 ≤ i ≤ n,

dist(x , y ) = min
1≤j≤m

{dist(x≤i , y≤j) + dist(x>i , y>j)} .

Proof.

≤: Fix j . Let A≤ and A> be alignments respectively between x≤i , y≤j and x>i , y>j ,

with respective costs dist(x≤i , y≤j) and dist(x>i , y>j). Then A≤ ◦ A> is an alignment

between x and y of cost dist(x≤i , y≤j) + dist(x>i , y>j).

=: Any alignment A between x and y will align x≤i to some prefix y≤j of y in an

alignment A≤, and align x>i to the suffix y>j in an alignment A>, and hence for this

j we have dist(x , y ) = dist(x≤i , y≤j) + dist(x>i , y>j).
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Edit Distance, Better (II)

Definition

Let x , y ∈ Σ? be strings, with n = |x | and m = |y |. Then for any 1 ≤ i ≤ n, define

meeti(x , y ) to be the j ∈ [m] where x≤i aligns to y≤j in an optimal alignment. That

is, meeti(x , y ) = min{j : dist(x , y ) = dist(x≤i , y≤j) + dist(x>i , y>j)} .

remark: previous lemma asserts such a j exists

meet(i,x1x2 · · · xn, y1y2 · · · ym)
for 1 ≤ j ≤ m

compute dist(x≤i , y≤j)

for 1 ≤ j ≤ m
compute dist(x>i , y>j)

output min j st dist(x , y) =

dist(x≤i , y≤j) + dist(x>i , y>j)

correctness: clear

complexity:

dist(x≤i ,y ) already computes
dist(x≤i , y≤j) for all j

O(nm) time, O(m) space

dist( reverse(x>i), reverse(y )) already

computes dist(x>i , y>j) for all j

=⇒ O(nm) time, O(m) space
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Edit Distance, Better (III)

divide and conqueror:

dist-align(x1x2 · · · xn, y1y2 · · · ym)
if n = 1

use dist(x , y)

if m = 1

use dist(x , y)

j = meet(n − 1, x , y)
A≤ = dist-align(x≤n−1, y≤j)

A> = dist-align(x>n−1, y>j)

return A≤ ◦ A>

correctness: clear

complexity:

base cases

O(m) time, O(1) space

O(n) time, O(1) space

meetn−1(x , y )

O(nm) time, O(n + m) space

space recurrence

S(n,m) ≤ max{O(n + m),S(n − 1,m),S(1,m)}
=⇒ S(n,m) ≤ O(n + m)

time recurrence

T (n,m) ≤ O(nm) + T (n − 1,m) + T (1,m)

=⇒ T (n,m) ≤ O(n2m)

question: can we do better?
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Edit Distance, Better (IV)

divide and conqueror:

dist-align’(x1x2 · · · xn, y1y2 · · · ym)
if n = 1

use dist(x , y)

if m = 1

use dist(x , y)

j = meet(b n
2
c, x , y)

A≤ = dist-align’(x≤b n
2
c, y≤j)

A> = dist-align’(x>b n
2
c, y>j)

return A≤ ◦ A>

correctness: clear

complexity:

base cases: O(n + m) time, O(1) space

meetb n
2
c(x , y ): O(nm) time, O(n + m) space

space recurrence

S(n,m) ≤ max{O(n + m),S(b n
2
c,m),S(n − b n

2
c,m)}

=⇒ S(n,m) ≤ O(n + m)

time recurrence

T (n,m) ≤ O(nm) + T (b n
2
c, j) + T (n − b n

2
c,m − j)

guess T (n,m) ≤ α · nm

T (n,m) . β ·nm +α · n
2
· j +α · n

2
·(m− j) = (β+ α

2
)nm

=⇒ valid as long as α ≥ 2β

=⇒ T (n,m) ≤ O(nm)

=⇒ computing actual alignment in O(nm)-time and

O(n + m)-space.
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Longest Increasing Subsequence

Definition

A sequence of integers, of length n, is an ordered list a1, a2, . . . , an ∈ Z. The

sequence is increasing if a1 < a2 < · · · < an.

A subsequence of a1, a2, . . . , an is any sequence of the form ai1 , ai2 , . . . , aim , where

1 ≤ i1 < · · · < im ≤ n. The subsequence is increasing (IS) if ai1 < · · · < ain .

Example

02139947200854008540943059472061801 — sequence

02139947200854008540943059472061801 — subsequence

02139947200854008540943059472061801 — increasing subsequence

02139947200854008540943059472061801 — longer increasing subsequence
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Longest Increasing Subsequence (II)

Definition

The longest increasing subsequence problem (LIS) is to, given a sequence

a1, a2, . . . , an ∈ Z, compute the (length of) the longest increasing subsequence.

goal: solve with dynamic programming

identify subproblems

develop recursion

memoize

analyze

optimize time

remark: without loss of generality the ai are distinct, up to a cost of Θ(n log n) in

runtime (exercise)
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Longest Increasing Subsequence (III)

Lemma

For a sequence a = a1, a2, . . . , an, define LIS(a) to be the length of the longest

increasing subsequence. Define LIS?(a) to be the length of the longest increasing

subsequence that contains the last element an. Then

1 LIS(a1, a2, . . . , an) = max1≤i≤n LIS?(a1, a2, . . . , ai).

2 LIS?(a1, a2, . . . , an) = maxi :ai<an {1 + LIS?(a1, a2, . . . , ai), 1}.

Proof.

1 Clear.

2 For i with ai < an, an IS? ai1 < · · · < aim−1 < aim=i of a≤i can append an to yield

an IS? ai1 < · · · < aim−1 < ai < an of a, and every IS? of a can be decomposed

this way, or by taking the singleton sequence an. Now take maximums.
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Longest Increasing Subsequence (IV)

Lemma

Define LIS?(a) to be the length of the longest increasing subsequence that contains

the last element an. Then LIS?(a1, a2, . . . , an) = maxi :ai<an {1 + LIS?(a≤i), 1}.

Example

02139947200854008540943059472061801

1 02139947200854008540943059472061801 — LIS?(a1) = 1

2 02139947200854008540943059472061801 — LIS?(a1, a2) = 2

3 02139947200854008540943059472061801 — LIS?(a1, . . . , a3) = 2

4 02139947200854008540943059472061801 — LIS?(a1, . . . , a4) = 3

5 02139947200854008540943059472061801 — LIS?(a1, . . . , a5) = 4

6 02139947200854008540943059472061801 — LIS?(a1, . . . , a6) = 4
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Longest Increasing Subsequence (V)

iterative algorithm:

LIS(a1, a2, . . . , an):

for 1 ≤ i ≤ n
L?[i ] = 1

L = 0

for 1 ≤ i ≤ n
for 1 ≤ j < i

if aj < ai
L?[i ] = max{L?[i ], 1 + L?[j ])}

L = max{L,L?[i ]}
return L

correctness: clear

complexity:

O(n) space

O(n2) time — do better?
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Longest Increasing Subsequence, Faster

LIS?(a1, a2, . . . , ai) = max
i :aj<ai

{1 + LIS?(a1, a2, . . . , aj), 1} .

This recursive step does too much — all (aj , ai) are compared! Use sorting?

idea: define subproblem based on length of increasing subsequences

Definition

For sequence a1, a2, . . . , an, define the end of increasing subsequence EIS(`, a) to

be the minimum ai such that there is an increasing sequence of length ` that

terminates at ai , that is,
EIS(`, a) := min

i :ai1<ai2<···<ai`=i
ai .

EIS(`, a) =∞ if ` > LIS(a).

intuition: prefer the ‘smallest’ IS of each size
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Longest Increasing Subsequence, Faster (II)

Definition

For sequence a1, a2, . . . , an, define EIS(`, a) to be the minimum ai such that there is

an increasing sequence of length ` that terminates at ai . EIS(`, a) =∞ if ` > LIS(a).

Lemma

LIS(a) = max`:EIS(`,a)<∞ `.

Proof.

Clear.
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Longest Increasing Subsequence, Faster (III)

Definition

For sequence a1, a2, . . . , an, define EIS(`, a) to be the minimum ai such that there is

an increasing sequence of length ` that terminates at ai . EIS(`, a) =∞ if ` > LIS(a).

Lemma

For sequence a1, a2, . . . , an, EIS(`, a) < EIS(` + 1, a), for all `. That is, EIS(·, a) is a

strictly sorted sequence.

Proof.

Let ai1 < ai2 < · · · < ai` be a witness for EIS(`, a) = ai` , and let

ai ′1 < ai ′2 < · · · < ai ′
`
< ai ′

`+1
be a witness for EIS(` + 1, a) = ai ′

`+1
. Then as

ai ′1 < ai ′2 < · · · < ai ′
`

is length-` increasing sequence we have that

EIS(`, a) ≤ ai ′
`
< ai ′

`+1
= EIS(` + 1, a).
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Longest Increasing Subsequence, Faster (IV)

Lemma

EIS(`, (a1, . . . , an, an+1)) =

1 EIS(`, a), if EIS(`, a) < an+1

2 EIS(`, a), if EIS(`− 1, a) > an+1

3 an+1, if EIS(`, a) > an+1 and EIS(`− 1, a) < an+1

Proof.

1 Clear.

2 Clear.

3 Exists increasing sequence of length ` terminating at an+1
iff exists increasing sequence of length `− 1 terminating at ai < an+1, for some i

iff exists increasing sequence of length `− 1 terminating at EIS(`− 1, a) < an+1
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Longest Increasing Subsequence, Faster (V)

Lemma

For a fixed a, EIS(`, a) strictly increases with `.

Lemma

EIS(`, (a1, . . . , an, an+1)) =

1 EIS(`, a), if EIS(`, a) < an+1 or EIS(`− 1, a) > an+1

2 an+1, if EIS(`, a) > an+1 and EIS(`− 1, a) < an+1

Corollary

EIS(`, (a, an+1)) 6= EIS(`, a) for exactly one value of `

This value of ` can be found by binary search.

remarks:

uses distinctness of the ai
boundary cases need attention, e.g., EIS(`, a) =∞, or `− 1 = 0
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Longest Increasing Subsequence, Faster (VI)

LIS’(a1, a2, . . . , an):

for 1 ≤ ` ≤ n
E [`] =∞

for 1 ≤ i ≤ n
` = min{k : E [k] > ai}
E [`] = ai

for 1 ≤ i ≤ n
if E [i ] <∞

L = i

return L

correctness: clear

complexity:

O(n) space

time

E [·] remains sorted throughout

=⇒ O(log n) time to compute min{k : E [k ] > ai}
=⇒ O(n log n) total runtime

remarks:

making ai distinct costs Θ(n log n) extra time

can compute actual subsequence in same time

bound, using back pointers (exercise)
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Overview (II)

logistics:

pset2 out, due W10 — can submit in groups of ≤ 3

today:

dynamic programming optimized

edit distance

longest increasing subsequence

next time:

randomized algorithms
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