
cs473: Algorithms
Lecture 6: Dynamic Programming

Michael A. Forbes Chandra Chekuri

University of Illinois at Urbana-Champaign

September 12, 2019

1 / 26

Overview

logistics:

pset2 out, due W10 — can submit in groups of ≤ 3

last time:

shortest paths

with negative lengths

all-pairs

today:

dynamic programming optimized

edit distance

longest increasing subsequence

2 / 26

Dynamic Programming

dynamic programming:

develop recursive algorithm

understand structure of subproblems

names of subproblems

number of subproblems

dependency graph amongst subproblems

memoize (implicitly, or explicitly)

analysis (time, space)

further optimization

remarks:

memoizing a recursive algorithm does not necessarily lead to an efficient

algorithm (e.g., knapsack problem) — you need the right recursion

recognizing that dynamic programming applies to a problem can be non-obvious

3 / 26

Edit Distance

Definition

Let x , y ∈ Σ? be two strings over the alphabet Σ. The edit distance between x and

y is the minimum number of insertions, deletions and substitutions required to

transform x into y .

Example

money → boney → bone → bona → bo a → boba =⇒ edit distance ≤ 5

remarks:

edit distance ≤ 4

intermediate strings can be arbitrary in Σ?

4 / 26

Edit Distance (II)

Definition

Let x , y ∈ Σ? be two strings over the alphabet Σ. An alignment is a sequence M of

pairs of indices (i , j) such that

an index could be empty, such as (, 4) or (5,)

each index appears exactly once per coordinate

no crossings: for (i , j), (i ′, j ′) ∈ M either i < i ′ and j < j ′, or i > i ′ and j > j ′

The cost of an alignment is the number of pairs (i , j) where xi 6= yj .

Example

mon ey

bo ba

M = {(1, 1), (2, 2), (3,), (, 3), (4, 4), (5,)}, cost 5

5 / 26

Edit Distance (III)

question: given two strings x , y ∈ Σ?, compute their edit distance

Lemma

The edit distance between two strings x , y ∈ Σ? is the minimum cost of an

alignment.

Proof.

Exercise.

question: given two strings x , y ∈ Σ?, compute the minimum cost of an alignment

remarks:

can also ask to compute the alignment itself

widely solved in practice, e.g., the BLAST heuristic for DNA edit distance

6 / 26

Edit Distance (IV)

Lemma

Let x , y ∈ Σ∗ be strings, and a, b ∈ Σ be symbols. Then

dist(x ◦ a, y ◦ b) = min


dist(x , y) + 1Ja 6= bK
dist(x , y ◦ b) + 1

dist(x ◦ a, y) + 1

.

Proof.

In an optimal alignment from x ◦ a to y ◦ b, either:

a aligns to b, with cost 1Ja 6= bK
a is deleted, with cost 1

b is deleted, with cost 1

7 / 26

Edit Distance (V)

iterative algorithm:

dist(x1x2 · · · xn, y1y2 · · · ym)
for 0 ≤ i ≤ n

d [i][0] = i

for 0 ≤ j ≤ m
d [0][j] = j

for 0 ≤ i ≤ n
for 0 ≤ j ≤ m

d [i][j] = min


d [i − 1][j − 1] + 1Jxi 6= yjK
d [i − 1][j] + 1
d [i][j − 1] + 1

return d [n][m]

correctness: clear

complexity:

O(nm) time

space

clearly O(nm)

better: only store d [cur][·]
and d [prev][·] =⇒ O(m)

question: are we done?

8 / 26

Edit Distance (VI)

Corollary

Given two strings x , y ∈ Σ? can compute the minimum cost alignment in

O(nm)-time and O(nm)-space.

Proof.

Exercise. Hint: follow how each subproblem was solved.

9 / 26

Edit Distance (VII)

dependency graph:

n
m

n−1
m

n
m−1

n−1
m−1

...

· · ·

. . .

n
0

n−1
0

0
m

0
m−1

...

· · · 0
0

computing the alignment:

how update rule is computed yields a pointer

for each (i , j)

one pointer per optimal choice — multiple

pointers are possible

any path from (n,m) to boundary yields

optimal alignment

compute path via graph search

saving space:

only keep most recent two columns

=⇒ we lost the pointers!

question: compute the alignment in O(n + m)

space?
10 / 26

Edit Distance, Better

Lemma

Let x , y ∈ Σ? be strings, with n = |x | and m = |y |. Then for any 1 ≤ i ≤ n,

dist(x , y) = min
1≤j≤m

{dist(x≤i , y≤j) + dist(x>i , y>j)} .

Proof.

≤: Fix j . Let A≤ and A> be alignments respectively between x≤i , y≤j and x>i , y>j ,

with respective costs dist(x≤i , y≤j) and dist(x>i , y>j). Then A≤ ◦ A> is an alignment

between x and y of cost dist(x≤i , y≤j) + dist(x>i , y>j).

=: Any alignment A between x and y will align x≤i to some prefix y≤j of y in an

alignment A≤, and align x>i to the suffix y>j in an alignment A>, and hence for this

j we have dist(x , y) = dist(x≤i , y≤j) + dist(x>i , y>j).

11 / 26

Edit Distance, Better (II)

Definition

Let x , y ∈ Σ? be strings, with n = |x | and m = |y |. Then for any 1 ≤ i ≤ n, define

meeti(x , y) to be the j ∈ [m] where x≤i aligns to y≤j in an optimal alignment. That

is, meeti(x , y) = min{j : dist(x , y) = dist(x≤i , y≤j) + dist(x>i , y>j)} .

remark: previous lemma asserts such a j exists

meet(i,x1x2 · · · xn, y1y2 · · · ym)
for 1 ≤ j ≤ m

compute dist(x≤i , y≤j)

for 1 ≤ j ≤ m
compute dist(x>i , y>j)

output min j st dist(x , y) =

dist(x≤i , y≤j) + dist(x>i , y>j)

correctness: clear

complexity:

dist(x≤i ,y) already computes
dist(x≤i , y≤j) for all j

O(nm) time, O(m) space

dist(reverse(x>i), reverse(y)) already

computes dist(x>i , y>j) for all j

=⇒ O(nm) time, O(m) space
12 / 26

Edit Distance, Better (III)

divide and conqueror:

dist-align(x1x2 · · · xn, y1y2 · · · ym)
if n = 1

use dist(x , y)

if m = 1

use dist(x , y)

j = meet(n − 1, x , y)
A≤ = dist-align(x≤n−1, y≤j)

A> = dist-align(x>n−1, y>j)

return A≤ ◦ A>

correctness: clear

complexity:

base cases

O(m) time, O(1) space

O(n) time, O(1) space

meetn−1(x , y)

O(nm) time, O(n + m) space

space recurrence

S(n,m) ≤ max{O(n + m),S(n − 1,m),S(1,m)}
=⇒ S(n,m) ≤ O(n + m)

time recurrence

T (n,m) ≤ O(nm) + T (n − 1,m) + T (1,m)

=⇒ T (n,m) ≤ O(n2m)

question: can we do better?

13 / 26

Edit Distance, Better (IV)

divide and conqueror:

dist-align’(x1x2 · · · xn, y1y2 · · · ym)
if n = 1

use dist(x , y)

if m = 1

use dist(x , y)

j = meet(b n
2
c, x , y)

A≤ = dist-align’(x≤b n
2
c, y≤j)

A> = dist-align’(x>b n
2
c, y>j)

return A≤ ◦ A>

correctness: clear

complexity:

base cases: O(n + m) time, O(1) space

meetb n
2
c(x , y): O(nm) time, O(n + m) space

space recurrence

S(n,m) ≤ max{O(n + m),S(b n
2
c,m),S(n − b n

2
c,m)}

=⇒ S(n,m) ≤ O(n + m)

time recurrence

T (n,m) ≤ O(nm) + T (b n
2
c, j) + T (n − b n

2
c,m − j)

guess T (n,m) ≤ α · nm

T (n,m) . β ·nm +α · n
2
· j +α · n

2
·(m− j) = (β+ α

2
)nm

=⇒ valid as long as α ≥ 2β

=⇒ T (n,m) ≤ O(nm)

=⇒ computing actual alignment in O(nm)-time and

O(n + m)-space.

14 / 26

Longest Increasing Subsequence

Definition

A sequence of integers, of length n, is an ordered list a1, a2, . . . , an ∈ Z. The

sequence is increasing if a1 < a2 < · · · < an.

A subsequence of a1, a2, . . . , an is any sequence of the form ai1 , ai2 , . . . , aim , where

1 ≤ i1 < · · · < im ≤ n. The subsequence is increasing (IS) if ai1 < · · · < ain .

Example

02139947200854008540943059472061801 — sequence

02139947200854008540943059472061801 — subsequence

02139947200854008540943059472061801 — increasing subsequence

02139947200854008540943059472061801 — longer increasing subsequence

15 / 26

Longest Increasing Subsequence (II)

Definition

The longest increasing subsequence problem (LIS) is to, given a sequence

a1, a2, . . . , an ∈ Z, compute the (length of) the longest increasing subsequence.

goal: solve with dynamic programming

identify subproblems

develop recursion

memoize

analyze

optimize time

remark: without loss of generality the ai are distinct, up to a cost of Θ(n log n) in

runtime (exercise)

16 / 26

Longest Increasing Subsequence (III)

Lemma

For a sequence a = a1, a2, . . . , an, define LIS(a) to be the length of the longest

increasing subsequence. Define LIS?(a) to be the length of the longest increasing

subsequence that contains the last element an. Then

1 LIS(a1, a2, . . . , an) = max1≤i≤n LIS?(a1, a2, . . . , ai).

2 LIS?(a1, a2, . . . , an) = maxi :ai<an {1 + LIS?(a1, a2, . . . , ai), 1}.

Proof.

1 Clear.

2 For i with ai < an, an IS? ai1 < · · · < aim−1 < aim=i of a≤i can append an to yield

an IS? ai1 < · · · < aim−1 < ai < an of a, and every IS? of a can be decomposed

this way, or by taking the singleton sequence an. Now take maximums.

17 / 26

Longest Increasing Subsequence (IV)

Lemma

Define LIS?(a) to be the length of the longest increasing subsequence that contains

the last element an. Then LIS?(a1, a2, . . . , an) = maxi :ai<an {1 + LIS?(a≤i), 1}.

Example

02139947200854008540943059472061801

1 02139947200854008540943059472061801 — LIS?(a1) = 1

2 02139947200854008540943059472061801 — LIS?(a1, a2) = 2

3 02139947200854008540943059472061801 — LIS?(a1, . . . , a3) = 2

4 02139947200854008540943059472061801 — LIS?(a1, . . . , a4) = 3

5 02139947200854008540943059472061801 — LIS?(a1, . . . , a5) = 4

6 02139947200854008540943059472061801 — LIS?(a1, . . . , a6) = 4

18 / 26

Longest Increasing Subsequence (V)

iterative algorithm:

LIS(a1, a2, . . . , an):

for 1 ≤ i ≤ n
L?[i] = 1

L = 0

for 1 ≤ i ≤ n
for 1 ≤ j < i

if aj < ai
L?[i] = max{L?[i], 1 + L?[j])}

L = max{L,L?[i]}
return L

correctness: clear

complexity:

O(n) space

O(n2) time — do better?

19 / 26

Longest Increasing Subsequence, Faster

LIS?(a1, a2, . . . , ai) = max
i :aj<ai

{1 + LIS?(a1, a2, . . . , aj), 1} .

This recursive step does too much — all (aj , ai) are compared! Use sorting?

idea: define subproblem based on length of increasing subsequences

Definition

For sequence a1, a2, . . . , an, define the end of increasing subsequence EIS(`, a) to

be the minimum ai such that there is an increasing sequence of length ` that

terminates at ai , that is,
EIS(`, a) := min

i :ai1<ai2<···<ai`=i
ai .

EIS(`, a) =∞ if ` > LIS(a).

intuition: prefer the ‘smallest’ IS of each size

20 / 26

Longest Increasing Subsequence, Faster (II)

Definition

For sequence a1, a2, . . . , an, define EIS(`, a) to be the minimum ai such that there is

an increasing sequence of length ` that terminates at ai . EIS(`, a) =∞ if ` > LIS(a).

Lemma

LIS(a) = max`:EIS(`,a)<∞ `.

Proof.

Clear.

21 / 26

Longest Increasing Subsequence, Faster (III)

Definition

For sequence a1, a2, . . . , an, define EIS(`, a) to be the minimum ai such that there is

an increasing sequence of length ` that terminates at ai . EIS(`, a) =∞ if ` > LIS(a).

Lemma

For sequence a1, a2, . . . , an, EIS(`, a) < EIS(` + 1, a), for all `. That is, EIS(·, a) is a

strictly sorted sequence.

Proof.

Let ai1 < ai2 < · · · < ai` be a witness for EIS(`, a) = ai` , and let

ai ′1 < ai ′2 < · · · < ai ′
`
< ai ′

`+1
be a witness for EIS(` + 1, a) = ai ′

`+1
. Then as

ai ′1 < ai ′2 < · · · < ai ′
`

is length-` increasing sequence we have that

EIS(`, a) ≤ ai ′
`
< ai ′

`+1
= EIS(` + 1, a).

22 / 26

Longest Increasing Subsequence, Faster (IV)

Lemma

EIS(`, (a1, . . . , an, an+1)) =

1 EIS(`, a), if EIS(`, a) < an+1

2 EIS(`, a), if EIS(`− 1, a) > an+1

3 an+1, if EIS(`, a) > an+1 and EIS(`− 1, a) < an+1

Proof.

1 Clear.

2 Clear.

3 Exists increasing sequence of length ` terminating at an+1
iff exists increasing sequence of length `− 1 terminating at ai < an+1, for some i

iff exists increasing sequence of length `− 1 terminating at EIS(`− 1, a) < an+1

23 / 26

Longest Increasing Subsequence, Faster (V)

Lemma

For a fixed a, EIS(`, a) strictly increases with `.

Lemma

EIS(`, (a1, . . . , an, an+1)) =

1 EIS(`, a), if EIS(`, a) < an+1 or EIS(`− 1, a) > an+1

2 an+1, if EIS(`, a) > an+1 and EIS(`− 1, a) < an+1

Corollary

EIS(`, (a, an+1)) 6= EIS(`, a) for exactly one value of `

This value of ` can be found by binary search.

remarks:

uses distinctness of the ai
boundary cases need attention, e.g., EIS(`, a) =∞, or `− 1 = 0

24 / 26

Longest Increasing Subsequence, Faster (VI)

LIS’(a1, a2, . . . , an):

for 1 ≤ ` ≤ n
E [`] =∞

for 1 ≤ i ≤ n
` = min{k : E [k] > ai}
E [`] = ai

for 1 ≤ i ≤ n
if E [i] <∞

L = i

return L

correctness: clear

complexity:

O(n) space

time

E [·] remains sorted throughout

=⇒ O(log n) time to compute min{k : E [k] > ai}
=⇒ O(n log n) total runtime

remarks:

making ai distinct costs Θ(n log n) extra time

can compute actual subsequence in same time

bound, using back pointers (exercise)

25 / 26

Overview (II)

logistics:

pset2 out, due W10 — can submit in groups of ≤ 3

today:

dynamic programming optimized

edit distance

longest increasing subsequence

next time:

randomized algorithms

26 / 26

TOC

1 Title

2 Overview

3 Dynamic Programming

4 Edit Distance

5 Edit Distance (II)

6 Edit Distance (III)

7 Edit Distance (IV)

8 Edit Distance (V)

9 Edit Distance (VI)

10 Edit Distance (VII)

11 Edit Distance, Better

12 Edit Distance, Better (II)

13 Edit Distance, Better (III)

14 Edit Distance, Better (IV)

15 Longest Increasing Subsequence

16 Longest Increasing Subsequence (II)

17 Longest Increasing Subsequence (III)

18 Longest Increasing Subsequence (IV)

19 Longest Increasing Subsequence (V)

20 Longest Increasing Subsequence, Faster

21 Longest Increasing Subsequence, Faster (II)

22 Longest Increasing Subsequence, Faster (III)

23 Longest Increasing Subsequence, Faster (IV)

24 Longest Increasing Subsequence, Faster (V)

25 Longest Increasing Subsequence, Faster (VI)

26 Overview (II)

26 / 26

	Title
	Overview
	Dynamic Programming
	Edit Distance
	Edit Distance (II)
	Edit Distance (III)
	Edit Distance (IV)
	Edit Distance (V)
	Edit Distance (VI)
	Edit Distance (VII)
	Edit Distance, Better
	Edit Distance, Better (II)
	Edit Distance, Better (III)
	Edit Distance, Better (IV)
	Longest Increasing Subsequence
	Longest Increasing Subsequence (II)
	Longest Increasing Subsequence (III)
	Longest Increasing Subsequence (IV)
	Longest Increasing Subsequence (V)
	Longest Increasing Subsequence, Faster
	Longest Increasing Subsequence, Faster (II)
	Longest Increasing Subsequence, Faster (III)
	Longest Increasing Subsequence, Faster (IV)
	Longest Increasing Subsequence, Faster (V)
	Longest Increasing Subsequence, Faster (VI)
	Overview (II)

