Michael A. Forbes

Chandra Chekuri

University of Illinois at Urbana-Champaign

September 12, 2019

Overview

logistics:

- pset2 out, due W10 - can submit in groups of ≤ 3

last time:

■ shortest paths

- with negative lengths
- all-pairs

today:

■ dynamic programming optimized

- edit distance
- longest increasing subsequence

Dynamic Programming

dynamic programming:

- develop recursive algorithm

■ understand structure of subproblems

- names of subproblems
- number of subproblems

■ dependency graph amongst subproblems
■ memoize (implicitly, or explicitly)
■ analysis (time, space)
■ further optimization

remarks:

■ memoizing a recursive algorithm does not necessarily lead to an efficient algorithm (e.g., knapsack problem) - you need the right recursion
■ recognizing that dynamic programming applies to a problem can be non-obvious

Edit Distance

Definition

Let $x, y \in \Sigma^{\star}$ be two strings over the alphabet Σ. The edit distance between x and y is the minimum number of insertions, deletions and substitutions required to transform x into y.

Example

$\underline{\text { money }} \rightarrow$ boney \rightarrow bone \rightarrow bona \rightarrow bo_a \rightarrow boba \Longrightarrow edit distance ≤ 5

remarks:

- edit distance ≤ 4

■ intermediate strings can be arbitrary in Σ^{\star}

Edit Distance (II)

Definition

Let $x, y \in \Sigma^{\star}$ be two strings over the alphabet Σ. An alignment is a sequence M of pairs of indices (i, j) such that

■ an index could be empty, such as $(, 4)$ or (5,)

- each index appears exactly once per coordinate
\square no crossings: for $(i, j),\left(i^{\prime}, j^{\prime}\right) \in M$ either $i<i^{\prime}$ and $j<j^{\prime}$, or $i>i^{\prime}$ and $j>j^{\prime}$
The cost of an alignment is the number of pairs (i, j) where $x_{i} \neq y_{j}$.

Example

```
mon ey
bo ba
M={(1,1),(2, 2),(3,),(,3),(4,4),(5,)}, cost 5
```


Edit Distance (III)

question: given two strings $x, y \in \Sigma^{\star}$, compute their edit distance

Lemma

The edit distance between two strings $x, y \in \Sigma^{\star}$ is the minimum cost of an alignment.

Proof.

Exercise.

question: given two strings $x, y \in \Sigma^{\star}$, compute the minimum cost of an alignment remarks:

■ can also ask to compute the alignment itself
■ widely solved in practice, e.g., the BLAST heuristic for DNA edit distance

Edit Distance (IV)

Lemma

Let $x, y \in \Sigma^{*}$ be strings, and $a, b \in \Sigma$ be symbols. Then

$$
\operatorname{dist}(x \circ a, y \circ b)=\min \left\{\begin{array}{l}
\operatorname{dist}(x, y)+\mathbb{1} \llbracket a \neq b \rrbracket \\
\operatorname{dist}(x, y \circ b)+1 \\
\operatorname{dist}(x \circ a, y)+1
\end{array}\right.
$$

Proof.

In an optimal alignment from $x \circ a$ to $y \circ b$, either:

- a aligns to b, with cost $\mathbb{1} \llbracket a \neq b \rrbracket$
- a is deleted, with cost 1
- b is deleted, with cost 1

Edit Distance (V)

iterative algorithm:

$$
\begin{aligned}
& \operatorname{dist}\left(x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{m}\right) \\
& \text { for } 0 \leq i \leq n \\
& d[i][0]=i \\
& \text { for } 0 \leq j \leq m \\
& d[0][j]=j \\
& \text { for } 0 \leq i \leq n \\
& \\
& \text { for } 0 \leq j \leq m \\
& \qquad d[i][j]=\min \left\{\begin{array}{l}
d[i-1][j-1]+\mathbb{1}\left[x_{i} \neq y_{j} \rrbracket\right. \\
d[i-1][j]+1 \\
d[i][j-1]+1
\end{array}\right. \\
& \text { return } d[n][m]
\end{aligned}
$$

correctness: clear

complexity:

- $O(n m)$ time

■ space

- clearly $O(n m)$
- better: only store $d[$ cur $][\cdot]$ and $d[$ prev $][\cdot] \Longrightarrow O(m)$
question: are we done?

Edit Distance (VI)

Corollary

Given two strings $x, y \in \Sigma^{\star}$ can compute the minimum cost alignment in $O(\mathrm{~nm})$-time and $O(\mathrm{~nm})$-space.

Proof.

Exercise. Hint: follow how each subproblem was solved.

Edit Distance (VII)

dependency graph:

computing the alignment:

■ how update rule is computed yields a pointer for each (i, j)
■ one pointer per optimal choice - multiple pointers are possible

- any path from (n, m) to boundary yields optimal alignment
- compute path via graph search

saving space:

■ only keep most recent two columns
\Longrightarrow we lost the pointers!
question: compute the alignment in $O(n+m)$
space?

Edit Distance, Better

Lemma

Let $x, y \in \Sigma^{\star}$ be strings, with $n=|x|$ and $m=|y|$. Then for any $1 \leq i \leq n$,

$$
\operatorname{dist}(x, y)=\min _{1 \leq j \leq m}\left\{\operatorname{dist}\left(x_{\leq i}, y_{\leq j}\right)+\operatorname{dist}\left(x_{>i}, y_{>j}\right)\right\}
$$

Proof.

த: Fix j. Let A_{\leq}and $A_{>}$be alignments respectively between $x_{\leq i}, y_{\leq j}$ and $x_{>i}, y_{>j}$, with respective costs $\operatorname{dist}\left(x_{\leq i}, y_{\leq j}\right)$ and $\operatorname{dist}\left(x_{>i}, y_{>j}\right)$. Then $A_{\leq} \circ A_{>}$is an alignment between x and y of $\operatorname{cost} \operatorname{dist}\left(x_{\leq i}, y_{\leq j}\right)+\operatorname{dist}\left(x_{>i}, y_{>j}\right)$.
三: Any alignment A between x and y will align $x_{\leq i}$ to some prefix $y_{\leq j}$ of y in an alignment A_{\leq}, and align $x_{>i}$ to the suffix $y_{>j}$ in an alignment $A_{>}$, and hence for this j we have $\operatorname{dist}(x, y)=\operatorname{dist}\left(x_{\leq i}, y_{\leq j}\right)+\operatorname{dist}\left(x_{>i}, y_{>j}\right)$.

Edit Distance, Better (II)

Definition

Let $x, y \in \Sigma^{\star}$ be strings, with $n=|x|$ and $m=|y|$. Then for any $1 \leq i \leq n$, define meet ${ }_{i}(x, y)$ to be the $j \in[m]$ where $x_{\leq i}$ aligns to $y_{\leq j}$ in an optimal alignment. That is,

$$
\operatorname{meet}_{i}(x, y)=\min \left\{j: \operatorname{dist}(x, y)=\operatorname{dist}\left(x_{\leq i}, y_{\leq j}\right)+\operatorname{dist}\left(x_{>i}, y_{>j}\right)\right\} .
$$

remark: previous lemma asserts such a j exists

```
meet (i,\mp@subsup{x}{1}{}\mp@subsup{x}{2}{}\cdots\mp@subsup{x}{n}{},\mp@subsup{y}{1}{}\mp@subsup{y}{2}{}\cdots\mp@subsup{y}{m}{})
    for 1\leqj\leqm
        compute dist( }\mp@subsup{x}{\leqi}{},\mp@subsup{y}{\leqj}{}
    for 1\leqj\leqm
        compute dist( }\mp@subsup{x}{>i}{},\mp@subsup{y}{>j}{}
        output min }j\mathrm{ st dist (x,y) =
    dist}(\mp@subsup{x}{\leqi}{},\mp@subsup{y}{\leqj}{})+\operatorname{dist}(\mp@subsup{x}{>i}{},\mp@subsup{y}{>j}{}
```

correctness: clear

complexity:

■ $\operatorname{dist}\left(x_{\leq i}, y\right)$ already computes $\operatorname{dist}\left(x_{\leq i}, y_{\leq j}\right)$ for all j

■ $O(n m)$ time, $O(m)$ space
■ dist(reverse $\left(x_{>i}\right)$, reverse $\left.(y)\right)$ already computes $\operatorname{dist}\left(x_{>i}, y_{>j}\right)$ for all j
$\Longrightarrow O(n m)$ time, $O(m)$ space

Edit Distance, Better (III)

divide and conqueror:

dist-align $\left(x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{m}\right)$
if $n=1$
use $\operatorname{dist}(x, y)$
if $m=1$
use dist (x, y)
$j=\operatorname{meet}(n-1, x, y)$
$A_{\leq}=$dist-align $\left(x_{\leq n-1}, y_{\leq j}\right)$
$A_{>}=$dist-align $\left(x_{>n-1}, y_{>j}\right)$
return $A_{\leq} \circ A_{>}$
correctness: clear

complexity:

- base cases
- $O(m)$ time, $O(1)$ space
- $O(n)$ time, $O(1)$ space
$\square \operatorname{meet}_{n-1}(x, y)$
$\square O(n m)$ time, $O(n+m)$ space
- space recurrence

■ $S(n, m) \leq \max \{O(n+m), S(n-1, m), S(1, m)\}$
$\Longrightarrow S(n, m) \leq O(n+m)$

- time recurrence
- $T(n, m) \leq O(n m)+T(n-1, m)+T(1, m)$
$\Longrightarrow T(n, m) \leq O\left(n^{2} m\right)$
question: can we do better?

Edit Distance, Better (IV)

divide and conqueror:

dist-align' $\left(x_{1} x_{2} \cdots x_{n}, y_{1} y_{2} \cdots y_{m}\right)$
if $n=1$
use $\operatorname{dist}(x, y)$
if $m=1$
use dist (x, y)
$j=\operatorname{meet}\left(\left\lfloor\frac{n}{2}\right\rfloor, x, y\right)$
$A_{\leq}=$dist-align' $\left(x_{\leq\left\lfloor\frac{n}{2}\right\rfloor}, y_{\leq j}\right)$
$A_{>}=$dist-align' $\left(x_{>\left\lfloor\frac{n}{2}\right\rfloor}, y_{>j}\right)$ return $A_{\leq} \circ A_{>}$
correctness: clear

complexity:

■ base cases: $O(n+m)$ time, $O(1)$ space

- $\operatorname{meet}_{\left\lfloor\frac{n}{2}\right\rfloor}(x, y)$: $O(n m)$ time, $O(n+m)$ space

■ space recurrence

- $S(n, m) \leq \max \left\{O(n+m), S\left(\left\lfloor\frac{n}{2}\right\rfloor, m\right), S\left(n-\left\lfloor\frac{n}{2}\right\rfloor, m\right)\right\}$
$\Longrightarrow S(n, m) \leq O(n+m)$
■ time recurrence
- $T(n, m) \leq O(n m)+T\left(\left\lfloor\frac{n}{2}\right\rfloor, j\right)+T\left(n-\left\lfloor\frac{n}{2}\right\rfloor, m-j\right)$
- guess $T(n, m) \leq \alpha \cdot n m$
- $T(n, m) \lesssim \beta \cdot n m+\alpha \cdot \frac{n}{2} \cdot j+\alpha \cdot \frac{n}{2} \cdot(m-j)=\left(\beta+\frac{\alpha}{2}\right) n m$
\Longrightarrow valid as long as $\alpha \geq 2 \beta$
$\Longrightarrow T(n, m) \leq O(n m)$
\Longrightarrow computing actual alignment in $O(n m)$-time and $O(n+m)$-space.

Longest Increasing Subsequence

Definition

A sequence of integers, of length n, is an ordered list $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Z}$. The sequence is increasing if $a_{1}<a_{2}<\cdots<a_{n}$.
A subsequence of $a_{1}, a_{2}, \ldots, a_{n}$ is any sequence of the form $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{m}}$, where $1 \leq i_{1}<\cdots<i_{m} \leq n$. The subsequence is increasing (IS) if $a_{i_{1}}<\cdots<a_{i_{n}}$.

Example

■ 02139947200854008540943059472061801 — sequence
■ 02139947200854008540943059472061801 — subsequence
■ $02 \underline{139947200854008540 \underline{9} 43059472061801 ~-~ i n c r e a s i n g ~ s u b s e q u e n c e ~}$
■ $\underline{021} \underline{3} 99 \underline{4} 72008 \underline{5} 400 \underline{8} 540 \underline{9} 43059472061801$ - longer increasing subsequence

Longest Increasing Subsequence (II)

Definition

The longest increasing subsequence problem (LIS) is to, given a sequence $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Z}$, compute the (length of) the longest increasing subsequence.
goal: solve with dynamic programming
■ identify subproblems

- develop recursion

■ memoize

- analyze

■ optimize time
remark: without loss of generality the a_{i} are distinct, up to a cost of $\Theta(n \log n)$ in runtime (exercise)

Longest Increasing Subsequence (III)

Lemma

For a sequence $\bar{a}=a_{1}, a_{2}, \ldots, a_{n}$, define $\operatorname{LIS}(\bar{a})$ to be the length of the longest increasing subsequence. Define LIS* (\bar{a}) to be the length of the longest increasing subsequence that contains the last element a_{n}. Then
$1 \operatorname{LIS}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\max _{1 \leq i \leq n} \operatorname{LIS}^{\star}\left(a_{1}, a_{2}, \ldots, a_{i}\right)$.
$2 \operatorname{LIS}^{\star}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\max _{i: a_{i}<a_{n}}\left\{1+\operatorname{LIS}^{\star}\left(a_{1}, a_{2}, \ldots, a_{i}\right), 1\right\}$.

Proof.

1 Clear.
2 For i with $a_{i}<a_{n}$, an $I S^{\star} a_{i_{1}}<\cdots<a_{i_{m-1}}<a_{i_{m}=i}$ of $\bar{a}_{\leq i}$ can append a_{n} to yield an IS* $a_{i_{1}}<\cdots<a_{i_{m-1}}<a_{i}<a_{n}$ of \bar{a}, and every IS* of \bar{a} can be decomposed this way, or by taking the singleton sequence a_{n}. Now take maximums.

Longest Increasing Subsequence (IV)

Lemma

Define LIS* (\bar{a}) to be the length of the longest increasing subsequence that contains the last element a_{n}. Then $\operatorname{LIS}^{\star}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\max _{i: a_{i}<a_{n}}\left\{1+\operatorname{LIS}^{\star}\left(\bar{a}_{\leq i}\right), 1\right\}$.

Example

02139947200854008540943059472061801
$1 \underline{0} 2139947200854008540943059472061801$ - LIS* $\left(a_{1}\right)=1$
2 02139947200854008540943059472061801 - LIS* $\left(a_{1}, a_{2}\right)=2$
3 02139947200854008540943059472061801 - LIS* $\left(a_{1}, \ldots, a_{3}\right)=2$
$4 \underline{0} 139947200854008540943059472061801$ - LIS* $\left(a_{1}, \ldots, a_{4}\right)=3$
$5 \underline{0} 2139947200854008540943059472061801$ - LIS* $\left(a_{1}, \ldots, a_{5}\right)=4$
6 $\underline{0} 2 \underline{1399} 47200854008540943059472061801$ - LIS* $\left(a_{1}, \ldots, a_{6}\right)=4$

Longest Increasing Subsequence (V)

iterative algorithm:

```
\(\operatorname{LIS}\left(a_{1}, a_{2}, \ldots, a_{n}\right)\) :
    for \(1 \leq i \leq n\)
        \(L^{\star}[i]=1\)
    \(L=0\)
    for \(1 \leq i \leq n\)
        for \(1 \leq j<i\)
            if \(a_{j}<a_{i}\)
            \(\left.L^{\star}[i]=\max \left\{L^{\star}[i], 1+L^{\star}[j]\right)\right\}\)
        \(L=\max \left\{L, L^{\star}[i]\right\}\)
    return \(L\)
```

correctness: clear complexity:

- $O(n)$ space
- $O\left(n^{2}\right)$ time - do better?

Longest Increasing Subsequence, Faster

$$
\operatorname{LIS}^{\star}\left(a_{1}, a_{2}, \ldots, a_{i}\right)=\max _{i: a_{j}<a_{i}}\left\{1+\operatorname{LIS}^{\star}\left(a_{1}, a_{2}, \ldots, a_{j}\right), 1\right\} .
$$

This recursive step does too much — all $\left(a_{j}, a_{i}\right)$ are compared! Use sorting? idea: define subproblem based on length of increasing subsequences

Definition

For sequence $a_{1}, a_{2}, \ldots, a_{n}$, define the end of increasing subsequence $\operatorname{EIS}(\ell, \bar{a})$ to be the minimum a_{i} such that there is an increasing sequence of length ℓ that terminates at a_{i}, that is,

$$
\operatorname{EIS}(\ell, \bar{a}):=\min _{i: a_{i_{1}}<a_{i_{2}}<\cdots<a_{i}=i} a_{i} .
$$

$\operatorname{EIS}(\ell, \bar{a})=\infty$ if $\ell>\operatorname{LIS}(\bar{a})$.
intuition: prefer the 'smallest' IS of each size

Longest Increasing Subsequence, Faster (II)

Definition

For sequence $a_{1}, a_{2}, \ldots, a_{n}$, define $\operatorname{EIS}(\ell, \bar{a})$ to be the minimum a_{i} such that there is an increasing sequence of length ℓ that terminates at a_{i}. $\operatorname{EIS}(\ell, \bar{a})=\infty$ if $\ell>\operatorname{LIS}(\bar{a})$.

Lemma

$\operatorname{LIS}(\bar{a})=\max _{\ell: \operatorname{EIS}(\ell, \bar{a})<\infty} \ell$.

Proof.

Clear.

Longest Increasing Subsequence, Faster (III)

Definition

For sequence $a_{1}, a_{2}, \ldots, a_{n}$, define $\operatorname{EIS}(\ell, \bar{a})$ to be the minimum a_{i} such that there is an increasing sequence of length ℓ that terminates at a_{i}. $\operatorname{EIS}(\ell, \bar{a})=\infty$ if $\ell>\operatorname{LIS}(\bar{a})$.

Lemma

For sequence $a_{1}, a_{2}, \ldots, a_{n}, \operatorname{EIS}(\ell, \bar{a})<\operatorname{EIS}(\ell+1, \bar{a})$, for all ℓ. That is, $\operatorname{EIS}(\cdot, \bar{a})$ is a strictly sorted sequence.

Proof.

Let $a_{i_{1}}<a_{i_{2}}<\cdots<a_{i_{\ell}}$ be a witness for $\operatorname{EIS}(\ell, \bar{a})=a_{i_{\ell}}$, and let $a_{i_{1}^{\prime}}<a_{i_{2}^{\prime}}<\cdots<a_{i_{\ell}^{\prime}}<a_{i_{\ell+1}^{\prime}}$ be a witness for $\operatorname{EIS}(\ell+1, \bar{a})=a_{i_{\ell+1}^{\prime}}$. Then as $a_{i_{1}^{\prime}}<a_{i_{2}^{\prime}}<\cdots<a_{i_{\ell}^{\prime}}$ is length- ℓ increasing sequence we have that $\operatorname{EIS}(\ell, \bar{a}) \leq a_{i_{\ell}^{\prime}}<a_{i_{\ell+1}^{\prime}}^{\ell}=\operatorname{EIS}(\ell+1, \bar{a})$.

Longest Increasing Subsequence, Faster (IV)

Lemma
$\operatorname{EIS}\left(\ell,\left(a_{1}, \ldots, a_{n}, a_{n+1}\right)\right)=$
$1 \operatorname{EIS}(\ell, \bar{a})$, if $\operatorname{EIS}(\ell, \bar{a})<a_{n+1}$
$2 \operatorname{EIS}(\ell, \bar{a})$, if $\operatorname{EIS}(\ell-1, \bar{a})>a_{n+1}$
$3 a_{n+1}$, if $\operatorname{EIS}(\ell, \bar{a})>a_{n+1}$ and $\operatorname{EIS}(\ell-1, \bar{a})<a_{n+1}$

Proof.

1 Clear.
2 Clear.
3 Exists increasing sequence of length ℓ terminating at a_{n+1}
iff exists increasing sequence of length $\ell-1$ terminating at $a_{i}<a_{n+1}$, for some i
iff exists increasing sequence of length $\ell-1$ terminating at $\operatorname{EIS}(\ell-1, \bar{a})<a_{n+1}$

Longest Increasing Subsequence, Faster (V)

Lemma

For a fixed $\bar{a}, \operatorname{EIS}(\ell, \bar{a})$ strictly increases with ℓ.

Lemma

$\operatorname{EIS}\left(\ell,\left(a_{1}, \ldots, a_{n}, a_{n+1}\right)\right)=$
$1 \operatorname{EIS}(\ell, \bar{a})$, if $\operatorname{EIS}(\ell, \bar{a})<a_{n+1}$ or $\operatorname{EIS}(\ell-1, \bar{a})>a_{n+1}$
$2 a_{n+1}$, if $\operatorname{EIS}(\ell, \bar{a})>a_{n+1}$ and $\operatorname{EIS}(\ell-1, \bar{a})<a_{n+1}$

Corollary

- $\operatorname{EIS}\left(\ell,\left(\bar{a}, a_{n+1}\right)\right) \neq \operatorname{EIS}(\ell, \bar{a})$ for exactly one value of ℓ
- This value of ℓ can be found by binary search.

remarks:

■ uses distinctness of the a_{i}
■ boundary cases need attention, e.g., $\operatorname{EIS}(\ell, \bar{a})=\infty$, or $\ell-1=0$

Longest Increasing Subsequence, Faster (VI)

```
LIS' \(\left(a_{1}, a_{2}, \ldots, a_{n}\right)\) :
    for \(1 \leq \ell \leq n\)
        \(E[\ell]=\infty\)
    for \(1 \leq i \leq n\)
        \(\ell=\min \left\{k: E[k]>a_{i}\right\}\)
        \(E[\ell]=a_{i}\)
    for \(1 \leq i \leq n\)
        if \(E[i]<\infty\)
            \(L=i\)
    return L
```

correctness: clear

complexity:

- $O(n)$ space

■ time

- E[•] remains sorted throughout
$\Longrightarrow O(\log n)$ time to compute $\min \left\{k: E[k]>a_{i}\right\}$
$\Longrightarrow O(n \log n)$ total runtime

remarks:

- making a_{i} distinct costs $\Theta(n \log n)$ extra time
- can compute actual subsequence in same time bound, using back pointers (exercise)

Overview (II)

logistics:

- pset2 out, due W10 - can submit in groups of ≤ 3

today:

- dynamic programming optimized
- edit distance

■ longest increasing subsequence

next time:

■ randomized algorithms

1. Title

2 Overview
3 Dynamic Programming
4 Edit Distance
5 Edit Distance (II)
6 Edit Distance (III)
7 Edit Distance (IV)
8 Edit Distance (V)
9 Edit Distance (VI)
10 Edit Distance (VII)
11 Edit Distance, Better
12 Edit Distance, Better (II)
13 Edit Distance, Better (III)

14 Edit Distance, Better (IV)
15 Longest Increasing Subsequence
16 Longest Increasing Subsequence (II)
17 Longest Increasing Subsequence (III)
18 Longest Increasing Subsequence (IV)
19 Longest Increasing Subsequence (V)
20 Longest Increasing Subsequence, Faster
21 Longest Increasing Subsequence, Faster (II)
22 Longest Increasing Subsequence, Faster (III)
23 Longest Increasing Subsequence, Faster (IV)
24 Longest Increasing Subsequence, Faster (V)
25 Longest Increasing Subsequence, Faster (VI)
26 Overview (II)

