cs473: Algorithms Assigned: Tue., Sep. 10, 2019
Problem Set #2

Prof. Michael A. Forbes

Prof. Chandra Chekuri Due: Wed., Sep. 18, 2019 (10:00am)

Some reminders about logistics.

e Submission Policy: See the course webpage for how to submit your pset via gradescope.

e Collaboration Policy: For this problem set you are allowed to work in groups of up to
three. Only one copy should be submitted per group on gradescope. See the course webpage
for more details.

e Late Policy: Late psets are not accepted. Instead, we will drop several of your lowest pset
problem scores; see the course webpage for more details.

All (non-optional) problems are of equal value.

1. Suppose you have k dollars to invest in n investment options. Investing a dollars in option
i will fetch you a profit of f;(a) dollars — these are complicated investments and hence the
actual return is not a well-defined function but rather given as a table entry. Investments
can be only be done in full dollar amounts. How do you spread your k dollars among the n
options to maximize your profit?

Mathematically we formalize it as follows. We are given n functions f1, fo,..., f, which can
be accessed as sub-routines. Given an integer a we can obtain the value f;(a) in constant time.
We wish to solve the following problem: given integer k£ > 0 find integers ki, ks, ..., k, > 0 to
maximize Y ;- fi(k;) subject to the condition that Y " | k; < k (not all k£ dollars need to be
invested if it is not profitable to do so).

(a) Describe an algorithm for this problem that runs in time polynomial in k& and n.

(b) Describe how to implement your algorithm so that it uses O(k) space.

2. We have seen an algorithm to solve the maximum weight independent set problem in a given
node-weighted tree. Consider the following generalization. The input now consists of a tree
T = (V, E) with non-negative integer weights w : V' — Z>(and also an integer k. Describe an
efficient algorithm that computes the maximum weight independent set with < k nodes.

Hint: Consider using the algorithm from problem (1).

3. Let G = (V, E) be a directed graph and let k be an integer. Describe an efficient algorithm
that given two nodes s,t € V checks whether there is an (s,t)-walk in G that contains > k
distinct nodes. Note that it is important that we ask for a walk and not a (simple) path for
otherwise the problem would be NP-complete.

(a) Develop an algorithm when G is a directed acyclic graph (DAG).

(b) Develop an algorithm for the general case using the meta-graph DAG of strongly-connected
components of a directed graph. (If you are unfamiliar with this concept, then see for
example Chapter 3 of Dasgupta-Papadimitriou-Vazirani).

Hint: What is the answer if G is strongly connected?

4. (optional, not for submission) Given an undirected graph G = (V, E') we defined its square,
denoted by square(G) as the graph G’ = (V, E’) where (u,v) € E’ iff there is a path of length
< 2 between v and v in G. That is, (u,v) € E" if (u,v) € E or if there is a node w such
that (u,w), (w,v) € E. In class we saw an algorithm for the maximum weight independent
set problem in a tree T'= (V, E). Design and analyze an algorithm for the maximum weight
independent set problem for the square of a given tree T'= (V, E).

5. (optional, not for submission) Given a tree T' = (V, E) describe an efficient algorithm to
count the number of (all, not necessarily maximum) independent sets in T'. Also for counting
the number of (all, not necessarily minimal) dominating sets in 7.

6. (optional, not for submission) Consider the following multi-processor scheduling problem.
The input consists of n jobs Ji, Jo, ..., J, and m identical machines My, Mo, ..., M,,. Each
job J; has a non-negative size s;. The goal is to assign the jobs to the machines to minimize
the maximum load over all machines. The load of a machine is the sum of the sizes of the
jobs assigned to it. This is an NP-hard problem in general.

However, here we will consider the setting where there are only 3 distinct job sizes {a, b, c}.
That is, s; € {a,b,c} for 1 < i < n. In this case it suffices to specify the job instance by
m, the sizes a, b, c, and 3 integers ng, ny, N, which indicate the number of jobs of each size.
Describe an algorithm that runs in (n +m)?() time for this problem where n = ng + ny, + n,
is the total number of jobs.

Hint: The number 3 is not important. In fact one can devise an (n +m)?®)-time algorithm if
the jobs have only k distinct job sizes.

